

Python Machine Learning

A Crash Course for Beginners to
Understand Machine learning, Artificial

Intelligence, Neural Networks, and Deep
Learning with Scikit-Learn, TensorFlow,

and Keras.

by

Josh Hugh Learning

Josh Hugh Learning

© Copyright 2019 - All rights reserved.

The content contained within this book may not be reproduced,
duplicated or transmitted without direct written permission from the
author or the publisher.

Under no circumstances will any blame or legal responsibility be held
against the publisher, or author, for any damages, reparation, or
monetary loss due to the information contained within this book.
Either directly or indirectly.

Legal Notice:

This book is copyright protected. This book is only for personal use.
You cannot amend, distribute, sell, use, quote or paraphrase any
part, or the content within this book, without the consent of the
author or publisher.

https://www.amazon.com/s?i=digital-text&rh=p_27%3AJosh+Hugh+Learning

Disclaimer Notice:

Please note the information contained within this document is for
educational and entertainment purposes only. All effort has been
executed to present accurate, up to date, and reliable, complete
information. No warranties of any kind are declared or implied.
Readers acknowledge that the author is not engaging in the
rendering of legal, financial, medical or professional advice. The
content within this book has been derived from various sources.
Please consult a licensed professional before attempting any
techniques outlined in this book.

By reading this document, the reader agrees that under no
circumstances is the author responsible for any losses, direct or
indirect, which are incurred as a result of the use of information
contained within this document, including, but not limited to, —
errors, omissions, or inaccuracies.

Table of Contents

Introduction

Chapter 1: The Basics of Machine Learning

The Benefits of Machine Learning

Supervised Machine Learning

Unsupervised Machine Learning

Reinforcement Machine Learning

Chapter 2: Learning the Data sets of Python

Structured Data Sets

Unstructured Data Sets

How to Manage the Missing Data

Splitting Your Data

Training and Testing Your Data

Chapter 3: Supervised Learning with Regressions

The Linear Regression

The Cost Function

Using Weight Training with Gradient Descent

Polynomial Regression

Chapter 4: Regularization

Different Types of Fitting with Predicted Prices

How to Detect Overfitting

How Can I Fix Overfitting?

Chapter 5: Supervised Learning with Classification

Logistic Regression

Multiclass Classification

Chapter 6: Non-linear Classification Models

K-Nearest Neighbor

Decision Trees and Random Forests

Working with Support Vector Machines

The Neural Networks

Chapter 7: Validation and Optimization Techniques

Cross-Validation Techniques

Hyperparameter Optimization

Grid and Random Search

Chapter 8: Unsupervised Machine Learning with Clustering

K-Means Clustering

Hierarchal Clustering

DBSCAN

Chapter 9: Reduction of Dimensionality

The Principal Component Analysis

Linear Discriminant Analysis

Comparing PCA and LDA

Conclusion

Introduction

Congratulations on purchasing Python Machine Learning, and
thank you for doing so.

The following chapters will discuss a lot of the different parts that we
need to know when it is time to start working with the Python
language and getting it to work for some of your own machine
learning needs. There are many companies that want to work with
machine learning in order to help them learn more about their
company, their competition, their industry, and their customers.
When we collect the right data and combine it with the right machine
learning algorithms, we will be able to make this work for our needs

Sometimes, getting started with machine learning is hard, and
knowing how to get your own program set up and ready to go will be
important. The hardest part is figuring out the algorithms that we are
going to spend some time working on along the way. There are really
quite a few machine learning algorithms that you are able to work
with, and picking the right one often will depend on the different
processes that you want to do, the questions that you want the data
to answer for you, and even the kind of data that you are trying to
work with.

We are going to look at some of the basics that come with the
process of machine learning and how to pick out the kind of data that
we are able to work with as well. Then we will spend the rest of this
guidebook looking at some of the different algorithms that we want to
handle in this kind of language, with the help of Python. These will
ensure that we are able to take over make sure that our data is
handled and that we are actually able to see results with the work
that we need to do.

There are many types of algorithms that we are able to explore.
Some of the options that we are going to explore in this guidebook
will include regressions, linear classification, non-linear, and more. In
each of these categories, we are going to spend our time looking at
how we can get started with this process, and the types of algorithms
that fit into each one, and more. When you are done with this
guidebook, you will know what you need about some of the most
common machine learning algorithms and how to use them for your
own data analysis.

There is so much that we are able to do with the Python language,
and learning how to use it to pick out the right machine learning can
be important. When you are ready to get started with Python
machine learning, make sure to check out this guidebook to help you
get started.

There are plenty of books on this subject on the market, thanks
again for choosing this one! Every effort was made to ensure it is full
of as much useful information as possible, and please enjoy it!

Chapter 1: The Basics of Machine
Learning

The first topic that we need to spend some time working on in this
guidebook is information on machine learning and what we are able
to do with it. This is a huge word in the technology and business
world, but many people are not certain about what this all means,
and how they are able to work with machine learning to reach some
of their own goals along the way.

To start with, we need to take a look at what machine learning is all
about and why it is gaining so much popularity in our world today.
Machine learning is basically an application of artificial intelligence
that is going to provide our systems with the ability to automatically
learn and improve from experience, without being programmed on
everything that they should be doing. Machine learning focuses on
the creation and improvement computer programs that can access
data and then use this data to learn.

It all starts with observations, or even data, such as instructions,
direct experiences, and examples, in order to look for patterns in
data and make better decisions in the future based on the example
that we provide. The primary aim is to allow these computers a way
to learn without any assistance or intervention from humans

automatically, and then you can see that the computer will be able to
adjust their actions accordingly to work with this as well.

There are a lot of applications that go with machine learning, and we
are going to spend time in this guidebook looking at a lot of the
different algorithms and more that you are able to do with machine
learning. When you get all of this working together, you will see
some amazing results and really see the true potential that comes
with machine learning.
There are a lot of different things that you are able to use in machine
learning. Any time that you aren’t sure how the end result is going to
turn up, or you aren’t sure what the input of the other person could
be, you will find that machine learning can help you get through
some of these problems. If you want the computer to be able to go
through a long list of options and find patterns or find the right result,
then machine learning is going to work the best for you.

Some of the other things that machine learning can help out with
include:

1. Voice recognition
2. Facial recognition
3. Search engines. The machine learning program is going to

start learning from the answers that the individual provides, or

the queries, and will start to give better answers near the top
as time goes on.

4. Recommendations after shopping
5. Going through large amounts of data about finances and

customers and making accurate predictions about what the
company should do to increase profits and happy customers
along the way.

These are just a few of the examples of when you would want to
start utilizing a program that needs to be able to act on its own. Many
of the traditional programs that you are going to learn how to use as
a beginner are going to be much simpler than this. They will tell the
computer exactly what it should do in a given situation. This works
great for a lot of programs, but for things like artificial intelligence, it
is not going to be enough.

In addition, you will find that this machine learning is going to be a
really good thing to use when it comes to handling data analysis,
which is what some of the algorithms that we will discuss in this
guidebook are used for in most cases. There are many algorithms
that happen with this, but knowing how to use them and how they fit
in with not only machine learning but also data science is going to be
important.

Data analysis is going to be really important when it comes to your
business and how competitive you can be in the future. You will find
that with the right algorithms, and the information that we are going
to go through in this guidebook with those algorithms, you will be
able to handle some of the different business problems you have,
complete your data analysis, and finally gain a good understanding
of what all that big data you have been collecting is all about.

The Benefits of Machine Learning

There are actually quite a few benefits that we are going to see when
it comes to working with machine learning on a regular basis. This is
most likely one of the major reasons why so many companies want
to jump on board and see what this is all about. Depending on the
kinds of questions that you are looking to answer about your
business and more, you will be able to find an application of machine
learning in no time.

Machine learning is going to simplify some of the steps that come
with product marketing and can assist when you want to make
accurate forecasts of sales. Machine learning is going to be able to
do this in more than one manner. For example, you will be able to
get through a massive amount of data from as many sources as you
want. There is likely to be a lot of information in there to help you
modify and review all of your marketing strategies until you get the
most effective one. You will also find that machine learning can help
with rapid analysis, prediction and processing, and it is good at
interpreting the past behaviors of your customers.

All of these come together to help you quite a bit, you will be able to
use this unlimited amount of information in order to learn more about
the customer, figure out what they are looking for in your business,
and learn the best way to reach them in the marketing that you do.
Considering marketing is an important part of the success of any
business, you can easily see why so many companies want to be
able to use this for themselves as well.

Machine learning can also help to facilitate accurate diagnoses and
predictions in the medical field. This kind of learning is going to help
doctors to identify their high-risk patients, make good diagnoses, and
give the best medicines that are possible in each case. These are
going to be based, for the most part, on available sets of data on
patient records that remain anonymous, as well as the symptoms
that these patients were experiencing at the time. This can help
doctors and other medical professionals become more efficient at
the jobs they are doing for us.

When it is time to really work on data entry, but the work is going to
take too long to accomplish manually, machine learning is able to
step in and help make this happen easier. Data duplication and
inaccuracy are going to be big issues for companies who would like
to automate the process of data entry. Machine learning can help
work with taking those data entry tasks and getting the work done in
no time.

Machine learning is also going to have a big impact on the finance
sector. Some of the most common benefits of machine learning
when it comes to the financial world will include loan underwriting,
algorithmic trading, and fraud detection. In addition, this kind of
learning is going to help us with continual data assessments to
detect and then analyze any of the anomalies that happen in the
financial world, which is going to really help to improve the amount of
precision that we can find in our models and rules financially.

We will also see that machine learning is able to help with detecting
spam. This was actually one of the earliest problems that machine
learning was able to come in and help with. Spam filters are able to
make up new rules, using neural networks, in order to eliminate
spam mail and keep your inbox as clean as possible. The neural
network is able to learn how to recognize phishing messages as well
as other junk mail when it evaluates the rules that are found across
an ever-growing network of computers.

The manufacturing industry is even able to benefit from some of the
things that we see with machine learning. Manufacturing firms need
to have corrective and preventative maintenance practices in place.
However, these are going to be inefficient and costly in many cases.
This is where machine learning can step in to help, and it is going to
be a great tool in creating a highly efficient predictive maintenance
plan that keeps the business up and running and doing well. In fact,
when the company follows these plans, it is going to minimize the
chances of failures that are not expected to happen, which will
reduce unnecessary preventive maintenance activities.

Machine learning is also going to help with better customer
segmentation and accurate lifetime value prediction. These are
going to be some of the biggest challenges that marketers are going
to face on a daily basis. Marketing and sales units are going to have
an enormous amount of data sourced from many channels, but
accurate predictions are only going to be found when we look at
machine learning.

Some of the best marketers out there right now know that they
should use machine learning to eliminate some of the guesswork
that comes with their marketing efforts. For example, when they use
the data representing the patterns of behavior for their users during a
trial period, they are going to be able to help their company make
predictions on how likely it is to get conversions to a paid trial and
figure out if this paid trial is worth their time or not.

And finally, we are able to look at how machine learning is going to
be the right option for recommending products and more to
customers. This is one of the best ways for a company to cross-sell
and up sell to their customers and can be really useful for customers
as well. If you have ever gone onto a website and had something like
“customers like you bought these products” or something similar,
then you have seen machine learning at work in this way.

The models of machine learning are going to analyze the purchase
history that they see with the customer, and based on that, they are
able to identify the products that the company has that the customer
may be interested in. The algorithm is a good one to help us find the
hidden patterns among the items and then will group similar products
into clusters. This is going to be a good example of unsupervised
learning, which we are going to talk about in a moment.

This kind of model is helpful to businesses because it ensures they
are able to provide the best product recommendations back to their
customers, which is a great way to motivate customers to make
another purchase. In this manner, unsupervised machine learning is
going to help us to make a really strong recommendation system for
the company and can increase the amount they are going to see in
profits along the way.

As we can see, there are a lot of benefits that come with working in
machine learning, and companies across all industries out there are
going to be able to see some of the benefits. Some of the tasks that
come with this is making sure that you collect the right kind of data,
and that you take your time to pick out a good algorithm that can
actually sort through your data and will help you to really hear the
predictions and more that you need .

Supervised Machine Learning

Now there are going to be three types of machine learning that we
are able to work with when it comes to the algorithm types. We are
going to spend some time looking at each one and how it is meant to
work overall. Let us look that the supervised form of machine
learning. These can apply what has been learned prior and then
putting that towards new data, with the help of examples that are
labeled in order to predict whether an event is likely to happen in the
future or not.
Beginning from the analysis on a known set of data, the algorithm
that you choose here is going to be able to produce for us a function
to make predictions about the values we are given. The system,
when it is working well, is going to be able to provide targets for any
new input after you do enough training on it. The learning algorithm
is going to compare the output that it gives with the intended and
correct output, then it is able to find out any of the errors that are
there modify the models in the right manner along the way.

Along with the same kind of idea, but combining some of the work
that we will talk about with unsupervised learning later on, includes
semi-supervised machine learning algorithms. It is going to work with
labeled and unlabeled data to help with the training. In most cases,
we are going to see just a small amount of data that is labeled as
being used, and then a large amount of data that is unlabeled that is
being used. This is because working with labeled data can be
expensive, even when it is efficient, and being able to work with this
kind of data is going to be hard to handle, and you will need to add in
the unlabeled data to get things done.

The systems that are going to work with this kind of algorithm are
going to be higher in the amount of accuracy that they will see with
their results. In many cases, this kind of learning is going to be
chosen any time that the labeled data that we are working with
requires skills and relevant resources in order to either train or learn
from it. Otherwise, you will find that acquiring the unlabeled
resources and data that you need won’t require additional work to
get it all done.

Unsupervised Machine Learning

Now that we have had a chance to take a look at what the
supervised machine learning algorithms are able to do, it is time to
take a look at what we are able to do with unsupervised machine
learning algorithms. These are going to be the ones that we use any
time that the information we have is used to train the algorithm, and
it is not going to be labeled or classified. This means that the
algorithm, and the system or machine it is on, will need to do the
learning on their own, without examples and labeled data to help it
make more sense.

Unsupervised learning studies show a system is able to infer a
function to describe one of the hidden structures from the unlabeled
data. The system doesn’t figure out the right output with this one, it is
going to explore the data and then draw inferences from the sets of
data.

With this one, we are going to use a lot of data that doesn’t have a
label on it or any information as to the right answer, and then we are
able to send it right through the algorithm and let the system learn
along the way. This takes more time, and you may end up with some
more runs of training and testing before you are done, but it can be
one of the best ways to get some strong systems in place to help
with your machine learning.

Reinforcement Machine Learning

This is going to be the method of learning that is going to interact
with the environment around it by producing actions, and then
discovering the rewards or the errors as it goes on. You can compare
this one to the idea of trial and error along the way. The trial and
error are going to add to the search and delayed reward and are
going to be some of the most relevant characteristics of this kind of
learning.

When we work with reinforcement machine learning, we are going to
find that it allows the software agents and the machine to
automatically, on their own, determine the ideal behavior that they
should take to maximize the performance that we are seeing. This is
something that we are going to call the reinforcement signal.

When we are looking at reinforcement machine learning, there are
going to be a lot of similarities to how the computer learns compared
to how a human can learn along the way. This method is set up to
help us really be able to work with trial and error, and the computer
will be able to use this idea to figure out the right course of action to
help them be successful. There is so much that we are able to do
when it comes to machine learning, and figuring out these different
parts, and how to make them work is a challenge that many data
scientists are going to have to deal with on a regular basis. When
you are ready to explore more about machine learning, and some of
the cool things that you as a programmer can do with this language,
make sure to read on through below and see all of the different
choices in algorithms and more that are available.

Chapter 2: Learning the
Data sets of Python

When it comes to working with machine learning and the Python
language, there is nothing better than working with data. The more
data that you are able to gather and clean, the easier it is to work
with some of the algorithms that come with this process. You will find
that Python is going to provide us with many algorithms, but we first
need to be able to organize the data and get it set up to go through
the algorithms for training and testing, in order to see the results that
we would like.

With this in mind, we need to take some time to explore the different
types of data that we are able to use. We have to look at some of the
differences that come up with unstructured and structured data when
to use each one, and how we can use these types of data in order to
help us train and test some of our Python machine learning
algorithms.

Structured Data Sets

The first type of data that we need to spend time working with is
structured data. Traditionally we would just have this kind of data in
the past, which was harder to get but was easy to work with.
Companies would look for some of the structured data that they
need, and then make some of the business decisions and more that
they need to move forward.

This kind of data is going to be any data that has been organized
well and is then going to fit into a formatted repository for us to use.
Usually, this is going to be data that is stored in a database so that
the elements can be used for more effective processing and
analysis.

We may be able to find this kind of data when we are going through
other databases to help with the information, or when we get the
results of a survey. This one is much easier to work with because it
is already organized, and it is going to fit into the algorithm that you
want to work with without you have to worry about missing values,
duplicates, outliers, or anything else like this. It is also a much more
expensive method of working with data, which can make it harder to
work with overall as well.

This is why many companies have to make a balancing act over how
much-structured data and how much-unstructured data they want to

work with. The structured data can make the work easier and will
ensure that the algorithm is going to work better, but it is harder to
collect, there is less of it, and it is more expensive. The unstructured
data is sometimes hard to work with and takes time to clean and
organize, but there are endless amounts of it, it can still be used to
handle your machine learning algorithms, and it is a lot less
expensive to gather up and use.

Unstructured Data Sets

The second type of data that we need to take a look at is the
unstructured data. This is basically going to represent any of the
data that doesn’t provide us with a recognizable structure to it. It is
going to be raw and unorganized, and there may not be any rhyme
or reason to what you are seeing. Unstructured data is often going to
be called loosely structured data in some cases, where the sources
of data may have some kind of structure, but not all of the data in
that set will end up following the same structure, so you will still have
some work to handle to make them work for your needs.

For those businesses that are going to center around the customer,
the data that is found in this kind of form can be examined and there
is so much that we are able to get out of it, such as using it to
enhance the relationship marketing and the customer relationship
management that happens as well. The development of unstructured
data, as time goes on, is likely to keep growing because more and
more businesses are looking to gather this information, and it can be
gathered and created in no time at all.

Unstructured data is going to refer to any data that is able to follow a
form that is less ordered than items like a database, table,
spreadsheets, and other ordered sets of data. In fact, the term data
set is going to be a good way to look at this because it is going to be
associated with data that is neat and doesn’t have any extra content.
We are basically working with a lot of data that is not necessarily

organized and can be hard to work with without some help
organizing.

There are a ton of instances where we are going to see this kind of
data. We may see it in documents, social media posts, medical
records, books, collaboration software, instant messages,
presentations, and Word documents, to name a few. We are able to
work with some non-textual unstructured data, and we will see that
this can include video files JPEG images and even some MP3 audio
files as well.

Most of the data that you are going to work with over time will rely on
the idea of unstructured data. There is so much of this kind of data
out there to work with, and it is often easier to find and less
expensive compared to some of the structured data that we talked
about above. Being prepared to handle some of this unstructured
data and make sure that it is prepared and ready to go with some of
your machine learning algorithms.

How to Manage the Missing Data

We also need to spend some time working with the missing data that
comes in. When we are gathering all of that data from all of those
different sources, it is likely that at least some of that data is going to
come in missing. Whether this is just one part of the data, or there
are a lot of values that are missing for entry, we need to know how
we can manage these missing data points.

If we tried to push some of these missing data points through the
chosen algorithm, it would not end up going all that well. The
algorithm may or may not be able to handle some of the issues with
the missing data and even if the algorithm is able to handle the
missing values, there could be issues with it skewing the results.
This is why it is important to choose which method you would like to
use when it is time to manage that missing data.

The method you choose will depend on the type and amount of
missing data. If you just have a few points that are missing, then it is
probably fine to erase those points and not worry about them at all.
This can be the easiest method to work with because you will be
able to get them gone in no time. However, for the most part, it is
important to keep all of the data that you have, and filling them in is a
better way to manage the data.

There are a few ways that you are able to fill in the missing data.
Usually, going with the average or the mean of the rest of the data, is
going to be a good way to start. This ensures that you are still able to
use the data that is missing, while not losing out on some of the
important parts that you need with that entry as well. Find the
standard that you want to use, and then fill in those missing parts so
that the data can work better with the algorithm that we are using.

In addition to the missing data, we need to spend some time learning
how to manage the outliers and duplicate content. Both of these, if
they are not taken care of, is going to skew the results that you get. It
is important to figure out the best way to handle both of these before
you move on.

To start, we have the outliers. If you have big outliers that are
random but really high or really low compared to the rest of the
values, you will find that it is going to mess with your results, and
those results are not going to be as accurate as you would like. If
this is what happens with your data, then it is probably best to just
delete the outlier. It is just something that is not that important, and
removing it will ensure that you are able to handle the data in an
accurate manner.

Now, there are some situations where the outliers are going to be
important, as well. If you are looking at some of the outliers, and it
looks like there are a number of outliers that are going to fit into one
cluster or group, then this may be a sign that we need to move on to
looking at these and using the outliers. If you can see that a
significant number of outliers are in this group, rather than just one or
two random outliers, then this could be a good sign that there is a
new option to work with for reaching customers, marketing, the new
product you want to release and more. It never hurts to take a look at
these outliers, but for many situations, you will want to delete these.

In addition, we need to focus on the duplicates. Many times we will
want to go through and delete the duplicates so that the answers
don’t end up causing any issues with the results that we have. If you
have ten of the same person, with all of the same information for
them in your set of data, it is going to skew your results.

If this happens a few times, the issue is going to get even worse
overall. For the most part, we want to go through and delete these
enough so that we just end up with no duplicates or at least a
minimal amount of them.

Splitting Your Data

One thing that we will need to work on when it comes to our data is
figuring out how to split it up. There is some work that we have to do
in order to handle some of the data that we need before we can go
through and add them to the algorithms that we want to use. For
example, we need to go through a process of training and to test our
algorithms to make sure they will work the way that we want. This
means that we need to split up the data that we have into the training
data and the testing data.

These two sets are important to making sure our algorithms are
going to work properly. Having them set up and using these sets in
the proper manner will help us to get the best results when it comes
to working in machine learning. The rules are pretty simple with this,
though, so you will be able to get started without any problems along
the way.

For example, we need to make sure that the data we are using is
high quality to start with. If you do not have enough data or the data
is not high in quality, then your algorithm is going to get trained
improperly, and will not work the way that you want. Always be
careful about the kind of data that you are using in this process

Next, we need to make sure that we are splitting up the data
properly. We should have a group for testing and a group for training.
Your training set should be much larger to ensure that you are
properly training the data that you have and that the algorithm will
get a good dose of the examples that you present and what you
want it to do.

Training and Testing Your Data

As we go through some of the processes with working on our data
and these algorithms, we have to make sure that we are training and
testing all of the algorithms first. You can’t just write a few lines of
code and then put in your data, hoping to get a good prediction to
pop out. You need to take the time to train and test the data through
that algorithm, to ensure that the accuracy is there, and to make sure
that the algorithm is going to be ready for you to work with.

The first step to this is going to be the training of your data. You have
to make sure that you are spending a good deal of time training your
data so that it knows the right way to behave. Out of the splitting of
the data that we did before; you want to have about 75 to 85 percent
of your data be in the training set. This ensures that you have
enough data there that will help you to really train the algorithm and
gives it plenty of time to learn along the way as well.
Then you can feed all of that training data through your algorithm
and let it have some time to form those connections and learn what it
is supposed to do. From there, you will then need to test the data
that you are working with, as well. This will be the rest of the data
that you are working with. You can feed this through the algorithm,
and wait to see how much accuracy comes back.

Keep in mind with this one that most of the time; these algorithms
are going to be able to learn by experience. This means that while
they may not have as high accuracy as you would like in the
beginning, they will get better. In fact, you may have to go through
and do the training and testing phases a few times in order to
increase the accuracy enough that you will use the algorithm to
make predictions.

You want to get the accuracy as high as possible. However, if you
are noticing that the accuracy tends to be lower, and is going below
50 percent, or is not improving as you do some iterations of the
training and testing phases, then this is a bad sign. It shows us that
you either are not using enough data in your training for the
algorithm to properly learn, or you are using bad data that is
confusing the algorithm.

This is why we do the training and testing phases. It helps us to
catch some of the problems that may happen with this data and will
allow us time to make the necessary changes to the data and
algorithm before we rely on the future of our company using badly
trained algorithms. We can make the adjustments and run the
phases again until the accuracy goes up, and we know that we can
rely on that data again.

Working with data is going to be a very big part of working with the
machine learning projects that we want to handle, we need to be

able to learn how to distinguish the different types of data, how to
handle the missing data and the outliers, and how to split up the data
so that we are able to properly train and test the algorithms that we
want to use. When we are able to work with this, we are going to see
some great results through our machine learning, and we will then
be able to use these predictions and insights to help improve our
business.

Chapter 3: Supervised Learning with
Regressions

We spent a bit of time in the first chapter looking at what supervised
learning is going to be all about, but we need to spend some time
looking at the different algorithms that we are able to work with when
it comes to this kind of supervised learning. We are going to start out
here with some looks at how to work with supervised learning on
regression problems, but then we will move on to those that we are
able to do with classification problems later on.

Remember that the supervised learning that we will use here is
going to be the kind of learning that provides the algorithm with a lot
of examples. The input is going to include the corresponding output
so that the machine and the system are then able to take a look at
the information and learn what the right answers are. This may seem
like it is cheating a bit, but the system is able to learn from those
examples and then use that information on some of the unseen and
new data that it gets later on.

We can find that this is an effective and quick method of working with
machine learning, and it can get our algorithms written out pretty
quickly. That is why supervised machine learning is going to be used
on a regular basis on these kinds of projects. Some of the different
options that you are able to use when it comes to supervised
learning with regression problems will include:

The Linear Regression

We now need to take a look at what a linear regression is all about.
These models are going to show us, or predict the relationship that
will show up between two factors or variables. The factor that we are
predicting in this model will be the dependent variable. Then the
factors that we are using in order to predict the value of the
dependent variable will be known as the independent variable.

Good data is not always going to tell us the full story. The regression
analysis is going to be used in research as it is able to establish the
correlation between variables. But the correlation is not always going
to be the same as causation. Even a line that comes up in a simple
linear regression that fits well with the points of data may not be able
to say something definitive when it is time to look at the cause and
effect relationship that is there.

In a simple linear regression like this one, each of the observations
that we have will consist of two values. One value is going to be for
the dependent variable, and then the other will be the independent
variable. In this model, we are going to work with a straight line that
will approximate the relationship between these two.
Multiple regression analysis, though, is when we are going to take at
least two, and sometimes more, independent variables, and we will
use these in a regression analysis. When this happens, the model is
no longer going to be a simple linear one for us to work with.

The linear regression is going to have a number of practical uses
along the way. Most applications that come with this are going to fall
into one of the following broad categories. The first one is to predict
or forecast or for error reduction. This can be used to help with a
predictive model when it is time to work with an observed set of data
values, and the response that comes. After we are able to create this
model, if there are some additional values that are collected without
the right response to it, the fitted model that we can use is still able
to make a prediction for this.

If we have a goal to use this to help explain variation in the response
variable that can be attributed to the variation in the explanatory
variable, then this kind of analysis is going to be used to quantify the
strength that we are able to see between the response and the
explanatory variable.

Often we are going to be able to fit the linear regression with the
approach of the least squared, but there are other options to work
with based on what you are hoping to get out of the process. The
least-squares approach can be used to help fit some models that are
not always linear. What this means is that the terms of the linear
model and least-squares are linked to one another closely; they are
not going to be synonymous with one another.

The Cost Function

A cost function is going to be a mathematical formula that we are
able to use to help us chart how something is going to change,
especially when we look at production expenses at different output
levels. The cost function is able to estimate the total cost that we see
in production, given the quantity of the product or service that we are
producing.

The management of your company is able to use this kind of model
in order to run different production scenarios and to help predict what
the total cost would be to produce your product, based on the level
of output that you are using. The cost function is going to have its
own formula to get things done, and this is going to be C(x) = FC +
V(x). Ci is going to be the total cost of production the FC is going to
be the total costs that are fixed, V is the variable cost, and then x is
going to be the number of units.

Understanding the cost unction of a company is going to be helpful
in a lot of different scenarios, but especially when it comes to the
process of budgeting because it is going to help your management
to understand the cost behavior that we are able to see with a
product. This is important to help us anticipate the costs that could
be incurred in the next operating period at a planned level of activity.
It will also allow the management to evaluate how efficient they were
with the production process when the operating period is all done.

We can take a look at how to work with this one as well. Let’s say
that we are going to work with a toy manufacturer and they have
asked to have a cost study to make sure they can improve the
budget forecasts for the next year. They pay rent that is $300 a
month right now, and their electricity is going to come out to $30.
Each toy is going to require $5 in plastic and then $2 in cloth.

With this in mind, we are going to figure out how much it is going to
cost for the company to manufacture 1200 toys that year, and then
compare it to how much it will cost them to manufacture 1500 toys
for the year.

The first thing that we need to do to make this work is to figure out
which costs are going to be considered fixed, and which ones are
the variable costs. The fixed costs are basically going to be any that
are incurred, regardless of how much we are manufacturing the toys,
and then the variable will be the ones that we have to pay per unit of
production. What this means is that the electricity and the rent are
going to be fixed, and then the cloth and the plastic are going to be
variable costs.

Let’s start out with the steps that we would take in order to produce
the 12,000 toys a year. This is going to get us the following equation
(keep in mind that the fixed cost here is going to be 330 multiplied by
12 so that we can figure out how much the rent and the utilities will
be for the whole year.

C (1200) = $3,960 + 1200(5 + 2)
C (1200) = $12,360

But then we are able to take a look at how much it would take in
order to do the same thing with 1500 toys. This one is going to use
the formula below to help get it done:

C (1500) = $3,960 + 1500(5 + 2)
C (1500) = $14,460

The fixed costs in this on are going to stay the same, no matter how
much output we are going to produce. This is why the cost per unit is
going to go down or decrease when we make more units. The rent
and the utilities will stay the same regardless of how many units we
are trying to produce and sell, so usually working with a larger output
here is going to give us more in profits for charging the same amount
on the products.

Using Weight Training with Gradient Descent

One of the iterative optimization algorithms that we are going to be
able to use when we want to find the minimum of a convex function
is going to be the gradient descent. This one is going to be based on
ideas of calculus, and it is going to really rely on the properties that
happen with the first derivative in order to find out in what direction,
and even in what magnitude, the coefficients of our function need to
be modified along the way. This gradient descent is going to be used
when we have some parameters that we are not able to calculate in
an analytical manner, and we need to search for it with an
optimization algorithm.

Imagine a large container we would use to eat off of, or a big
container that we are able to store some fruit in. For our purposes
here, the bowl is going to be the cost function or f. A random part on
the container is the cost of the current values of your coefficients. We
will see that the bottom then is going to be the cost of the coefficients
that have the best set and the minimum of the function.

The goal, when using this process, is to try out more than one value
for the coefficients, and then evaluate their cost. This will then allow
you to go through and select out new coefficients that you can use,
ones that have a slightly lower or better cost than the one you were
looking at. If you are able to go through and repeat this process
enough times, it is going to help us reach the bottom of the

container, and then we will know the values of the coefficients that
will give us that minimum cost.

There are a few different types of gradient descents that we are able
to work with here. The first one is going to be the batch gradient
descent for machine learning. The goal of your supervised machine
learning is going to be to estimate a target function that is able to
map out the input data over to the output variables. This is going to
describe all of the regression and classification problems. This is a
good look at what the batch gradient descent is all about. This is
going to actually be one of the most common forms of gradient
descent that we will see in machine learning.

But then we are going to move on to the stochastic gradient descent
that is there. These algorithms are going to be slow when you want
to run them on some really large sets of data, because one iteration
of this kind of algorithm requires that you have a prediction for each
instance in training, it can take you a very long time to do this when
you have instances that number in the millions.
In these kinds of situations, you can change how you work with the
gradient descent and use the stochastic gradient descent. The
procedure of a regular descent is going to run, but the update that
we see on the coefficients is going to be performed on each instance
of training, rather than at the end of the batch of instances. The first
step for this is going to require that the order of our set of data for
training is going to be random. By mixing up the order that we are
doing with these coefficients, we are able to help harness the
random walk and make sure that we don’t get stuck or distracted.

The updated procedure that we are able to work with this one is
going to be the same as the regular gradient descent, but it will not
sum out the cost over all of the training patterns. Instead, it is going
to be calculated for one training pattern. The learning is going to be
faster with this option when we focus on large sets of data.

Polynomial Regression

And finally, we need to take a look at something that is known as the
polynomial regression. When we are working with statistics, this kind
of regression is going to be one of the analyses of regression that we
can work with that will be able to check out the relationship between
the dependent and the independent variable and is going to model
this relationship as the nth degree polynomial in x. This is going to fit
us into a nonlinear relationship between the value that we see with x
and the corresponding conditional mean of y.

There are a lot of times when we will use this kind of regression,
especially when we want to work with something like the growth rate
of tissues, the distribution that we are able to find with carbon
isotopes in some of the lake sediments that we see, and the
progression of disease epidemics.

Although this regression is going to take some of our nonlinear
models and has the data fit it, it is going to be more of a statistical
estimation problem. It is going to be linear with the idea that the
regression function is going to be linear in some of the unknown
parameters that we have with the estimated data. For this reason,
it is going to be considered one of the cases of multiple linear
regressions.

The independent variables that show up are going to result from the
polynomial expansion of the baseline variables, and they are going
to be known as higher-degree terms. Such variables can be used
when we are doing settings of classification.

There would be times that we would be working with regression
problems when it comes to working with machine learning. Adding in
some of these regression algorithms can help you to sort through the
data that you have in a more efficient manner, and will ensure that
you are able to get your data sorted through and find out the
predictions and insights that you are looking for as well. Some of the
other times when we would want to work with the polynomial
regression will include:

1. When the researcher thinks that there are some relationships
that will fit on a curved line. Clearly, these types of cases are
going to show us a term that is polynomial.

2. When we want to do an inspection of the residuals, if we try to
fit a linear model to a data that is curved, then the scatter plot
of residuals on the predictor is going to have patches of many
positive residuals in the manner. If this does happen, then we
can see that this kind of situation is not going to be
appropriate for the needs that we have.

3. An assumption in the usual multiple linear regression analysis
that all of our variables that should be independent are

actually this way. in this kind of model, we will find that this is
an assumption that is not going to be satisfied at all.

Basically, we will find that the biggest goal of this kind of analysis of
regression is that we want to model the expected value that is going
to show up in our dependent variables. We would do this in terms of
the value of our independent variable that is going to be x. This will
help us to get some of the work that we need to be done when it
comes to this kind of regression as well.

Chapter 4: Regularization

To start here, we need to look at some of the foundations of
overfitting. Let’s assume that you are looking to make some
predictions on the price movement of a stock in the future. We then
decide to go through and gather up some of the historical daily
prices of the stock, maybe going back over the past ten days or so,
and then plot the stock price on a scatter plot as we would need. You
would then want to go through and capture some of the information
about the movements of the stock price. You are then able to assess
and gather data for 16 features that you would like to follow because
you know the stock price is going to be dependent on them. These
are going to include:

1. The competition of the company.
2. The sentiment of the investors
3. The Foreign Exchange Rates
4. The interest rates
5. Inflation rate
6. The future contracts of the company.
7. The current contracts of the company
8. Information on the management of the company
9. The state of the M&A of the company

10. The current and the size of the futures contract of the
company.

11. The dividends that the company is able to provide.

12. Any future announcements that the company may
release.

13. The profits that the company is making.
14. The earnings of the company.
15. How the industry as a whole is performing at the time.

Once we have been able to gather, clean, scale, and transform the
data, it is time to split it out into training and test sets of data. You will
need to go through and feed the training data into the model that you
chose for machine learning in order to get it trained. After you have
had some time to train the algorithms or the models, you can then go
through and test out the accuracy that happens with the model by
passing through the set of test data.

The goal with this is actually to go through and chart out the prices.
You should find that the actual prices of the stocks are going to be
random. However, the predicted price of your stock is going to fall
into a smooth curve. It has not gone through and fits itself too closely
with the training set that you have, and this helps us to work with the
generalization of the unseen data better.

Different Types of Fitting with Predicted Prices

We may want to make sure that we want to assume that the plot
actual versus the predicted stock prices and we are going to then
come up with a few different types of charts along the way:

1. Straight Line to Show Predicted Price
When we have a chart that shows the predicted price in a straight
line, this shows us that the algorithm has gone through and has
come up with a really strong pre-conception about the data. This is
usually a sign that there is a high bias in the information and will
show us something known as underfitting. These are not good
models to use when you would like to predict new data and should
be thrown out in most cases.

2. A Very Strong Closely Fitted Line
This one is an example of the other possible extreme. It may look
like it is doing a really good job helping us to predict the price of the
stock. However, this is going to be something that is known as
overfitting. This is also going to be seen as a high-variance because
it has learned the training data in a manner that is so accurate that it
will not be able to generalize the information well. This makes it hard
to go through and make some predictions on the new and unseen
data that is there. These models are also not going to be good when
you want to use them to make predictions on the new data.

If we go through with this model and feed it some new data, then you
will find that the accuracy of those predictions is going to be really
poor. It is also going to be a sign that we are not providing the model
with enough data for training. Overfitting is when the model is going
to over train itself on the data that you used for this purpose. This
could be because we have too many features showing up in the data
or because the algorithm has not had time to go through enough
data. It is going to happen when the difference that shows up
between the predicted values and the actual values is close to 0 .

How to Detect Overfitting

Now that we have taken a look at why this overfitting is such a bad
thing, it is important for us to go through and figure out when
overfitting is going to occur and then figure out how to fit it. The
models that you are working with that have been overfitting on the
training data will be the ones that are not able to generalize well to
the new examples. These are not going to be very good at predicting
some of the data that is not seen yet.

This means that when you are trying to add new data to the mix,
then you are going to end up with an algorithm that is not doing its
job very well. This implies that the model is going to be extremely
accurate during training, but when it is time to make predictions on
data that it has not seen before, the results are going to be poor
overall.
If the measure of accuracy, such as mean error squared, ends up
being quite a bit lower when you are working with training the model,
and then you see that the accuracy starts to deteriorate on the set of
data that you are using for testing, then this is a good sign that
overfitting is happening with the data and you may need to supply it
with different data, or at least more data, in order to increase the
accuracy again.
Often the best way for us to go through with this and figure out
whether or not there is overfitting with the data that we want to use,
is to chart out the results on a graph. This may seem like we are
getting ahead of ourselves, but these visuals will really help us to

see some of the complex relationships that are going to show up on
our data, and they can tell us almost instantly whether there is an
issue with overfitting going on.

When you are working with a particular algorithm, and you are
worried about the issue of overfitting, you simply need to go through
and plot out the graph. If there is a straight line that shows up on the
graph, and all of the points are right on the line, or at least touching
the line that is there, then this is a bad sign that overfitting is going
on. It is time to go back through and check on the data that you are
using, or maybe just do some more training with a wider variety of
data, in order to fix this kind of problem.

How Can I Fix Overfitting?

The good news is that there are a few steps that we are able to work
in order to help fix some of the issues that come with overfitting.
First, we are able to randomly remove some of the features that we
are putting into the algorithm, and then use this to help us assess the
accuracy of the algorithm in a more iterative manner. However, this
can be effective, but the process is slow and can be really tedious.
There are going to be four common methods that we are able to use
in order to reduce some of the overfittings that we see. Some of
these include:

1. Reduce the features: The most obvious out of the options
that we are able to use is to reduce some of the features. You
are able to compute the correlation matrix of our features, and
then we can reduce some of the features that happen to be
the most highly correlated with one another.

2. Model selection algorithms: Another method that we are
able to use is going to be the model selection algorithms.
These are the algorithms that have the power to choose the
features that have the greatest importance and keeps those
around, while limiting some of the others that don’t seem to
affect the data as much The biggest problem that we are
going to see with this one is that it is possible to lose out on
some valuable information at times.

3. Feed-in more data: We can also take a look at feeding in

more data to the model. Sometimes this is all that we need in
order to handle some of the issues that come with overfitting.
You should aim in training a set to feed in enough data to the
models so that you are able to train, test, and validate the
model thoroughly. For example, you should do about 60
percent of your data to help train the model, 20 percent to test
the data, and then 20 to help validate the model that you are
working with.

We need to explore the idea of regularization a bit more. The aim of
this is to help keep all of the features, but then impose a constraint
on the magnitude of the coefficients that you are able to get. This is
often seen as the preferred method because you do not have to lose
out on any of your features because you are busy penalizing them
like some of the other methods. When the constraints are applied to
the parameters, then the model is going to end up not overfitting as
much because it can produce a smooth function.

The parameters that we work within regularization, which are going
to be known as the penalty factors, are going to be able to introduce
which controls the parameters and will ensure that the model is not
going to over train itself on any of the training data that you are
working with. We will also find that these parameters are going to be
at smaller values to help eliminate the issue of overfitting. When the
coefficients work with larger values, then the regularization
parameters are going to penalize some of the optimization functions
that are there.

While we are on regularization, we should look at the two most
common techniques that we are able to work with on this. The first
one is going to be Lasso. This is going to be a tool for feature
selection, and it is going to be able to help us eliminate any of the
features that not important to what we are doing. It can also add in a
penalty, which is going to be the absolute of the magnitude that we
will see with the coefficient.

What this is going to do is ensure that the features we are working
with are not going to end up applying some high weights to the
prediction that comes with our algorithm. The result of this is that
some of the weights are going to turn into zero. This means that the
data of some of our features are not going to be seen as important at
all, and they will not be used in the algorithm that we have at all.

And the second technique that works here is going to be a ridge.
This one is a bit different but can still have a lot of the features and
strengths that we need. With ridge, we are going to add in a penalty,
which is going to be the square of the magnitude of the coefficients.
As a result of this, you will find that some of the weights that we have
are going to end up being close to 0. This is a good way to smooth
out some of the effects that we will see on the features as well.
Overfitting our data is something that can be a big issue when we
are working with machine learning. We want to get accurate
information out of what we are doing in this process, and if the
algorithm ends up overfitting, then it is not guessing the data very
well. It may do well with the training data that we are working with,
but it is not going to do all that well when it comes to taking on new
data, and that is when you really need this algorithm to work its best.

Following some of the techniques that we have in this chapter, and
learning how this overfitting occurs in the first place, is going to be

one of the important first steps that you can follow in order to make
sure that this issue doesn’t happen - the more that you are able to
prevent this from happening, the more accurate and efficient your
models will end up being in machine learning. When we can keep
underfitting and overfitting from happening with some of the data that
we have, we are going to get amazing results, and our models will
work in the manner that we want.

Chapter 5: Supervised Learning with
Classification

Supervised machine learning is going to be one of the algorithms
that you will use a lot in machine learning because there are a lot of
applications. This is a good and effective method of teaching your
machine on algorithms and how you would like it to behave. This is
because this method is going to show the algorithm all of the
examples, with their corresponding answers, right from the
beginning, making sure that the algorithm is able to learn the right
way faster than before.

This is why there are going to be so many different types of
supervised machine learning models and algorithms that we are able
to work with. They may take a bit more time in the beginning, but
when we use classification and some of the other tools that are out
there to help us get it all done, we will find that it is easier to train and
test out our models and get some good results in the process. Some
of the different supervised machine learning algorithms that we are
able to focus on with classification will include:

Logistic Regression

The next algorithm on the list that we need to take a look at is going
to be the logistic regression. These are going to be able to help us
out with a lot of different problems that we want the data to solve,
and if we are able to use it in the right manner, we are going to be
able to see some amazing results in the process. As time passed, it
started to be used for applications in the social sciences. Logistic
regression, though, no matter how we decide to work with it, is going
to be used when the target, or our dependent variable, is categorical.

This means that we may use it for a few different situations, such as
when we would like to predict whether or not an email that comes to
us is spam, or whether or not a tumor is malignant.

To help us see how this goes, we can start with a scenario where we
would like to determine whether or not an email that we see is spam
or not. If we use linear regression for this instance, we would need to
set up a basis wherewith to base our classification with.

From this example alone, it is easy to see that the linear regression
is going to fail a bit when it comes to some of the classification
problems. Linear regression is not going to be bounded, and this is
why we need to work with logistic regression for some of our
problems. With this one, the value is going to range from 0 to 1, and
nothing in between.

Now, we may see that there are a few different types of logistic
regression that we are able to work with. The three main types that
we are able to focus our attention on here are going to include:

1. The binary logistic regression: This is going to be a response
that is categorical and has only two outcomes possible. When
we are looking at emails, for example, it is going to tell us
whether the specific email is spam or not.

2. Multinomial logistic regression: This is when there are three or
more categories that show up without any order. For example,
we may see this one when predicting which food is preferred
more such as Vegan, Non-Vegan, and Vegan.

3. Ordinal logistic regression: This is when there are at least
three categories, bust sometimes more, to the ordering. For
example, we could have a movie rating that goes from one to
five.

To help make it easier to predict which class our data is going to
belong to, we are going to set a threshold in the beginning. Based on
what this threshold is about, the obtained estimated probability is
going to be classified into classes. Going back to the idea of the
spam earlier, we could have our predicted value be at or above 0.5.

When an email reaches this threshold, then the email is going to be
seen as spam. If it does not, then it is not seen as spam.

The decision boundary that we are able to work with is going to be
seen as non-linear or linear. If preferred the Polynomial order can be
changed to get to a more varied boundary if we would prefer. This
would give us the variation that we would need.

When we work with the logistical regression, we will find that there
are a lot of the other parts we have talked about in this guidebook so
far that they are going to show up in the code. This is because there
are often times when we need to combine together more than one
option when it comes to working with these algorithms. A good way
to see some of this is to look at an example of the coding that is
needed to work on the logistical regression, and we can see that
below:

def weightInitialization(n_features):

 w = np.zeros((1,n_features))
 b = 0

 return w,bdef sigmoid_activation(result):
 final_result = 1/(1+np.exp(-result))

 return final_result
 def model_optimize(w, b, X, Y):

 m = X.shape[0]

#Prediction
 final_result = sigmoid_activation(np.dot(w,X.T)+b)

 Y_T = Y.T
 cost = (-1/m)*(np.sum((Y_T*np.log(final_result)) + ((1-Y_T)*(np.log(1-

final_result)))))
 #

#Gradient calculation

dw = (1/m)*(np.dot(X.T, (final_result-Y.T).T))
 db = (1/m)*(np.sum(final_result-Y.T))

grads = {"dw": dw, "db": db}

return grads, costdef model_predict(w, b, X, Y, learning_rate,
no_iterations):

 costs = []
 for i in range(no_iterations):

 #
 grads, cost = model_optimize(w,b,X,Y)

 #
 dw = grads["dw"]

 db = grads["db"]
 #weight update

 w = w - (learning_rate * (dw.T))
 b = b - (learning_rate * db)

 #

if (i % 100 == 0):
 costs.append(cost)

 #print("Cost after %i iteration is %f" %(i, cost))

#final parameters
 coeff = {"w": w, "b": b}

 gradient = {"dw": dw, "db": db}

return coeff, gradient, costsdef predict(final_pred, m):

y_pred = np.zeros((1,m))
 for i in range(final_pred.shape[1]):

 if final_pred[0][i] > 0.5:
 y_pred[0][i] = 1

 return y_pred

Many times the logistical regression is going to be a better choice to go
with compared to the linear regression. This is because this will allow
us to catch some of the instances that are going to be missed, like what
is going to happen with the linear regression.

Multiclass Classification

While we are here, we also need to take a look at some of the
benefits of working with the multiclass classification. Classification
problems are often going to come with many classes, and there is
going to be an imbalanced kind of dataset that will present a different
challenge compared to what we see with some of the classification
problems. Sometimes the skewed distribution is going to make some
of the other algorithms with machine learning less effective,
especially when it comes to predicting minority class examples.

We will find that with a multiclass classification problem, you are
going to be handling a task of classification that has three or more
classes to work with. This means that we could do something like
classifying a set of images of fruits, which may be things like pears,
apples, and oranges, and some other fruits if you would like to add
these in as well.

This kind of classification is going to make some assumptions in
order to make sure that things are going to happen. For example, it
will make one assumption that each of the samples is going to be
assigned to one and no more than one label. For example, fruit can
be either a pear or an apple, but it is not possible for this fruit to be
both at the same time.

While some of the classification algorithms that are out there are
naturally going to be set up to permit the use of more than two of
these classes, others are going to be binary algorithms instead, and
these can also be turned into multinomial classifiers with a lot of
different strategies along the way. One thing to remember with this
one though is that we should not confuse this kind of classification
should not be confused with the idea of multi-label classification,
where the multiple labels are to be predicted for each instance.

There are many times when we are going to work with the
classification problems, especially when it comes to handling things
with supervised machine learning. These can make it easier to split
up some of the different algorithms that you have and will ensure
that you are able to see what classes are there, and how to
understand some of the data that you have available.

Chapter 6: Non-linear Classification
Models

There are a lot of things that we are able to do when it is time to
work with some of the classification problems that we have along the
way. These are really useful when it is time to work through some of
the data that we have, and they can often be one of the best ways
that we are able to learn about the data, see which groups the data
falls into, and so much more. Some of the other classification models
that you are able to work with, the ones that do not fit in with the
linear classification models, will include some of the following:

K-Nearest Neighbor

The first option that we are going to look at when it comes to working
on the non-linear classification models will include the K-Nearest
Neighbor or the KNN algorithm. This is going to be an example of a
supervised machine learning algorithm, so we will need to have
some labeled data in place as well.

There are a few benefits that you will see when it is time to work with
the KNN algorithm. When we are working with the algorithm, it is
helpful for us to cut down the noise that may be in the set of data.
Depending on the data that we are working with, you may find that
the noise is going to be really loud, and making sure the noise is
gone going to ensure that we are able to handle the work as well and
get more accurate results in the process.

There are many algorithms that we are able to work with when it
comes to working with machine learning. This makes it hard to know
why you would want to work with this kind of algorithm over some of
the others. The benefits of working with the KNN algorithm and why
you would want to choose it over some of the other options include:

1. It can work well with problems, even if they are considered
multi-class.

2. You are able to apply this algorithm to both problems that are
regressive and those that are classification.

3. There aren’t any assumptions that come up with the data.

This ensures that you get the information that you want, rather
than having any assumptions in the place, causing some
issues.

4. It is an easy algorithm to work with. It is easy to understand,

especially if you are brand new to the machine learning
process.

However, there are more options for algorithms that you are able to
work with because the KNN algorithm isn’t going to be perfect in
each and every situation that you go to. Some of the negatives that
come with using the KNN algorithm include:

1. It is going to be computationally and memory intensive
expensive. If you don’t have the right system and the right
amount of space to work with, it is going to make it more
difficult to see the results that you want from this algorithm.

2. If there are a lot of independent variables that you are going to
work with, you will find that the KNN algorithm is going to
struggle.

3. The KNN algorithm isn’t going to work that well if you have

any rare event, or skewed, target variables.

4. Sensitive to the scale of data.

For any of the problems that we are going to work with, you will find
that having a smaller value of k is going to give us more variance in
any of the predictions that we are working with. In addition, when you
set it so that k is at a bigger value, it is possible that there is going to
be more bias in the model as you work on it too.

While you are working with this one, though, there may be times
when you will need to go through and create some dummy variables.
This is going to make it easier to figure out the categorical variables
that will show up in this algorithm. This is different than the
regressions that we will look for though because you can work with
creating the k dummies rather than just the k-1.

With this in mind, we need to take a look at the best way to handle
finding these k values in the first place. This is often done with the
use of cross-validation. It is going to be important to use this process
in order to estimate what the error of validation will be. To make this
happen, we will need to hold out a subset of the training set from the
process of building up the model.

Cross-validation is going to involve us going through and dividing up
our training data randomly. We are going to work with a 10 fold
validation, so that means we would want to divide up the training
sets that we have into 10 groups. We want to keep them as close to
the same in size as possible as we go through the dividing. From
this, 90 percent of our data is going to be the kind that we use to
train our model. The other ten percent or so will be used to help
validate the model that we are working with and to test whether or
not it is working.

The misclassification rate that we need to focus on for this one is
going to be computed when we look at the ten percent that you
saved back for the validation. This procedure is going to need to go
through and repeat itself ten times because of how we are doing all
of this. Each of the groups of observations that we run into is going
to be seen as validation, and then you can test it as well.

Decision Trees and Random Forests

Often, the decision tree and the random forest are going to work
together. These are going to be efficient tools of data that will help
you to take two of the choices that you would like to work with,
especially when the choices are very different, and then will use this
information in order to help you pick out which decision is the best
for your needs so that you can grow your business and more.

When you are presented with more than one option, and they all look
like they are good options to work with, the decision tree is going to
be a good option to choose along the way. These will help you to
take some of these choices and then see what the possible
outcomes may be with these, making it easier to figure out what is
the best course of action to take.

Now, you will find that there are a few different ways that you are
able to work with these decision trees. Many of those who are
working with machine learning will use it if either of their variables is
categorical, and one is random. However, there are times when you
will need to use these decision trees with some of the classification
problems that you have. To ensure that you are picking out and
creating your decision tree well, then you need to make sure that you
take all of the sets of data that you have and then split them up to be
in two or more sets, with some similar data in each one. You can

then sort this out with the help of independent variables because it
will help you to set it up the way that the decision tree needs.
Sometimes the decision tree is not to be what we need, and we will
find that it is better to have more than one decision tree to get the
work that we want. This is when the decision tree is going to be
turned over to a random forest. These are popular to work with
because they allow you to look at many possible, decisions that you
want to make, and come up with the one that you would like to work
with. So, the best way to think about these random forests is that
they are going to be a bunch of different decision trees that are going
to work together.

There are going to be many applications of using the random forest.
This is because the random forest is perfect most of the time, it is
going to do a better job of providing you with some insights and
predictions than some of the other algorithms. Some of the ways that
you are able to use these forests and make sure that they will benefit
you include:

When you are working on your own training sets, you will find
that all of the objects that are inside a set will be generated
randomly, and it can be replaced if your random tree things
that this is necessary and better for your needs.
If there are M input variable amounts, then m<M is going to be
specified from the beginning, and it will be held as a constant.
The reason that this is so important because it means that

each tree that you have is randomly picked from their own
variable using M.

The goal of each of your random trees will be to find the split
that is the best for the variable m.

As the tree grows, all of these trees are going to keep getting
as big as they possibly can. Remember that these random
trees are not going to prune themselves.

The forest that is created from a random tree can be great
because it is much better at predicting certain outcomes. It is
able to do this for you because it will take all prediction from
each of the trees that you create and then will be able to
select the average for regression or the consensus that you
get during classification.

Random forests are a good tool that a programmer is able to use
when they would like to make sure that they add in some data
science to the machine learning that you are doing, and there are
going to be many benefits. But any time that you are looking for an
easy way to look through some of the options that are available for
your work, and you want help making some smart decisions, then
the decision trees and random forests will be the best option for you
to choose.

Working with Support Vector Machines

We can also spend some time working with the support vector
machines, or SVM. These are going to be there to help us take each
set of the data and then plot them so that they will show up on one n-
dimensional of N. N is going to be the number of features that you
would like to work with all of this. You will then be able to take the
value of the features and work to translate this over to the value that
you will need for your chosen coordinates. The job that you are able
to do when it is time to reach this point is to figure out where your
hyperplane will fall because this is going to be the part that will show
you what differences are there between the classes that show up.

Here you may notice that it is possible that more than one support
vector is going to show up. The good news is that many of these are
obviously not going to be important, and they are just going to be the
coordinates of the individual observations that you are going to see
here. Then you are able to work with the SVM to turn into your
frontier, the part that is able to separate these parts into classes, and
then there will be the line and the hyperplane, which are the two
parts that we need to focus on the most.
Up to this point, some of the work that we are looking at will seem a
bit confusing. But there are a few steps that we are able to follow in
order to really find out how to sort this data and use the SVM for our
needs. First, we need to look for our own hyperplane. One thing that
you will notice is that this algorithm is going to bring out more than
one hyperplane that we can focus on. This is a challenge for

beginners because you want to make sure that the hyperplane you
pick is going to be the best one for sorting through the data and
making it work for your needs.

The good thing to remember here is that even if you do have a few
options when it comes to hyperplanes, there are still going to be
some easy steps that we are able to use to help us pick out the right
one. The specific steps that you are able to use when trying to figure
out the hyperplane for your SVM will include:

We are going to start out with three hyperplanes that we will
call 1, 2, and 3. Then we are going to spend time figuring out
which hyperplane is right so that we can classify the star and
the circle.

The good news is there is a pretty simple rule that you can
follow so that it becomes easier to identify which hyperplane is
the right one. The hyperplane that you want to go with will be
the one that segregates your classes the best.

That one was easy to work with, but in the next one, our
hyperplanes of 1, 2, and 3 are all going through the classes,
and they segregate them in a manner that is similar. For
example, all of the lines or these hyperplanes are going to run
parallel with each other. From here you may find that it is hard
to pick which hyperplane is the right one.

For the issue that is above, we will need to use what is known
as the margin. This is basically the distance that occurs
between the hyperplane and the nearest data point from either
of the two classes. Then you will be able to get some numbers
that can help you out. These numbers may be closer together,
but they will point out which hyperplane is going to be the
best.

The Neural Networks

We would be working with the Scikit-Learn library in this process of
machine learning, and one that can handle a lot of really things for
machine learning will be the neural networks. These are used quite a
bit because they will work similar to the human brain, picking up on
different patterns and more, and forming stronger connections each
time that something is correct with its predictions.

When we are working with these neural networks, we will find that
there are often a lot of layers, and each of these layers is going to be
spending time to see whether there are some patterns there are not.
If the network is able to find that new pattern, then they will go on
through to the next layer. And this process will continue until there
are no more patterns for the process to find, and until we are done
and the neural network is able to make some predictions as well.

There are a few things that will happen at this point, based on how
the program works. If the algorithm went through the process above
and was able to sort through all of the different layers, it will then
make a prediction. If that prediction is right, the neurons in the
system will turn out stronger than ever. This is because the program
has used artificial intelligence in order to make some strong
associations between the patterns and the object. The more times
that the system can come back with the right answer, the more
efficient it will be when you turn it on and use it again.

Now, this may seem a little bit farfetched, but a closer examination of
these neural networks will help us to see how they work together and
why they are so important. For our example, let’s say that your goal
is to create a program that is able to take a picture that you input into
it, and then, by looking at that picture and going through the layers,
the program is able to recognize that the image in that picture is that
of a car.

If the program has been set up in the proper manner, it is going to
make the right prediction that there is a car in the picture. The
program is able to come up with this prediction based on some of the
features that it already knows belongs to the car, including the color,
the number on the license plate, the placement of the doors, the
headlights, and more.

With this one, we need to make sure to remember there is the
potential for many layers to show up, but the good news is that the
more layers we are able to go through with our images, the more
accurate the predictions are going to be overall. If your neural
network can make some accurate predictions, then it is going to be
able to learn this lesson and will hold onto it along the way and will
get faster and more efficient at making the predictions later on.

The neat thing that happens when we are working with these neural
networks is that they are able to remember some of the work that
they have done in the past. So, if you present the neural network
with a picture of a car, and it makes the prediction that the image in
that picture is a car, it will remember this information later, similar to
what the human mind can do.

Then, if you present it with a picture of a car, especially if this new
image is similar to the one that you showed to the algorithm earlier, it
is going to remember what it learned before. The algorithm will get
through the various layers of the image really quickly and can give a
prediction of a car in much less time than before. And this process
continues on, with the neural networks getting better at predictions
the more times that it is able to go through the information and try
out its skills. Just think about all of the ways that we would be able to
work with this kind of technology, and this algorithm, to get some of
our machine learning algorithms done and taken care of.

Chapter 7: Validation and
Optimization Techniques

Now that we have taken a look at a few of the different algorithms
that go with machine learning, it is time for us to take a look at some
of the ways that we can make these algorithms a little bit better. We
would be looking at the validation of the algorithm to make sure that
it is working the way that we want, and then, we will focus on how to
optimize the techniques that we are working on so that we get the
best predictions and insights that we are able to get out of those
algorithms. So, let’s dive in and see what we are able to do with
some of these techniques to make them work for our needs.

Cross-Validation Techniques

The first validation technique that we need to work with is known as
the cross-validation technique. We are going to work on our machine
learning algorithms here, and at the same time, we are going to take
our set of data and divide it into three parts. We are going to have
the set for training, the set for validation, and the set for testing.

The training set is the first one that we will look at. This is the one
that we are going to use to help train the model. We will want to put
about 60 percent of the data that we have available to work on
training the model to make sure that it is ready to go.

Then we are going to work with the data set that handles the
validation. Once we have been able to select out a model that can
perform well with the training set, it is time to run the model with our
validation set. This is going to be a small subset of the data, and it is
usually going to range from 10 to 20 percent of the data that you
have. This set is going to help us with these models because it is
going to give us an evaluation, without bias, of the fitness of the
model. If the error on the data set for validation increases, then it is
possible that we are working with a model that overfits.
And finally, we have the test data set. This is going to be new data
that has never been used in training at all. This is going to be a bit
smaller, but it is going to contain about 5 to 20 percent of the set of
data that we have, and it is meant to help us test out the model

evaluation that we are working on to see whether it is accurate or
not.

In some cases, there is going to be training and a test set, and the
programmer is not going to work with any validation set. There are
some issues with this one, though. Due to the sample variability
between the test set and the training, the model is going to provide
us with a better prediction on the data that we train but will fail to
generalize on the test data. This can make us deal with a low error
rate during training, but a high rate of an error on the testing phase
of this process.
When we go through and split out the set of data that we have into
training, test, and validation set, we are going to work with just a
subset of data, and then we will know when it is possible to train on
fewer observations of the model are not going to perform well, and
then we will see that it is going to give us an overestimated test error
rate.

To help us solve both of these issues, we are going to work with
cross-validation. This is technique involves partitioning the data so
that it all goes into subsets. This allows us to train the data on one of
the subsets, and then we will use the other one to help us to
evaluate the performance of the model that we are working with as
well.

To help us out here and to make sure that we reduce how much
variability shows up in our data, we may go through and perform
many rounds of this cross-validation, but we are going to do this with
different subsets of the same data. We can then combine the
validation results form these rounds in order to come up with a good
estimate of the predictive performance that we are going to be able
to get from that model. The cross-validation then is going to provide
us with an estimate of the performance of the model that is more
accurate than just training once and then assuming it is all going to
work.

With this in mind, there are going to be a few different techniques
that we are able to see with cross-validation, and these are going to
include:

1. Leave one out cross-validation or LOOCV: In this one, we are
going to take our set of data and divide it into two pairs to
work on. In the first part, we are going to have a single
observation, which is going to be the test data. And then, in
the second one, we are going to have all of the other
observations that come in our set of data, and these will form
up our training data.

a. There are a few advantages to working with this one.
First, we are going to find that there is far less bias
because we are going to use all of the set of data for
training compared to some of the validation set
approach where we are only working with part of the
data to help with training.

b. There isn’t going to be any randomness in the training
or the test data because we will perform this many
times, and it will still give us the same results.

c. There are some disadvantages that come with this one
as well. For example, MSE is going to vary as the test
data is going to work with just one single observation.
This sometimes adds some variability to work. If the
data point that you work with ends up being an outlier,
then you will find that the variability is going to be much
higher.

d. The execution of this model is going to be more
expensive than some other options because the model
has to be fitted n times rather than just once or twice.

2. K Fold cross-validation: This is going to be a technique of

cross-validation that is going to take the set of data and
randomly divide it into k groups or folds that are similar in size.
The first fold that you have is going to be used for testing, and
then the model is going to be trained on k-1 folds. The
process is going to be repeated K amount of times, and each
time that you do, this will have a different group of the data
that you will use for validation.

a. There are a few advantages that come with this one.
First, the computation time is going to be reduced as
we go through the process 10 times, or less, depending
on what value you give to k.

b. This one is also going to have a reduced bias, so you
can rely on the information that you have more.

c. Every point of data gets to be tested just once and is

used in training the k-1 times.
d. The variance of the resulting estimate is going to be

reduced the number of times that k increases.

e. There are some disadvantages of k fold or the 10-old
cross-validation. The training algorithm, compared to
some of the other options, is going to be
computationally intensive because the algorithm has to
start over again and rerun from scratch k times to be
effective.

3. Then we can work with the stratified cross-validation. This is a

technique where we rearrange the data in a manner that each
fold is going to be a proper representation of the set of data it
is going to force the process so that each fold has to have at
least m instances of each class. This type of approach is
going to ensure that one class of data will not be over-
represented, especially when the variable you are using as
the target is not balanced well.

a. For example, we may work on a binary classification
problem where we would like to predict if a person on
the Titanic was a survivor or not. We are going to have
two classes here; the passenger either survives or

doesn’t survive. We will then ensure that each fold is
going to have a percentage of passengers who
survived, and another percentage of the passengers
who did not make it.

4. The time-series cross-validation: Splitting up the time series
that you have in a random manner is not going to help out as
much because the time-related data is going to get all messed
up. If we are working on predicting the prices of the stocks
and then we randomly split up the data, this is just going to
make things difficult. This is why we would want to work with a
time series cross-validation. In this one, each day is going to
be a test data, and then we would consider the data that we
had from the day before as part of our training set.

a. We can start by training out the model with a minimum
number of observations, and then we will use the data
for the next day to help test the data. And we keep
moving through this set of data. This will ensure that we
are able to consider the time-series aspect that comes
with this prediction.

Hyperparameter Optimization

One thing that we need to spend a bit of time looking at is the idea of
hyperparameters. These are properties that are specific to the model
that we are working with, ones that are going to be fixed even before
we have a chance to train or test the data that we have with the
model.

We are able to see one of these examples when we are working with
a random forest. The hyperparameter is going to include the number
of decision trees that we are able to find in our forest to start with.
When working with the neural network, there is going to be a
learning rate, the number of layers that are hidden, the number of
units that we would like to see come with each layer, and a variety of
other parameters along the way.

When we bring up the topic of hyperparameter tuning, we are talking
about nothing outside of searching for the right set of
hyperparameters in order to achieve the high precision and accuracy
that we want. When we optimize these hyperparameters, it is going
to end up being one of the trickiest and often one of the hardest
parts of building a model up with machine learning.

The main aim that a programmer is going to have when it comes to
tuning their hyperparameters is to find the sweet spot. This sweet

spot in the parameters of the model is important because it ensures
that we are able to get the best performance on our project as
possible. There are going to be a few techniques that we can use for
the parameter tuning, but we are going to focus on the grid search
and the random search in the next section because these are the
most widely-used options for parameter optimizing.

Grid and Random Search

The final thing that we are going to focus on in this chapter is the
idea of the grid search versus the random search. This will help us to
figure out which of the two is going to be better for the work that we
want to accomplish. Before we look too much into this though, we
need to review the hyperparameter optimization that we talked about
earlier, because this is going to be important to some of the work that
we are trying to do in this section.

First, we are going to take a look at grid searching. This is where we
are going to try every combination of a present list of values of the
hyperparameters, and then we are going to do an evaluation of the
model with each of these combinations. The pattern that we will
follow on this one is going to be similar to what we are able to see
with a grid because each of the values is going to be placed into the
matrix. Each set of parameters can then be taken into consideration,
and we will note the accuracy. Once all of the combinations are
evaluated, the model that has the set of parameters that provides us
with the most accurate overall is considered the best one to work
with.

While this is still a pretty straightforward option to work with, one of
the biggest issues that we are going to face with it is when it comes
to dimensionality; it is going to suffer when the number of these
parameters starts to grow. With as few as four parameters in place,
the problem can almost be impractical because the number of

evaluations that we need to try to work on with this strategy is going
to increase. And when we add in more of these parameters, the
dimensionality is just going to make the problem worse.

There are times when we are going to use the grid search, but keep
in mind that there are times when it is going to take too long and be
too complex. This is when we will work with a random search. This is
going to be a technique where some of the random combinations of
the hyperparameter are going to be used to help us find the best
solution for the model that we have built.

In many cases, this search is going to go through the information
and will try out some combinations that are random for the range of
values. To help optimize this random search, the function is going to
be evaluated at some number of random configurations of the
parameter space, as well.

The chances of finding an optimal parameter that you can use are
going to be quite a bit higher with the random search because the
pattern is going to be rained on the optimized parameters without
needing to know any aliases. Random search is going to work the
best when we have lower-dimensional data since the time that is
taken to find the right set for this is going to be less when you have
less iteration to work with.

In many cases, the random search is going to be the best technique
here, especially when we have fewer dimensions to work with. There
are going to be many practical and theoretical concerns when
evaluating these strategies. The strategy that is best for your
particular problem, though, is going to be one that finds the best
value for the fastest and with the fewest function evaluations and it is
possible that this is going to vary one problem to the next.

While it is less common in machine learning than the grid search,
this random search is going to show us that we are able to get equal,
and sometimes better, values compared to the grid search within
fewer evaluations of the functions for some of the problems that we
try to work with. You have to decide which method you think is the
best for the kind of project that you want to work with at the time.

Chapter 8: Unsupervised Machine
Learning with Clustering

Unsupervised machine learning is going to be able to help us out
with a variety of problems as we handle some of our algorithms.
There are times when we need to go through and sort some of the
data we have, and we want to be able to make the machine do the
work. Being able to handle clustering is a great way to work with
unsupervised machine learning because this ensures that we are
able to really see where some of our data points lie and can show us
some of the hidden insights and predictions and patterns that are
there, many of which we did not know about ahead of time. Some of
the unsupervised machine learning options that you can do along
with clustering will include:

K-Means Clustering

The first type of unsupervised machine learning that works with
clustering is going to be the K-means clustering. This clustering is a
good way to take care of all the different data points that we have,
and see where they are going to be grouped together. You can
choose how many groups of clusters you would like. If you are
working with separating your customers into genders, then you may
only have two clusters. But when you are working with the ages of
the customers or even the geographic regions of the customers, then
you may end up with five or more clusters.

The idea that comes with this one is that any of the data points that
are in the same cluster are going to be closely related to one
another. They are not going to have a lot of similarities to the other
points that are in the other clusters that you have. This is important
because it allows us to see where all of the points of data are going
to be placed and will ensure that we are going to see the best results
with this in no time at all.

One place where you may see this data clustering happening is
when we are working with data mining. This data mining will really
work with the clustering if it is more exploratory in nature. You can
also work with clustering in other fields based on what we are trying
to find out, such as with pattern recognition, lots of machine learning,
image analysis, and computer graphics.

The K-Means clustering algorithm is going to form some clusters in
your data based on how similar the data values will be. You can then
go through and specify what you would like the value of K to be. The
value of K is basically going to be the number of clusters that you
would like to separate your data out into. The algorithm will be able
to help you from here by selecting the center point for your clusters
so that the data points fit in.

Then there are going to be three steps that the algorithm will need to
go through including:

1. You will want to start with the Euclidian distance between
each data instance and the centroids for all of the clusters.

2. Assign the instances of data to the cluster of centroid with the
nearest distance possible.

3. Calculate the new centroid values, depending on the mean

values of the coordinates of the data instances from the
corresponding cluster.

To work with this kind of process, we have to make sure that we can
go through and figure out how many clusters we would like to have
in the first place. This helps to tell the algorithm where to place all of
your data points, and when you print off the visual that goes with
this, you will find that it can really help you to see where the data is
going to fall, and how all of the different points are meant to go with
one another as well. You may even be able to look at this to find a
new cluster, and figure out a new market or a new customer base to
organize with as well.

There are a lot of different things that we are able to do when it
comes to working with the K-means clustering algorithm, but one of

the things that we are going to spend some time looking at here is
information and the codes that we need to focus on in order to figure
out and add in the soft k-means to our code.

Now that we know a bit about the k-means algorithm in general, and
we know some of the different ways that we are able to make this
work for our needs, it is time to actually take some of these skills and
use some Python code in order to make this algorithm work in
machine learning. And implementing the soft k-means and the code
that we will have below is one of the best ways to make this happen.

To get started with this process, we need to make sure that we start
out with some of the standard imports and libraries that are needed,
and that we have the utility functions in place as well. This is
important because it is going to help us to get something similar to
the Euclidean distance, and the cost function going together. The
syntax of Python code that we are able to use with this one will
include the following:

import numpy as np
import matplotlib.pyplot as plt

def d(u, v):
 diff = u - v
 return diff.dot(diff)

def cost(X, R, M):

 cost = 0
 for k in xrange(len(M)):
 for n in xrange(len(X)):
 cost += R[n,k]*d(M[k], X[n])
 return cost

After this part, we are going to take the time to define your function
so that it is able to run the k-means algorithm before plotting the
result. This is going to end up with a scatter plot where the color will
represent how much of the membership is inside of a particular
cluster. We would do that with the following code.

def plot_k_means(X, K, max_iter=20, beta=1.0):
 N, D = X.shape
 M = np.zeros((K, D))
 R = np.ones((N, K)) / K

 # initialize M to random
 for k in xrange(K):
 M[k] = X[np.random.choice(N)]

 grid_width = 5
 grid_height = max_iter / grid_width
 random_colors = np.random.random((K, 3))
 plt.figure()

 costs = np.zeros(max_iter)
 for i in xrange(max_iter):
 # moved the plot inside the for loop
 colors = R.dot(random_colors)
 plt.subplot(grid_width, grid_height, i+1)
 plt.scatter(X[:,0], X[:,1], c=colors)

 # step 1: determine assignments / resposibilities
 # is this inefficient?
 for k in xrange(K):
 for n in xrange(N):
 R[n,k] = np.exp(-beta*d(M[k], X[n])) / np.sum(np.exp(-
beta*d(M[j], X[n])) for j in xrange(K))

 # step 2: recalculate means
 for k in xrange(K):
 M[k] = R[:,k].dot(X) / R[:,k].sum()

 costs[i] = cost(X, R, M)
 if i > 0:
 if np.abs(costs[i] - costs[i-1]) < 10e-5:
 break

 plt.show()

def main():
 # assume 3 means
 D = 2 # so we can visualize it more easily

 s = 4 # separation so we can control how far apart the means are
 mu1 = np.array([0, 0])
 mu2 = np.array([s, s])
 mu3 = np.array([0, s])

 N = 900 # number of samples
 X = np.zeros((N, D))
 X[:300, :] = np.random.randn(300, D) + mu1
 X[300:600, :] = np.random.randn(300, D) + mu2
 X[600:, :] = np.random.randn(300, D) + mu3

 # what does it look like without clustering?
 plt.scatter(X[:,0], X[:,1])
 plt.show()

 K = 3 # luckily, we already know this
 plot_k_means(X, K)

 # K = 5 # what happens if we choose a "bad" K?
 # plot_k_means(X, K, max_iter=30)

 # K = 5 # what happens if we change beta?
 # plot_k_means(X, K, max_iter=30, beta=0.3)

if __name__ == '__main__':
 main()

Hierarchal Clustering

Along the same idea is the K-Means clustering, we also need to take
a look at a method that is known as the hierarchal clustering. In
statistics and data mining, this is going to be a method of analyzing
clusters, where we are going to work to build up a hierarchy of
clusters. There are going to be a few strategies that we are able to
use to handle this kind of clustering, but often they are going to fall
into one of two types, including:

1. Divisive: This is going to be the top-down approach. This will
include how all of the observations that you are using will start
out in one cluster, and then these will be split up and move
down through the hierarchy until you reach the end.

2. Agglomerative: This one is going to be the opposite. You will
start out with each observation falling in its own cluster, and
then you are able to merge together pairs of the clusters as
you go up the hierarchy that you are working with.

For the most part, you will be able to determine the splits and the
merges in a greedier manner. The results of this are usually going to
be presented with a dendrogram.

To help us determine which ones are going to be combined or split
up, we need to be able to look for and measure out the dissimilarity

between the sets of observations that we are working with. The good
news is that with most methods of this kind of clustering, we are
going to be able to make this happen with an appropriate metric,
which is a measure of distance between observations and pairs, and
a linkage criterion that is going to let us know the dissimilarity of sets
as a function of the pairwise distances of observations in the sets we
are working with.

DBSCAN

DBSCAN is stands for Density-based spatial clustering of
applications with noise. This is going to be a pretty well-known data
clustering algorithm that is going to be used in things like data mining
and machine learning to help us to move our data into clusters so
that we are able to read through it and understand better. Based on
a set of points, this algorithm is going to be able to group together
points that are close to one another based on some kind of distance
measurement and a minimum point amount. It is also going to mark
out some of the outliers that we have that are found in some of the
lower-density regions to help us see where these outliers are.

To keep it simple, we will find that this kind of algorithm is going to
come with 2 parameters that we need to know. These are going to
include:

1. Eps: This is going to tell us how close the points need to be to
one another before they can be seen as part of the cluster.
However, if the distance between the two is either low or even
equal, these would be considered as neighbors.

2. minPoints: This is going to be the minimum number of points
that are needed to form a region that is dense. So if we set
this parameter to 5, then we need to have at least five of
these points in order to form a dense region.

Then we are able to move on to doing parameter estimation. This is
going to be something that we need to focus on for every kind of task
in data mining. To choose the right parameters, we have to
understand how they are used and then have at least a basic
previous knowledge about the set of data that we are going to work
with.

For the eps from above, if the value that you choose is too small,
then you will end up with a lot of your data not being clustered. It is
going to be considered outliers because it won’t be able to provide
the points. On another point, if the value that was chosen is too high,
clusters will merge, and the majority of objects are going to fall into
the same cluster. This means that we need to choose the eps based
on the distance of the set of data, but in general, going with a smaller
value for this is going to be preferable.

We can also work with the minPoints that we talked about before. As
a rule, the minimum of this can be derived when we take the data set
as minPoints greater than or equal to D + 1. Larger values are often
going to be better for the sets of data that have a lot of noise and will
form more significant clusters. The minimum value for the minPoints
must be three, but larger the set of data, the larger the value that
should be chosen.

There are a lot of reasons that we are able to use the DBSCAN
algorithm for our needs. This algorithm is going to be a good one to
use to find associations and structures in data that might be hard to
get manually, but that is still useful and relevant to help you predict
trends and find the patterns that you want. Clustering methods are
going to be used in a lot of industries, and you will be able to use the
DBSCAN to handle a lot of this as well along the way.

Any time that your business needs to work with an algorithm that can
cluster together different points, the DBSCAN algorithm is a good
one to use, it is a simple idea that you can reverse and do work in
more than one method at the same time, and it can really help you to
see which points belong to each cluster in no time as well.

The good news with this one is that this is an algorithm that a lot of
programmers already use, which means that you will not need to go

through and do the implementation on your own. You are able to use
one of the various python packages or libraries in order to handle it.
It is also able to work with R, Matlab, and Python. This is a also great
way to separate out the data points that you have while making sure
that you can get it all set up and ready to go in no time at all. When
you are ready to put this to work for your needs, take a look at some
of the options of clustering algorithms that are above to help you get
started.

Chapter 9: Reduction of
Dimensionality

Lastly, let us look at reduction and dimensionality. We are going to
spend our time working with both the principal component analysis,
and the linear discriminant analysis. We will then compare the two in
order to figure out which is the best one to work with, and if we would
want to work with each one individually or together. Let’s dive in and
see what the PCA and LDA are all about.

The Principal Component Analysis

The first option that we need to take a look at here is going to be the
Principal Component Analysis or PCA. This is going to be one of
those techniques that we are able to use with machine learning that
will help us to work with the identification of a smaller number of
variables that are uncorrelated, but they are known as the principal
components that come from a much larger data set that we are
working with.

This technique is going to emphasize on the variation of our data,
and then it will capture some of the stronger patterns that are found
in the set of data. Simply put, we are going to take some random
variables out of our set of data, and then we are going to make sure
they are not correlated, outside of being in the same data. But we
hope to use these to help us figure out some of the strong patterns
and predictions that are found in your set of data as well.

This is an analysis tool that was invented in 1901 by Karl Pearson,
and it is going to be used in a number of different types of
applications, including exploratory data analysis and predictive
models. This analysis is going to be one of the statistical methods,
and we will be able to use it in many industries, including computer
graphics, neuroscience, face recognition, and image compression to
name a few options.

The PCA is going to help us take our data and will make it easier to
explore and visualize how this will work and what is inside of that
data. It is going to be a pretty simple technique to work with, and it is
non-parametric. And when it is used properly, it is going to help us to
take out some of the most useful information that we need to form
confusing and complex sets of data overall.

This form analysis is also going to focus its attention on the
maximum variance amount with the fewest number of principal
components as well. This is done to help us learn as much from the
data while using as few data points as possible along the way. When
we are able only to use a few points of data to get things done, we
will find that it is much easier to make some of the predictions that
we want, without having to worry about getting confused and lost
with a lot of data.

There are a lot of advantages that come with using the PCA, but one
of the distinct advantages that come with this is that once the
patterns re-found in the data that you are looking for, you will also
find support for compressing the data. One will be able to make sure
of the PCA to help eliminate the number of variables that you are
working with, or when there are going to be too many predictors
present in your work compared to how many observations so that
you avoid a problem that is known as multicollinearity.

Another thing that you may notice about the PCA is that it is going to
be able to relate closely to the canonical correlation analysis, and will
even use something known as the orthogonal transformation. The
reason that it uses both of these is to help it convert the observations
that you are using into a set of values that will then be the principal
components.

The number of these principal components that we are going to use
in this kind of analysis is going to be either less than or equal to the
lesser number of observations that you want to work with as well.
The PCA is going to be pretty sensitive when it comes to the relative
scaling of the originally used variables.

There are many times when you will want to use this kind of
analysis. For example, it is going to be used in any industry that
relies on a large set of data, the social sciences, and market
research. This technique can also help to provide us with a lower-
dimensional picture of some of the data that we originally had. Only
a minimal amount of effort is going to be needed when you use this
analysis, even when you are trying to reduce all of that data that is
confusing and

overwhelming into a simplified set of information that you are able to
use.

Linear Discriminant Analysis

Now that we know about the PCA, it is time for us to take a look at a
Linear Discriminant Analysis or LDA, and how it is going to be used
in machine learning in a slightly different manner than the first one
that we talked about. In the LDA, we are going to find a well-
established technique of machine learning and classification method
that is going to be good at predicting the categories that we need the
main advantages that we have with this one compared to some of
the other classification algorithms is that the model is going to be
easy to interpret, and they are good at making predictions as well.

The LDA is going to be used on a regular basis as a dimensionality
reduction technique, and this can make it really easy to work with
when you want to handle either classification or pattern recognition
in some of your programs in machine learning.

The LDA is going to take a set of data cases, which is going to be
known as the observations, and will use this as the input. For each of
these cases, you will need to make sure that there is a categorical
variable because these are responsible for defining the class, and
then we need to have at least a few predictor variables, and we are
going to see that these are numeric.

Often we are going to be able to take this input data and visualize it
as a matrix, with each of the cases being a row, and then each of the
variables being in a column. We can think about each of these cases
as a point that will show up in the N-dimensional space. N is going to
be the number of variables that we are using as predictors. Every
point is going to be labeled by its category to make things a little bit
easier.

The algorithm that we can use with LDA is going to use this data to
help divide up the space of our predictor variables into regions.
These regions are a bit more unique, and we are going to label them
based on the categories that we can use, and they will have
boundaries that are linear, which is where we get the L in our LDA.
The model is going to work at predicting the category of a new
unseen case, and it can do this according to which region it is going
to lie in. The model will be able to predict that all cases that are
inside one of these regions that we created are going to belong to

the same category. And as long as we trained the algorithm in the
proper manner, this is going to hold true.

The linear boundaries are going to happen because we assume that
the predictor variables that we are able to get for each category are
going to come with the same multivariate Gaussian distribution. This
assumption is not always going to be true in practice, it is going to be
fairly accurate, and if it is valid like this, then it is possible that the
LDA will still be able to perform well and give us the insights and
predictions that we need.

In a mathematical manner, this LDA is going to use the input data to
help it to derive the necessary coefficients of a scoring function for all
of the categories that we need. Each of these functions is able to
take as arguments the numeric predictor variables of the case as
well. It is then going to scale the variable going to the specific
coefficients of that category, as well as the specific output of a score.
The LDA model is going to look at the score that we are going to
receive from each function, and then we are able to use the highest
score to help us allocate the prediction or the case to a category. We
are going to call then the scoring functions, which are important
when it comes to helping us make predictions, the discriminant
functions.

There are many times when we are able to work with the LDA to
help various companies see the results that they would like. To start
with, we may find that this can be used with the prediction of
bankruptcy. This could happen on accounting ratios and some of the
other financial variables. This was actually one of the first methods
that were applied to help us explain which firms were able to survive
and which ones would enter into bankruptcy.

We can also use the LDA for things like facial recognition. In some of
the computerized options for facial recognition, each face is going to
be represented with the use of many pixel values. The LDA is able to
reduce the number of features that are present in the face to a
number that is more manageable before we do the classification.
Each of the new dimensions that show up will basically be a
combination that is linear to the pixel values, which is then going to
form a template. The combinations that are done are going to be
known as Fisher's faces, while those that are obtained through the
PCA that we talked about before will go by the name of eigenfaces.

Marketing can even work with the LDA on occasion. This can be
used to go through a large set of data and distinguish some of the
different types of customers and products on the basis of surveys
and other forms of data that you were able to collect. These can help
us to gather up the data after formulating the problem, estimate the
discriminant function, plot the results in the end on a map that we
can easily look over and understand in the process as well.

The next place where we are able to work with this is in biomedical
studies. This can help us to get an assessment of the severity state
of one of your patients and can even give a good prognosis of the
outcome of the disease. For example, during the retrospective
analysis, patients are going to be divided into groups according to
how severe the disease is. Then the results of the analysis, from the
clinic and the lab, are going to be studied to help us reveal some of
the variables that are different in the studied groups.

When we work with these variables, discriminant functions are going
to be built that can help us to classify diseases in the future patient
into the severe, moderate, and mild form. This is the same kind of
principle that can be used in the biology of different biological
groups.

And finally, we will see that the LDA is going to be used to help out
with the world of earth sciences in some cases. This method is going
to be used to help us to separate out some of the zones of alteration
that are there. for example, when we have different data from
various zones available to us, this analysis is able to find the pattern
within the data and can classify it all in an effective manner.

Comparing PCA and LDA

Now that we have had a chance to talk about the PCA and the LDA
options, it is time to take a look at these in comparison to one
another. Both of these techniques have a lot to bring to the table and
understanding how these are meant to work and how we can
combine them to get the best results is going to be imperative to
some of the work that we can accomplish with them.
Both the PCA and LDA are going to be techniques of a linear
transformation. One option that we are going to see here is that the
LDA is going to be a supervised method of machine learning, while
the PCA is going to be an example of unsupervised machine
learning. This is because the PCA is going to ignore some of the
class labels that are there.

A good way to look t the PCA is that it is one of the techniques that
you can use that will find the directions of the maximal variance. On
the other hand, the LDA is going to work to find a feature subspace
in the data that is able to maximize the separability of the class.

Remember, in this that LDA is going to make some assumptions
about the classes that are normally distributed and the covariance of
the equal classes. This can be important based on some of the
algorithms and projects that you are trying to work with along the
way.

Many times there is going to be a lot of confusion for programmers
when it is time to decide if they should use the LDA or PCA options
for their applications. This is often because they are not going to
understand some of the fundamental differences that happen
between the LDA and PCA. Hopefully, with some of the help of the
rest of this section, we are able to get a better idea of how these are
similar and how they are separate.

Both the LDA and the PCA are going to be used in the pre-
processing step when it comes to problems of pattern recognition
and machine learning. The outcome that you are trying to get with
both the LDA and PCA is that it will reduce the dimensions that are
in our set of data with a minimal amount of information lost in the
process. This is going to help reduce the costs of computation along
the way, it can speed up how long the computation takes, and can
really reduce the issues of overfitting because we are able to project
our data over to a lower-dimensional space that will be able to
describe the data a bit better.

The main difference that we are going to see between these two is
that the PCA is an algorithm that is unsupervised because it is going
to ignore the labels of the classes while working to maximize the
variance that is able to show up in the set of data. The LDA is going
to be slightly different as it is a supervised technique because it is
going to compute the directions that are most likely to represent the
axes that maximize the separation between the various classes as
well.

When we are working with the LDA, rather than just finding the
eigenvectors that will maximize the variance of the data, we are also
going to have some interest in the axes that are able to maximize
how much separation is going to show up between more than one
classes. This is important because it is going to help us get this
separability to the set of the data, which is something that will be
ignored in many cases when it comes to the PCA.

Another difference that we are going to see with this one is that with
PCA, we are not going to have the assumptions in place that the
points of data are distributed in a normal way. But if the points of
data come to us from other distributions, then the PCA is only able to
approximate their features through the first few moments. This
means that it is not going to be the most optimal options to go with
unless the data points are being distributed in a normal manner.

Then we can switch it over to looking at the LDA. IN this situation,
you are going to assume that the points of data that we are looking
at are going to come to us from two separate multivariate normal
distributions that have different means, while still having a
covariance matrix that is the same. What this does for us is give us a
more generalized method out of the LDA compared to what we are
able to see with the PCA.

It is also important to figure out when and how we would visualize
the plots that are needed with both LDA and PCA. The plots have
been generated for these two algorithms with the help of the Scikit-
Learn machine learning library, and with the help of the Iris Dataset.
This is a good one to work with because it has 150 images of flowers
in three classes, and each flower is going to come with 4 features.
You would then be able to work with both of the options above in
order to help you to figure out which flower, off of some images that
you have, fit into each category.

This is going to bring up the question of when you would want to
work with the PCA method and when you would want to work with
the LDA method. As we have been going through this part of the
guidebook, it may seem like the LDA is going to be the best
technique to go with most of the time, but usually, this is not going to
be the case. Comparisons will show us over time that the PCA
method is often going to be able to outperform the LDA, if the
number of samples that are in a class is relatively small, such as
what we would be able to find in that Iris data set from above.

However, if you are planning on working with a really big set of data
that has a lot of classes, the PCA is not going to work as well with
this one, and it is important to work with the LDA method instead.
This is due to the fact that class separability is going to be an
important factor in helping us make sure that we are also reducing
the dimensionality.

One final note before we finish off with this idea is that it is possible
to work with the PCA and the LDA together. This will allow you to get
some of the benefits of both of these options, without having to worry
about some of the negatives with them as much. There are many
opportunities when we need to use this kind of option, but it can
really add to another level of power when it is time to handle some of
the data that we have with machine learning.

Conclusion

Thank you for making it through to the end of Python Machine
Learning, let’s hope it was informative and able to provide you with
all of the tools you need to achieve your goals whatever they may
be.

The next step is to start working with some of the different algorithms
that we have in this guidebook. There are many times when working
with machine learning and good data analysis will be able to help
your company to see some results. But first, you need to take the
time to collect the right data and then run it through a properly
trained and tested algorithm to help you get the right insights and
predictions that you need.

These are just some of the topics that we are going to explore when
it comes to machine learning, and one of those is being able to pick
out the right algorithm for machine learning, and figuring out how to
put data through each one to make it work is going to be hard. There
are just so many Python machine learning algorithms out there, and
many of them sound great that it can be confusing to know how to
make them run the way that you want.

This is why this guidebook spent time exploring the different
algorithms, and discussed in-depth information about how these
work and what you are able to do with each one. The most of
common algorithms like neural networks, random forests and
decision trees, clustering, KNN, have been discussed as well. When
you are done, you will have a good idea of how to work with machine
learning and how to make all of this work on your machine learning
project.

There are many times when you may decide to work with data
analysis or some of the other parts of machine learning, and knowing
which algorithms to choose is going to be imperative to this process.

If you found this book useful in any way, a review on Amazon is
always appreciated !

Josh Hugh Learning

https://www.amazon.com/s?i=digital-text&rh=p_27%3AJosh+Hugh+Learning

1000 Python Examples

Gábor Szabó

This book is for sale at http://leanpub.com/python-examples

This version was published on 2020-05-28

* * * * *

This is a Leanpub book. Leanpub empowers authors and publishers
with the Lean Publishing process. Lean Publishing is the act of
publishing an in-progress ebook using lightweight tools and many
iterations to get reader feedback, pivot until you have the right
book and build traction once you do.

* * * * *

© 2020 Gábor Szabó

http://leanpub.com/python-examples
http://leanpub.com/
http://leanpub.com/manifesto

Table of Contents

First steps
What is Python?
What is needed to write a program?
The source (code) of Python
Python 2 vs. Python 3
Installation
Installation on Linux
Installation on Apple Mac OSX
Installation on MS Windows
Editors, IDEs
Documentation
Program types
Python on the command line
First script - hello world
Examples
Comments
Variables
Exercise: Hello world
What is programming?
What are the programming languages
A written human language
A programming language
Words and punctuation matter!
Literals, Value Types in Python
Floating point limitation
Value Types in Numpy
Rectangular (numerical operations)
Multiply string

Add numbers
Add strings
Exercise: Calculations
Solution: Calculations

Second steps
Modules
A main function
The main function - called
Indentation
Conditional main
Input - Output I/O
print in Python 2
print in Python 3
print in Python 2 as if it was Python 3
Exception: SyntaxError: Missing parentheses in call
Prompting for user input in Python 2
Prompting for user input in Python 3
Python2 input or raw_input?
Prompting both Python 2 and Python 3
Add numbers entered by the user (oups)
Add numbers entered by the user (fixed)
How can I check if a string can be converted to a number?
Converting string to int
Converting float to int
Conditionals: if
Conditionals: if - else
Conditionals: if - else (other example)
Conditionals: else if
Conditionals: elif
Ternary operator
Case or Switch in Python

Exercise: Rectangular
Exercise: Calculator
Exercise: Standard Input
Solution: Area of rectangular
Solution: Calculator
Command line arguments
Command line arguments - len
Command line arguments - exit
Exercise: Rectangular (argv)
Exercise: Calculator (argv)
Solution: Area of rectangular (argv)
Solution: Calculator eval
Solution: Calculator (argv)
Compilation vs. Interpretation
Is Python compiled or interpreted?
Flake8 checking

Numbers
Numbers
Operators for Numbers
Integer division and the future
Pseudo Random Number
Fixed random numbers
Rolling dice - randrange
Random choice
built-in method
Exception: TypeError: ‘module’ object is not callable
Fixing the previous code
Exception: AttributeError: module ‘random’ has no attribute
Exercise: Number guessing game - level 0
Exercise: Fruit salad
Solution: Number guessing game - level 0

Solution: Fruit salad

Boolean
if statement again
True and False
Boolean
True and False values in Python
Comparision operators
Do NOT Compare different types
Boolean operators
Boolean truth tables
Short circuit
Short circuit fixed
Incorrect use of conditions
Exercise: compare numbers
Exercise: compare strings
Solution: compare numbers
Solution: compare strings

Strings
Single quoted and double quoted strings
Long lines
Triple quoted strings (multiline)
String length (len)
String repetition and concatenation
A character in a string
String slice (instead of substr)
Change a string
How to change a string
String copy
String functions and methods (len, upper, lower)
index in string

index in string with range
rindex in string with range
find in string
Find all in the string
in string
index if in string
Encodings: ASCII, Windows-1255, Unicode
raw strings
ord
ord in a file
chr - number to character
Exercise: one string in another string
Exercise: to ASCII CLI
Exercise: from ASCII CLI
Solution: one string in another string
Solution: compare strings
Solution: to ASCII CLI
Solution: from ASCII CLI

Loops
Loops: for-in and while
for-in loop on strings
for-in loop on list
for-in loop on range
Iterable, iterator
for in loop with early end using break
for in loop skipping parts using continue
for in loop with break and continue
while loop
Infinite while loop
While with complex expression
While with break

While True
Duplicate input call
Eliminate duplicate input call
do while loop
while with many continue calls
Break out from multi-level loops
Exit vs return vs break and continue
Exercise: Print all the locations in a string
Exercise: Number guessing game
Exercise: MasterMind
Exercise: Count unique characters
Solution: Print all the locations in a string
Solution 1 for Number Guessing
Solution for Number Guessing (debug)
Solution for Number Guessing (move)
Solution for Number Guessing (multi-game)
Solution: MasterMind
Solution: Count unique characters
MasterMind to debug

PyCharm
PyCharm Intro
PyCharm Project
PyCharm Files
PyCharm - run code
PyCharm Python console at the bottom left
Refactoring example (with and without pycharm)

Formatted printing
format - sprintf
Examples using format - indexing
Examples using format with names

Format columns
Examples using format - alignment
Format - string
Format characters and types
Format floating point number
f-strings (formatted string literals)
printf using old %-syntax
Format braces, bracket, and parentheses
Examples using format with attributes of objects
raw f-strings

Lists
Anything can be a lists
Any layout
Lists
List slice with steps
Change a List
Change with steps
List assignment and list copy
join
join list of numbers
split
for loop on lists
in list
Where is the element in the list
Index improved
[].insert
[].append
[].remove
Remove element by index [].pop
Remove first element of list
Remove several elements of list by index

Use list as a queue
Queue using deque from collections
Fixed size queue
List as a stack
stack with deque
Exercies: Queue
Exercise: Stack
Solution: Queue with list
Solution: Queue with deque
Solution: Reverse Polish calculator (stack) with lists
Solution: Reverse Polish calculator (stack) with deque
Debugging Queue
sort
sort numbers
sort mixed
key sort
Sort tuples
sort with sorted
sort vs. sorted
key sort with sorted
Sorting characters of a string
range
Looping over index
Enumerate lists
List operators
List of lists
List assignment
List documentation
tuple
Exercise: color selector menu
Exercise: count digits
Exercise: Create list

Exercise: Count words
Exercise: Check if number is prime
Exercise: DNA sequencing
Solution: menu
Solution: count digits
Solution: Create list
Solution: Count words
Solution: Check if number is prime
Solution: DNA sequencing
Solution: DNA sequencing with filter
Solution: DNA sequencing with filter and lambda
[].extend
append vs. extend
split and extend

Files
Open and read file
Filename on the command line
Filehandle with and without
Filehandle with return
Read file remove newlines
Read all the lines into a list
Read all the characters into a string (slurp)
Not existing file
Open file exception handling
Open many files - exception handling
Writing to file
Append to file
Binary mode
Does file exist? Is it a file?
Exercise: count numbers
Exercise: strip newlines

Exercise: color selector
Exercise: ROT13
Exercise: Combine lists
Solution: count numbers
Solution: strip newlines
Solution: color selector
Solution: Combine lists
Read text file
Open and read file
Direct access of a line in a file
Example

Dictionary (hash)
What is a dictionary
When to use dictionaries
Dictionary
keys
Loop over keys
Loop using items
values
Not existing key
Get key
Does the key exist?
Does the value exist?
Delete key
List of dictionaries
Shared dictionary
immutable collection: tuple as dictionary key
immutable numbers: numbers as dictionary key
Sort dictionary by value
Sort dictionary keys by value
Insertion Order is kept

Change order of keys in dictionary - OrderedDict
Set order of keys in dictionary - OrderedDict
Exercise: count characters
Exercise: count words
Exercise: count words from a file
Exercise: Apache log
Exercise: Combine lists again
Exercise: counting DNA bases
Exercise: Count Amino Acids
Exercise: List of dictionaries
Exercise: Dictinoary of dictionaries
Solution: count characters
Solution: count characters with default dict
Solution: count words
Solution: count words in file
Solution: Apache log
Solution: Combine lists again
Solution: counting DNA bases
Solution: Count Amino Acids
Loop over dictionary keys
Do not change dictionary in loop
Default Dict

Sets
sets
set operations
set intersection
set subset
set symmetric difference
set union
set relative complement
set examples

defining an empty set
Adding an element to a set (add)
Merging one set into another set (update)

Functions (subroutines)
Defining simple function
Defining a function
Parameters can be named
Mixing positional and named parameters
Default values
Several defaults, using names
Arbitrary number of arguments *
Fixed parmeters before the others
Arbitrary key-value pairs in parameters **
Extra key-value pairs in parameters
Every parameter option
Duplicate declaration of functions (multiple signatures)
Recursive factorial
Recursive Fibonacci
Non-recursive Fibonacci
Unbound recursion
Variable assignment and change - Immutable
Variable assignment and change - Mutable
Parameter passing of functions
Passing references
Function documentation
Sum ARGV
Copy-paste code
Copy-paste code fixed
Copy-paste code further improvement
Palindrome
Exercise: statistics

Exercise: recursive
Exercise: Tower of Hanoi
Exercise: Merge and Bubble sort
Solution: statistics
Solution: recursive
Solution: Tower of Hanoi
Solution: Merge and Bubble sort

Modules
Before modules
Create modules
path to load modules from - The module search path
sys.path - the module search path
Flat project directory structure
Absolute path
Relative path
Python modules are compiled
How “import” and “from” work?
Runtime loading of modules
Conditional loading of modules
Duplicate importing of functions
Script or library
Script or library - import
Script or library - from import
assert to verify values
mycalc as a self testing module
doctest
Scope of import
Export import
Export import with all
import module
Execute at import time

Import multiple times
Exercise: Number guessing
Exercies: Scripts and modules
Exercise: Module my_sum
Exercise: Convert your script to module
Exercise: Add doctests to your own code
Solution: Module my_sum

Regular Expressions
What are Regular Expressions (aka. Regexes)?
What are Regular Expressions good for?
Examples
Where can I use it ?
grep
Regexes first match
Match numbers
Capture
Capture more
Capture even more
findall
findall with capture
findall with capture more than one
Any Character
Match dot
Character classes
Common characer classes
Negated character class
Optional character
Regex 0 or more quantifier
Quantifiers
Quantifiers limit
Quantifiers on character classes

Greedy quantifiers
Minimal quantifiers
Anchors
Anchors on both end
Match ISBN numbers
Matching a section
Matching a section - minimal
Matching a section negated character class
DOTALL S (single line)
MULTILINE M
Two regex with logical or
Alternatives
Grouping and Alternatives
Internal variables
More internal variables
Regex DNA
Regex IGNORECASE
Regex VERBOSE X
Substitution
findall capture
Fixing dates
Duplicate numbers
Remove spaces
Replace string in assembly code
Full example of previous
Split with regex
Exercises: Regexes part 1
Exercise: Regexes part 2
Exercise: Sort SNMP numbers
Exercise: parse hours log file and give report
Exercise: Parse ini file
Exercise: Replace Python

Exercise: Extract phone numbers
Solution: Sort SNMP numbers
Solution: parse hours log file and give report
Solution: Processing INI file manually
Solution: Processing config file
Solution: Extract phone numbers
Regular Expressions Cheat sheet
Fix bad JSON
Fix very bad JSON
Raw string or escape
Remove spaces regex
Regex Unicode
Anchors Other example

Python standard modules
Some Standard modules
sys
Writing to standard error (stderr)
Current directory (getcwd, pwd, chdir)
OS dir (mkdir, makedirs, remove, rmdir)
python which OS are we running on (os, platform)
Get process ID
OS path
Traverse directory tree - list directories recursively
os.path.join
Directory listing
expanduser - handle tilde ~
Listing specific files using glob
External command with system
subprocess
subprocess in the background
Accessing the system environment variables from Python

Set env and run command
shutil
time
sleep in Python
timer
Current date and time datetime now
Converting string to datetime
datetime arithmeticis
Rounding datetime object to nearest second
Signals and Python
Sending Signal
Catching Signal
Catching Ctrl-C on Unix
Catching Ctrl-C on Unix confirm
Alarm signal and timeouts
deep copy list
deep copy dictionary
Exercise: Catching Ctrl-C on Unix 2nd time
Exercise: Signals
Ctrl-z

JSON
JSON - JavaScript Object Notation
dumps
loads
dump
load
Round trip
Pretty print JSON
Sort keys in JSON
Set order of keys in JSON - OrderedDict
Exercise: Counter in JSON

Exercise: Phone book
Exercise: Processes
Solution: Counter in JSON
Solution: Phone book

Command line arguments with argparse
Modules to handle the command line
argparse
Basic usage of argparse
Positional argument
Many positional argument
Convert to integers
Convert to integer
Named arguments
Boolean Flags
Short names
Exercise: Command line parameters
Exercise: argparse positional and named

Exception handling
Hierarchy of calls
Handling errors as return values
Handling errors as exceptions
A simple exception
Working on a list
Catch ZeroDivisionError exception
Module to open files and calculate something
File for exception handling example
Open files - exception
Handle divide by zero exception
Handle files - exception
Catch all the exceptions and show their type

List exception types
Exceptions
How to raise an exception
Stack trace
Exercies: Exception int conversion
Exercies: Raise Exception
Solution: Exception int conversion (specific)
Solution: Exception int conversion (all other)
Solution: Raise Exception

Classes - OOP - Object Oriented Programming
Why Object Oriented Programming?
Generic Object Oriented Programming terms
OOP in Python
OOP in Python (numbers, strings, lists)
OOP in Python (argparse)
Create a class
Import module containing class
Import class from module
Initialize a class - constructor, attributes
Attributes are not special
Create Point class
Initialize a class - constructor, attributes
Methods
Stringify class
Inheritance
Inheritance - another level
Modes of method inheritance
Modes of method inheritance - implicit
Modes of method inheritance - override
Modes of method inheritance - extend
Modes of method inheritance - delegate - provide

Composition - Line
Some comments
Class in function
Serialization of instances with pickle
Quick Class definition and usage
Exercise: Add move_rad to based on radians
Exercise: Improve previous examples
Exercise: Polygon
Exercise: Number
Exercise: Library
Exercise: Bookexchange
Exercise: Represent turtle graphics
Solution - Polygon

PyPi - Python Package Index
What is PyPi?
Easy Install
pip
Upgrade pip
PYTHONPATH
Virtualenv
Virtualenv for Python 3

SQLite Database Access
SQLite
Connecting to SQLite database
Create TABLE in SQLite
INSERT data into SQLite database
SELECT data from SQLite database
A counter

MySQL

Install MySQL support
Create database user (manually)
Create database (manually)
Create table (manually)
Connect to MySQL
Connect to MySQL and Handle exception
Select data
Select more data
Select all data fetchall
Select some data fetchmany
Select some data WHERE clause
Select into dictionaries
Insert data
Update data
Delete data
Exercise MySQL
Exercise: MySQL Connection
Solution: MySQL Connection

PostgreSQL
PostgreSQL install
Python and Postgresql
PostgreSQL connect
INSERT
INSERT (from command line)
SELECT
DELETE

SQLAlchemy
SQLAlchemy hierarchy
SQLAlchemy engine
SQLAlchemy autocommit

SQLAlchemy engine CREATE TABLE
SQLAlchemy engine INSERT
SQLAlchemy engine SELECT
SQLAlchemy engine SELECT all
SQLAlchemy engine SELECT fetchall
SQLAlchemy engine SELECT aggregate
SQLAlchemy engine SELECT IN
SQLAlchemy engine SELECT IN with placeholders
SQLAlchemy engine connection
SQLAlchemy engine transaction
SQLAlchemy engine using context managers
Exercise: Create table
SQLAlchemy Metada
SQLAlchemy types
SQLAlchemy ORM - Object Relational Mapping
SQLAlchemy ORM create
SQLAlchemy ORM schema
SQLAlchemy ORM reflection
SQLAlchemy ORM INSERT after automap
SQLAlchemy ORM INSERT
SQLAlchemy ORM SELECT
SQLAlchemy ORM SELECT cross tables
SQLAlchemy ORM SELECT and INSERT
SQLAlchemy ORM UPDATE
SQLAlchemy ORM logging
Solution: Create table
Exercise: Inspector
SQLAlchemy CREATE and DROP
SQLAlchemy Notes
SQLAlchemy Meta SQLite CREATE
SQLAlchemy Meta Reflection
SQLAlchemy Meta INSERT

SQLAlchemy Meta SELECT

NoSQL
Types of NoSQL databases

MongoDB
MongoDB CRUD
Install MongoDB support
Python MongoDB insert
MongoDB CLI
Python MongoDB find
Python MongoDB find refine
Python MongoDB update
Python MongoDB remove (delete)

Redis
Redis CLI
Redis list keys
Redis set get
Redis incr
Redis incrby
Redis setex

Web client
urllib the web client
urllib2 the web client
httpbin.org
requests get
Download image using requests
Download image as a stream using requests
Download zip file
Extract zip file
Interactive Requests

requests get JSON
requests get JSON UserAgent
requests get JSON UserAgent
requests get header
requests change header
requests post
Tweet
API config file
bit.ly
Exercise: Combine web server and client

Python Web server
Hello world web
Dump web environment info
Web echo
Web form
Resources

Python Flask
Python Flask intro
Python Flask installation
Flask: Hello World
Flask hello world + test
Flask generated page - time
Flask: Echo GET
Flask: Echo POST
Flask: templates
Flask: templates
Flask: templates with parameters
Flask: runner
Exercise: Flask calculator
Static files

Flask Logging
Flask: Counter
Color selector without session
Session management
Flask custom 404 page
Flask Error page
Flask URL routing
Flask Path params
Flask Path params (int)
Flask Path params add (int)
Flask Path params add (path)
Jinja loop, conditional, include
Exercise: Flask persistent
Exercise: Flask persistent
Flask Exercises
Flask login
Flask JSON API
Flask and AJAX
Flask and AJAX
passlib
Flask Testing
Flask Deploy app
Flask Simple Authentication + test
Flask REST API
Flask REST API - Echo
Flask REST API - parameters in path
Flask REST API - parameter parsing
Flask REST API - parameter parsing - required

Networking
Secure shell
ssh

ssh from Windows
Parallel ssh
telnet
prompt for password
Python nmap
ftp

Interactive shell
The Python interactive shell
REPL - Read Evaluate Print Loop
Using Modules
Getting help
Exercise: Interactive shell

Testing Demo
How do you test your code?
What is testing?
What is testing really?
Testing demo - AUT - Application Under Test
Testing demo - use the module
Testing demo: doctets
Testing demo: Unittest success
Testing demo: Unittest failure
Testing demo: pytest using classes
Testing demo: pytest without classes
Testing demo: pytest run doctests
Testing demo: pytest run unittest
Exercise: Testing demo
Solution: Testing demo

Types in Python
mypy

Types of variables
Types of function parameters
Types used properly
TODO: mypy

Testing Intro
The software testing equasion
The software testing equasion (fixed)
The pieces of your software?
Manual testing
What to tests?
Continuous Integration

Functional programming
Functional programming
Iterators (Iterables)
range
range with list
range vs. list size
for loop with transformation
map
map delaying function call
map on many values
map with list
double with lambda
What is lambda in Python?
lambda returning tuple
map returning tuples
lambda with two parameters
map for more than one iterable
map on uneven lists
replace None (for Python 2)

map on uneven lists - fixed (for Python 2)
map mixed iterators
map fetch value from dict
Exercise: string to length
Exercise: row to length
Exercise: compare rows
Solution: string to length
Solution: row to length
Solution: compare rows
filter
filter with lambda
filter - map example
filter - map in one expression
Get indexes of values
reduce
reduce with default
zip
Creating dictionary from two lists using zip
all, any
Compare elements of list with scalar
List comprehension - double
List comprehension - simple expression
List generator
List comprehension
Dict comprehension
Lookup table with lambda
Read lines without newlines
Read key-value pairs
Create index-to-value mapping in a dictionary based on a list
of values
Exercise: min, max, factorial
Exercise: Prime numbers

Exercise: Many validator functions
Exercise: Calculator using lookup table
Exercise: parse file
Solution: min, max, factorial
Solution: Prime numbers
Solution: Many validator functions
Solution: Calculator using lookup table
map with condtion
map with lambda
map with lambda with condition
List comprehension - complex

Iterators - with and without Itertools
Advantages of iterators and generators
The Fibonacci research institute
Fibonacci plain
Fibonacci copy-paste
Iterators Glossary
What are iterators and iterables?
A file-handle is an iterator
range is iterable but it is not an iterator
Iterator: a counter
Using iterator
Iterator without temporary variable
The type of the iterator
Using iterator with next
Mixing for and next
Iterable which is not an iterator
Iterator returning multiple values
Range-like iterator
Unbound or infinite iterator
Unbound iterator Fibonacci

Operations on Unbound iterator
itertools
itertools - count
itertools - cycle
Exercise: iterators - reimplement the range function
Exercise: iterators - cycle
Exercise: iterators - alter
Exercise: iterators - limit Fibonacci
Exercise: iterators - Fibonacci less memory
Exercise: read char
Exercise: read section
Exercise: collect packets
Exercise: compare files
Solution: iterators - limit Fibonacci
Solution: iterators - Fibonacci less memory
Solution: read section
Solution: compare files
Solution: collect packets

Generators and Generator Expressions
Generators Glossary
Iterators vs Generators
List comprehension and Generator Expression
List comprehension vs Generator Expression - less memory
List comprehension vs Generator Expression - lazy
evaluation
Generator: function with yield - call next
Generators - call next
Generator with yield
Generators - fixed counter
Generators - counter
Generators - counter with parameter

Generators - my_range
Fibonacci - generator
Infinite series
Integers
Integers + 3
Integers + Integers
Filtered Fibonacci
The series.py
generator - unbound count (with yield)
iterator - cycle
Exercise: Alternator
Exercise: Prime number generator
Exercise: generator
Exercise: Tower of Hanoi
Exercise: Binary file reader
Exercise: File reader with records

Logging
Simple logging
Simple logging - set level
Simple logging to a file
Simple logging format
Simple logging change date format
getLogger
Time-based logrotation
Size-based logrotation

Closures
Counter local - not working
Counter with global
Create incrementors
Create internal function

Create function by a function
Create function with parameters
Counter closure
Make incrementor with def (closure)
Make incrementor with lambda
Exercise: closure bank
Solution: closure bank
Solution: counter with parameter

Decorators
Function assignment
Function inside other function
Decorator
Use cases for decorators in Python
A recursive Fibonacci
trace fibo
tron decorator
Decorate with direct call
Decorate with parameter
Decorator accepting parameter
Decorate function with any signature
Decorate function with any signature - implementation
Exercise: Logger decorator
Exercise: memoize decorator
Solution: Logger decorator
Solution: Logger decorator (testing)
Solution memoize decorator

Context managers (with statement)
Why use context managers?
Context Manager examples
cd in a function

open in function
open in for loop
open in function using with
Plain context manager
Param context manager
Context manager that returns a value
Use my tempdir - return
Use my tempdir - exception
cwd context manager
tempdir context manager
Context manager with class
Context managers with class
Context manager: with for file
With - context managers
Exercise: Context manager
Exercise: Tempdir on Windows
Solution: Context manager

Advanced lists
Change list while looping: endless list
Change list while looping
Copy list before iteration
for with flag
for else
enumerate
do while
list slice is copy

Advanced Exception handling
Exceptions else
Exceptions finally
Exit and finally

Catching exceptions
Home made exception
Home made exception with attributes
Home made exception hierarcy
Home made exception hierarcy - 1
Home made exception hierarcy - 2
Home made exception hierarcy - 3
Exercise: spacefight with exceptions
Exercies: Raise My Exception
Solution: spacefight with exceptions
Solution: Raise My Exception
Exception finally return

Warnings
Warnings

CSV
Reading CSV the naive way
CSV with quotes and newlines
Reading a CSV file
CSV dialects
CSV to dictionary
Exercise: CSV
Solution: CSV

Excel
Spreadsheets
Python Excel
Create an Excel file from scratch
Worksheets in Excel
Add expressions to Excel
Format field

Number series and chart
Read Excel file
Update Excel file
Exercise: Excel

XML
XML Data
Expat - Callbacks
XML DOM - Document Object Model
XML SAX - Simple API for XML
SAX collect
XML elementtree

SciPy - for Scientific Computing in Python
Data Science tools in Python
Data Analysis resources

Python and Biology
Biopython
Biopython background
Bio python sequences
Download data
Read FASTA, GenBank files
Search nucleotids
Download nucleotids
Exercise: Nucleotid
Biology background

Chemistry
Chemistry links
Bond length
Covalent radius
Python energy landscape explorer

Other chemistry links

numpy
What is NumPy
Numpy - vector
NumPy 2D arrays
Numpy - set type
NumPy arrays: ones and zeros
Numpy: eye
NumPy array random
NumPy Random integers
NumPy array type change by division (int to float)
Numpy: Array methods: transpose
Numpy: reference, not copy
Numpy: copy array
Numpy: Elementwise Operations on Arrays
Numpy: multiply, matmul, dot for vectors
Numpy: multiply, matmul, dot for vector and matrix
Numpy: multiply, matmul, dot for matrices
Numpy: casting - converting from strings to integer.
Numpy: indexing 1d array
Numpy: slice is a reference
Numpy: slice - copy
Numpy: abs value on a Numpy array
Numpy: Logical not on a Numpy array
Numpy: Vectorize a function
Numpy: Vectorize len
Numpy: Vectorize lambda
Numpy: Filtering array
Numpy: Filter matrix values
Numpy: Filter matrix rows
Numpy: Stat

Numpy: Serialization
Numpy: Load from Matlab file
Numpy: Save as Matlab file
Numpy: Horizontal stack vectors (hstack)
Numpy: Append or vertically stack vectors and matrices
(vstack)
Numpy uint8
Numpy int8

Pandas
Pandas
Planets
Pandas Planets - Dataframes
Pandas Stocks
Pandas Stocks
Merge Dataframes
Analyze Alerts
Analyze IFMetrics
Create Excel file for experiment with random data
Calculate Genome metrics
Calculate Genome metrics - add columns
Calculate Genome metrics - vectorized
Calculate Genome metrics - vectorized numpy
Genes using Jupyter
Combine columns
Pandas more
Pandas Series
Pandas Series with names

Matplotlib
About Matplotlib
Matplotlib Line

Matplotlib Line with dates
Matplotlib Simple Pie
Matplotlib Simple Pie with params
Matplotlib Pie
Matplotlib Pie 2
Plot, scatter, histogram

Seaborn
Searborn use examples
Seaborn tip
Seaborn Anscombes Quartet

Jupyter notebooks
Jupyter on Windows
Jupyter on Linux and OSX
Jupyter add
Planets
Jupyter notebook Planets
Jupyter StackOverflow
Jupyter StackOverflow - selected columns
Jupyter processing chunks
Jupyter StackOverflow - selected rows
Jupyter StackOverflow - biggest countries (in terms of
number of responses)
Jupyter StackOverflow - historgram
Jupyter StackOverflow - filter by country
Jupyter StackOverflow - OpenSourcer
Jupyter StackOverflow - cross tabulation
Jupyter StackOverflow - salaries
Jupyter StackOverflow - replace values
Jupyter StackOverflow - selected rows
Jupyter notebook Intellisense (TAB completition)

Jupyter examples
IPy Widgets

Testing
Traditional Organizations
Quality Assurance
Web age Organizations
TDD vs Testing as an Afterthought
Why test?
Testing Modes
Testing Applications
Testing What to test?
Testing in Python
Testing Environment
Testing Setup - Fixture
Testing Resources

Testing with unittest
Use a module
Test a module
The tested module
Testing - skeleton
Testing
Test examples

Testing with PyTest
Pytest features
Pytest setup
Testing with Pytest
Testing functions
Testing class and methods
Pytest - execute

Pytest - execute
Pytest simple module to be tested
Pytest simple tests - success
Pytest simple tests - success output
Pytest simple tests - failure
Pytest simple tests - failure output
Exercise: test math functions
Exercise: test this app
Exercise: test the csv module
Solution: Pytest test math functions
Solution: Pytest test this app
Solution: test the csv module
PyTest bank deposit
PyTest expected exceptions (bank deposit)
PyTest expected exceptions (bank deposit) - no exception
happens
PyTest expected exceptions (bank deposit) - different
exception is raised
PyTest expected exceptions
PyTest expected exceptions output
PyTest expected exceptions (text changed)
PyTest expected exceptions (text changed) output
PyTest expected exceptions (other exception)
PyTest expected exceptions (other exception) output
PyTest expected exceptions (no exception)
PyTest expected exceptions (no exception) output
PyTest: Multiple Failures
PyTest: Multiple Failures output
PyTest Selective running of test functions
PyTest: stop on first failure
Pytest: expect a test to fail (xfail or TODO tests)
Pytest: expect a test to fail (xfail or TODO tests)

PyTest: show xfailed tests with -rx
Pytest: skipping tests
Pytest: show skipped tests woth -rs
Pytest: show extra test summmary info with -r
Pytest: skipping tests output in verbose mode
Pytest verbose mode
Pytest quiet mode
PyTest print STDOUT and STDERR using -s
PyTest failure reports
PyTest compare numbers
PyTest compare numbers relatively
PyTest compare strings
PyTest compare long strings
PyTest is one string in another strings
PyTest test any expression
PyTest element in list
PyTest compare lists
PyTest compare short lists
PyTest compare short lists - verbose output
PyTest compare dictionaries
PyTest compare dictionaries output
PyTest Fixtures
PyTest Fixture setup and teardown
PyTest Fixture setup and teardown output
PyTest: Class setup and teardown
PyTest: Class setup and teardown output
Pytest Dependency injection
Pytest fixture - tmpdir
Pytest capture STDOUT and STDERR with capsys
Pytest Fixture - home made fixtures
More fixtures
Pytest: Mocking - why?

Pytest: Mocking - what?
Pytest: One dimensional spacefight
Pytest: Mocking input and output
Pytest: Mocking random
Pytest: Flask echo
Pytest: testing Flask echo
PyTest: Run tests in parallel with xdist
PyTest: Order of tests
PyTest: Randomize Order of tests
PyTest: Force default order
PyTest: no random order
Anagram on the command line
PyTest testing CLI
PyTest test discovery
PyTest test discovery - ignore some tests
PyTest select tests by name
PyTest select tests by marker
PyTest: Test Coverage
Exercise: module
Exercise: Open Source
Pytest resources
Pytest and tempdir
PyTest compare short lists - output
PyTest with parameter
PyTest with parameters
Pytest reporting in JUnit XML format
No test selected

Advancted functions
Variable scopes
Name resolution order (LEGB)
Scoping: global seen from fuction

Assignment creates local scope
Local scope gone wrong
Changing global variable from a function
Global variables mutable in functions
Scoping issues
sub in sub
Scoping sub in sub (enclosing scope)
Function objects
Functions are created at run time
Mutable default
Use None as default parameter
Inner function created every time the outer function runs
Static variable
Static variable in generated function
Inspect

Variable number of function arguments
Python function arguments - a reminder
Functions with unknown number of argumerns
Variable length argument list with * and **
Passing arguments as they were received (but incorrectly)
Unpacking args before passing them on
Exercise: implement the my_sum function
Solution: implement the my_sum function
Exercise: implement the reduce function
Soluton: implement the reduce function
Exercise: sort pairs
Solution: sort pairs

Python Packages
Why Create package
Create package

Internal usage
use module in package - relative path
use package (does not work)
package importing (and exporting) module
use package (module) with import
use package with import
Creating an installable Python package
Create tar.gz file
Install Package
Dependencies
Add README file
Add README file (setup.py)
Include executables
Add tests
Add tests calc
Add tests all
setup.py
Run tests and create package
Packaging applications (creating executable binaries)
Using PyInstaller
Other PyInstaller examples
Other
Py2app for Mac
Exercise: package
Exercise: create executable

Ctypes
ctypes - hello
concat
links

Advanced OOP

Class count instances
Class Attributes
Class Attributes in Instances
Attributes with method access
Instance Attribute
Methods are class attributes
Monkey patching
Classes: instance method
Class methods and class attributes
Classes: constructor
Class methods - alternative constructor
Abstract Base Class
Abstract Base Class with abc
ABC working example
ABC - cannot instantiate the base-class
ABC - must implement methods
Use Python @propery to fix bad interface (the bad interface)
Use Python @propery to fix bad interface (first attempt)
Use Python @propery to fix bad API
Use Python @propery decorator to fix bad API
Use Python @propery for value validation
class and static methods
Destructor: del
Destructor delayed
Destructor delayed for both
Opearator overloading
Operator overloading methods
Exercise: rectangular
Exercise: SNMP numbers
Exercise: Implement a Gene inheritance model combining
DNA
Exercise: imaginary numbers - complex numbers

Solution: Rectangular
Solution: Implement a Gene inheritance model combining
DNA
Instance counter

2to3
Convertig from Python 2 to Python 3
division
print in Python 2
print in Python 3
input and raw_input
Code that works on both 2 and 3
Compare different types
Octal numbers
2to3 Resources

Design Patterns
What are Design Patterns?
Don’t replace built-in objects
Facade - simple interface to complex system
Monkey Patching
Creation DPs “Just One”
Singleton
Monostate (Borg)
Dispatch table

Parallel
Types of Problems
Types of solutions
How many parallels to use?
Dividing jobs
Performance Monitoring

Threads
Python Threading docs
Threaded counters
Simple threaded counters
Simple threaded counters (parameterized)
Pass parameters to threads - Counter with attributes
Create a central counter
Lock - acquire - release
Counter - plain
GIL - Global Interpreter Lock
Thread load
Exercise: thread files
Exercise: thread URL requests.
Exercise: thread queue
Solution: thread queue
Solution: thread URL requests.

Forking
Fork
Forking
Fork skeleton
Fork with load
Fork load results
Marshalling / Serialization
Fork with random
Exercise: fork return data
Solution: fork return data

Asyncronus programming with AsyncIO
Sync chores
Async chores
Explanation

Coroutines
More about asyncio
Async files

Asynchronus programming with Twisted
About Twisted
Echo
Echo with log
Simple web client
Web client

Multiprocess
Multiprocess CPU count
Multiprocess Process
Multiprocess N files: Pool
Multiprocess load
Multiprocess: Pool
Multiprocess load async
Multiprocess and logging
Exercise: Process N files in parallel
Exercise: Process N Excel files in parallel
Exercise: Fetch URLs in parallel
Exercise: Fetch URLs from one site.
Solution: Fetch URLs in parallel

Multitasking
What is Multitasking?
Multitasking example
Multitasking example with wait
Multitaksing - second loop waits for first one
Multitasking counter
Multitasking counter with thread locking

Improving Performance - Optimizing code
Problems
Optimization strategy
Locate the source of the problem
Optimizing tactics
DSU: Decorate Sort Undecorate
Profile code
Slow example
profile slow code
cProfile slow code
Benchmarking
Benchmarking subs
Levenshtein distance
Generate words
Levenshtein - pylev
Levenshtein - edittidtance
Editdistance benchmark
A Tool to Generate text files
Count characters
Memory leak
Garbage collection
Weak reference
Exercise: benchmark list-comprehension, map, for
Exercise: Benchmark Levenshtein
Exercise: sort files
Exercise: compare split words:
Exercise: count words

GUI with Python/Tk
Sample Tk app
GUI Toolkits
Installation

Python Tk Documentation
Python Tk Button
Python Tk Button with action
Python Tk Label
Python Tk Label - font size and color
Python Tk Keybinding
Python Tk Entry (one-line text entry)
Python Tk Entry for passwords and other secrets (hidden text)
Python Tk Checkbox
Python Tk Radiobutton
Python Tk Listbox
Python Tk Listbox Multiple
Python Tk Menubar
Python Tk Text
Python Tk Dialogs
Python Tk Filedialog
Python Tk messagebox
Python Tk Combobox
Python Tk OptionMenu
Python Tk Scale
Python Tk Progressbar
Python Tk Frame
Not so Simple Tk app with class
Tk: Hello World
Tk: Quit button
Tk: File selector
Tk: Checkbox
Tk: Runner
Tk: Runner with threads
Getting started with Tk
Exercise: Tk - Calculator one line
Exercise: Tk Shopping list

Exercise: Tk TODO list
Exercise: Tk Notepad
Exercise: Tk Copy files
Exercise: Tk
Solution: Tk - Calculator one line
Solution: Tk
Solution: Tk Notepad
Simple file dialog

Python Pitfalls
Reuse of existing module name
Use the same name more than once
Compare string and number
Compare different types
Sort mixed data

Linters
Static Code Analyzis - Linters
PEP8
F811 - redefinition of unused
Warn when Redefining functions

Python .NET
IronPython
Use .NET libraries from Python
Python and .NET console
Python and .NET examples
Exercise Python and .NET

Python and Java
Jython
Calling Java from Python

Jython - Python running on the JVM
Jython Installation
Jython Installation
Jython load Java class
Jython load Java class in code
Jython test Java class

PIL - Pillow
Install Pillow
Create First Image
Write Text on Image
Select font for Text on Image
Font directories
Get size of an Image
Get size of text
Resize an existing Image
Crop an existing Image
Combine two images
Rotated text
Rotated text in top-right corner
Embed image (put one image on another one)
Draw a triangle
Draw a triangle and write text in it
Draw a triangle and write rotated text in it
Draw a rectangular
Draw a rectangle
Draw circle
Draw heart
Rectangle with rounded corners
TODO

FAQ

How not to name example scirpts?
Platform independent code
How to profile a python code to find causes of slowness?
pdb = Python Debugger
Avoid Redefining functions

Appendix
print_function
Dividers (no break or continue)
Lambdas
Abstract Class
Remove file
Modules: more
import hooks
Python resources
Progress bar
from future
Variable scope
scope
type
Look deeper in a list
Exercise: iterators - count
Simple function (before generators)

Other slides
Other slides
Atom for Python
IDLE - Integrated DeveLopment Environment
sh-bang - executable on Linux/Apple
Strings as Comments
pydoc
How can I check if a string can be converted to a number?

Spyder Intro
Interactive Debugging
Parameter passing
Command line arguments and main
Infinite loop
break
continue
While with many conditions
while loop with many conditions
Format with conversion (stringifiation with str or repr)
Name of the current function in Python
Name of the caller function in Python
Stack trace in Python using inspect
Module Fibonacci
PyTest - assertion
PyTest - failure
PyTest - list
SAX with coroutine
Getting the class name of an object
Inheritance - super
Inheritance - super - other class
iterator - pairwise
iterator - grouped
itertools - groupby
Circular references
Context managers: with (file) experiments
itertools - izip
mixing iterators
mixing iterators
itertools - pairwise
itertools - grouped
range vs xrange in Python

profile (with hotshot) slow code
Abstract Base Class without abc
Abstract Base Class with abc Python 2 ?
Abstract Base Class with metaclass
Create class with metaclass
Python Descriptors
alter iterator
Create a counter queue
A Queue of tasks
Filtered Fibonacci with ifilter
Python from .NET

First steps

What is Python?

A snake.
A British comedy group called Monty Python.
A programming languge. The definition of the language:
words, punctuation (operators) and grammar (syntax).
The compiler/interpreter of the Python programming language.
(aka. CPython).

When people say they Python in relation to programming they
either mean the Python programming language or they
mean the tool that can translate some text (code) written in the
Python programming language to the language a computer
can actually understand. On MS Windows this is the
python.exe you need to install. On Linux/Mac it is usally
called python
or python3. The generic name of the tool that translates a
programming language for the computer is eiter
called a compiler or an interpreter. We’ll talk about this later
on.

What is needed to write a program?
An editor where we can write in a language.

https://en.wikipedia.org/wiki/Monty_Python

A compiler or interpreter that can translate our text to the
language of the computer.

In order to write and run a program you basically need two
things. A text editor in which you can write the program
and a compiler or interpreter that can translate this program to
the computer.

The source (code) of Python
Python

Python 2 vs. Python 3
Python 2.x - old, legacy code at companies, answers on the
Internet. Retires on January 1, 2020.
Python 3.x - the one that you should use. (not fully backward
compatible) Available since December 3, 2008.

Python has two major lines the version 2.x and the version 3.x.
In a nutshell you should always use Python 3 if possible.

Unfortunately you can still encounter many companies and
many projects in companies that are stuck on Python 2.
In such cases you probably will have to write in Python 2.

In addition when you search for solutions on the Internet in
many cases you’ll encounter solution that were written
for Python 2. Luckily in most of the cases it is almost trivial to
convert thise small examples to work on Python 3.

https://www.python.org/

You just need to be able to recognize that the code was
originally written for Python 2 and you need to be able to make
the adjustments.

For this reason, while the majority of these pages cover Python
3, we are going to point out the places where it
might be useful to know how Python 2 works.

You are free to skip these parts and come back to them when
the need arises.

Installation

MS Windows
Linux
Apple/Mac OSX

We are going to cover how to install Python all 3 major
operating systems.

Installation on Linux
On Linux you usually have Python 2 installed in
/usr/bin/python
Python 3 in /usr/bin/python3.
If they are not installed, you can install them with the
appropriate yum or apt-get command of your distribution.
An alternative is to install Anaconda with Python 3.x

https://www.anaconda.com/download/

1 $ which python3

2

3 $ sudo apt-get install python3

4 $ sudo yum install python3

Installation on Apple Mac OSX

On Mac OSX you can have Python 2 installed in
/usr/bin/python and Python 3 installed as /usr/bin/python3.
Homebrew
An alternative is to install Anaconda with Python 3.x

1 $ which python3

2

3 $ brew install python3

Installation on MS Windows

Anaconda with Python 3.x
Anaconda shell
Anaconda Jupyter notebook

*

An alternative is to install from here.

Editors, IDEs

Basically you can use any text editor to write Python code. The
minimum I recommend is to have proper syntax highlighting.
IDEs will also provide intellisense, that is,
in most of the cases they will be able to understand what kind

https://brew.sh/
https://www.anaconda.com/download/
https://www.anaconda.com/download/
http://www.python.org/download/

of objects do you have in your code and will be able to show
you the available methods and their
parameters. Even better, they provide powerful debuggers.

PyCharm seems to be the most popular IDE. It has a free
version called community edition.

Linux

Emacs
vi, vim, gvim
spf13-vim
Kate
Gedit
jEdit

Windows

Notepad++
Textpad
Ultra Edit

Mac

CotEditor
TextWrangler
TextMate
Type “text editor” in your Apple Store (filter to free)

http://www.gnu.org/software/emacs/
http://www.vim.org/
http://vim.spf13.com/
http://kate-editor.org/
http://projects.gnome.org/gedit/
http://www.jedit.org/
http://notepad-plus-plus.org/
http://www.textpad.com/
http://www.ultraedit.com/
https://coteditor.com/
http://www.barebones.com/products/textwrangler/
http://macromates.com/

All platforms

Sublime Text (commercial)
Ligth Table

IDEs

PyCharm community edition
Visual Code of Microsoft

Spyder, a scientific environment (included in Anaconda)
Jupyter with IPython behind the scene.

IDLE (comes with Python)
Komodo of ActiveState
Aptana
Pyscripter
PyDev (for Eclipse)
Wing IDE
Atom

Documentation
Google
Bing
DuckDuckGo
official documentation of Python
Stack Overflow
Code Maven
…

Program types

http://www.sublimetext.com/
http://www.lighttable.com/
http://www.jetbrains.com/pycharm/
https://code.visualstudio.com/
https://www.spyder-ide.org/
https://jupyter.org/
http://ipython.org/
https://en.wikipedia.org/wiki/IDLE
http://www.activestate.com/
http://www.aptana.com/
http://code.google.com/p/pyscripter/
http://pydev.org/
http://www.wingware.com/
https://atom.io/
https://www.google.com/
https://www.bing.com/
https://duckduckgo.com/
https://docs.python.org/
https://stackoverflow.com/
https://code-maven.com/python

Desktop application (MS Word, MS Excel, calculator, Firefox,
Chrome, …
Mobile applications - whatever runs on your phone.
Embedded applications - software in your car or in your
shoelace.
Web applications - they run on the web server and send you
HTML that your browser can show.
Command Line Applications
Scripts and programs are the same for our purposes
…

Python on the command line
More or less the only thing I do on the command line with python
is to check the version number:

1 python -V

2 python --version

You can run some Python code without creating a file, but I don’t
rememeber ever needing this. If you insists

1 python -c "print 42"

1 python3 -c "print(42)"

Type the following to get the details:

1 man python

cmdline

https://docs.python.org/using/cmdline.html

First script - hello world
1 print("Hello World")

Create a file called hello.py with the above content.
Open your terminal or the Anaconda Prompt on MS Windows
in the directory (folder)
Change to the directory where you saved the file.
Run it by typing python hello.py or python3 hello.py
The extension is .py - mostly for the editor (but also for
modules).
Parentheses after print() are required in Python 3, but use them
even if you are stuck on Python 2.

Examples

The examples are on GitHub
You can download them and unzip them.

Comments

marks single line comments.
There are no real multi-line comments in Python, but we will
see a way to have them anyway.

1 print("hello")

2

3 # Comments for other developers

4

5 print("world") # more comments

https://github.com/szabgab/slides

6

7 # print("This is not printed")

Variables
1 greeting = "Hello World!"

2 print(greeting)

Exercise: Hello world
Try your environment:

Make sure you have access to the right version of Python.
Install Python if needed.
Check if you have a good editor with syntax highlighting.
Write a simple script that prints Hello world.
Add some comments to your code.
Create a variable, assign some text to it and then print out the
content of the variable.

What is programming?

Use some language to tell the computer what to do.
Like a cooking recepie it has step-by-step instructions.
Taking a complex problem and dividing it into small steps a
computer can do.

What are the programming languages
A computer CPU is created from transistors, 1 and 0 values.
(aka. bits)

Its language consists of numbers. (e.g 37 means move the
content of ax register to bx register)
English? too complex, too much ambiguity.
Programming languages are in-beteen.

A written human language

Words
Punctuation: - . , ! ?
Grammar
…

A programming language

Built-in words: print, len, type, def, …
Literal values: numbers, strings
Operators: + - * = , ; …
Grammar (syntax)
User-created words: variables, functions, classes, …

Words and punctuation matter!
What did you chose? (Correctly: choose, but people will
usually understand.)
Lets do the homework. (Correctly: Let’s, but most people will
understand.)
Let’s eat, grandpa!
Let’s eat grandpa!
see more

https://en.wikipedia.org/wiki/Literal_(computer_programming)
https://en.wikipedia.org/wiki/Operator_(computer_programming)
https://en.wikipedia.org/wiki/Syntax_(programming_languages)
https://thewritepractice.com/why-you-need-to-be-using-oxford-commas/

Programming languages have a lot less words, but they are
very strict on the grammar (syntax).
A mising comma can break your code.
A missing space will change the meaning of your code.
An incorreect word can ruin your day.

Literals, Value Types in Python
 1 print(type(23)) # int

 2 print(type(3.14)) # float

 3 print(type("hello")) # str

 4

 5 print(type("23")) # str

 6 print(type("3.24")) # str

 7

 8 print(type(None)) # NoneType

 9 print(type(True)) # bool

10 print(type(False)) # bool

11

12 print(type([])) # list

13 print(type({})) # dict

14

15 print(type(hello)) # NameError: name 'hello' is

not defined

16 print("Still running")

1 Traceback (most recent call last):

2 File "python/examples/basics/types.py", line 15, in

<module>

3 print(type(hello)) # str

4 NameError: name 'hello' is not defined

Strings must be enclosed in quotes.
Numbers must be NOT enclosed in quotes.

Floating point limitation
1 print(0.1 + 0.2) # 0.30000000000000004

floating point

Value Types in Numpy
Numpy but also other programming languages might have them.

int8
int32
float32
float64
…

Rectangular (numerical operations)
1 width = 23

2 height = 17

3 area = width * height

4 print(area) # 391

Multiply string
1 width = "23"

2 height = "17"

3 area = width * height

4 print(area)

1 Traceback (most recent call last):

2 File "python/examples/basics/rectangular_strings.py",

line 3, in <module>

3 area = width * height

4 TypeError: can't multiply sequence by non-int of type

'str'

https://docs.python.org/3/tutorial/floatingpoint.html

Add numbers
1 a = 19

2 b = 23

3 c = a + b

4 print(c) # 42

Add strings
1 a = "19"

2 b = "23"

3 c = a + b

4 print(c) # 1923

Exercise: Calculations

Extend the rectangular_basic.py from above to print both the
area and the circumference of the rectangle.
Write a script that has a variable holding the radius of a circle
and prints out the area of the circle and the circumference of
the circle.
Write a script that has two numbers a and b and prints out the
results of a+b, a-b, a*b, a/b

Solution: Calculations
1 width = 23

2 height = 17

3 area = width * height

4 print("The area is ", area) # 391

5 circumference = 2 * (width + height)

6 print("The circumference is ", circumference) # 80

1 r = 7

2 pi = 3.14

3 print("The area is ", r * r * pi) # 153.86

4 print("The circumference is ", 2 * r * pi) # 43.96

1 import math

2

3 r = 7

4 print("The area is ", r * r * math.pi) #

153.9380400258998

5 print("The circumference is ", 2 * r * math.pi) #

43.982297150257104

1 a = 3

2 b = 2

3

4 print(a+b) # 5

5 print(a-b) # 1

6 print(a*b) # 6

7 print(a/b) # 1.5

Second steps

Modules
 1 import sys

 2

 3 print(sys.executable) #

/home/gabor/venv3/bin/python

 4 print(sys.platform) # linux

 5 print(sys.argv[0]) #

examples/basics/modules.py

 6 print(sys.version_info.major) # 3

 7

 8 print(sys.getsizeof(1)) # 28

 9 print(sys.getsizeof(42)) # 28

10 print(sys.getsizeof(1.0)) # 24

11

12 print(sys.getsizeof("")) # 49

13 print(sys.getsizeof("a")) # 50

14 print(sys.getsizeof("ab")) # 51

15 print(sys.getsizeof("abcdefghij")) # 59

A main function
1 def main():

2 print("Hello")

3 print("World")

This won’t run as the main function is declared, but it is never
called (invoked).

The main function - called

You could write your code in the main body of your Python
file, but using functions
and passing arguments to it will make your code easier to
maintain and understand.
Therefore I recommend that you always write every script with
a function called “main”.

Function definition starts with the def keyword, followed
by the name of the new function (“main” in this case),
followed by the list of parameters in parentheses
(nothing in this case).
The content or body of the function is then indented to
the right.
The function definintion ends when the indentation stops.

1 def main():

2 print("Hello")

3 print("World")

4

5 print("before")

6 main()

7 print("after")

1 before

2 Hello

3 World

4 after

Use a main function to avoid globals and better structure
your code.
Python uses indentation for blocks instead of curly
braces, and it uses the colon : to start a block.

Indentation

Standard recommendations: 4 spaces on every level.

Conditional main
1 def main():

2 print("Hello World")

3

4 if __name__ == "__main__":

5 main()

We’ll cover this later but in case you’d like, you can include
this conditional execution of the main function.

Input - Output I/O
Input

Keyboard (Standard Input, Command line, GUI)
Mouse (Touch pad)
Touch screen
Files, Filesystem
Network (e.g. in Web applications)

Output

Screen
File
Network

print in Python 2

print is one of the keywords that changed between Python 2
and Python 3. In Python 2 it does not need parentheses, in
Python 3 it is a function and it needs to have parentheses.

1 print "hello"

2 print "world"

3 print "Foo", "Bar"

1 hello

2 world

3 Foo Bar

1 print "hello",

2 print "world"

3 print "Foo", "Bar",

1 hello world

2 Foo Bar

No newline, but a space is added at the end of the output and
between values.

1 import sys

2 sys.stdout.write("hello")

3 sys.stdout.write("world")

1 helloworld

write takes exactly one parameter

print in Python 3
1 print("hello")

2 print("world")

3 print("Foo", "Bar")

1 hello

2 world

3 Foo Bar

1 print("hello", end=" ")

2 print("world")

3 print("Foo", "Bar")

1 hello world

2 Foo Bar

end will set the character added at the end of each print statement.

1 print("hello", end="")

2 print("world")

3

4 print("Foo", "Bar", sep="")

5 print("END")

1 helloworld

2 FooBar

3 END

sep will set the character separating values.

print in Python 2 as if it was Python 3
1 from __future__ import print_function

2 print("hello", end="")

3 print("world")

1 helloworld

Exception: SyntaxError: Missing
parentheses in call
What if we run some code with print “hello” using Python 3?

1 File "examples/basics/print.py", line 1

2 print "hello"

3 ^

4 SyntaxError: Missing parentheses in call to 'print'. Did

you mean print("hello")?

Prompting for user input in Python 2
1 from __future__ import print_function

2

3 def main():

4 print("We have a question!")

5 name = raw_input('Your name: ')

6 print('Hello ' + name + ', how are you?')

7

8 main()

1 /usr/bin/python2 prompt2.py

2

3 We have a question!

4 Your name: Foo Bar

5 Hello Foo Bar, how are you?

What happens if you run this with Python 3 ?

1 /usr/bin/python3 prompt2.py

1 We have a question!

2 Traceback (most recent call last):

3 File "prompt2.py", line 7, in <module>

4 main()

5 File "prompt2.py", line 4, in main

6 name = raw_input('Your name: ')

7 NameError: name 'raw_input' is not defined

Prompting for user input in Python 3

In Python 3 the raw_input() function was replaced by the
input() function.

1 def main():

2 print("We have a question!")

3 name = input('Your name: ')

4 print('Hello ' + name + ', how are you?')

5

6 main()

What happens if you run this using Python 2 ?

1 /usr/bin/python2 prompt3.py

 1 We have a question!

 2 Your name: Foo Bar

 3 Your name: Traceback (most recent call last):

 4 File "prompt3.py", line 5, in <module>

 5 main()

 6 File "prompt3.py", line 2, in main

 7 name = input('Your name: ')

 8 File "<string>", line 1

 9 Foo Bar

10 ^

11 SyntaxError: unexpected EOF while parsing

1 We have a question!

2 Your name: Foo

3 Your name: Traceback (most recent call last):

4 File "prompt3.py", line 5, in <module>

5 main()

6 File "prompt3.py", line 2, in main

7 name = input('Your name: ')

8 File "<string>", line 1, in <module>

9 NameError: name 'Foo' is not defined

Python2 input or raw_input?
In Python 2 always use raw_input() and never input().

Prompting both Python 2 and Python 3
 1 from __future__ import print_function

 2 import sys

 3

 4 def main():

 5 if sys.version_info.major < 3:

 6 name = raw_input('Your name: ')

 7 else:

 8 name = input('Your name: ')

 9 print('Hello ' + name + ', how are you?')

10

11 main()

Add numbers entered by the user (oups)
1 def main():

2 a = input('First number: ')

3 b = input('Second number: ')

4 print(a + b)

5

6 main()

1 First number: 2

2 Second number: 3

3 23

When reading from the command line using input(), the resulting
value is a string.
Even if you only typed in digits. Therefore the addition operator +
concatenates the strings.

Add numbers entered by the user (fixed)
1 def main():

2 a = input('First number: ')

3 b = input('Second number: ')

4 print(int(a) + int(b))

5

6 main()

1 First number: 2

2 Second number: 3

3 5

In order to convert the string to numbers use the int() or the
float() functions.
Whichever is appropriate in your situation.

How can I check if a string can be converted
to a number?

stdtypes

1 val = input("Type in a number: ")

2 print(val)

3 print(val.isdecimal())

4 print(val.isnumeric())

5

6 if val.isdecimal():

https://docs.python.org/library/stdtypes.html

7 num = int(val)

8 print(num)

1 Type in a number: 42

2 True

3 True

4 42

We’ll talk about this later. For now assume that the user enters
something that can be converted to a number.
Use Regular Expressions (regexes) to verify that the input
string looks like a number.
Wrap the code in try-except block to catch any exception
raised during the conversion.

Converting string to int
1 a = "23"

2 print(a) # 23

3 print(type(a)) # <class 'str'>

4

5

6 b = int(a)

7 print(b) # 23

8 print(type(b)) # <class 'int'>

 1 a = "42 for life"

 2 print(a) # 42 for life

 3 print(type(a)) # <class 'str'>

 4

 5 b = int(a)

 6 print(b)

 7 print(type(b))

 8

 9 # Traceback (most recent call last):

10 # File "converting_string_to_int.py", line 5, in

<module>

11 # b = int(a)

12 # ValueError: invalid literal for int() with base 10: '42

for life'

Converting float to int
1 a = 2.1

2 print(type(a)) # <class 'float'>

3 print(a) # 2.1

4

5 b = int(2.1)

6 print(type(b)) # <class 'int'>

7 print(b) # 2

 1 a = "2.1"

 2 print(a) # 2.1

 3 print(type(a)) # <class 'str'>

 4

 5 b = int(a)

 6 print(b)

 7 print(type(b))

 8

 9 # Traceback (most recent call last):

10 # File "converting_floating_string_to_int.py", line 5,

in <module>

11 # b = int(a)

12 # ValueError: invalid literal for int() with base 10:

'2.1'

 1 a = "2.1"

 2 b = float(a)

 3 c = int(b)

 4 print(c) # 2

 5 print(type(a)) # <class 'str'>

 6 print(type(b)) # <class 'float'>

 7 print(type(c)) # <class 'int'>

 8

 9 d = int(float(a))

10 print(d) # 2

11 print(type(d)) # <class 'int'>

12

13 print(int(float(2.1))) # 2

14 print(int(float("2"))) # 2

15 print(int(float(2))) # 2

Conditionals: if
1 def main():

2 expected_answer = "42"

3 inp = input('What is the answer? ')

4

5 if inp == expected_answer:

6 print("Welcome to the cabal!")

7

8 main()

Conditionals: if - else
 1 def main():

 2 expected_answer = "42"

 3 inp = input('What is the answer? ')

 4

 5 if inp == expected_answer:

 6 print("Welcome to the cabal!")

 7 else:

 8 print("Read the Hitchhiker's guide to the

galaxy!")

 9

10 main()

Conditionals: if - else (other example)
 1 def main():

 2 a = input('First number: ')

 3 b = input('Second number: ')

 4

 5 if int(b) == 0:

 6 print("Cannot divide by 0")

 7 else:

 8 print("Dividing", a, "by", b)

 9 print(int(a) / int(b))

10

11

12 main()

Conditionals: else if
 1 def main():

 2 a = input('First number: ')

 3 b = input('Second number: ')

 4

 5 if a == b:

 6 print('They are equal')

 7 else:

 8 if int(a) < int(b):

 9 print(a + ' is smaller than ' + b)

10 else:

11 print(a + ' is bigger than ' + b)

12

13 main()

Conditionals: elif
 1 def main():

 2 a = input('First number: ')

 3 b = input('Second number: ')

 4

 5 if a == b:

 6 print('They are equal')

 7 elif int(a) < int(b):

 8 print(a + ' is smaller than ' + b)

 9 else:

10 print(a + ' is bigger than ' + b)

11

12

13 main()

Ternary operator
1 x = 3

2 answer = 'positive' if x > 0 else 'negative'

3 print(answer) # positive

4

5 x = -3

6 answer = 'positive' if x > 0 else 'negative'

7 print(answer) # negative

 1 x = 3

 2 if x > 0:

 3 answer = 'positive'

 4 else:

 5 answer = 'negative'

 6 print(answer) # positive

 7

 8 x = -3

 9 if x > 0:

10 answer = 'positive'

11 else:

12 answer = 'negative'

13 print(answer) # negative

Case or Switch in Python

There is no case or switch statement in Python.

Exercise: Rectangular
Write a script that will ask for the sides of a rectangular and
print out the area.
Provide error messages if either of the sides is negative.

1 python rect.py

2 Side: 3

3 Side: 4

4 The area is 12

Exercise: Calculator

Create a script that accepts 2 numbers and an operator (+, -, *,
/), and prints the result of the operation.

1 python calc.py

2 Operand: 19

3 Operand: 23

4 Operator: +

5 Results: 42

Exercise: Standard Input
In the previous exercises we expected the userinput to come in
on the “Standard Input” aka. STDIN.
If you would like to practice this more, come up with other
ideas, try to solve them and tell me about the task. (in person
or via e-mail.)
(e.g. you could start building an interactive role-playing game.)

Solution: Area of rectangular
 1 def main():

 2 #length = 10

 3 #width = 3

 4

 5 length = int(input('Length: '))

 6 width = int(input('Width: '))

 7

 8 if length <= 0:

 9 print("length is not positive")

10 return

11

12 if width <= 0:

13 print("width is not positive")

14 return

15

16 area = length * width

17 print("The area is ", area)

18

19 main()

Same in Python 2

 1 from __future__ import print_function

 2

 3 def main():

 4 #length = 10

 5 #width = 3

 6

 7 length = int(raw_input('Length: '))

 8 width = int(raw_input('Width: '))

 9

10 if length <= 0:

11 print("length is not positive")

12 return

13

14 if width <= 0:

15 print("width is not positive")

16 return

17

18 area = length * width

19 print("The area is ", area)

20

21 main()

Solution: Calculator
 1 def main():

 2 a = float(input("Number: "))

 3 b = float(input("Number: "))

 4 op = input("Operator (+-*/): ")

 5

 6 if op == '+':

 7 res = a+b

 8 elif op == '-':

 9 res = a-b

10 elif op == '*':

11 res = a*b

12 elif op == '/':

13 res = a/b

14 else:

15 print("Invalid operator: '{}'".format(op))

16 return

17

18 print(res)

19 return

20

21

22 main()

Same in Python 2

 1 from __future__ import print_function

 2

 3 a = float(raw_input("Number: "))

 4 b = float(raw_input("Number: "))

 5 op = raw_input("Operator (+-*/): ")

 6

 7 if op == '+':

 8 res = a+b

 9 elif op == '-':

10 res = a-b

11 elif op == '*':

12 res = a*b

13 elif op == '/':

14 res = a/b

15 else:

16 print("Invalid operator: '{}'".format(op))

17 exit()

18

19

20 print(res)

Command line arguments
1 import sys

2

3 def main():

4 print(sys.argv)

5 print(sys.argv[0])

6 print(sys.argv[1])

7 print(sys.argv[2])

8

9 main()

1 $ python examples/basic/cli.py one two

1 ['examples/basics/cli.py', 'one', 'two']

2 examples/basics/cli.py

3 one

4 two

1 $ python examples/basic/cli.py

1 ['examples/basics/cli.py']

2 examples/basics/cli.py

3 Traceback (most recent call last):

4 File "examples/basics/cli.py", line 6, in <module>

5 print(sys.argv[1])

6 IndexError: list index out of range

Command line arguments - len
1 import sys

2

3 def main():

4 print(sys.argv)

5 print(len(sys.argv))

6

7 main()

Command line arguments - exit
1 import sys

2

3 def main():

4 if len(sys.argv) != 2:

5 exit("Usage: " + sys.argv[0] + " VALUE")

6 print("Hello " + sys.argv[1])

7

8 main()

1 echo %errorlevel%

2 echo $?

Exercise: Rectangular (argv)

Change the above script that it will accept the arguments on
the command line like this: python rect.py 2 4

Exercise: Calculator (argv)
Create a script that accepts 2 numbers and an operator (+, -,
*, /), on the command line and prints the result of the
operation.
python calc.py 2 + 3

python calc.py 6 / 2

python calc.py 6 * 2

Solution: Area of rectangular (argv)
 1 import sys

 2

 3 def main():

 4 if len(sys.argv) != 3:

 5 exit("Needs 2 arguments: width length")

 6

 7 width = int(sys.argv[1])

 8 length = int(sys.argv[2])

 9

10 if length <= 0:

11 exit("length is not positive")

12

13 if width <= 0:

14 exit("width is not positive")

15

16 area = length * width

17 print("The area is ", area)

18

19 main()

Solution: Calculator eval
 1 def main():

 2 a = input("Number: ")

 3 b = input("Number: ")

 4 op = input("Operator (+-*/): ")

 5

 6 command = a + op + b

 7 print(command)

 8 res = eval(command)

 9 print(res)

10

11 main()

1 $ python examples/basics/calculator_eval.py

2

3 Number: 2

4 Number: 3

5 Operator (+-*/): +

6 2+3

7 5

Solution: Calculator (argv)
 1 import sys

 2

 3

 4 def main():

 5 if len(sys.argv) < 4:

 6 exit("Usage: " + sys.argv[0] + " OPERAND OPERATOR

OPERAND")

 7

 8 a = float(sys.argv[1])

 9 b = float(sys.argv[3])

10 op = sys.argv[2]

11

12 if op == '+':

13 res = a + b

14 elif op == '-':

15 res = a - b

16 elif op == '*':

17 res = a * b

18 elif op == '/':

19 res = a / b

20 else:

21 print("Invalid operator: '{}'".format(op))

22 exit()

23

24 print(res)

25

26 main()

The multiplication probably won’t work because the Unix/Linux
shell replaces the * by the list of files in your current directory and
thus the python script will see a list of files instead of the *.
This is not your fault as a programmer. It is a user error. The
correct way to run the script is python calc.py 2 '*' 3.

Compilation vs. Interpretation
Compiled

Languages: C, C++
Development cylce: Edit, Compile (link), Run.
Strong syntax checking during compilation and linking.
Result: Stand-alone executable code.
Need to compile to each platform separately. (Windows,
Linux, Mac, 32bit vs 64bit).

Interpreted

Shell, BASIC
Development cycle: Edit, Run.
Syntaxt check only during run-time.
Result: we distribute the source code.
Needs the right version of the interpreted on every target
machine.

Both?

Java (running on JVM - Java Virtual Machine)
C# (running on CLR - Common Language Runtime)

Is Python compiled or interpreted?
There are syntax errors that will prevent your Python code from
running

1 x = 2

2 print(x)

3

4 if x > 3

1 File "examples/other/syntax_error.py", line 4

2 if x > 3

3 ^

4 SyntaxError: invalid syntax

There are other syntax-like errors that will be only caught during
execution

1 x = 2

2 print(x)

3 print(y)

4 y = 13

5 print(42)

1 2

2 Traceback (most recent call last):

3 File "compile.py", line 5, in <module>

4 print y

5 NameError: name 'y' is not defined

Python code is first compiled to bytecode and then interpreted.
CPython is both the compiler and the interpreter.
Jython and IronPython are mostly just compiler to JVM and
CLR respectively.

Flake8 checking
1 conda install flake8

2 pip install flake8

3

4 flake8 --ignore= compile.py

1 compile.py:3:7: F821 undefined name 'y'

2 compile.py:6:1: W391 blank line at end of file

Numbers

Numbers
 1 a = 42 # decimal

 2 h = 0xA # 10 - hex - staring with 0x

 3 o = 0o11 # 9 - octal - starting with 0o

 4 # 011 works in Python 2.x but Python 3.x

 5 # requires the o that works in

 6 # (recent versions of) Python 2.x

 7 b = 0b11 # 3 - binary numbers - starting with 0b

 8

 9 r = 2.3

10

11 print(a) # 42

12 print(h) # 10

13 print(o) # 9

14 print(b) # 3

15 print(r) # 2.3

In Python numbers are stored as decimals, but in the source
code you can also use hexadecimal, octal, or binary notations.
This is especially useful if the domain you are programming in
is using those kinds of numbers.
For example hardware engineers often talk in hexadecimal
values.
In that case you won’t need to contantly translate between the
form used in the current domain and decimal numbers.

Operators for Numbers

 1 a = 2

 2 b = 3

 3 c = 2.3

 4

 5 d = a + b

 6 print(d) # 5

 7 print(a + b) # 5

 8 print(a + c) # 4.3

 9 print(b / a) # 1.5 # see the __future__

10 print(b // a) # 1 # floor division

11 print(a * c) # 4.6

12

13 print(a ** b) # 8 (power)

14

15 print(17 % 3) # 2 (modulus)

16

17 a += 7 # is the same as a = a + 7

18 print(a) # 9

19

20 # a++ # SyntaxError: invalid syntax

21 # a-- # SyntaxError: invalid syntax

22

23 a += 1

24 print(a) # 10

25 a -= 1

26 print(a) # 9

There is no autoincrement (++) and autodecrement (–) in Python,
because they can be expressed by += 1 and -= 1 respectively.

Integer division and the future
1 from __future__ import print_function

2

3 print(3/2)

1 $ python divide.py

2 1

3

4 $ python3 divide.py

5 1.5

1 from __future__ import print_function

2 from __future__ import division

3

4 print(3/2) # 1.5

If you need to use Python 2, remember that by default division
is integer based so 3/2 would return 1.
Importing the ‘division’ directive from future changes this to
the behavior that we usually expect 3/2 being 1.5.
This is also the behavior we have in Python 3.
In case you already use Python 3 and would like to get the
“old” behavior, that is to get the integer part of the division,
you can
always call the “int” function: int(b/a).

Pseudo Random Number
1 import random

2

3 a = random.random()

4 print(a) # 0.5648261676148922 a value between 0.0 <= <

1.0

5 print(random.random())

6 print(random.random())

random
Pseudo random generator

Fixed random numbers

http://docs.python.org/library/random.html
https://en.wikipedia.org/wiki/Pseudorandom_number_generator

1 import random

2

3 random.seed(37)

4

5 print(random.random()) # 0.6820045605879779

6 print(random.random()) # 0.09160260807956389

7 print(random.random()) # 0.6178163488614024

Rolling dice - randrange
1 import random

2

3 print(1 + int(6 * random.random()))

4

5 print(random.randrange(1, 7))

6

7 # One of the following: 1, 2, 3, 4, 5, 6

Random choice
1 import random

2

3 letter = "abcdefghijklmno"

4 print(random.choice(letters)) # pick one of the

letters

5

6 fruits = ["Apple", "Banana", "Peach", "Orange", "Durian",

"Papaya"]

7 print(random.choice(fruits))

8 # pick one of the fruits

built-in method

A commont mistake. Not calling the method.

1 import random

2

3 rnd = random.random

4 print(rnd) # <built-in method random of Random object

at 0x124b508>

5

6

7 y = rnd()

8 print(y) # 0.7740737563564781

When you see a string like the above “built-in method …” you
can be almost certainly sure that you have forgotten the
parentheses
at the end of a method call.

Exception: TypeError: ‘module’ object is not
callable

A commont mistake. Calling the class and not the method.

1 import random

2

3 print("hello")

4 x = random()

5 print(x)

1 Traceback (most recent call last):

2 File "examples/numbers/rnd.py", line 3, in <module>

3 x = random()

4 TypeError: 'module' object is not callable

Fixing the previous code
1 import random

2

3 x = random.random()

4 print(x)

1 from random import random

2

3 x = random()

4 print(x)

Exception: AttributeError: module ‘random’
has no attribute

A commont mistake. Using the wrong filename.

This works fine:

1 print("Hello World")

This gives an error

1 import random

2 print(random.random())

1 Traceback (most recent call last):

2 File "rnd.py", line 2, in <module>

3 print(random.random())

4 AttributeError: module 'random' has no attribute 'random'

Make sure the names of your files are not the same as the
names of any of the python packages.

Exercise: Number guessing game - level 0
Level 0

Using the random module the computer “thinks” about a whole
number between 1 and 20.
The user has to guess the number. After the user types in the
guess the computer tells if this was bigger or smaller than the
number it generated, or if was the same.
The game ends after just one guess.

Level 1-

Other levels in the next chapter.

Exercise: Fruit salad

Write a script that will pick 3 fruits from a list of fruits like the
one we had in one of the earlier slides. Print the 3 names.
Could you make sure the 3 fruits are different?

1 fruits = ["Apple", "Banana", "Peach", "Orange", "Durian",

"Papaya"]

Solution: Number guessing game - level 0
 1 import random

 2

 3 hidden = random.randrange(1, 21)

 4 print("The hidden values is", hidden)

 5

 6 user_input = input("Please enter your guess: ")

 7 print(user_input)

 8

 9 guess = int(user_input)

10 if guess == hidden:

11 print("Hit!")

12 elif guess < hidden:

13 print("Your guess is too low")

14 else:

15 print("Your guess is too high")

Solution: Fruit salad
1 import random

2

3 fruits = ["Apple", "Banana", "Peach", "Orange", "Durian",

"Papaya"]

4 salad = random.sample(fruits, 3)

5 print(salad)

Boolean

if statement again
 1 x = 2

 2

 3 if x == 2:

 4 print("it is 2")

 5 else:

 6 print("it is NOT 2")

 7

 8

 9 if x == 3:

10 print("it is 3")

11 else:

12 print("it is NOT 3")

13

14 # it is 2

15 # it is NOT 3

True and False

True and False are real boolean values.

 1 x = 2

 2

 3 v = x == 2

 4 print(v)

 5 if v:

 6 print(v, "is true - who would thought? ")

 7

 8 v = x == 3

 9 print(v)

10 if v:

11 print(v, "is true - who would thought? ")

12 else:

13 print(v, "is false - who would thought? ")

14

15 # True

16 # True is true - who would thought?

17 # False

18 # False is false - who would thought?

Boolean
 1 x = 23

 2

 3 if x:

 4 print("23 is true")

 5

 6 y = 0

 7 if y:

 8 print("0 is true")

 9 else:

10 print("0 is false")

11

12 # 23 is true

13 # 0 is false

True and False values in Python

None
0
”” (empty string)
False
[]
{}
()

Everything else is true.

 1 values = [None, 0, "", False, [], (), {}, "0", True]

 2

 3 for v in values:

 4 if v:

 5 print("True value: ", v)

 6 else:

 7 print("False value: ", v)

 8

 9 # False value: None

10 # False value: 0

11 # False value:

12 # False value: False

13 # False value: []

14 # False value: ()

15 # False value: {}

16 # True value: 0

17 # True value: True

None is like undef or Null or Nill in other languages.

Comparision operators
1 == equal

2 != not equal

3

4 < less than

5 <= less than or equal

6 > greater than

7 >= greater than or equal

1 a = "42"

2 b = 42

3

4 print(a == b) # False

5 print(a != b) # True

6 print(b == 42.0) # True

7

8 print(None == None) # True

9 print(None == False) # False

Do NOT Compare different types

 1 x = 12

 2 y = 3

 3 print(x > y) # True

 4

 5 x = "12"

 6 y = "3"

 7 print(x > y) # False

 8

 9 x = "12"

10 y = 3

11 print(x > y) # True

12

13 x = 12

14 y = "3"

15 print(x > y) # False

In Python 2 please be careful and only compare the same types.
Otherwise the result will look strange.

1 True

2 False

3 True

4 False

In Python 3, comparing different types raises exception:

1 True

2 False

3 Traceback (most recent call last):

4 File "examples/other/compare.py", line 6, in <module>

5 print(x > y) # True

6 TypeError: '>' not supported between instances of 'str'

and 'int'

Boolean operators

and
or

not

 1 if COND:

 2 do something

 3 else:

 4 do something other

 5

 6 if not COND:

 7 do something other

 8

 9 if COND1 and COND2:

10 do something

11

12 if COND1 or COND2:

13 do something

14

15 if COND1 and not COND2:

16 do something

Boolean truth tables
1 COND1 and COND2 Result

2 True True True

3 True False False

4 False True False

5 False False False

1 COND1 or COND2 Result

2 True True True

3 True False True

4 False True True

5 False False False

1 not COND Result

2 True False

3 False True

Short circuit

 1 def check_money():

 2 return money > 1000000

 3

 4 def check_salary():

 5 salary += 1

 6 return salary >= 1000

 7

 8 while True:

 9 if check_money() or check_salary():

10 print("I can live well")

Short circuit fixed
 1 def check_money():

 2 return money > 1000000

 3

 4 def check_salary():

 5 salary += 1

 6 return salary >= 1000

 7

 8 while True:

 9 has_good_money = check_money()

10 has_good_salary = check_salary()

11

12 if has_good_money or has_good_salary:

13 print("I can live well")

Incorrect use of conditions

In your normal speach you could probably say something like
“If status_code is 401 or 302, do something.”.
Meaning status_cone can be either 401 or 302.

If you tried to translate this into code directly you would write
something like this:

1 if status_code == 401 or 302:

2 pass

However this is incorrect. This condition will be always true as
this is actually same as if you wrote:
if (status_code == 401) or (302) so it will compare
status_code to 401, and it will separately check if
302 is True, but any number different from 0 is considered to
be True so the above expression will always be True.

What you probably meant is this:

1 if status_code == 401 or status_code == 302:

2 pass

Alternative way:

An alternative way to achieve the same results would be
though probbaly at this point we have not learned the “in”
operator, nor lists (comma separated values in square brackets):

1 if status_code in [401, 302]

2 pass

Exercise: compare numbers

Ask the user to enter two numbers and tell us which one is
bigger.

Exercise: compare strings

Ask the user to enter two strings
Then ask the user to select if she wants to compare them based
on ASCII or based on their length
Then tell us which one is bigger.

1 Input a string: (user types string and ENTER)

2 Input another string: (user types string and ENTER)

3 How to compare:

4 1) ASCII

5 2) Length

6 (user types 1 or 2 and ENTER)

Solution: compare numbers
 1 a_in = input("Please type in a string: ")

 2 b_in = input("Please type in another string: ")

 3 print("How to compare:")

 4 print("1) ASCII")

 5 print("2) Length")

 6 how = input()

 7

 8 if how == '1':

 9 first = a_in > b_in

10 second = a_in < b_in

11 elif how == '2':

12 first = len(a_in) > len(b_in)

13 second = len(a_in) < len(b_in)

14

15 if first:

16 print("First number is bigger")

17 elif second:

18 print("First number is smaller")

19 else:

20 print("They are equal")

Solution: compare strings

 1 a_in = input("Please type in a string: ")

 2 b_in = input("Please type in another string: ")

 3 print("How to compare:")

 4 print("1) ASCII")

 5 print("2) Length")

 6 how = input()

 7

 8 if how == '1':

 9 first = a_in > b_in

10 second = a_in < b_in

11 elif how == '2':

12 first = len(a_in) > len(b_in)

13 second = len(a_in) < len(b_in)

14

15 if first:

16 print("First number is bigger")

17 elif second:

18 print("First number is smaller")

19 else:

20 print("They are equal")

Strings

Single quoted and double quoted strings

In Python, just as in most of the programming languages you
must put any free text inside a pair of quote characters.
Otherwise Python will try to find meaning in the text.1

These pieces of texts are called “strings”.

In Python you can put string between two single quotes: ‘’ or
between two double quotes: “”. Which one does not matter.

1 soup = "Spiced carrot & lentil soup"

2 salad = 'Ceasar salad'

3

4 print(soup)

5 print(salad)

1 Spiced carrot & lentil soup

2 Ceasar salad

Long lines
 1 text = "abc" "def"

 2 print(text)

 3

 4 other = "abcdef"

 5 print(other)

 6

 7

 8 long_string = "one" "two" "three"

 9 print(long_string)

10

11 short_rows = "one" \

12 "two" \

13 "three"

14 print(short_rows)

15

16 long_string = "first row second row third row"

17 print(long_string)

18

19 shorter = "first row \

20 second row \

21 third row"

22 print(shorter)

1 abcdef

2 abcdef

3 onetwothree

4 onetwothree

5 first row second row third row

6 first row second row third row

Triple quoted strings (multiline)

If you would like to create a string the spreads on multiple
lines,
there is a possibility to put the text between 3 quotes on both
sides. Either 23 single-quotes
or 23 double-quotes.

1 text = """first row

2 second row

3 third row"""

4

5 print(text)

Can spread multiple lines.

1 first row

2 second row

3 third row

String length (len)

The len function returns the length of the string in number of
characters.

1 line = "Hello World"

2 hw = len(line)

3 print(hw) # 11

4

5 text = """Hello

6 World"""

7 print(len(text)) # 12

String repetition and concatenation

You might be used to the fact the you can only multiple
numbers, but in python you can also “multiply” a string by a
number.
It is called repetition. In this example we have a string “Jar “
that we repeat twice.repetition

We can also add two strings to concatenate them
together.repetition

I don’t think the repetition operator is used very often, but in
one case it could come very handy.

When you are writing some text report and you’d like to add a
long line of dashes that would be exactly the same length
as your title.

 1 name = 2 * 'Jar '

 2 print(name) # Jar Jar

 3

 4 full_name = name + 'Binks'

 5 print(full_name) # Jar Jar Binks

 6

 7

 8 title = "We have some title"

 9 print(title)

10 print('-' * len(title))

11

12 # We have some title

13 # ------------------

A character in a string
1 text = "Hello World"

2

3 a = text[0]

4 print(a) # H

5

6 b = text[6]

7 print(b) # W

String slice (instead of substr)
 1 text = "Hello World"

 2

 3 b = text[1:4]

 4 print(b) # ell

 5

 6 print(text[2:]) # llo World

 7 print(text[:2]) # He

 8

 9 start = 1

10 end = 4

11 print(text[start:end]) # ell

Change a string

In Python strings are “immutable”, meaning you cannot change
them. You can replace a whole string in a variable,
but you cannot change it.

In the following example we wanted to replace the 3rd
character (index 2), and put “Y” in place. This raised an
exception

1 text = "abcd"

2 print(text) # abcd

3

4 text[2] = 'Y'

5

6 print("done")

7 print(text)

1 abcd

2 Traceback (most recent call last):

3 File "string_change.py", line 4, in <module>

4 text[2] = 'Y'

5 TypeError: 'str' object does not support item assignment

Replace part of a string

Strings in Python are immutable - they never change.

How to change a string
1 text = "abcd"

2 print(text) # abcd

3

4 text = text[:2] + 'Y' + text[3:]

5 print(text) # abYd

String copy
 1 text = "abcd"

 2 print(text) # abcd

 3

 4 text = text + "ef"

 5 print(text) # abcdef

 6

 7 other = text

 8 print(other) # abcdef

 9 text = "xyz"

10 print(text) # xyz

11 print(other) # abcdef

When assigning a variable pointing a string, the new variable is
pointing to the same string..
If we then assign some other string to either of the variables,
then they will point to two different strings.

String functions and methods (len, upper,
lower)
1 a = "xYz"

2 print(len(a)) # 3

3

4 b = a.upper()

5 print(b) # XYZ

6 print(a) # xYz - immutable!

7 print(a.lower()) # xyz

Type dir(“”) in the REPL to get the list of string methods.
List of built-in functions.
List of string methods.

index in string
1 text = "The black cat climbed the green tree."

2 print(text.index("bl")) # 4

3 print(text.index("The")) # 0

4 print(text.index("dog"))

1 4

2 0

3 Traceback (most recent call last):

4 File "examples/strings/index.py", line 6, in <module>

5 print a.index("dog") # -1

6 ValueError: substring not found

index in string with range
1 text = "The black cat climbed the green tree."

2 print(text.index("c")) # 7

3 print(text.index("c", 8)) # 10

4

5 print(text.index("gr", 8)) # 26

6 print(text.index("gr", 8, 16))

1 7

2 10

3 26

4 Traceback (most recent call last):

5 File "examples/strings/index2.py", line 8, in <module>

6 print a.index("gr", 8, 16)

7 ValueError: substring not found

http://docs.python.org/library/functions.html
http://docs.python.org/library/string.html

rindex in string with range
1 text = "The black cat climbed the green tree."

2 print(text.rindex("c")) # 14

3 print(text.rindex("c", 8)) # 14

4 print(text.rindex("c", 8, 13)) # 10

5

6 print(text.rindex("gr", 8)) # 26

7 print(text.rindex("gr", 8, 16))

1 14

2 14

3 10

4 26

5 Traceback (most recent call last):

6 File "examples/strings/rindex.py", line 10, in <module>

7 print(a.rindex("gr", 8, 16))

8 ValueError: substring not found

find in string
Alternatively use find and rfind that will return -1 instead of raising
an exception.

 1 text = "The black cat climbed the green tree."

 2 print(text.find("bl")) # 4

 3 print(text.find("The")) # 0

 4 print(text.find("dog")) # -1

 5

 6 print(text.find("c")) # 7

 7 print(text.find("c", 8)) # 10

 8

 9 print(text.find("gr", 8)) # 26

10 print(text.find("gr", 8, 16)) # -1

11

12

13 print(text.rfind("c", 8)) # 14

Find all in the string

Later, when we learned loops.

in string
Check if a substring is in the string?

1 txt = "hello world"

2 if "wo" in txt:

3 print('found wo')

4

5 if "x" in txt:

6 print("found x")

7 else:

8 print("NOT found x")

1 found wo

2 NOT found x

index if in string
 1 sub = "cat"

 2 txt = "The black cat climbed the green tree"

 3

 4 if sub in txt:

 5 loc = txt.index(sub)

 6 print(sub + " is at " + str(loc))

 7

 8 sub = "dog"

 9 if sub in txt:

10 loc = txt.index(sub)

11 print(sub + " is at " + str(loc))

12

13 # cat is at 10

Encodings: ASCII, Windows-1255, Unicode

ASCII
Hebrew Character

https://en.wikipedia.org/wiki/ASCII
https://en.wikipedia.org/wiki/Hebrew_character

Windows-1255
Unicode (UTF-8)

raw strings
 1 # file_a = "c:\Users\Foobar\readme.txt"

 2 # print(file_a)

 3

 4 # Python2: eadme.txtFoobar

 5 # Python3:

 6 # File "examples/strings/raw.py", line 6

 7 # file_a = "c:\Users\Foobar\readme.txt"

 8 # ^

 9 # SyntaxError: (unicode error) 'unicodeescape' codec

10 # can't decode bytes in position 2-3: truncated

\UXXXXXXXX escape

11

12

13 file_b = "c:\\Users\\Foobar\\readme.txt"

14 print(file_b) # c:\Users\Foobar\readme.txt

15

16 file_c = r"c:\Users\Foobar\readme.txt"

17 print(file_c) # c:\Users\Foobar\readme.txt

18

19 text = r"text \n \d \s \ and more"

20 print(text) # text \n \d \s \ and more

Escape sequences are kept intact and not escaped. Used in regexes.

ord
ord

1 print(ord('a')) # 97

2 print(ord('=')) # 61

3 print(ord('\r')) # 13

4 print(ord('\n')) # 10

5 print(ord(' ')) # 32

6

https://en.wikipedia.org/wiki/Windows-1255
https://en.wikipedia.org/wiki/Unicode
https://docs.python.org/3/library/functions.html#ord

7 print(ord('á')) # 225

8 print(ord('ó')) # 243

9 print(ord('1488 # (('א

ord in a file
1 import sys

2

3 filename = sys.argv[1]

4

5 with open(filename) as fh:

6 content = fh.read()

7

8 for c in content:

9 print(ord(c))

chr - number to character

chr

1 for i in range(32, 126):

2 print(i, chr(i))

 1 32

 2 33 !

 3 34 "

 4 35 #

 5 36 $

 6 37 %

 7 38 &

 8 39 '

 9 40 (

10 41)

11 42 *

12 43 +

13 44 ,

14 45 -

15 46 .

16 47 /

17 48 0

https://docs.python.org/3/library/functions.html#chr

18 49 1

19 50 2

20 51 3

21 52 4

22 53 5

23 54 6

24 55 7

25 56 8

26 57 9

27 58 :

28 59 ;

29 60 <

30 61 =

31 62 >

32 63 ?

33 64 @

34 65 A

35 66 B

36 67 C

37 68 D

38 69 E

39 70 F

40 71 G

41 72 H

42 73 I

43 74 J

44 75 K

45 76 L

46 77 M

47 78 N

48 79 O

49 80 P

50 81 Q

51 82 R

52 83 S

53 84 T

54 85 U

55 86 V

56 87 W

57 88 X

58 89 Y

59 90 Z

60 91 [

61 92 \

62 93]

63 94 ^

64 95 _

65 96 `

66 97 a

67 98 b

68 99 c

69 100 d

70 101 e

71 102 f

72 103 g

73 104 h

74 105 i

75 106 j

76 107 k

77 108 l

78 109 m

79 110 n

80 111 o

81 112 p

82 113 q

83 114 r

84 115 s

85 116 t

86 117 u

87 118 v

88 119 w

89 120 x

90 121 y

91 122 z

92 123 {

93 124 |

94 125 }

Exercise: one string in another string
Write script that accepts two strings and tells if one of them can be
found in the other and where?

Exercise: to ASCII CLI

Write script that gets a character on the command line and prints
out the ascii code of it.

Maybe even:

Write script that gets a string on the command line and prints out
the ascii code of each character.

Exercise: from ASCII CLI
Write script that accepts a number on the command line and prints
the character represented by that number.

Solution: one string in another string
 1 import sys

 2

 3 if len(sys.argv) != 3:

 4 exit(f"Usage: {sys.argv[0]} short-STRING long-

STRING")

 5

 6 string = sys.argv[1]

 7 text = sys.argv[2]

 8

 9 if string in text:

10 loc = text.index(string)

11 print(string, "can be found in ", text, "at", loc)

12 else:

13 print(string, "can NOT be found in ", text)

Solution: compare strings
 1 mode = input("Mode of comparision: [length|ascii|")

 2 if mode != "length" and mode != "ascii":

 3 print("Not good")

 4 exit()

 5

 6 str1 = input("String 1:")

 7 str1 = input("String 2:")

 8

 9 if mode == "length":

10 print(len(str1) > len(str2))

11 elif mode == "ascii":

12 print(str1 > str2)

Solution: to ASCII CLI
1 import sys

2

3 if len(sys.argv) != 2:

4 exit(f"Usage: {sys.argv[0]} CHARACTER")

5

6 print(ord(sys.argv[1]))

1 import sys

2

3 if len(sys.argv) != 2:

4 exit(f"Usage: {sys.argv[0]} STRING")

5

6 for cr in sys.argv[1]:

7 print(ord(cr))

Solution: from ASCII CLI
1 import sys

2

3 if len(sys.argv) != 2:

4 exit(f"Usage: {sys.argv[0]} NUMBER")

5

6 print(chr(int(sys.argv[1])))

Loops

Loops: for-in and while

for in - to iterate over a well defined list of values. (characters,
range of numbers, shopping list, etc.)
while - repeate an action till some condition is met. (or stopped
being met)

for-in loop on strings
1 txt = 'hello world'

2 for c in txt:

3 print(c)

 1 h

 2 e

 3 l

 4 l

 5 o

 6

 7 w

 8 o

 9 r

10 l

11 d

for-in loop on list
1 for fruit in ["Apple", "Banana", "Peach", "Orange",

"Durian", "Papaya"]:

2 print(fruit)

1 Apple

2 Banana

3 Peach

4 Orange

5 Durian

6 Papaya

for-in loop on range
1 for i in range(3, 7):

2 print(i)

1 3

2 4

3 5

4 6

Iterable, iterator

iterable

for in loop with early end using break
1 txt = 'hello world'

2 for c in txt:

3 if c == ' ':

4 break

5 print(c)

1 h

2 e

3 l

4 l

5 o

for in loop skipping parts using continue

https://docs.python.org/3/glossary.html#term-iterable

1 txt = 'hello world'

2 for c in txt:

3 if c == ' ':

4 continue

5 print(c)

 1 h

 2 e

 3 l

 4 l

 5 o

 6 w

 7 o

 8 r

 9 l

10 d

for in loop with break and continue
1 txt = 'hello world'

2 for cr in txt:

3 if cr == ' ':

4 continue

5 if cr == 'r':

6 break

7 print(cr)

8 print('DONE')

1 h

2 e

3 l

4 l

5 o

6 w

7 o

8 DONE

while loop

1 import random

2

3 total = 0

4 while total <= 100:

5 print(total)

6 total += random.randrange(20)

7

8 print("done")

 1 0

 2 10

 3 22

 4 29

 5 45

 6 54

 7 66

 8 71

 9 77

10 82

11 93

12 done

Infinite while loop
1 import random

2

3 total = 0

4 while total >= 0:

5 print(total)

6 total += random.randrange(20)

7

8 print("done")

1 ...

2 1304774

3 1304779

4 1304797

5 ^C1304803

6 Traceback (most recent call last):

7 File "while_infinite.py", line 5, in <module>

8 print(total)

9 KeyboardInterrupt

Don’t do this!
Make sure there is a proper end-condition. (exit-condition)
Use Ctrl-C to stop it

While with complex expression
1 import random

2

3 total = 0

4 while (total < 10000000) and (total % 17 != 1) and (total

** 2 % 23 != 7):

5 print(total)

6 total += random.randrange(20)

7

8 print("done")

While with break
 1 import random

 2

 3 total = 0

 4 while total < 10000000:

 5 print(total)

 6 total += random.randrange(20)

 7

 8 if total % 17 == 1:

 9 break

10

11 if total ** 2 % 23 == 7:

12 break

13

14 print("done")

While True

 1 import random

 2

 3 total = 0

 4 while True:

 5 print(total)

 6 total += random.randrange(20)

 7

 8 if total >= 10000000:

 9 break

10

11 if total % 17 == 1:

12 break

13

14 if total ** 2 % 23 == 7:

15 break

16

17 print("done")

Duplicate input call
1 id_str = input("Type in your ID: ")

2

3 while len(id_str) != 9:

4 id_str = input("Type in your ID")

5

6 print("Your ID is " + id_str)

Eliminate duplicate input call
1 while True:

2 id_str = input("Type in your ID: ")

3 if len(id_str) == 9:

4 break

5

6 print("Your ID is " + id_str)

do while loop

There is no do ... while in Python but we can write code like this
to have similar effect.

1 while True:

2 answer = input("What is the meaning of life? ")

3 if answer == '42':

4 print("Yeeah, that's it!")

5 break

6

7 print("done")

while with many continue calls
 1 while True:

 2 line = get_next_line()

 3

 4 if last_line:

 5 break

 6

 7 if line_is_empty:

 8 continue

 9

10 if line_has_an_hash_at_the_beginning: # #

11 continue

12

13 if line_has_two_slashes_at_the_beginning: # //

14 continue

15

16 do_the_real_stuff

Break out from multi-level loops
Not supported in Python. “If you feel the urge to do that, your code
is probably too complex. create functions!”

Exit vs return vs break and continue

exit will stop your program no matter where you call it.

return will return from a function (it will stop the specific
function only)
break will stop the current “while” or “for” loop
continue will stop the current iteration of the current “while”
or “for” loop

Exercise: Print all the locations in a string
Given a string like “The black cat climbed the green tree.”, print
out the location of every “c” charcater.

Exercise: Number guessing game
Level 0

Using the random module the computer “thinks” about a whole
number between 1 and 20.
The user has to guess the number. After the user types in the
guess the computer tells if this was bigger or smaller than the
number it generated, or if was the same.
The game ends after just one guess.

Level 1

The user can guess several times. The game ends when the
user guessed the right number.

Level 2

If the user hits ‘x’, we leave the game without guessing the
number.

Level 3

If the user presses ‘s’, show the hidden value (cheat)

Level 4

Soon we’ll have a level in which the hidden value changes
after each guess. In oredr to make that mode easier to track and
debug, first we would like to have a “debug mode”.
If the user presses ‘d’ the game gets into “debug mode”: the
system starts to show the current number to guess every time,
just before asking the user for new input.
Pressing ‘d’ again turns off debug mode. (It is a toggle each
press on “d” changes the value to to the other possible value.)

Level 5

The ‘m’ button is another toggle. It is called ‘move mode’.
When it is ‘on’, the hidden number changes a little bit after
every step (+/-2). Pressing ‘m’ again will turn this feature off.

Level 6

Let the user play several games.
Pressing ‘n’ will skip this game and start a new one. Generates
a new number to guess.

Exercise: MasterMind
Implement the MasterMind game.

The computer “thinks” a number with 4 different digits.
You guess which digits. For every digit that matched both
in value, and in location the computer gives you a *. For every
digit that matches in value, but not in space the computer gives

you a +. Try to guess the given number in as few guesses as
possible.

1 Computer: 2153

2 You: 2467 *

3 You: 2715 *++

Exercise: Count unique characters
Given a string on the command line, count how many differnt
characters it has.

1 python count_unique.py abcdaaa

2 4

Solution: Print all the locations in a string
1 text = "The black cat climbed the green tree."

2 start = 0

3 while True:

4 loc = text.find("c", start)

5 if loc == -1:

6 break

7 print(loc)

8 start = loc + 1

Solution 1 for Number Guessing
 1 import random

 2

 3 hidden = random.randrange(1, 201)

 4 while True:

 5 user_input = input("Please enter your guess[x]: ")

 6 print(user_input)

 7

 8 if user_input == 'x':

 9 print("Sad to see you leaving early")

10 exit()

11

12 guess = int(user_input)

13 if guess == hidden:

14 print("Hit!")

15 break

16

17 if guess < hidden:

18 print("Your guess is too low")

19 else:

20 print("Your guess is too high")

Solution for Number Guessing (debug)
 1 import random

 2

 3 hidden = random.randrange(1, 201)

 4 debug = False

 5 while True:

 6 if debug:

 7 print("Debug: ", hidden)

 8

 9 user_input = input("Please enter your guess [x|s|d]:

")

10 print(user_input)

11

12 if user_input == 'x':

13 print("Sad to see you leaving early")

14 exit()

15

16 if user_input == 's':

17 print("The hidden value is ", hidden)

18 continue

19

20 if user_input == 'd':

21 debug = not debug

22 continue

23

24 guess = int(user_input)

25 if guess == hidden:

26 print("Hit!")

27 break

28

29 if guess < hidden:

30 print("Your guess is too low")

31 else:

32 print("Your guess is too high")

Solution for Number Guessing (move)
 1 import random

 2

 3 hidden = random.randrange(1, 201)

 4 debug = False

 5 move = False

 6 while True:

 7 if debug:

 8 print("Debug: ", hidden)

 9

10 if move:

11 mv = random.randrange(-2, 3)

12 hidden = hidden + mv

13

14 user_input = input("Please enter your guess

[x|s|d|m]: ")

15 print(user_input)

16

17 if user_input == 'x':

18 print("Sad to see you leaving early")

19 exit()

20

21 if user_input == 's':

22 print("The hidden value is ", hidden)

23 continue

24

25 if user_input == 'd':

26 debug = not debug

27 continue

28

29 if user_input == 'm':

30 move = not move

31 continue

32

33 guess = int(user_input)

34 if guess == hidden:

35 print("Hit!")

36 break

37

38 if guess < hidden:

39 print("Your guess is too low")

40 else:

41 print("Your guess is too high")

Solution for Number Guessing (multi-game)
 1 import random

 2

 3 debug = False

 4 move = False

 5 while True:

 6 print("\nWelcome to another Number Guessing game")

 7 hidden = random.randrange(1, 201)

 8 while True:

 9 if debug:

10 print("Debug: ", hidden)

11

12 if move:

13 mv = random.randrange(-2, 3)

14 hidden = hidden + mv

15

16 user_input = input("Please enter your guess

[x|s|d|m|n]: ")

17 print(user_input)

18

19 if user_input == 'x':

20 print("Sad to see you leaving early")

21 exit()

22

23 if user_input == 's':

24 print("The hidden value is ", hidden)

25 continue

26

27 if user_input == 'd':

28 debug = not debug

29 continue

30

31 if user_input == 'm':

32 move = not move

33 continue

34

35 if user_input == 'n':

36 print("Giving up, eh?")

37 break

38

39 guess = int(user_input)

40 if guess == hidden:

41 print("Hit!")

42 break

43

44 if guess < hidden:

45 print("Your guess is too low")

46 else:

47 print("Your guess is too high")

Solution: MasterMind
 1 import random

 2

 3 width = 4

 4 USED = '_'

 5

 6 hidden = random.sample(range(10), width)

 7 # print(hidden)

 8

 9 while True:

10 # print(hidden)

11

12 inp = input("your guess ({} digits):".format(width))

13 if inp == 'x':

14 print("Bye")

15 exit()

16 if len(inp) != width:

17 print("We need exactly {}

characters".format(width))

18 continue

19

20 guess = list(map(int, inp))

21 # print(guess)

22

23 if hidden == guess:

24 print("Match!")

25 break

26

27 my_hidden = hidden[:]

28 my_guess = guess[:]

29

30 result = ''

31 for i in range(width):

32 if my_hidden[i] == my_guess[i]:

33 result += '*'

34 my_hidden[i] = USED

35 my_guess[i] = USED

36 for i in range(width):

37 if my_guess[i] == USED:

38 continue

39 if my_guess[i] in my_hidden:

40 loc = my_hidden.index(my_guess[i])

41 my_hidden[loc] = USED

42 guess[i] = USED

43 result += '+'

44

45 print(''.join(result))

Solution: Count unique characters
 1 import sys

 2

 3 s = sys.argv[1]

 4

 5 unique = ''

 6 for c in s:

 7 if c not in unique:

 8 unique += c

 9

10 print(len(unique))

1 import sys

2

3 s = sys.argv[1]

4

5 print(len(set(s)))

MasterMind to debug

Debug the following version of the MasterMind game.

 1 import random

 2

 3

 4 def number_generator():

 5 y = [0, 0, 0, 0]

 6

 7 for i in range(0, 4):

 8 y[i] = random.randrange(0, 10)

 9 # print(y)

10 if i:

11 number += str(y[i])

12 else:

13 number = str(y[i])

14 # print(number)

15 return number

16

17

18 def user_input():

19 x = input("Type in 4 digits number:")

20 if len(x) == 4:

21 return x

22 else:

23 print("wrong input")

24 user_input()

25

26

27 def string_compare(x, y):

28 r = 0

29 q = 0

30 for i in range(0, 4):

31 if x[i] == y[i]:

32 r += 1

33 continue

34 for j in range(0, 4):

35 if x[i] == y[j]:

36 if i == j:

37 continue

38 else:

39 q += 1

40 break

41 return r, q

42

43

44 def print_result(r):

45 print("")

46 for i in range(0, r[0]):

47 print("*", end="")

48 for i in range(0, r[1]):

49 print("+", end="")

50 print("\n")

51

52

53 def main():

54 comp = number_generator()

55 result = 0

56 while True:

57 user = user_input()

58 result = string_compare(comp, user)

59 print_result(result)

60 # print(result)

61 if result[0] == 4:

62 print("Correct!")

63 return

64

65

66 main()

PyCharm

PyCharm Intro

IDE
Introspection
Running, Debugging

PyCharm Project

At the opening create a new project (directory + Python
version)
File/New Project

PyCharm Files

New file on Mac: Click on the project on the left hand side /
Right-Click / New / File; Windows, Linux: Alt-Insert
PyCharm Python console - see next slide
Change Python on Mac: PyCharm / Preferences / Project:
(name) / Project Interpreter
Later File/New also starts to work.

PyCharm - run code
Run/Run
Set command line parameters
Set environment variables

Run/Debug (but set breakpoints before)

PyCharm Python console at the bottom left
1 2 + 3

2 x = 2

3 print(x)

4 def f(x, y):

5 return x+y

6

7 f(4, 5)

Refactoring example (with and without
pycharm)

Change variable name (in scope only)
Extract method

Formatted printing

format - sprintf
 1 age = 42.12

 2 name = 'Foo Bar'

 3

 4 str_concatenate = "The user " + name + " was born " +

str(age) + " years ago."

 5 print(str_concatenate)

 6

 7 str_percentage = "The user %s was born %s years ago." %

(name, age)

 8 print(str_percentage)

 9

10 str_format = "The user {} was born {} years

ago.".format(name, age)

11 print(str_format)

12

13 str_f_string = f"The user {name} was born {age} years

ago."

14 print(str_f_string)

1 The user Foo Bar was born 42.12 years ago.

2 The user Foo Bar was born 42.12 years ago.

3 The user Foo Bar was born 42.12 years ago.

4 The user Foo Bar was born 42.12 years ago.

When using % to print more than one values, put the values in
parentheses forming a tuple.
In version 2.6 and below you need to write etc, as a
placeholder of the format method.
f-string are from Python 3.6

Examples using format - indexing
1 txt = "Foo Bar"

2 num = 42.12

3

4 print("The user {} was born {} years ago.".format(txt,

num))

5 print("The user {0} was born {1} years ago.".format(txt,

num))

6 print("The user {1} was born {0} years ago.".format(num,

txt))

7

8

9 print("{0} is {0} and {1} years old.".format(txt, num))

1 The user Foo Bar was born 42.12 years ago.

2 The user Foo Bar was born 42.12 years ago.

3 The user Foo Bar was born 42.12 years ago.

4 Foo Bar is Foo Bar and 42.12 years old.

Examples using format with names
1 txt = "Foo Bar"

2 num = 42.12

3

4 print("The user {name} was born {age} years

ago.".format(name = txt, age = num))

1 The user Foo Bar was born 42.12 years ago.

Format columns
In this example we use a list of lists that we have not learned yet,
but don’t worry about that for now.
Focus on the output of the two print statements.

 1 data = [

 2 ["Foo Bar", 42],

 3 ["Bjorg", 12345],

 4 ["Roza", 7],

 5 ["Long Name Joe", 3],

 6 ["Joe", 12345677889],

 7]

 8

 9 for entry in data:

10 print("{} {}".format(entry[0], entry[1]))

11

12 print('-' * 16)

13

14 for entry in data:

15 print("{:<8}|{:>7}".format(entry[0], entry[1]))

 1 Foo Bar 42

 2 Bjorg 12345

 3 Roza 7

 4 Long Name Joe 3

 5 Joe 12345677889

 6 ----------------

 7 Foo Bar | 42

 8 Bjorg | 12345

 9 Roza | 7

10 Long Name Joe| 3

11 Joe |12345677889

Examples using format - alignment
1 txt = "Some text"

2

3 print("'{}'".format(txt)) # as is: 'Some text'

4 print("'{:12}'".format(txt)) # left: 'Some text '

5 print("'{:<12}'".format(txt)) # left: 'Some text '

6 print("'{:>12}'".format(txt)) # right: ' Some text'

7 print("'{:^12}'".format(txt)) # center: ' Some text '

Format - string
1 name = "Foo Bar"

2

3 print("{:s}".format(name))

4 print("{}".format(name))

1 Foo Bar

2 Foo Bar

Format characters and types
 1 x = 42

 2

 3 print("{:b}".format(x)) # binary: 101010

 4 print("{:c}".format(x)) # character: *

 5 print("{:d}".format(x)) # decimal: 42 (default)

 6 print("{:o}".format(x)) # octal: 52

 7 print("{:x}".format(x)) # hexa: 2a

 8 print("{:X}".format(x)) # hexa: 2A

 9 print("{:n}".format(x)) # number: 42

10

11

12 print("{}".format(x)) # defaults to decimal

Format floating point number
 1 x = 412.345678901

 2

 3 print("{:e}".format(x)) # exponent: 4.123457e+02

 4 print("{:E}".format(x)) # Exponent: 4.123457E+02

 5 print("{:f}".format(x)) # fixed point: 412.345679

(default precision is 6)

 6 print("{:.2f}".format(x)) # fixed point: 412.35 (set

precision to 2)

 7 print("{:F}".format(x)) # same as f. 412.345679

 8 print("{:g}".format(x)) # generic: 412.346

(default precision is 6)

 9 print("{:G}".format(x)) # generic: 412.346

10 print("{:n}".format(x)) # number: 4412.346

11

12

13 print("{}".format(x)) # defaults to g 412.345678901

f-strings (formatted string literals)
Since Python 3.6

 1 name = "Foo Bar"

 2 age = 42.12

 3 pi = 3.141592653589793

 4 r = 2

 5

 6 print(f"The user {name} was born {age} years ago.")

 7 print(f"The user {name:10} was born {age} years ago.")

 8 print(f"The user {name:>10} was born {age} years ago.")

 9 print(f"The user {name:>10} was born {age:>10} years

ago.")

10

11 print(f"PI is '{pi:.3}'.") # number of digits (defaults

n = number)

12 print(f"PI is '{pi:.3f}'.") # number of digits after

decimal point

13

14 print(f"Area is {pi * r ** 2}")

15 print(f"Area is {pi * r ** 2:.3f}")

1 The user Foo Bar was born 42.12 years ago.

2 The user Foo Bar was born 42.12 years ago.

3 The user Foo Bar was born 42.12 years ago.

4 The user Foo Bar was born 42.12 years ago.

5 PI is '3.14'.

6 PI is '3.142'.

7 Area is 12.566370614359172

8 Area is 12.566

printf using old %-syntax
This slides is here only as a historical page. It is recommended to
use the format method!

1 v = 65

2 print("<%s>" % v) # <65>

3 print("<%10s>" % v) # < 65>

4 print("<%-10s>" % v) # <65 >

5 print("<%c>" % v) # <A>

6 print("<%d>" % v) # <65>

7 print("<%0.5d>" % v) # <00065>

Format braces, bracket, and parentheses
These are just some extreme special cases. Most people won’t need
to know about them.

To print { include {{.
To print } include }}.

1 print("{{{}}}".format(42)) # {42}

2

3 print("{{ {} }}".format(42)) # { 42 }

4

5 print("[{}] ({})".format(42, 42)) # [42] (42)

6

7 print("%{}".format(42)) # %42

Anything that is not in curly braces will be formatted as they are.

Examples using format with attributes of
objects
This is also a rather strange example, I don’t think I’d use it in real
code.

1 import sys

2

3 print("{0.executable}".format(sys))

4 print("{system.argv[0]}".format(system = sys))

1 /home/gabor/venv3/bin/python

2 formatted_attributes.py

raw f-strings
1 name="foo"

2 print(r"a\nb {name}")

3 print(rf"a\nb {name}")

4 print(fr"a\nb {name}") # this is better (for vim)

1 a\nb {name}

2 a\nb foo

3 a\nb foo

Lists

Anything can be a lists

Comma separated values
In square brackets
Can be any value, and a mix of values: Integer, Float, Boolean,
None, String, List, Dictionary, …
But usually they are of the same type:
Distances of astronomical objects
Chemical Formulas
Filenames
Names of devices
Objects describing attributes of a network device.
Actions to do on your data.

1 stuff = [42, 3.14, True, None, "Foo Bar", ['another',

'list'], {'a': 'Dictionary', '\

2 language' : 'Python'}]

3 print(stuff)

1 [42, 3.14, True, None, 'Foo Bar', ['another', 'list'],

{'a': 'Dictionary', 'language\

2 ': 'Python'}]

Any layout

Layout is flexible
Trailing comma is optional. It does not disturb us. Nor Python.

 1 more_stuff = [

 2 42,

 3 3.14,

 4 True,

 5 None,

 6 "Foo Bar",

 7 ['another', 'list'],

 8 {

 9 'a': 'Dictionary',

10 'language' : 'Python',

11 },

12]

13 print(more_stuff)

1 [42, 3.14, True, None, 'Foo Bar', ['another', 'list'],

{'a': 'Dictionary', 'language\

2 ': 'Python'}]

Lists

Access single element: [index]
Access a sublist: [start:end]
Creates a copy of that sublist

 1 planets = ['Mercury', 'Venus', 'Earth', 'Mars',

'Jupiter', 'Saturn']

 2

 3 print(planets) # ['Mercury', 'Venus', 'Earth', 'Mars',

'Jupiter', 'Saturn']

 4 print(len(planets)) # 6

 5

 6 print(planets[0]) # Mercury

 7 print(type(planets[0])) # <class 'str'>

 8 print(planets[3]) # Mars

 9

10 print(planets[0:1]) # ['Mercury']

11 print(type(planets[0:1])) # <class 'list'>

12 print(planets[0:2]) # ['Mercury', 'Venus']

13 print(planets[1:3]) # ['Venus', 'Earth']

14

15 print(planets[2:]) # ['Earth', 'Mars', 'Jupiter',

'Saturn']

16 print(planets[:3]) # ['Mercury', 'Venus', 'Earth']

17

18 print(planets[:]) # ['Mercury', 'Venus', 'Earth',

'Mars', 'Jupiter', 'Saturn\

19 ']

List slice with steps

List slice with step: [start:end:step]

 1 letters = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i',

'j']

 2

 3 print(letters[::]) # ['a', 'b', 'c', 'd', 'e', 'f',

'g', 'h', 'i', 'j']

 4

 5 print(letters[::1]) # ['a', 'b', 'c', 'd', 'e', 'f',

'g', 'h', 'i', 'j']

 6

 7 print(letters[::2]) # ['a', 'c', 'e', 'g', 'i']

 8

 9 print(letters[1::2]) # ['b', 'd', 'f', 'h', 'j']

10

11 print(letters[2:8:2]) # ['c', 'e', 'g']

12

13 print(letters[1:20:3]) # ['b', 'e', 'h']

Change a List
 1 x = ['abc', 'def', 'ghi', 'jkl']

 2 x[0] = 'qqrq'

 3 print(x) # ['qqrq', 'def', 'ghi', 'jkl']

 4

 5 x[1:3] = ['xyz', 'dod']

 6 print(x) # ['qqrq', 'xyz', 'dod', 'jkl']

 7

 8

 9 x[1:3] = ['bla']

10 print(x) # ['qqrq', 'bla', 'jkl']

11

12 x[1:2] = ['elp', 'free']

13 print(x) # ['qqrq', 'elp', 'free', 'jkl']

14

15

16 #x[1] = ['elp', 'free']

17 #print(x) # ['qqrq', ['elp', 'free'], 'jkl']

Unlike strings, lists are mutable. You can change the content of
a list by assigning values to its elements.
You can use the slice notation to change several elements at
once.
You can even have different number of elements in the slice
and in the replacement. This will also change the length of the
array.

Change with steps
1 numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]

2 print(numbers) # [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]

3

4 numbers[1::2] = [0, 0, 0, 0, 0, 0]

5 print(numbers) # [1, 0, 3, 0, 5, 0, 7, 0, 9, 0, 11, 0]

List assignment and list copy
1 x = ['apple', 'bob', 'cat', 'drone']

2 y = x

3 x[0] = 'qqrq'

4 print(x) # ['qqrq', 'bob', 'cat', 'drone']

5 print(y) # ['qqrq', 'bob', 'cat', 'drone']

There is one list in the memory and two pointers to it.
If you really want to make a copy the pythonic way is to use
the slice syntax.

It creates a shallow copy.

1 x = ['apple', 'bob', 'cat', 'drone']

2 y = x[:]

3

4 x[0] = 'qqrq'

5

6 print(x) # ['qqrq', 'bob', 'cat', 'drone']

7 print(y) # ['apple', 'bob', 'cat', 'drone']

Deep copy

1 from copy import deepcopy

2

3 x = ['apple', 'bob', 'cat', 'drone']

4 y = deepcopy(x)

5

6 x[0] = 'qqrq'

7

8 print(x) # ['qqrq', 'bob', 'cat', 'drone']

9 print(y) # ['apple', 'bob', 'cat', 'drone']

join
 1 fields = ['one', 'two and three', 'four', 'five']

 2

 3 together = ':'.join(fields)

 4 print(together) # one:two and three:four:five

 5

 6 mixed = ' -=<> '.join(fields)

 7 print(mixed) # one -=<> two and three -=<> four -=<> five

 8

 9 another = ''.join(fields)

10 print(another) # onetwo and threefourfive

join list of numbers
 1 a = ["x", "2", "y"]

 2 b = ["x", 2, "y"]

 3 print(":".join(a)) # x:2:y

 4 # print ":".join(b) # TypeError: sequence item 1:

expected string, int found

 5

 6 # convert elements to string using map

 7 print(":".join(map(str, b))) # x:2:y

 8

 9

10 # convert elements to string using list comprehension

11 print(":".join(str(x) for x in b)) # x:2:y

split

Special case: To split a string to its characters: Use the list()
function.
Split using more than one splitter: use re.split

 1 words = "ab:cd:ef".split(':')

 2 print(words) # ['ab', 'cd', 'ef']

 3

 4 # special case: split by spaces

 5 names = "foo bar baz".split()

 6 print(names) # ['foo', 'bar', 'baz']

 7

 8 # special case: split to characters

 9 chars = list("abcd")

10 print(chars) # ['a', 'b', 'c', 'd']

for loop on lists
1 things = ['apple', 'banana', 'peach', 42]

2 for var in things:

3 print(var)

1 apple

2 banana

3 peach

4 42

in list
Check if the value is in the list?

 1 words = ['apple', 'banana', 'peach', '42']

 2 if 'apple' in words:

 3 print('found apple')

 4

 5 if 'a' in words:

 6 print('found a')

 7 else:

 8 print('NOT found a')

 9

10 if 42 in words:

11 print('found 42')

12 else:

13 print('NOT found 42')

14

15 # found apple

16 # NOT found a

17 # NOT found 42

Where is the element in the list
1 words = ['cat', 'dog', 'snake', 'camel']

2 print(words.index('snake'))

3

4 print(words.index('python'))

1 2

2 Traceback (most recent call last):

3 File "examples/lists/index.py", line 6, in <module>

4 print(words.index('python'))

5 ValueError: 'python' is not in list

Index improved
1 words = ['cat', 'dog', 'snake', 'camel']

2

3 name = 'snake'

4 if name in words:

5 print(words.index(name))

6

7 name = 'python'

8 if name in words:

9 print(words.index(name))

[].insert
 1 words = ['apple', 'banana', 'cat']

 2 print(words) # ['apple', 'banana', 'cat']

 3

 4 words.insert(2, 'zebra')

 5 print(words) # ['apple', 'banana', 'zebra', 'cat']

 6

 7 words.insert(0, 'dog')

 8 print(words) # ['dog', 'apple', 'banana', 'zebra',

'cat']

 9

10 # Instead of this, use append (next slide)

11 words.insert(len(words), 'olifant')

12 print(words) # ['dog', 'apple', 'banana', 'zebra',

'cat', 'olifant']

[].append
1 names = ['Foo', 'Bar', 'Zorg', 'Bambi']

2 print(names) # ['Foo', 'Bar', 'Zorg', 'Bambi']

3

4 names.append('Qux')

5 print(names) # ['Foo', 'Bar', 'Zorg', 'Bambi', 'Qux']

[].remove
 1 names = ['Joe', 'Kim', 'Jane', 'Bob', 'Kim']

 2 print(names) # ['Joe', 'Kim', 'Jane',

'Bob', 'Kim']

 3

 4 print(names.remove('Kim')) # None

 5 print(names) # ['Joe', 'Jane', 'Bob',

'Kim']

 6

 7 print(names.remove('George'))

 8 # Traceback (most recent call last):

 9 # File "examples/lists/remove.py", line 9, in

<module>

10 # print(names.remove('George')) # None

11 # ValueError: list.remove(x): x not in list

Remove first element from a list given by its value.
Throws an exception if there is no such element in the list.

Remove element by index [].pop
 1 planets = ['Mercury', 'Venus', 'Earth', 'Mars',

'Jupiter']

 2 print(planets) # ['Mercury', 'Venus', 'Earth',

'Mars', 'Jupiter']

 3

 4 third = planets.pop(2)

 5 print(third) # Earth

 6 print(planets) # ['Mercury', 'Venus', 'Mars',

'Jupiter']

 7

 8 last = planets.pop()

 9 print(last) # Jupiter

10 print(planets) # ['Mercury', 'Venus', 'Mars']

11

12 # planets.pop(4) # IndexError: pop index out of

range

13

14 jupyter_landers = []

15 # jupyter_landers.pop() # IndexError: pop from empty

list

Remove and return the last element of a list. Throws an
exception if the list was empty.

Remove first element of list

To remove an element by its index, use the slice syntax:

1 names = ['foo', 'bar', 'baz', 'moo']

2

3 first = names.pop(0)

4 print(first) # foo

5 print(names) # ['bar', 'baz', 'moo']

Remove several elements of list by index

To remove an element by its index, use the slice syntax:

1 names = ['foo', 'bar', 'baz', 'moo', 'qux']

2

3 names[2:4] = []

4 print(names) # ['foo', 'bar', 'qux']

Use list as a queue
 1 a_queue = []

 2 print(a_queue)

 3

 4 a_queue.append('Moo')

 5 print(a_queue)

 6

 7 a_queue.append('Bar')

 8 print(a_queue)

 9

10 first = a_queue.pop(0)

11 print(first)

12 print(a_queue)

1 []

2 ['Moo']

3 ['Moo', 'Bar']

4 Moo

5 ['Bar']

Queue using deque from collections
 1 from collections import deque

 2

 3 # items = deque([])

 4 items = deque(['foo', 'bar'])

 5

 6 print(type(items)) # <type 'collections.deque'>

 7 print(items) # deque(['foo', 'bar'])

 8

 9 items.append('zorg')

10 print(items) # deque(['foo', 'bar', 'zorg'])

11 print(len(items)) # 3

12

13 items.append('zorg')

14 print(items) # deque(['foo', 'bar', 'zorg',

'zorg'])

15

16 nxt = items.popleft()

17 print(nxt) # 'foo'

18 print(items) # deque(['bar', 'zorg', 'zorg'])

19

20 print(len(items)) # 3

21

22 if items:

23 print("The queue has items")

24 else:

25 print("The queue is empty")

.append

.popleft
len() number of elements
if q: to see if it has elements or if it is empty
dequeue

Fixed size queue
 1 from collections import deque

 2

 3 queue = deque([], maxlen = 3)

 4 print(len(queue)) # 0

 5 print(queue.maxlen) # 3

 6

 7 queue.append("Foo")

 8 queue.append("Bar")

 9 queue.append("Baz")

10 print(queue) # deque(['Foo', 'Bar', 'Baz'],

maxlen=3)

11

12 queue.append("Zorg") # Automatically removes the left-

most (first) element

13 print(queue) # deque(['Bar', 'Baz', 'Zorg'],

maxlen=3)

List as a stack
 1 stack = []

 2

 3 stack.append("Joe")

 4 print(stack)

 5 stack.append("Jane")

 6 print(stack)

 7 stack.append("Bob")

 8 print(stack)

 9

https://docs.python.org/3/library/collections.html#collections.deque

10 while stack:

11 name = stack.pop()

12 print(name)

13 print(stack)

1 ['Joe']

2 ['Joe', 'Jane']

3 ['Joe', 'Jane', 'Bob']

4 Bob

5 ['Joe', 'Jane']

6 Jane

7 ['Joe']

8 Joe

9 []

stack with deque
 1 from collections import deque

 2 stack = deque()

 3

 4 stack.append("Joe")

 5 stack.append("Jane")

 6 stack.append("Bob")

 7

 8 while stack:

 9 name = stack.pop()

10 print(name)

11

12 # Bob

13 # Jane

14 # Joe

Exercies: Queue
The application should manage a queue of people.

It will prompt the user for a new name by printing :, the user
can type in a name and press ENTER. The app will add the
name to the queue.

If the user types in “n” then the application will remove the
first name from the queue and print it.
If the user types in “x” then the application will print the list of
users who were left in the queue and it will exit.
If the user types in “s” then the application will show the
current number of elements in the queue.

 1 : Foo

 2 : Bar

 3 : Moo

 4 : n

 5 next is Foo

 6 : n

 7 next is Bar

 8 : Peter

 9 : n

10 next is Moo

11 : n

12 next is Peter

13 : n

14 the queue is empty

Exercise: Stack
Implement a Reverse Polish Calculator

1 2

2 3

3 4

4 +

5 *

6 =

7 14

 1 x = eXit, s = Show, [+-*/=]

 2 :23

 3 :19

 4 :7

 5 :8

 6 :+

 7 :3

 8 :-

 9 :/

10 :s

11 [23.0, -0.631578947368421]

12 :+

13 :=

14 22.36842105263158

15 :s

16 []

17 :x

Solution: Queue with list
 1 queue = []

 2

 3 while True:

 4 inp = input(":")

 5 inp = inp.rstrip("\n")

 6

 7 if inp == 'x':

 8 for name in queue:

 9 print(name)

10 exit()

11

12 if inp == 's':

13 print(len(queue))

14 continue

15

16 if inp == 'n':

17 if len(queue) > 0:

18 print("next is {}".format(queue.pop(0)))

19 else:

20 print("the queue is empty")

21 continue

22

23 queue.append(inp)

Solution: Queue with deque

 1 from collections import deque

 2

 3 queue = deque()

 4

 5 while True:

 6 inp = input(":")

 7 inp = inp.rstrip("\n")

 8

 9 if inp == 'x':

10 for name in queue:

11 print(name)

12 exit()

13

14 if inp == 's':

15 print(len(queue))

16 continue

17

18 if inp == 'n':

19 if len(queue) > 0:

20 print("next is {}".format(queue.popleft()))

21 else:

22 print("the queue is empty")

23 continue

24

25 queue.append(inp)

Solution: Reverse Polish calculator (stack)
with lists
 1 stack = []

 2

 3 print("x = eXit, s = Show, [+-*/=]")

 4 while True:

 5 val = input(':')

 6

 7 if val == 's':

 8 print(stack)

 9 continue

10

11 if val == 'x':

12 break

13

14 if val == '+':

15 a = stack.pop()

16 b = stack.pop()

17 stack.append(a+b)

18 continue

19

20 if val == '-':

21 a = stack.pop()

22 b = stack.pop()

23 stack.append(a-b)

24 continue

25

26 if val == '*':

27 a = stack.pop()

28 b = stack.pop()

29 stack.append(a*b)

30 continue

31

32 if val == '/':

33 a = stack.pop()

34 b = stack.pop()

35 stack.append(a/b)

36 continue

37

38 if val == '=':

39 print(stack.pop())

40 continue

41

42 stack.append(float(val))

Solution: Reverse Polish calculator (stack)
with deque
 1 from collections import deque

 2

 3 stack = deque()

 4

 5 while True:

 6 val = input(':')

 7

 8 if val == 'x':

 9 break

10

11 if val == '+':

12 a = stack.pop()

13 b = stack.pop()

14 stack.append(a+b)

15 continue

16

17 if val == '*':

18 a = stack.pop()

19 b = stack.pop()

20 stack.append(a*b)

21 continue

22

23

24 if val == '=':

25 print(stack.pop())

26 continue

27

28 stack.append(float(val))

Debugging Queue
The following implementation has a bug. (Even though the n was
supposed to remove the element
and the code seems to mean that it does, we still see two items after
we removed the first.)

The question is how to debug this?

 1 q = []

 2

 3 while True:

 4 name=input("your name: ")

 5

 6 if name=="n":

 7 print(q.pop(0))

 8

 9 if name=="x":

10 print(q)

11 exit()

12

13 if name=="s":

14 print(len(q))

15 exit()

16 else:

17 q.append(name)

18 continue

1 your name: Foo

2 your name: Bar

3 your name: n

4 Foo

5 your name: s

6 2

sort
1 planets = ['Mercury', 'Venus', 'Earth', 'Mars',

'Jupiter', 'Saturn']

2 print(planets) # ['Mercury', 'Venus', 'Earth',

'Mars', 'Jupiter', 'Saturn']

3 planets.sort()

4 print(planets) # ['Earth', 'Jupiter', 'Mars',

'Mercury', 'Saturn', 'Venus']

5

6 planets.sort(reverse=True)

7 print(planets) # ['Venus', 'Saturn', 'Mercury',

'Mars', 'Jupiter', 'Earth']

sort numbers
 1 numbers = [7, 2, -4, 19, 8]

 2 print(numbers) # [7, 2, -4, 19, 8]

 3 numbers.sort()

 4 print(numbers) # [-4, 2, 7, 8, 19]

 5

 6 numbers.sort(reverse=True)

 7 print(numbers) # [19, 9, 7, 2, -4]

 8

 9 numbers.sort(key=abs, reverse=True)

10 print(numbers) # [19, 9, 7, -4, 2]

sort mixed
1 mixed = [100, 'foo', 42, 'bar']

2 print(mixed)

3 mixed.sort()

4 print(mixed)

In Python 2 puts the numbers first in numerical order and then the
strings in ASCII order.

1 [100, 'foo', 42, 'bar']

2 [42, 100, 'bar', 'foo']

In Python 3 it throws an exception.

1 [100, 'foo', 42, 'bar']

2 Traceback (most recent call last):

3 File "examples/lists/sort_mixed.py", line 5, in

<module>

4 mixed.sort()

5 TypeError: unorderable types: str() < int()

key sort

Another example to using a key.
To sort the list according to length

 1 animals = ['chicken', 'cow', 'snail', 'elephant']

 2 print(animals)

 3

 4 animals.sort()

 5 print(animals)

 6

 7 animals.sort(key=len)

 8 print(animals)

 9

10 animals.sort(key=len, reverse=True)

11 print(animals)

1 ['chicken', 'cow', 'snail', 'elephant']

2 ['chicken', 'cow', 'elephant', 'snail']

3 ['cow', 'snail', 'chicken', 'elephant']

4 ['elephant', 'chicken', 'snail', 'cow']

Sort tuples
Sorting tuples or list, or other complex structures

 1 students = [

 2 ('John', 'A', 2),

 3 ('Zoro', 'C', 1),

 4 ('Dave', 'B', 3),

 5]

 6 print(students)

 7 # [('John', 'A', 2), ('Zoro', 'C', 1), ('Dave', 'B',

3)]

 8

 9 print(sorted(students))

10 # [('Dave', 'B', 3), ('John', 'A', 2), ('Zoro', 'C',

1)]

11 # sort by the first element of each tuple

12

13 print(sorted(students, key=lambda s : s[1]))

14 # [('John', 'A', 2), ('Dave', 'B', 3), ('Zoro', 'C',

1)]

15 # sort by the 2nd element of the tuples (index 1)

16

17 print(sorted(students, key=lambda s : s[2]))

18 # [('Zoro', 'C', 1), ('John', 'A', 2), ('Dave', 'B',

3)]

19 # sort by the 3rd element of the tuples (index 2)

20

21

22 from operator import itemgetter

23 print(sorted(students, key=itemgetter(2)))

24 # [('Zoro', 'C', 1), ('John', 'A', 2), ('Dave', 'B',

3)]

25 # maybe this is more simple than the lambda version

26 # and probably faster

sort with sorted
 1 animals = ['chicken', 'cow', 'snail', 'elephant']

 2 print(animals) # ['chicken', 'cow', 'snail',

'elephant']

 3

 4 s = sorted(animals)

 5 print(s) # ['chicken', 'cow', 'elephant',

'snail']

 6 print(animals) # ['chicken', 'cow', 'snail',

'elephant']

 7

 8 r = sorted(animals, reverse=True, key=len)

 9 print(r) # ['elephant', 'chicken', 'snail',

'cow']

10 print(animals) # ['chicken', 'cow', 'snail',

'elephant']

sort vs. sorted
The sort() method will sort a list in-place and return None.
The built-in sorted() function will return the sorted list and leave
the original list intact.

key sort with sorted
To sort the list according to length using sorted

1 animals = ['snail', 'cow', 'elephant', 'chicken']

2 animals_in_abc = sorted(animals)

3

4 print(animals)

5 print(animals_in_abc)

6

7 animals_by_length = sorted(animals, key=len)

8 print(animals_by_length)

1 ['snail', 'cow', 'elephant', 'chicken']

2 ['chicken', 'cow', 'elephant', 'snail']

3 ['cow', 'snail', 'chicken', 'elephant']

Sorting characters of a string
1 letters = 'axzb'

2 print(letters) # 'axzb'

3 s = sorted(letters)

4 print(s) # ['a', 'b', 'x', 'z']

5 print(letters) # 'axzb'

6

7 r = ''.join(sorted(letters))

8 print(r) # abxz

range
 1 for i in range(11, 18, 2):

 2 print(i)

 3 # 11

 4 # 13

 5 # 15

 6 # 17

 7

 8 for i in range(5, 7):

 9 print(i)

10 # 5

11 # 6

12

13 for i in range(3):

14 print(i)

15 # 0

16 # 1

17 # 2

Looping over index
1 things = ['abc', 'def', 'ghi', 42]

2 for var in things:

3 print(var)

1 things = ['abc', 'def', 'ghi', 42]

2 for i in range(len(things)):

3 print(i, things[i])

4

5 # 0 abc

6 # 1 def

7 # 2 ghi

8 # 3 42

Enumerate lists
1 planets = ['Mercury', 'Venus', 'Earth', 'Mars',

'Jupiter', 'Saturn']

2 for idx, planet in enumerate(planets):

3 print(idx, planet)

4

5 print('')

6 enu = enumerate(planet)

7 print(enu.__class__.__name__)

8 print(enu)

1 0 Mercury

2 1 Venus

3 2 Earth

4 3 Mars

5 4 Jupiter

6 5 Saturn

7

8 enumerate

9 <enumerate object at 0x7f2c2402adc8>

List operators
1 a = ['one', 'two']

2 b = ['three']

3

4 print(a) # ['one', 'two']

5 print(a * 2) # ['one', 'two', 'one', 'two']

6 print(a + b) # ['one', 'two', 'three']

List of lists
1 x = ['abc', 'def']

2 print(x) # ['abc', 'def']

3

4 y = [x, 'xyz']

5 print(y) # [['abc', 'def'], 'xyz']

6 print(y[0]) # ['abc', 'def']

7

8 print(x[0]) # abc

9 print(y[0][0]) # abc

List assignment

List assignment works in “parallel” in Python.

1 x, y = 1, 2

2 print(x) # 1

3 print(y) # 2

4

5 x, y = y, x

6 print(x) # 2

7 print(y) # 1

1 x,y = f() # works if f returns a list of 2 elements

It will throw a run-time ValueError exception if the number
of values in the returned list is not 2. (Both for fewer and for more
return values).

List documentation

datastructures

http://docs.python.org/tutorial/datastructures.html

tuple
Tuple

A tuple is a fixed-length immutable list. It cannot change its
size or content.
A tuple is denoted with parentheses: (1,2,3)

1 t = ('a', 'b', 'c')

2 print(t) # ('a', 'b', 'c')

List

Elements of a list can be changed via their index or via the list
slice notation.
A list can grow and shrink using append and pop methods or
using the slice notation.
A list is denoted with square brackets: [1, 2, 3]

1 l = ['abc', 'def', 'qqrq']

2 t = tuple(l)

3 print(l) # ['abc', 'def', 'qqrq']

4 print(t) # ('abc', 'def', 'qqrq')

Tuples are rarely used. There are certain places where Python or
some module require tuple (instead of list) or return a tuple (instead
of a list)
and in each place it will be explained. Otherwise you don’t need to
use tuples.

e.g. keys of dictinoaries can be tuple (but not lists).

Exercise: color selector menu

In a script have a list of colors. Write a script that will display
a menu (a list of numbers and the corresponding color) and
prompts the user for a number. The user needs to type in one of
the numbers. That’s the selected color.

1. blue
2. green
3. yellow
4. white

For extra credit make sure the system is user-proof and it
won’t blow up on various incorrect input values. (e.g Floating
point number. Number that is out of range, non-number)
For more credit allow the user to supply the number of the
color on the command line. python color.py 3. If that is
available, don’t prompt.
For further credit allow the user to provide the name of the
color on the command line: python color.py yellow Can you
handle color names that are not in the expected case (e.g.
YelloW)?
Any more ideas for improvement?

Exercise: count digits
Given a list of numbers numbers = [1203, 1256, 312456, 98],
count how many times each digit appears? The output will look
like this:

 1 0 1

 2 1 3

 3 2 3

 4 3 2

 5 4 1

 6 5 2

 7 6 2

 8 7 0

 9 8 1

10 9 1

Exercise: Create list
Given a list of strings with words separated by spaces,
create a single list of all the words.

1 lines = [

2 'grape banana mango',

3 'nut orange peach',

4 'apple nut banana apple mango',

5]

6

7 fruits = ['grape', 'banana', 'mango', 'nut', 'orange',

'peach', 'apple', 'nut', 'ban\

8 ana', 'apple', 'mango']

Then create a list of unique values sorted by abc.

1 unique_fruites = ['apple', 'banana', 'grape', 'mango',

'nut', 'orange', 'peach']

Exercise: Count words
1 celestial_objects = [

2 'Moon', 'Gas', 'Asteroid', 'Dwarf', 'Asteroid',

'Moon', 'Asteroid'

3]

Expected output:

1 Moon 2

2 Gas 1

3 Asteroid 3

4 Dwarf 1

Exercise: Check if number is prime
Write a program that gets a number on the commnad line a prints
“True” if the number is a prime
number or “False” if it isn’t.

1 python is_prime.py 42

2 False

3 python is_prime.py 19

4 True

Exercise: DNA sequencing
A, C, T, G are called bases or nucleotides
Given a sequence like
‘ACCGXXCXXGTTACTGGGCXTTGT’ (nucleoids mixed
up with other elements) return the sequences containing only
ACTG orderd by length.
The above string can be split up to [‘ACCG’, ‘C’,
‘GTTACTGGGC’, ‘TTGT’] and then it can be sorted to get
the following:
Expected result: [‘GTTACTGGGC’, ‘ACCG’, ‘TTGT’, ‘C’]

Solution: menu
 1 colors = ['blue', 'yellow', 'black', 'purple']

 2 for ix in range(len(colors)):

 3 print("{}) {}".format(ix+1, colors[ix]))

 4

 5 selection = input("Select color: ")

 6 if not selection.isdecimal():

 7 exit(f"We need a number between 1 and {len(colors)}")

 8

 9 if int(selection) < 1 or int(selection) > len(colors):

10 exit(f"The number must be between 1 and

{len(colors)}")

11

12 col = int(selection) - 1

13 print(colors[col])

We would like to show a menu where each number
corresponds to one element of the list so this is one of the
places where we need to iterate over the indexes of a list.
len(colors) gives us the length of the list (in our case 4)
range(len(colors)) is the range of numbers betwwen 0 and 4
(in our case), menaing 0, 1, 2, 3.
(Sometimes people explicetly write 4 in this solution, but if
later we change the list and include another color we’ll have to
remember updating this number as well. This is error prone
and it is very easy to deduct this number from the data we
already have. (The list.))
We start the list from 0, but when we display the menu we
would like to show the numbers 1-4 to make it more human
friendly. Therefore we show ix+1 and the color from locations
ix.
We ask for input and save it in a variable.

We use the isdecimal method to check if the user typed in a
decimal number. We give an error and exit if not.
Then we check if the users provided a number in the correct
range of values. We give an error and exit if not.
then we convert the value to the correct range of numbers
(remember, the user sees and selects numbers between 1-4 and
we need them between 0-3).

Solution: count digits

 1 numbers = [1203, 1256, 312456, 98]

 2

 3 count = [0] * 10 # same as [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

 4

 5 for num in numbers:

 6 for char in str(num):

 7 count[int(char)] += 1

 8

 9 for d in range(0, 10):

10 print("{} {}".format(d, count[d]))

First we have to decide where are we going to store the counts. A
10 element long list seems to fit our requirements so if we have 3
0s and 2 8s we would have [3, 0, 0, 0, 0, 0, 0, 0, 2, 0].

We have a list of numbers.
We need a place to store the counters. For this we create a
variable called counter which is a list of 10 0s. We are going to
count the number of times the digit 3 appears in counters[3].
We iterate over the numbers so num is the current number. (e.g.
1203)
We would like to iterate over the digits in the curreent number
now, but if we write for var in num we will get an error
TypeError: 'int' object is not iterable because num is
a number, but numbers are not iterables, so we we cannot
iterate over them. So we need to convert it to a string useing
str.
On each iteration char will be one character (which in or case
we assume that will be a digit, but still stored as a string).
int(char) will convert the string to a number so for example
“2” will be converted to 2.
count[int(char)] is going to be char[2] if char is “2”.
That’s the location in the list where we count how many times
the digit 2 appears in our numbers.

We increment it by one as we have just encountered a new
copy of the given digit.
That finished the data collection.

The second for-loop iterates over all the “possible digits” that
is from 0-9, prints out the digit and the counter in the
respective place.

Solution: Create list
 1 lines = [

 2 'grape banana mango',

 3 'nut orange peach',

 4 'apple nut banana apple mango',

 5]

 6

 7 one_line = ' '.join(lines)

 8 print(one_line)

 9 fruits = one_line.split()

10 print(fruits)

11

12 unique_fruits = []

13 for word in fruits:

14 if word not in unique_fruits:

15 unique_fruits.append(word)

16 print(sorted(unique_fruits))

17

18

19 # a simpler way using a set, but we have not learned sets

yet.

20 unique = sorted(set(fruits))

21 print(unique)

Solution: Count words
 1 celestial_objects = [

 2 'Moon', 'Gas', 'Asteroid', 'Dwarf', 'Asteroid',

'Moon', 'Asteroid'

 3]

 4

 5 names = []

 6 counter = []

 7

 8 for name in celestial_objects:

 9 if name in names:

10 idx = names.index(name)

11 counter[idx] += 1

12 else:

13 names.append(name)

14 counter.append(1)

15

16 for i in range(len(names)):

17 print("{:12} {}".format(names[i], counter[i]))

Solution: Check if number is prime
 1 import sys

 2

 3 n = int(sys.argv[1])

 4

 5 #print(n)

 6

 7 is_prime = True

 8 for i in range(2, int(n ** 0.5) + 1):

 9 if n % i == 0:

10 is_prime = False

11 break

12

13 print(is_prime)

14

15

16 # math.sqrt(n) might be clearer than n ** 0.5

Solution: DNA sequencing
 1 dna = 'ACCGXXCXXGTTACTGGGCXTTGT'

 2 sequences = dna.split('X')

 3 sequences.sort(key=len, reverse=True)

 4

 5 new_seq = []

 6 for w in sequences:

 7 if len(w) > 0:

 8 new_seq.append(w)

 9

10 print(sequences)

11 print(new_seq)

Solution: DNA sequencing with filter
 1 dna = 'ACCGXXCXXGTTACTGGGCXTTGT'

 2 sequences = dna.split('X')

 3 sequences.sort(key=len, reverse=True)

 4

 5 def not_empty(x):

 6 return len(x) > 0

 7

 8 print(sequences)

 9 sequences = list(filter(not_empty, sequences))

10 print(sequences)

Solution: DNA sequencing with filter and
lambda
1 dna = 'ACCGXXCXXGTTACTGGGCXTTGT'

2 sequences = dna.split('X')

3 sequences.sort(key=len, reverse=True)

4

5 print(sequences)

6 sequences = list(filter(lambda x: len(x) > 0, sequences)

)

7 print(sequences)

[].extend
1 names = ['Foo Bar', 'Orgo Morgo']

2

3 names.extend(['Joe Doe', 'Jane Doe'])

4 print(names) # ['Foo Bar', 'Orgo Morgo', 'Joe Doe', 'Jane

Doe']

append vs. extend

What is the difference between [].append and [].extend ?
The method append adds its parameter as a single element to
the list, while extend gets a list and adds its content.

 1 names = ['Foo Bar', 'Orgo Morgo']

 2 more = ['Joe Doe', 'Jane Doe']

 3 names.extend(more)

 4 print(names) # ['Foo Bar', 'Orgo Morgo', 'Joe Doe',

'Jane Doe']

 5

 6 names = ['Foo Bar', 'Orgo Morgo']

 7 names.append(more)

 8 print(names) # ['Foo Bar', 'Orgo Morgo', ['Joe Doe',

'Jane Doe']]

 9

10 names = ['Foo', 'Bar']

11 names.append('Qux')

12 print(names) # ['Foo', 'Bar', 'Qux']

13

14 names = ['Foo', 'Bar']

15 names.extend('Qux')

16 print(names) # ['Foo', 'Bar', 'Q', 'u', 'x']

split and extend

When collecting data which is received from a string via
splitting,
we would like to add the new elements to the existing list:

 1 lines = [

 2 'abc def ghi',

 3 'hello world',

 4]

 5

 6 collector = []

 7

 8 for l in lines:

 9 collector.extend(l.split())

10 print(collector)

11

12 # ['abc', 'def', 'ghi']

13 # ['abc', 'def', 'ghi', 'hello', 'world']

Files

Open and read file
1 filename = 'examples/files/numbers.txt'

2

3 with open(filename, 'r') as fh:

4 for line in fh:

5 print(line) # duplicate newlines

6

7 # close is called when we leave the 'with'

Filename on the command line
 1 import sys

 2

 3 def main():

 4 if len(sys.argv) != 2:

 5 exit("Usage: " + sys.argv[0] + " FILENAME")

 6 filename = sys.argv[1]

 7 with open(filename) as fh:

 8 print("Working on the file", filename)

 9

10 main()

1 $ python single.py

2 Usage: single.py FILENAME

3

4 $ python single.py numbers.txt

5 Working on the file numbers.txt

Filehandle with and without
 1 filename = 'examples/files/numbers.txt'

 2

 3 fh = open(filename, 'r')

 4 print(fh) # <open file 'numbers.txt', mode 'r' at

0x107084390>

 5 data = fh.read()

 6 # do something with the data

 7 fh.close()

 8 print(fh) # <closed file 'numbers.txt', mode 'r' at

0x107084390>

 9

10

11

12 with open(filename, 'r') as fh:

13 print(fh) # <open file 'numbers.txt', mode 'r' at

0x1070840c0>

14 data = fh.read()

15 print(fh) # <closed file 'numbers.txt', mode 'r' at

0x1070840c0>

Filehandle with return
 1 import sys

 2

 3 def process_file(filename):

 4 with open(filename, 'r') as fh:

 5

 6 for line in fh:

 7 line = line.rstrip("\n")

 8 if len(line) > 0:

 9 if line[0] == '#':

10 return

11 # some comment

12

13 if len(line) > 1:

14 if line[0:2] == '//':

15 return

16

17 print(line)

18

19

20 process_file(sys.argv[0])

Read file remove newlines
1 filename = 'examples/files/numbers.txt'

2

3 with open(filename, 'r') as fh:

4 for line in fh:

5 line = line.rstrip("\n")

6 print(line)

Read all the lines into a list
 1 filename = 'examples/files/numbers.txt'

 2

 3 with open(filename, 'r') as fh:

 4 lines_list = fh.readlines() # reads all the lines

into a list

 5

 6 # print number of lines

 7 print(len(lines_list))

 8

 9 for line in lines_list:

10 print(line, end="")

Read all the characters into a string (slurp)
1 filename = 'examples/files/numbers.txt'

2

3 with open(filename, 'r') as fh:

4 lines_str = fh.read() # reads all the lines into a

string

5

6 print(len(lines_str)) # number of characters in file

7

8 print(lines_str) # the content of the file

read(20) will read 20 bytes.

Not existing file
 1 filename = 'examples/files/unicorns.txt'

 2

 3 with open(filename, 'r') as fh:

 4 lines = fh.read()

 5 print("still running")

 6

 7 # Traceback (most recent call last):

 8 # File "examples/files/open_file.py", line 5, in

<module>

 9 # with open(filename, 'r') as fh:

10 # IOError: [Errno 2] No such file or directory:

'examples/files/unicorns.txt'

Open file exception handling
Exception handling

 1 filename = 'examples/files/unicorns.txt'

 2

 3 try:

 4 with open(filename, 'r') as fh:

 5 lines = fh.read()

 6 except Exception as err:

 7 print('There was some error in the file operations.')

 8 print(err)

 9 print(type(err).__name__)

10

11 print('Still running.')

Open many files - exception handling
 1 import sys

 2

 3

 4 def main():

 5 for filename in sys.argv[1:]:

 6 try:

 7 #do_some_stuff(filename)

 8 with open(filename) as fh:

 9 total = 0

10 count = 0

11 for line in fh:

12 number = float(line)

13 total += number

14 count += 1

15 print("Average: ", total/count)

16 except Exception:

17 print("trouble with {}".format(filename))

18

19 main()

1 23

2 1

3 192

4 17

1

1 python average_from_files.pyt number_per_line.txt

empty.txt number_per_line2.txt

1 Average: 58.25

2 trouble with empty.txt

3 Average: 3.5

Writing to file
1 filename = 'data.txt'

2

3 with open(filename, 'w') as out:

4 out.write('text\n')

Append to file
1 filename = 'data.txt'

2

3 with open(filename, 'a') as out:

4 out.write('append more text\n')

Binary mode
 1 filename = 'README'

 2

 3 try:

 4 with open(filename, 'rb') as fh:

 5 while True:

 6 binary_str = fh.read(5000)

 7 print(len(binary_str))

 8 if len(binary_str) == 0:

 9 break

10 # do something with the content of the

binary_str

11 except Exception:

12 pass

13

14 # 5000

15 # 5000

16 # 5000

17 # 1599

18 # 0

Does file exist? Is it a file?

os.path.exists
os.path.isfile
os.path.isdir

Exercise: count numbers
1 23 345 12345

2 67 189 23 17

https://docs.python.org/library/os.path.html#os.path.exists
https://docs.python.org/library/os.path.html#os.path.isfile
https://docs.python.org/library/os.path.html#os.path.isdir

1. Given the file examples/files/numbers.txt (or a similar file),
count how many times each digit appears? The output will
look like this. Just different values.

2. Save the results in a file called report.txt.

 1 0 0

 2 1 3

 3 2 3

 4 3 4

 5 4 2

 6 5 2

 7 6 1

 8 7 2

 9 8 1

10 9 1

Exercise: strip newlines
How to read all the lines of a file into a list
and remove trailing newlines?

Exercise: color selector
Create a file similar to the colors.txt file
and use it as the list of colors in the earlier example where we
prompted for a color.

1 blue

2 yellow

3 white

4 green

Extend the previous example by letting the user provide the name
of the file on the command line:
python color.py examples/files/color.txt

Exercise: ROT13
Implement ROT13:

Create a function that given a string return the rot13 of it.
Create a script that given a file it will replace with the rot13 of
it.

How to check if it works properly:

1 txt = "any text"

2 encrypted = rot13(txt)

3 decrypted = rot13(encrypted)

4 assert decrypted == text

Exercise: Combine lists
1 Tomato=78

2 Avocado=23

3 Pumpkin=100

1 Cucumber=17

2 Avocado=10

3 Cucumber=10

Write a script that takes the two files and combines them adding the
values for each vegetable. The expected result is:

1 Avocado=33

2 Cucumber=27

3 Pumpkin=100

4 Tomato=78

Solution: count numbers

https://en.wikipedia.org/wiki/ROT13

 1 import sys

 2

 3 if len(sys.argv) < 2:

 4 exit("Need name of file.")

 5

 6 counter = [0] * 10

 7 filename = sys.argv[1]

 8 with open(filename) as fh:

 9 for line in fh:

10 for c in line.rstrip("\n"):

11 if c == ' ':

12 continue

13

14 c = int(c)

15 counter[c] += 1

16

17 for i in range(10):

18 print("{} {}".format(i, counter[i]))

Solution: strip newlines
1 import sys

2 filename = sys.argv[0]

3 with open(filename) as fh:

4 lines = []

5 for line in fh:

6 lines.append(line.rstrip("\n"))

7 print(lines)

Solution: color selector
 1 def main():

 2 try:

 3 with open('colors.txt') as fh:

 4 colors = []

 5 for line in fh:

 6 colors.append(line.rstrip("\n"))

 7 except IOError:

 8 print("Could not open colors.txt")

 9 exit()

10

11 for i in range(len(colors)):

12 print("{}) {}".format(i, colors[i]))

13

14 c = int(input("Select color: "))

15 print(colors[c])

16

17 main()

Solution: Combine lists
 1 a_names = []

 2 a_values = []

 3 with open('examples/files/a.txt') as fh:

 4 for line in fh:

 5 k, v = line.rstrip("\n").split("=")

 6 a_names.append(k)

 7 a_values.append(int(v))

 8

 9 b_names = []

10 b_values = []

11 with open('examples/files/b.txt') as fh:

12 for line in fh:

13 k, v = line.rstrip("\n").split("=")

14 b_names.append(k)

15 b_values.append(int(v))

16

17 c_names = []

18 c_values = []

19

20 for i in range(len(a_names)):

21 if a_names[i] in c_names:

22 j = c_names.index(a_names[i])

23 c_values[j] += a_values[i]

24 else:

25 c_names.append(a_names[i])

26 c_values.append(a_values[i])

27

28 for i in range(len(b_names)):

29 if b_names[i] in c_names:

30 j = c_names.index(b_names[i])

31 c_values[j] += b_values[i]

32 else:

33 c_names.append(b_names[i])

34 c_values.append(b_values[i])

35

36

37 with open('out.txt', 'w') as fh:

38 for i in range(len(c_names)):

39 fh.write("{}={}\n".format(c_names[i],

c_values[i]))

Read text file
1 filename = 'examples/files/numbers.txt'

2

3 with open(filename, 'r') as fh: # open(filename) would

be enough

4 for line in fh:

5 print(line) # duplicate newlines

6 #print(line, end="") # eliminte the trailing

newline of print

Open and read file

In some code you will encounter the following way of opening
files.
This was used before “with” was added to the language.
It is not a recommended way of opening a file as you might
easily forget
to call “close” and that might cause trouble. For example you
might loose data.
Don’t do that.

1 filename = 'examples/files/numbers.txt'

2

3 fh = open(filename, 'r')

4 for line in fh:

5 print(line) # duplicate newlines

6 fh.close()

Direct access of a line in a file
 1 names = ['Foo', 'Bar', 'Baz']

 2 for name in names:

 3 print(name)

 4 print(names[1])

 5

 6

 7 filename = 'data/README'

 8 with open(filename, 'r') as fh:

 9 for line in fh:

10 print(line)

11

12 with open(filename, 'r') as fh:

13 print(fh[2])

1 Traceback (most recent call last):

2 File "examples/files/fh_access.py", line 14, in

<module>

3 print(fh[2])

4 TypeError: '_io.TextIOWrapper' object is not

subscriptable

This does NOT work because files can only be accessed
sequentially.

Example
1 begin test

2 do something

3 report

4 total: 42

5 more things

6 more

7 another total: 100

8 more data

 1 import sys

 2 import os

 3

 4 #print(sys.argv)

 5 if len(sys.argv) < 2:

 6 #exit()

 7 exit(f"Usage: {sys.argv[0]} FILENAME")

 8

 9 # print(sys.argv[0])

10 # print(sys.argv[1])

11

12 #filename = 'sample.txt'

13

14 #filename = input("type in filename: ")

15

16 filename = sys.argv[1]

17

18 #if not os.path.exists(filename):

19 # exit(f"File {filename} does not exist")

20

21 with open(filename, 'r') as fh:

22 for line in fh:

23 line = line.rstrip("\n")

24 print(line)

25 #if "total" in line:

26 # print(line)

27

Dictionary (hash)

What is a dictionary

Unordered key-value pairs.
Keys are immutables (numbers, strings, tuples).
Values can be any object.

When to use dictionaries

ID to Name mapping.
Object to Count mapping.
Name of a feature to value of the feature.
Name of an attribute to value of the attribute.

Dictionary
 1 user = {}

 2 user['name'] = 'Foobar'

 3 print(user) # {'name': 'Foobar'}

 4

 5 user['email'] = 'foo@bar.com'

 6 print(user) # {'name': 'Foobar', 'email':

'foo@bar.com'}

 7

 8 the_name = user['name']

 9 print(the_name) # Foobar

10

11 field = 'name'

12 the_value = user[field]

13 print(the_value) # Foobar

14

15 user['name'] = 'Edith Piaf'

16 print(user) # {'name': 'Edith Piaf', 'email':

'foo@bar.com'}

keys
1 user = {

2 'fname': 'Foo',

3 'lname': 'Bar',

4 }

5

6 print(user) # {'lname': 'Bar', 'fname': 'Foo'}

7

8 print(user.keys()) # ['lname', 'fname']

Keys are returned in seemingly random order.

Loop over keys
 1 user = {

 2 'fname': 'Foo',

 3 'lname': 'Bar',

 4 }

 5

 6 for k in user.keys():

 7 print(k)

 8

 9 # lname

10 # fname

11

12 for k in user.keys():

13 print("{} -> {}".format(k, user[k]))

14

15 # lname -> Bar

16 # fname -> Foo

Loop using items
1 people = {

2 "foo" : "123",

3 "bar" : "456",

4 "qux" : "789",

5 }

6

7 for name, uid in people.items():

8 print("{} => {}".format(name, uid))

1 foo => 123

2 bar => 456

3 qux => 789

 1 user = {

 2 'fname': 'Foo',

 3 'lname': 'Bar',

 4 }

 5

 6 for t in user.items(): # returns tuples

 7 print("{} -> {}".format(t[0], t[1]))

 8 #print("{} -> {}".format(*t))

 9

10 # lname -> Bar

11 # fname -> Foo

values

Values are returned in the same random order as the keys are.

 1 user = {

 2 'fname': 'Foo',

 3 'lname': 'Bar',

 4 }

 5

 6 print(user) # {'lname': 'Bar', 'fname': 'Foo'}

 7

 8 print(user.keys()) # ['lname', 'fname']

 9

10 print(user.values()) # ['Bar', 'Foo']

Not existing key

If we try to fetch the value of a key that does not exist, we get an
exception.

 1 def main():

 2 user = {

 3 'fname': 'Foo',

 4 'lname': 'Bar',

 5 }

 6

 7 print(user['fname'])

 8 print(user['email'])

 9

10 main()

1 Foo

2 Traceback (most recent call last):

3 File "examples/dictionary/no_such_key.py", line 11, in

<module>

4 main()

5 File "examples/dictionary/no_such_key.py", line 9, in

main

6 print(user['email'])

7 KeyError: 'email'

Get key
If we use the get method, we get None if the key does not exist.

 1 user = {

 2 'fname': 'Foo',

 3 'lname': 'Bar',

 4 'address': None,

 5 }

 6

 7 print(user.get('fname'))

 8 print(user.get('address'))

 9 print(user.get('email'))

10

11 print(user.get('answer', 42))

1 Foo

2 None

3 None

4 42

None will be interpreted as False, if checked as a boolean.

Does the key exist?
 1 user = {

 2 'fname': 'Foo',

 3 'lname': 'Bar',

 4 }

 5

 6 print('fname' in user) # True

 7 print('email' in user) # False

 8 print('Foo' in user) # False

 9

10 for k in ['fname', 'email', 'lname']:

11 if k in user:

12 print("{} => {}".format(k, user[k]))

13

14 # fname => Foo

15 # lname => Bar

1 True

2 False

3 False

4 fname => Foo

5 lname => Bar

Does the value exist?
1 user = {

2 'fname': 'Foo',

3 'lname': 'Bar',

4 }

5

6 print('fname' in user.values()) # False

7 print('Foo' in user.values()) # True

1 False

2 True

Delete key
 1 user = {

 2 'fname': 'Foo',

 3 'lname': 'Bar',

 4 'email': 'foo@bar.com',

 5 }

 6

 7 print(user) # {'lname': 'Bar', 'email': 'foo@bar.com',

'fname': 'Foo'}

 8

 9 fname = user['fname']

10 del user['fname']

11 print(fname) # Foo

12 print(user) # {'lname': 'Bar', 'email': 'foo@bar.com'}

13

14 lname_was = user.pop('lname')

15 print(lname_was) # Bar

16 print(user) # {'email': 'foo@bar.com'}

1 {'fname': 'Foo', 'lname': 'Bar', 'email': 'foo@bar.com'}

2 Foo

3 {'lname': 'Bar', 'email': 'foo@bar.com'}

4 Bar

5 {'email': 'foo@bar.com'}

List of dictionaries
 1 people = [

 2 {

 3 'name' : 'Foo Bar',

 4 'email' : 'foo@example.com'

 5 },

 6 {

 7 'name' : 'Qux Bar',

 8 'email' : 'qux@example.com',

 9 'address' : 'Borg, Country',

10 'children' : [

11 'Alpha',

12 'Beta'

13]

14 }

15]

16

17 print(people)

18 print(people[0]['name'])

19 print(people[1]['children'][0])

20

21 print(list(map(lambda p: p['name'], people)))

1 [{'name': 'Foo Bar', 'email': 'foo@example.com'},

{'name': 'Qux Bar', 'email': 'qux@\

2 example.com', 'address': 'Borg, Country', 'children':

['Alpha', 'Beta']}]

3 Foo Bar

4 Alpha

5 ['Foo Bar', 'Qux Bar']

Shared dictionary
 1 people = [

 2 {

 3 "name" : "Foo",

 4 "id" : "1",

 5 },

 6 {

 7 "name" : "Bar",

 8 "id" : "2",

 9 },

10 {

11 "name" : "Moo",

12 "id" : "3",

13 },

14]

15

16 by_name = {}

17 by_id = {}

18 for p in people:

19 by_name[p['name']] = p

20 by_id[p['id']] = p

21 print(by_name)

22 print(by_id)

23

24 print(by_name["Foo"])

25 by_name["Foo"]['email'] = 'foo@weizmann.ac.il'

26 print(by_name["Foo"])

27

28 print(by_id["1"])

1 {'Foo': {'name': 'Foo', 'id': '1'}, 'Bar': {'name':

'Bar', 'id': '2'}, 'Moo': {'name\

2 ': 'Moo', 'id': '3'}}

3 {'1': {'name': 'Foo', 'id': '1'}, '2': {'name': 'Bar',

'id': '2'}, '3': {'name': 'Mo\

4 o', 'id': '3'}}

5 {'name': 'Foo', 'id': '1'}

6 {'name': 'Foo', 'id': '1', 'email': 'foo@weizmann.ac.il'}

7 {'name': 'Foo', 'id': '1', 'email': 'foo@weizmann.ac.il'}

immutable collection: tuple as dictionary key
 1 points = {}

 2 p1 = (2, 3)

 3

 4 points[p1] = 'Joe'

 5 points[(17, 5)] = 'Jane'

 6

 7 print(points)

 8 for k in points.keys():

 9 print(k)

10 print(k.__class__.__name__)

11 print(points[k])

1 {(2, 3): 'Joe', (17, 5): 'Jane'}

2 (2, 3)

3 tuple

4 Joe

5 (17, 5)

6 tuple

7 Jane

immutable numbers: numbers as dictionary
key
 1 number = {

 2 23 : "Twenty three",

 3 17 : "Seventeen",

 4 3.14 : "Three dot fourteen",

 5 42 : "The answer",

 6 }

 7

 8 print(number)

 9 print(number[42])

10 print(number[3.14])

1 {23: 'Twenty three', 17: 'Seventeen', 3.14: 'Three dot

fourteen', 42: 'The answer'}

2 The answer

3 Three dot fourteen

Sort dictionary by value
 1 scores = {

 2 'Foo' : 10,

 3 'Bar' : 34,

 4 'Miu' : 88,

 5 }

 6

 7 print(scores) # {'Miu': 88, 'Foo': 10, 'Bar': 34}

 8

 9 sorted_names = sorted(scores)

10 print(sorted_names) # ['Bar', 'Foo', 'Miu']

11 for s in sorted_names:

12 print("{} {}".format(s, scores[s]))

13

14 # sort the values, but we cannot get the keys back!

15 print(sorted(scores.values())) # [10, 34, 88]

16

17 print('')

18

19 # sort using a lambda expression

20 sorted_names = sorted(scores, key=lambda x: scores[x])

21 for k in sorted_names:

22 print("{} : {}".format(k, scores[k]))

23

24 # Foo : 10

25 # Bar : 34

26 # Miu : 88

27

28 print('')

29

30 # sort the keys according to the values:

31 sorted_names = sorted(scores, key=scores.__getitem__)

32 for k in sorted_names:

33 print("{} : {}".format(k, scores[k]))

34

35 # Foo : 10

36 # Bar : 34

37 # Miu : 88

Sort dictionary keys by value
 1 scores = {

 2 "Jane" : 30,

 3 "Joe" : 20,

 4 "George" : 30,

 5 "Hellena" : 90,

 6 }

 7

 8 for name in scores.keys():

 9 print(f"{name:8} {scores[name]}")

10

11 print('')

12 for name in sorted(scores.keys()):

13 print(f"{name:8} {scores[name]}")

14

15 print('')

16 for val in sorted(scores.values()):

17 print(f"{val:8}")

18

19 print('')

20 for name in sorted(scores.keys(), key=lambda x:

scores[x]):

21 print(f"{name:8} {scores[name]}")

 1 Jane 30

 2 Joe 20

 3 George 30

 4 Hellena 90

 5

 6 George 30

 7 Hellena 90

 8 Jane 30

 9 Joe 20

10

11 20

12 30

13 30

14 90

15

16 Joe 20

17 Jane 30

18 George 30

19 Hellena 90

Insertion Order is kept
Since Python 3.7

1 d = {}

2 d['a'] = 1

3 d['b'] = 2

4 d['c'] = 3

5 d['d'] = 4

6 print(d)

1 {'a': 1, 'b': 2, 'c': 3, 'd': 4}

Change order of keys in dictionary -
OrderedDict
 1 from collections import OrderedDict

 2

 3 d = OrderedDict()

 4 d['a'] = 1

 5 d['b'] = 2

 6 d['c'] = 3

 7 d['d'] = 4

 8

 9 print(d)

10 d.move_to_end('a')

11

12 print(d)

13 d.move_to_end('d', last=False)

14

15 print(d)

16

17 for key in d.keys():

18 print(key)

1 OrderedDict([('a', 1), ('b', 2), ('c', 3), ('d', 4)])

2 OrderedDict([('b', 2), ('c', 3), ('d', 4), ('a', 1)])

3 OrderedDict([('d', 4), ('b', 2), ('c', 3), ('a', 1)])

4 d

5 b

6 c

7 a

Set order of keys in dictionary - OrderedDict
 1 from collections import OrderedDict

 2

 3 d = {}

 4 d['a'] = 1

 5 d['b'] = 2

 6 d['c'] = 3

 7 d['d'] = 4

 8 print(d)

 9

10 planned_order = ('b', 'c', 'd', 'a')

11 e = OrderedDict(sorted(d.items(), key=lambda x:

planned_order.index(x[0])))

12 print(e)

13

14 print('-----')

15 # Create index to value mapping dictionary from a list of

values

16 planned_order = ('b', 'c', 'd', 'a')

17 plan = dict(zip(planned_order,

range(len(planned_order))))

18 print(plan)

19

20 f = OrderedDict(sorted(d.items(), key=lambda x:

plan[x[0]]))

21 print(f)

1 {'a': 1, 'b': 2, 'c': 3, 'd': 4}

2 OrderedDict([('b', 2), ('c', 3), ('d', 4), ('a', 1)])

3 -----

4 {'b': 0, 'c': 1, 'd': 2, 'a': 3}

5 OrderedDict([('b', 2), ('c', 3), ('d', 4), ('a', 1)])

Exercise: count characters
Given a long text, count how many times each character appears?

1 text = """

2 This is a very long text.

3 OK, maybe it is not that long after all.

4 """

Extra credit: Change the code so it will be able to count characters
of a file.

Exercise: count words
Part of the code:

1 words = ['Wombat', 'Rhino', 'Sloth', 'Tarantula',

'Sloth', 'Rhino', 'Sloth']

Expected output: (the order is not important)

1 Wombat:1

2 Rhino:2

3 Sloth:3

4 Tarantula:1

Exercise: count words from a file
Given a file with words and spaces and newlines only, count how
many times each word appears.

1 Lorem ipsum dolor qui ad labor ad labor sint dolor

tempor incididunt ut labor ad do\

2 lore lorem ad

3 Ut labor ad dolor lorem qui ad ut labor ut ad commodo

commodo

4 Lorem ad dolor in reprehenderit in lorem ut labor ad

dolore eu in labor dolor

5 sint occaecat ad labor proident sint in in qui labor ad

dolor ad in ad labor

Based on Lorem Ipsum

Expected result for the above file:

 1 ad 13

 2 commodo 2

 3 dolor 6

 4 dolore 2

 5 eu 1

 6 in 6

 7 incididunt 1

 8 ipsum 1

 9 labor 10

https://www.lipsum.com/

10 lorem 5

11 occaecat 1

12 proident 1

13 qui 3

14 reprehenderit 1

15 sint 3

16 tempor 1

17 ut 5

Exercise: Apache log
Every web server logs the visitors and their requests in a log file.
The Apache web server has a log file similar
to the following file. (Though I have trimmed the lines for the
exercise.) Each line is a “hit”, a request from
the browser of a visitor.

Each line starts with the IP address of the visitor. e.g. 217.0.22.3.

Given sucha a log file from Apache, report how many hits (line
were from each IP address.

 1 127.0.0.1 - - [10/Apr/2007:10:39:11] "GET / HTTP/1.1" 500

606 "-"

 2 127.0.0.1 - - [10/Apr/2007:10:39:11] "GET /favicon.ico

HTTP/1.1" 200 766 "-"

 3 139.12.0.2 - - [10/Apr/2007:10:40:54] "GET / HTTP/1.1"

500 612 "-"

 4 139.12.0.2 - - [10/Apr/2007:10:40:54] "GET /favicon.ico

HTTP/1.1" 200 766 "-"

 5 127.0.0.1 - - [10/Apr/2007:10:53:10] "GET / HTTP/1.1" 500

612 "-"

 6 127.0.0.1 - - [10/Apr/2007:10:54:08] "GET / HTTP/1.0" 200

3700 "-"

 7 127.0.0.1 - - [10/Apr/2007:10:54:08] "GET /style.css

HTTP/1.1" 200 614

 8 127.0.0.1 - - [10/Apr/2007:10:54:08] "GET /img/pti-

round.jpg HTTP/1.1" 200 17524

 9 127.0.0.1 - - [10/Apr/2007:10:54:21] "GET

/unix_sysadmin.html HTTP/1.1" 200 3880

10 217.0.22.3 - - [10/Apr/2007:10:54:51] "GET / HTTP/1.1"

200 34 "-"

11 217.0.22.3 - - [10/Apr/2007:10:54:51] "GET /favicon.ico

HTTP/1.1" 200 11514 "-"

12 217.0.22.3 - - [10/Apr/2007:10:54:53] "GET /cgi/pti.pl

HTTP/1.1" 500 617

13 127.0.0.1 - - [10/Apr/2007:10:54:08] "GET / HTTP/0.9" 200

3700 "-"

14 217.0.22.3 - - [10/Apr/2007:10:58:27] "GET / HTTP/1.1"

200 3700 "-"

15 217.0.22.3 - - [10/Apr/2007:10:58:34] "GET /unix.html

HTTP/1.1" 200 3880

16 217.0.22.3 - - [10/Apr/2007:10:58:45] "GET

/talks/read.html HTTP/1.1" 404 311

17 127.0.0.1 - - [10/Apr/2007:10:54:08] "GET /img/pti-

round.jpg HTTP/1.1" 200 17524

18 127.0.0.1 - - [10/Apr/2007:10:54:08] "GET /img/pti-

round.jpg HTTP/1.1" 200 17524

19 127.0.0.1 - - [10/Apr/2007:10:54:21] "GET

/unix_sysadmin.html HTTP/1.1" 200 3880

20 127.0.0.1 - - [10/Apr/2007:10:54:21] "GET

/unix_sysadmin.html HTTP/1.1" 200 3880

21 217.0.22.3 - - [10/Apr/2007:10:54:51] "GET / HTTP/1.1"

200 34 "-"

Expected output:

1 127.0.0.1 12

2 139.12.0.2 2

3 217.0.22.3 7

Exercise: Combine lists again
See the same exercise in the previous chapter.

Exercise: counting DNA bases
Given a sequence like this:
“ACTNGTGCTYGATRGTAGCYXGTN”,

print out the distribution of the elemnts to get the following result:

1 A 3 - 12.50 %

2 C 3 - 12.50 %

3 G 6 - 25.00 %

4 N 2 - 8.33 %

5 R 1 - 4.17 %

6 T 6 - 25.00 %

7 X 1 - 4.17 %

8 Y 2 - 8.33 %

Exercise: Count Amino Acids
Each sequence consists of many repetition of the 4 bases
represented by the ACTG characters.
There are 64 codons (sets of 3 bases following each other)
There are 22 Amino Acids each of them are represented by 3
bases.
Some of the Amino Acids can be represented in multiple ways.
For example Histidine can be encoded by both CAU, CAC)
We have a DNA sequence
Count the Amino acids form the sequence. (For our purposes
feel free to generate a DNA sequence with a random number
generator.

Exercise: List of dictionaries
Given the following file build a list of dictionaries where each
dictionary represents one person.
The keys in the dictionary are the names of the columns (fname,
lname, born) the values are the respective values from each row.

1 fname,lname,born

2 Graham,Chapman,8 January 1941

3 Eric,Idle,29 March 1943

https://en.wikipedia.org/wiki/Amino_acid

4 Terry,Gilliam,22 November 1940

5 Terry,Jones,1 February 1942

6 John,Cleese,27 October 1939

7 Michael,Palin,5 May 1943

1 print(people[1]['fname']) # Eric

Exercise: Dictinoary of dictionaries
Given the following file build a dictionary of dictionaries where
each internal dictionary represents one person.
The keys in the internal dictionaries are the names of the columns
(fname, lname, born) the values are the respective values from each
row.
In the outer dictinary the keys are the (fname, lname) tuples.

1 fname,lname,born

2 Graham,Chapman,8 January 1941

3 Eric,Idle,29 March 1943

4 Terry,Gilliam,22 November 1940

5 Terry,Jones,1 February 1942

6 John,Cleese,27 October 1939

7 Michael,Palin,5 May 1943

1 print(people[('Eric', 'Idle')]['born']) # 29 March 1943

Solution: count characters
 1 text = """

 2 This is a very long text.

 3 OK, maybe it is not that long after all.

 4 """

 5

 6 # print(text)

 7 count = {}

 8

 9 for char in text:

10 if char == '\n':

11 continue

12 if char not in count:

13 count[char] = 1

14 else:

15 count[char] += 1

16

17 for key in sorted(count.keys()):

18 print("'{}' {}".format(key, count[key]))

We need to store the counter somewhere. We could use two
lists for that, but that would give a complex solution that runs
in O(n**2) time.
Besides, we are in the chapter about dictionaries so probably
we better use a dictionary.
In the count dictionary we each key is going to be one of the
characters and the respective value will be the number of times
it appeared.
So if out string is “aabx” then we’ll end up with

1 {

2 "a": 2,

3 "b": 1,

4 "x": 1,

5 }

The for in loop on a string will iterate over it character by
charter (even if we don’t call our variable char.
We check if the current character is a newline \n and if it we
call continue to skip the rest of the iteration. We don’t want to
count newlines.
Then we check if we have already seen this character. That is,
it is already one of the keys in the count dictionary. If not yet,
then we add it and put 1 as the values. After all we saw one
copy of this character. If we have already seen this character

(we get to the else part) then we increment the counter for this
character.
We are done now with the data collection.

In the second loop we go over the keys of the dictionary, that is
the characters we have encountered. We sort them in ASCII
order.
Then we print each one of them and the respective value, the
number of times the character was found.

Solution: count characters with default dict
 1 from collections import defaultdict

 2

 3 text = """

 4 This is a very long text.

 5 OK, maybe it is not that long after all.

 6 """

 7

 8 # print(text)

 9 count = defaultdict(int)

10

11 for char in text:

12 if char == '\n':

13 continue

14 count[char] += 1

15

16 for key in sorted(count.keys()):

17 print("'{}' {}".format(key, count[key]))

The previous solution can be slightly improved by using
defaultdict from the collections module.
count = defaultdict(int) creates an empty dictionary that
has the special feature that if you try to use a key that does not
exists, it pretends that it exists and that it has a value 0.

This allows us to remove the condition checking if the
character was already seen and just increment the counter. The
first time we encounter a charcter the dictionary will pretend
that it was already there with value 0 so everying will work out
nicely.

Solution: count words
 1 words = ['Wombat', 'Rhino', 'Sloth', 'Tarantula',

'Sloth', 'Rhino', 'Sloth']

 2

 3 counter = {}

 4 for word in words:

 5 if word not in counter:

 6 counter[word] = 0

 7 counter[word] += 1

 8

 9 for word in counter:

10 print("{}:{}".format(word, counter[word]))

 1 from collections import Counter

 2

 3 words = ['Wombat', 'Rhino', 'Sloth', 'Tarantula',

'Sloth', 'Rhino', 'Sloth']

 4

 5 cnt = Counter()

 6 for word in words:

 7 cnt[word] += 1

 8

 9 print(cnt)

10 for w in cnt.keys():

11 print("{}:{}".format(w, cnt[w]))

 1 from collections import defaultdict

 2

 3 words = ['Wombat', 'Rhino', 'Sloth', 'Tarantula',

'Sloth', 'Rhino', 'Sloth']

 4

 5 dd = defaultdict(lambda : 0)

 6 for word in words:

 7 dd[word] += 1

 8

 9 print(dd)

10 for word in dd.keys():

11 print("{}:{}".format(word, dd[word]))

Solution: count words in file
 1 import sys

 2

 3 filename = 'README'

 4 if len(sys.argv) > 1:

 5 filename = sys.argv[1]

 6 print(filename)

 7

 8 count = {}

 9

10 with open(filename) as fh:

11 for full_line in fh:

12 line = full_line.rstrip('\n')

13 line = line.lower()

14 for word in line.split():

15 if word == '':

16 continue

17 if word not in count:

18 count[word] = 0

19

20 count[word] += 1

21

22 for word in sorted(count):

23 print("{:13} {:>2}".format(word, count[word]))

Solution: Apache log
 1 filename = 'examples/apache_access.log'

 2

 3 count = {}

 4

 5 with open(filename) as fh:

 6 for line in fh:

 7 space = line.index(' ')

 8 ip = line[0:space]

 9 if ip in count:

10 count[ip] += 1

11 else:

12 count[ip] = 1

13

14 for ip in count:

15 print("{:16} {:>3}".format(ip, count[ip]))

Solution: Combine lists again
 1 c = {}

 2 with open('examples/files/a.txt') as fh:

 3 for line in fh:

 4 k, v = line.rstrip("\n").split("=")

 5 if k in c:

 6 c[k] += int(v)

 7 else:

 8 c[k] = int(v)

 9

10 with open('examples/files/b.txt') as fh:

11 for line in fh:

12 k, v = line.rstrip("\n").split("=")

13 if k in c:

14 c[k] += int(v)

15 else:

16 c[k] = int(v)

17

18

19 with open('out.txt', 'w') as fh:

20 for k in sorted(c.keys()):

21 fh.write("{}={}\n".format(k, c[k]))

Solution: counting DNA bases
 1 seq = "ACTNGTGCTYGATRGTAGCYXGTN"

 2 count = {}

 3 for c in seq:

 4 if c not in count:

 5 count[c] = 0

 6 count[c] += 1

 7

 8 for c in sorted(count.keys()):

 9 print("{} {} - {:>5.2f} %".format(c, count[c], 100 *

count[c]/len(seq)))

10

11 # >5 is the right alignment of 5 places

12 # .2f is the floating point with 2 digits after the

floating point

Solution: Count Amino Acids
Generate random DNA sequence

 1 import sys

 2 import random

 3

 4 if len(sys.argv) != 2:

 5 exit("Need a number")

 6 count = int(sys.argv[1])

 7

 8 dna = []

 9 for _ in range(count):

10 dna.append(random.choice(['A', 'C', 'T', 'G']))

11 print(''.join(dna))

 1 dna = 'CACCCATGAGATGTCTTAACGCTGCTTTCATTATAGCCG'

 2

 3 aa_by_codon = {

 4 'ACG' : '?',

 5 'CAC' : 'Histidin',

 6 'CAU' : 'Histidin',

 7 'CCA' : 'Proline',

 8 'CCG' : 'Proline',

 9 'GAT' : '?',

10 'GTC' : '?',

11 'TGA' : '?',

12 'TTA' : '?',

13 'CTG' : '?',

14 'CTT' : '?',

15 'TCA' : '?',

16 'TAG' : '?',

17 #...

18 }

19

20 count = {}

21

22 for i in range(0, len(dna)-2, 3):

23 codon = dna[i:i+3]

24 #print(codon)

25 aa = aa_by_codon[codon]

26 if aa not in count:

27 count[aa] = 0

28 count[aa] += 1

29

30 for aa in sorted(count.keys()):

31 print("{} {}".format(aa, count[aa]))

Loop over dictionary keys
Looping over the “dictionary” is just like looping over the keys.

 1 user = {

 2 'fname': 'Foo',

 3 'lname': 'Bar',

 4 }

 5

 6 for k in user:

 7 print("{} -> {}".format(k, user[k]))

 8

 9 # lname -> Bar

10 # fname -> Foo

Do not change dictionary in loop
 1 user = {

 2 'fname': 'Foo',

 3 'lname': 'Bar',

 4 }

 5

 6 for k in user.keys():

 7 user['email'] = 'foo@bar.com'

 8 print(k)

 9

10 print('-----')

11

12 for k in user:

13 user['birthdate'] = '1991'

14 print(k)

15

16 # lname

17 # fname

18 # -----

19 # lname

20 # Traceback (most recent call last):

21 # File "examples/dictionary/change_in_loop.py", line

13, in <module>

22 # for k in user:

23 # RuntimeError: dictionary changed size during iteration

Default Dict
1 counter = {}

2

3 word = 'eggplant'

4

5 counter[word] += 1

6 # counter[word] = counter[word] + 1

1 Traceback (most recent call last):

2 File "counter.py", line 5, in <module>

3 counter[word] += 1

4 KeyError: 'eggplant'

1 counter = {}

2

3 word = 'eggplant'

4

5 if word not in counter:

6 counter[word] = 0

7 counter[word] += 1

8

9 print(counter)

1 {'eggplant': 1}

1 from collections import defaultdict

2

3 counter = defaultdict(int)

4

5 word = 'eggplant'

6

7 counter[word] += 1

8

9 print(counter)

1 defaultdict(<class 'int'>, {'eggplant': 1})

Sets

sets

Sets in Python are used when we are primarily interested in
operations that we know from the sets theory.
See also the Venn diagrams.
In day to day speach we often use the word “group” instead of
“set” even though they are not the same.
What are the common elements of two set (two groups).
Is one group (set) the subset of the other?
What are all the elements that exist in both groups (sets)?
What are the elements that exist in exactly one of the groups
(sets)?

set operations

set
issubset
intersection
symmetric difference
union
relative complement

stdtypes: set

set intersection

https://en.wikipedia.org/wiki/Set_(mathematics)
https://en.wikipedia.org/wiki/Venn_diagram
http://docs.python.org/library/stdtypes.html#set

1 english = set(['door', 'car', 'lunar', 'era'])

2 spanish = set(['era', 'lunar', 'hola'])

3

4 print('english: ', english)

5 print('spanish: ', spanish)

6

7 both = english.intersection(spanish)

8 print(both)

intersection returns the elements that are in both sets.

1 english: {'car', 'lunar', 'era', 'door'}

2 spanish: {'lunar', 'era', 'hola'}

3 {'lunar', 'era'}

set subset
1 english = set(['door', 'car', 'lunar', 'era'])

2 spanish = set(['era', 'lunar', 'hola'])

3

4 words = set(['door', 'lunar'])

5

6

7 print('issubset: ', words.issubset(english))

8 print('issubset: ', words.issubset(spanish))

intersection returns the elements that are in both sets.

1 issubset: True

2 issubset: False

set symmetric difference
1 english = set(['door', 'car', 'lunar', 'era'])

2 spanish = set(['era', 'lunar', 'hola'])

3

4 diff = english.symmetric_difference(spanish)

5 print('symmetric_difference: ', diff)

Symmetric diffeerence is all the elements in either one of the
sets, but not in both. “the ears of the elephant”.

1 symmetric_difference: {'door', 'hola', 'car'}

set union
1 english = set(['door', 'car', 'lunar', 'era'])

2 spanish = set(['era', 'lunar', 'hola'])

3

4 all_the_words = english.union(spanish)

5

6 print(english)

7 print(spanish)

8 print(all_the_words)

1 {'era', 'door', 'lunar', 'car'}

2 {'era', 'hola', 'lunar'}

3 {'era', 'door', 'car', 'hola', 'lunar'}

set relative complement
 1 english = set(['door', 'car', 'lunar', 'era'])

 2 spanish = set(['era', 'lunar', 'hola'])

 3

 4

 5 eng = english - spanish

 6 spa = spanish - english

 7

 8 print(spa)

 9 print(eng)

10

11 print(english)

12 print(spanish)

1 {'hola'}

2 {'door', 'car'}

3 {'door', 'era', 'car', 'lunar'}

4 {'hola', 'era', 'lunar'}

set examples
1 things = set(['table', 'chair', 'door', 'chair',

'chair'])

2 print(things)

3 print(things.__class__)

4 print(things.__class__.__name__)

5

6 if 'table' in things:

7 print("has table")

1 {'door', 'chair', 'table'}

2 <class 'set'>

3 set

4 has table

defining an empty set
1 objects = set()

2 print(objects)

1 set()

1 set([])

Adding an element to a set (add)
 1 objects = set()

 2 print(objects)

 3

 4 objects.add('Mars')

 5 print(objects)

 6

 7 objects.add('Mars')

 8 print(objects)

 9

10 objects.add('Neptun')

11 print(objects)

1 set()

2 {'Mars'}

3 {'Mars'}

4 {'Neptun', 'Mars'}

In Python 2:

1 set([])

2 set(['Mars'])

3 set(['Mars'])

4 set(['Neptun', 'Mars'])

Merging one set into another set (update)
1 set(['Neptun', 'Mars'])

2

3

4 objects = set(['Mars', 'Jupiter', 'Saturn'])

5 internal = set(['Mercury', 'Venus', 'Earth', 'Mars'])

6

7 objects.update(internal)

8 print(objects)

9 print(internal)

1 {'Mars', 'Jupiter', 'Earth', 'Mercury', 'Saturn',

'Venus'}

2 {'Mars', 'Earth', 'Mercury', 'Venus'}

Functions (subroutines)

Defining simple function
1 def add(x, y):

2 z = x + y

3 return z

4

5 a = add(2, 3)

6 print(a) # 5

7

8 q = add(23, 19)

9 print(q) # 42

The function definition starts with the word “dev” followed by
the name of the function (“add” in our example), followed by
the list of parameters
in a pair of parentheses, followed by a colon “:”. Then the
body of the function is indented to the right. The depth of
indentation does not matter
but it must be the same for all the lines of the function. When
we stop the indentation and start a new expression on the first
column, that’s what tells
Python that the function defintion has ended.

Defining a function
 1 def sendmail(From, To, Subject, Content):

 2 print('From:', From)

 3 print('To:', To)

 4 print('Subject:', Subject)

 5 print('')

 6 print(Content)

 7

 8 sendmail('gabor@szabgab.com',

 9 'szabgab@gmail.com',

10 'self message',

11 'Has some content too')

Positional parameters.

Parameters can be named
 1 def sendmail(From, To, Subject, Content):

 2 print('From:', From)

 3 print('To:', To)

 4 print('Subject:', Subject)

 5 print('')

 6 print(Content)

 7

 8 sendmail(

 9 Subject = 'self message',

10 Content = 'Has some content too',

11 From = 'gabor@szabgab.com',

12 To = 'szabgab@gmail.com',

13)

The parameters of every function can be passed either as
positional parameters or as named parameters.

Mixing positional and named parameters

 1 def sendmail(From, To, Subject, Content):

 2 print('From:', From)

 3 print('To:', To)

 4 print('Subject:', Subject)

 5 print('')

 6 print(Content)

 7

 8 sendmail(

 9 Subject = 'self message',

10 Content = 'Has some content too',

11 To = 'szabgab@gmail.com',

12 'gabor@szabgab.com',

13)

 1 def sendmail(From, To, Subject, Content):

 2 print('From:', From)

 3 print('To:', To)

 4 print('Subject:', Subject)

 5 print('')

 6 print(Content)

 7

 8 sendmail(

 9 'gabor@szabgab.com',

10 Subject = 'self message',

11 Content = 'Has some content too',

12 To = 'szabgab@gmail.com',

13)

1 File

"examples/functions/named_and_positional_params.py", line

14

2 'gabor@szabgab.com',

3 ^

4 SyntaxError: positional argument follows keyword argument

Default values
 1 def prompt(question, retry=3):

 2 while retry > 0:

 3 inp = input('{} ({}): '.format(question, retry))

 4 if inp == 'my secret':

 5 return True

 6 retry -= 1

 7 return False

 8

 9 print(prompt("Type in your password"))

10

11 print(prompt("Type in your secret", 1))

Function parameters can have default values. In such case the
parameters are optional.
In the function declaration, the parameters with the default
values must come last.
In the call, the order among these arguments does not matter,
and they are optional anyway.

Several defaults, using names

Parameters with defaults must come at the end of the parameter
declaration.

 1 def f(a, b=2, c=3):

 2 print(a, b , c)

 3

 4 f(1) # 1 2 3

 5 f(1, b=0) # 1 0 3

 6 f(1, c=0) # 1 2 0

 7 f(1, c=0, b=5) # 1 5 0

 8

 9 # f(b=0, 1)

10 # would generate:

11 # SyntaxError: non-keyword arg after keyword arg

12

13 f(b=0, a=1) # 1 0 3

There can be several parameters with default values.
They are all optional and can be given in any order after the
positional arguments.

Arbitrary number of arguments *

The values arrive as tuple.

 1 def mysum(*numbers):

 2 print(numbers)

 3 total = 0

 4 for s in numbers:

 5 total += s

 6 return total

 7

 8 print(mysum(1))

 9 print(mysum(1, 2))

10 print(mysum(1, 1, 1))

11

12 x = [2, 3, 5, 6]

13 print(mysum(*x))

1 (1,)

2 1

3 (1, 2)

4 3

5 (1, 1, 1)

6 3

Fixed parmeters before the others

The *numbers argument can be preceded by any number of
regular arguments

 1 def mysum(op, *numbers):

 2 print(numbers)

 3 if op == '+':

 4 total = 0

 5 elif op == '*':

 6 total = 1

 7 else:

 8 raise Exception('invalid operator {}'.format(op))

 9

10 for s in numbers:

11 if op == '+':

12 total += s

13 elif op == '*':

14 total *= s

15

16 return total

17

18 print(mysum('+', 1))

19 print(mysum('+', 1, 2))

20 print(mysum('+', 1, 1, 1))

21 print(mysum('*', 1, 1, 1))

1 (1,)

2 1

3 (1, 2)

4 3

5 (1, 1, 1)

6 3

7 (1, 1, 1)

8 1

Arbitrary key-value pairs in parameters **
1 def f(**kw):

2 print(kw)

3

4 f(a = 23, b = 12)

1 {'a': 23, 'b': 12}

Extra key-value pairs in parameters
1 def f(name, **kw):

2 print(name)

3 print(kw)

4

5 f(name="Foo", a = 23, b = 12)

6

7 # Foo

8 # {'a': 23, 'b': 12}

1 Foo

2 {'a': 23, 'b': 12}

Every parameter option
 1 def f(op, count = 0, *things, **kw):

 2 print(op)

 3 print(count)

 4 print(things)

 5 print(kw)

 6

 7 f(2, 3, 4, 5, a = 23, b = 12)

 8

 9 # 2

10 # 3

11 # (4, 5)

12 # {'a': 23, 'b': 12}

Duplicate declaration of functions (multiple
signatures)

 1 def add(x, y):

 2 return x*y

 3

 4 print(add(2, 3)) # 6

 5

 6 def add(x):

 7 return x+x

 8

 9 # add(2, 3)

10 # TypeError: add() takes exactly 1 argument (2 given)

11

12 print(add(2)) # 4

The second declaration silently overrides the first declaration.

pylint can find such problems, along with a bunch of others.

Recursive factorial
1 n! = n * (n-1) ... * 1

2

3 0! = 1

4 n! = n * (n-1)!

5

6 f(0) = 1

7 f(n) = n * f(n-1)

1 def f(n):

2 if n == 0:

3 return 1

4 return n * f(n-1)

5

6 print(f(1)) # 1

7 print(f(2)) # 2

8 print(f(3)) # 6

9 print(f(4)) # 24

Recursive Fibonacci

http://www.pylint.org/

1 fib(1) = 1

2 fib(2) = 1

3 fib(n) = fib(n-1) + fib(n-2)

1 def fib(n):

2 if n == 1:

3 return 1

4 if n == 2:

5 return 1

6 return fib(n-1) + fib(n-2)

7

8 print(3, fib(3)) # 2

9 print(30, fib(30)) # 832040

Python also supports recursive functions.

Non-recursive Fibonacci
 1 def fib(n):

 2 if n == 1:

 3 return [1]

 4 if n == 2:

 5 return [1, 1]

 6 fibs = [1, 1]

 7 for i in range(2, n):

 8 fibs.append(fibs[-1] + fibs[-2])

 9 return fibs

10

11 print(fib(1)) # [1]

12 print(fib(2)) # [1, 1]

13 print(fib(3)) # [1, 1, 2]

14 print(fib(10)) # [1, 1, 2, 3, 5, 8, 13, 21, 34, 55]

Unbound recursion

In order to protect us from unlimited recursion, Python limits
the depth of recursion:

1 def recursion(n):

2 print(f"In recursion {n}")

3 recursion(n+1)

4

5 recursion(1)

 1 ...

 2 In recursion 995

 3 In recursion 996

 4 Traceback (most recent call last):

 5 File "recursion.py", line 7, in <module>

 6 recursion(1)

 7 File "recursion.py", line 5, in recursion

 8 recursion(n+1)

 9 File "recursion.py", line 5, in recursion

10 recursion(n+1)

11 File "recursion.py", line 5, in recursion

12 recursion(n+1)

13 [Previous line repeated 992 more times]

14 File "recursion.py", line 4, in recursion

15 print(f"In recursion {n}")

16 RecursionError: maximum recursion depth exceeded while

calling a Python object

Variable assignment and change - Immutable
Details showed on the next slide

 1 a = 42 # number or string

 2 b = a # This is a copy

 3 print(a) # 42

 4 print(b) # 42

 5 a = 1

 6 print(a) # 1

 7 print(b) # 42

 8

 9 a = (1, 2) # tuple

10 b = a # this is a copy

11 print(a) # (1, 2)

12 print(b) # (1, 2)

13 # a[0] = 42 TypeError: 'tuple' object does not support

item assignment

14 a = (3, 4, 5)

15 print(a) # (3, 4, 5)

16 print(b) # (1, 2)

Variable assignment and change - Mutable
 1 a = [5, 6]

 2 b = a # this is a copy of the *reference* only

 3 # if we change the list in a, it will

 4 # change the list connected to b as well

 5 print(a) # [5, 6]

 6 print(b) # [5, 6]

 7 a[0] = 1

 8 print(a) # [1, 6]

 9 print(b) # [1, 6]

10

11

12 a = {'name' : 'Foo'}

13 b = a # this is a copy of the *reference* only

14 # if we change the dictionary in a, it will

15 # change the dictionary connected to b as

well

16 print(a) # {'name' : 'Foo'}

17 print(b) # {'name' : 'Foo'}

18 a['name'] = 'Jar Jar'

19 print(a) # {'name' : 'Jar Jar'}

20 print(b) # {'name' : 'Jar Jar'}

Parameter passing of functions
1 x = 3

2

3 def inc(n):

4 n += 1

5 return n

6

7 print(x) # 3

8 print(inc(x)) # 4

9 print(x) # 3

Passing references
 1 numbers = [1, 2, 3]

 2

 3 def update(x):

 4 x[0] = 23

 5

 6 def change(y):

 7 y = [5, 6]

 8 return y

 9

10 print(numbers) # [1, 2, 3]

11

12 update(numbers)

13 print(numbers) # [23, 2, 3]

14

15 print(change(numbers)) # [5, 6]

16 print(numbers) # [23, 2, 3]

Function documentation
 1 def f(name):

 2 """

 3 The documentation

 4 should have more than one lines.

 5 """

 6 print(name)

 7

 8

 9 f("hello")

10 print(f.__doc__)

Immediately after the definition of the function, you can add a
string - it can be a “”” string to spread multiple lines -
that will include the documentation of the function. This string

can be accessed via the doc (2+2 underscores) attribute
of the function. Also, if you ‘import’ the file - as a module - in
the interactive prompt of Python, you will be
able to read this documentation via the help() function.
help(mydocs) or help(mydocs.f)
in the above case.

Sum ARGV
 1 import sys

 2

 3 def mysum(*numbers):

 4 print(numbers)

 5 total = 0

 6 for s in numbers:

 7 total += s

 8 return total

 9

10 v = [int(x) for x in sys.argv[1:]]

11 r = mysum(*v)

12 print(r)

Copy-paste code
 1 a = [2, 3, 93, 18]

 2 b = [27, 81, 11, 35]

 3 c = [32, 105, 1]

 4

 5 total_a = 0

 6 for v in a:

 7 total_a += v

 8 print("sum of a: {} average of a: {}".format(total_a,

total_a / len(a)))

 9

10 total_b = 0

11 for v in b:

12 total_b += v

13 print("sum of b: {} average of b: {}".format(total_b,

total_b / len(b)))

14

15 total_c = 0

16 for v in c:

17 total_c += v

18 print("sum of c: {} average of c: {}".format(total_c,

total_c / len(a)))

1 sum of a: 116 average of a: 29.0

2 sum of b: 154 average of b: 38.5

3 sum of c: 138 average of c: 34.5

Did you notice the bug?

Copy-paste code fixed
 1 a = [2, 3, 93, 18]

 2 b = [27, 81, 11, 35]

 3 c = [32, 105, 1]

 4

 5 def calc(numbers):

 6 total = 0

 7 for v in numbers:

 8 total += v

 9 return total, total / len(numbers)

10

11 total_a, avg_a = calc(a)

12 print("sum of a: {} average of a: {}".format(total_a,

avg_a))

13

14 total_b, avg_b = calc(b)

15 print("sum of b: {} average of b: {}".format(total_b,

avg_b))

16

17

18 total_c, avg_c = calc(c)

19 print("sum of c: {} average of c: {}".format(total_c,

avg_c))

1 sum of a: 116 average of a: 29.0

2 sum of b: 154 average of b: 38.5

3 sum of c: 138 average of c: 46.0

Copy-paste code further improvement
 1 data = {

 2 'a': [2, 3, 93, 18],

 3 'b': [27, 81, 11, 35],

 4 'c': [32, 105, 1],

 5 }

 6

 7 def calc(numbers):

 8 total = 0

 9 for v in numbers:

10 total += v

11 return total, total / len(numbers)

12

13 total = {}

14 avg = {}

15 for name, numbers in data.items():

16 total[name], avg[name] = calc(numbers)

17 print("sum of {}: {} average of {}: {}".format(name,

total[name], name, avg[name]\

18))

Palindrome
An iterative and a recursive solution

 1 def is_palindrome(s):

 2 if s == '':

 3 return True

 4 if s[0] == s[-1]:

 5 return is_palindrome(s[1:-1])

 6 return False

 7

 8 def iter_palindrome(s):

 9 for i in range(0, int(len(s) / 2)):

10 if s[i] != s[-(i+1)]:

11 return False

12 return True

13

14 print(is_palindrome('')) # True

15 print(is_palindrome('a')) # True

16 print(is_palindrome('ab')) # False

17 print(is_palindrome('aa')) # True

18 print(is_palindrome('aba')) # True

19 print(is_palindrome('abc')) # False

20

21 print()

22 print(iter_palindrome('')) # True

23 print(iter_palindrome('a')) # True

24 print(iter_palindrome('ab')) # False

25 print(iter_palindrome('aa')) # True

26 print(iter_palindrome('aba')) # True

27 print(iter_palindrome('abc')) # False

Exercise: statistics
Write a function that will accept any number of numbers and return
a list of values:

The sum
Average
Minimum
Maximum

Exercise: recursive
Give a bunch of files that has list of requirement in them.
Process them recursively and print the resulting full list of
requirements

1 b

2 c

3 d

1 e

2 d

1 f

2 g

 1 $ python traversing_dependency_tree.py a

 2

 3 Processing a

 4 Processing b

 5 Processing e

 6 Processing d

 7 Processing c

 8 Processing f

 9 Processing g

10 Processing d

Exercise: Tower of Hanoi
Tower of Hanoi

Exercise: Merge and Bubble sort
Implement bubble sort
Implement merge sort

Solution: statistics
 1 def stats(*numbers):

 2 total = 0

 3

 4 average = None # there might be better solutions

here!

 5 minx = None

 6 maxx = None

 7

 8 for val in numbers:

https://en.wikipedia.org/wiki/Tower_of_Hanoi
https://en.wikipedia.org/wiki/Bubble_sort
https://en.wikipedia.org/wiki/Merge_sort

 9 total += val

10 if minx == None:

11 minx = maxx = val

12 if minx > val:

13 minx = val

14 if maxx < val:

15 maxx = val

16

17 if len(numbers):

18 average = total / len(numbers)

19

20

21 return total, average, minx, maxx

22

23

24 ttl, avr, smallest, largest = stats(3, 5, 4)

25

26 print(ttl)

27 print(avr)

28 print(smallest)

29 print(largest)

Solution: recursive
 1 import sys

 2 import os

 3

 4 if len(sys.argv) < 2:

 5 exit("Usage: {} NAME".format(sys.argv[0]))

 6

 7 start = sys.argv[1]

 8

 9 def get_dependencies(name):

10 print("Processing {}".format(name))

11

12 deps = set(name)

13 filename = name + ".txt"

14 if not os.path.exists(filename):

15 return deps

16

17 with open(filename) as fh:

18 for line in fh:

19 row = line.rstrip("\n")

20 deps.add(row)

21 deps.update(get_dependencies(row))

22

23 return deps

24

25 dependencies = get_dependencies(start)

26 print(dependencies)

Solution: Tower of Hanoi
 1 def check():

 2 for loc in hanoi.keys():

 3 if hanoi[loc] != sorted(hanoi[loc],

reverse=True):

 4 raise Exception(f"Incorrect order in {loc}:

{hanoi[loc]}")

 5

 6 def move(depth, source, target, helper):

 7 if depth > 0:

 8 move(depth-1, source, helper, target)

 9

10 val = hanoi[source].pop()

11 hanoi[target].append(val)

12 print(f"Move {val} from {source} to {target}

Status A:{str(hanoi['A']):10}\

13 B:{str(hanoi['B']):10} C:{str(hanoi['C']):10}")

14 check()

15

16 move(depth-1, helper, target, source)

17 check()

18

19 hanoi = {

20 'A': [4, 3, 2, 1],

21 'B': [],

22 'C': [],

23 }

24

25 check()

26 move(len(hanoi['A']), 'A', 'C', 'B')

27 check()

Solution: Merge and Bubble sort
 1 def recursive_bubble_sort(data):

 2 data = data[:]

 3 if len(data) == 1:

 4 return data

 5

 6 last = data.pop()

 7 sorted_data = recursive_bubble_sort(data)

 8 for i in range(len(sorted_data)):

 9 if last > sorted_data[i]:

10 sorted_data.insert(i, last)

11 break

12 else:

13 sorted_data.append(last)

14 return sorted_data

15

16 def iterative_bubble_sort(data):

17 data = data[:]

18 for end in (range(len(data)-1, 0, -1)):

19 for i in range(end):

20 if data[i] < data[i+1]:

21 data[i], data[i+1] = data[i+1], data[i]

22 return data

23

24

25 old = [1, 5, 2, 4, 8]

26 new1 = recursive_bubble_sort(old)

27 new2 = iterative_bubble_sort(old)

28 print(old)

29 print(new1)

30 print(new2)

Modules

Before modules
1 def add(a, b):

2 return a + b

3

4

5 z = add(2, 3)

6 print(z) # 5

Create modules

A module is just a Python file with a set of functions that us
usually not used by itself. For example the “my_calculator.py”.

1 def add(a, b):

2 return a + b

A user made module is loaded exactly the same way as the
built-in module.
The functions defined in the module are used as if they were
methods.

1 import my_calculator

2

3 z = my_calculator.add(2, 3)

4

5 print(z) # 5

We can import specific functions to the current name space
(symbol table) and then we don’t need to prefix it with the
name of
the file every time we use it. This might be shorter writing, but
if we import the same function name from two different
modules then they will overwrite each other. So I usually
prefer loading the module as in the previous example.

1 from my_calculator import add

2

3 print(add(2, 3)) # 5

path to load modules from - The module
search path

1. The directory where the main script is located.
2. The directories listed in PYTHONPATH environment variable.
3. Directories of standard libraries.
4. Directories listed in .pth files.
5. The site-packages home of third-party extensions.

sys.path - the module search path
1 import sys

2

3 print(sys.path)

1 ['/Users/gabor/work/training/python/examples/package',

2 '/Users/gabor/python/lib/python2.7/site-packages/crypto-

1.1.0-py2.7.egg',

3 ...

4 '/Library/Python/2.7/site-packages',

'/usr/local/lib/python2.7/site-packages']

5 [Finished in 0.112s]

Flat project directory structure

If our executable scripts and our modules are all in the same
directory then we don’t have to worry ad the directory of the
script is included in the list of places
where “import” is looking for the files to be imported.

1 project/

2 script_a.py

3 script_b.py

4 my_module.py

Absolute path

If we would like to load a module that is not installed in one of
the standard locations, but we know where it is located on our
disk,
we can set the “sys.path” to the absolute path to this directory.
This works on the specific computer, but if you’d like to
distribute
the script to other computers you’ll have to make sure the
module to be loaded is installed in the same location or you’ll
have to update the script to point to the location of the module
in each computer. Not an ideal solution.

1 import sys

2 sys.path.insert(0, "/home/foobar/python/libs")

3

4 # import module_name

Relative path
1 ../project_root/

2 bin/relative_path.py

3 lib/my_module.py

We can use a directory structure that is more complex than the
flat structure we had earlier. In this case the location of the
modules relatively to the scripts

is fixed. In this case it is “../lib”. We can compute the relative
path in each of our scripts. That will ensure we pick up the
right module every time we run the script.
Regardless of the location of the whole project tree.

1 print("Importing my_module")

 1 import os, sys

 2

 3 # import my_module # ImportError: No module named

my_module

 4

 5 print(__file__) # examples/sys/bin/relative_path.py

 6 project_root =

os.path.dirname(os.path.dirname(os.path.abspath(__file__)))

 7

 8 mypath = os.path.join(project_root, 'lib')

 9 print(mypath) #

/Users/gabor/work/training/python/examples/sys/../lib

10 sys.path.insert(0, mypath)

11

12 import my_module # Importing my_module

Python modules are compiled
When libraries are loaded they are automatically compiled to .pyc
files.
This provides moderate code-hiding and load-time speed-up. Not
run-time speed-up.
Starting from Python 3.2 the pyc files are saved in the __pycache__
directory.

How “import” and “from” work?
1. Find the file to load.
2. Compile to bytecode if necessary and save the bytecode if

possible.
3. Run the code of the file loaded.
4. Copy names from the imported module to the importing

namespace.

Runtime loading of modules
1 def hello():

2 print("Hello World")

3

4 print("Loading mygreet")

1 print("Start running") # Start running

2

3 import mygreet # Loading mygreet

4

5 mygreet.hello() # Hello World

6

7 print("DONE") # DONE

Conditional loading of modules
 1 import random

 2

 3 print("Start running")

 4 name = input("Your name:")

 5

 6 if name == "Foo":

 7 import mygreet

 8 mygreet.hello()

 9 else:

10 print('No loading')

11

12

13 print("DONE")

Duplicate importing of functions
1 from mycalc import add

2 print(add(2, 3)) # 5

3

4 from mymath import add

5 print(add(2, 3)) # 6

6

7

8 from mycalc import add

9 print(add(2, 3)) # 5

The second declaration silently overrides the first declaration.

pylint can find such problems, along with a bunch of others.

Script or library

http://www.pylint.org/

We can have a file with all the functions implemented and then
launch the run() function only if the file was executed as a
stand-alone script.

1 def run():

2 print("run in ", __name__)

3

4 print("Name space in mymodule.py ", __name__)

5

6 if __name__ == '__main__':

7 run()

1 $ python mymodule.py

2 Name space in mymodule.py __main__

3 run in __main__

Script or library - import

If it is imported by another module then it won’t run
automatically. We have to call it manually.

1 import mymodule

2

3 print("Name space in import_mymodule.py ", __name__)

4 mymodule.run()

1 $ python import_mymodule.py

2 Name space in mymodule.py mymodule

3 Name space in import_mymodule.py __main__

4 run in mymodule

Script or library - from import
1 from mymodule import run

2

3 print("Name space in import_mymodule.py ", __name__)

4 run()

1 $ python import_from_mymodule.py

2 Name space in mymodule.py mymodule

3 Name space in import_mymodule.py __main__

4 run in mymodule

assert to verify values
1 def add(x, y):

2 return x * y

3

4 for x, y, z in [(2, 2, 4), (9, 2, 11), (2, 3, 5)]:

5 print(f"add({x}, {y}) == {z}")

6 if add(x, y) != z:

7 raise Exception(f"add({x}, {y}) != {z}")

8 #raise AssertionError

1 add(2, 2) == 4

2 add(9, 2) == 11

3 Traceback (most recent call last):

4 File "examples/functions/raise_exception.py", line 7,

in <module>

5 raise Exception(f"add({x}, {y}) != {z}")

6 Exception: add(9, 2) != 11

1 def add(x, y):

2 return x * y

3

4 for x, y, z in [(2, 2, 4), (9, 2, 11), (2, 3, 5)]:

5 print(f"add({x}, {y}) == {z}")

6 assert add(x, y) == z

1 add(2, 2) == 4

2 add(9, 2) == 11

3 Traceback (most recent call last):

4 File "examples/functions/assert.py", line 6, in

<module>

5 assert add(x, y) == z

6 AssertionError

mycalc as a self testing module
1 import mycalc

2 print(mycalc.add(19, 23))

1 $ python use_mycalc.py

2 42

 1 def test_add():

 2 print('Testing {}'.format(__file__))

 3 assert add(1, 1) == 2

 4 assert add(-1, 1) == 0

 5 # assert add(-99, 1) == 0 # AssertionError

 6

 7 def add(a, b):

 8 return a + b

 9

10 if __name__ == '__main__':

11 test_add()

1 $ python mycalc.py

2 Self testing mycalc.py

doctest
 1 def fib(n):

 2 '''

 3 Before the tests

 4 >>> fib(3)

 5 2

 6 >>> fib(10)

 7 55

 8 >>> [fib(n) for n in range(11)]

 9 [0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]

10

11 >>> fib(11)

12 89

13 After the tests

14 '''

15 values = [0, 1]

16

17 if n == 11:

18 return 'bug'

19

20 while(n > len(values) -1):

21 values.append(values[-1] + values[-2])

22 return values[n]

23

24 #if __name__ == "__main__":

25 # import doctest

26 # doctest.testmod()

1 python -m doctest fibonacci_doctest.py

 1 python examples/functions/fibonacci_doctest.py

 2

 3

 4 File ".../examples/functions/fibonacci_doctest.py", line

12, in __main__.fib

 5 Failed example:

 6 fib(11)

 7 Expected:

 8 89

 9 Got:

10 'bug'

11

12 1 items had failures:

13 1 of 4 in __main__.fib

14 ***Test Failed*** 1 failures.

doctest

Scope of import
1 def div(a, b):

2 return a/b

1 from __future__ import print_function

2 from __future__ import division

3

4 import mydiv

5

6 print(mydiv.div(3, 2)) # 1

7

8 print(3/2) # 1.5

The importing of functions, and the changes in the behavior of
the compiler are file specific.
In this case the change in the behavior of division is only
visible in the division.py script, but not in the mydiv.py
module.

Export import
from mod import a,b,_c - import ‘a’, ‘b’, and ‘_c’ from ‘mod’
from mod import * - import every name listed in all of ‘mod’
if all is available.
from mod import * - import every name that does NOT start
with _ (if all is not available)
import mod - import ‘mod’ and make every name in ‘mod’
accessible as ‘mod.a’, and ‘mod._c’

https://docs.python.org/3/library/doctest.html

 1 def a():

 2 return "in a"

 3

 4 b = "value of b"

 5

 6 def _c():

 7 return "in _c"

 8

 9 def d():

10 return "in d"

 1 from my_module import a,b,_c

 2

 3 print(a()) # in a

 4 print(b) # value of b

 5 print(_c()) # in _c

 6

 7 print(d())

 8 # Traceback (most recent call last):

 9 # File ".../examples/modules/x.py", line 7, in <module>

10 # print(d())

11 # NameError: name 'd' is not defined

 1 from my_module import *

 2

 3 print(a()) # in a

 4 print(b) # value of b

 5

 6 print(d()) # in d

 7

 8

 9 print(_c())

10

11 # Traceback (most recent call last):

12 # File ".../examples/modules/y.py", line 9, in <module>

13 # print(_c()) # in _c

14 # NameError: name '_c' is not defined

Export import with all

 1 __all__ = ['a', '_c']

 2

 3 def a():

 4 return "in a"

 5

 6 b = "value of b"

 7

 8 def _c():

 9 return "in _c"

10

11 def d():

12 return "in d"

 1 from my_module2 import *

 2

 3 print(a()) # in a

 4 print(_c()) # in _c

 5

 6 print(b)

 7

 8 # Traceback (most recent call last):

 9 # File ".../examples/modules/z.py", line 7, in <module>

10 # print(b) # value of b

11 # NameError: name 'b' is not defined

import module
1 import my_module

2

3 print(my_module.a()) # in a

4 print(my_module.b) # value of b

5 print(my_module._c()) # in _c

6 print(my_module.d()) # in d

Execute at import time
1 import lib

2

3 print("Hello")

1 print("import lib")

2

3 def do_something():

4 print("do something")

1 import lib

2 Hello

Import multiple times
1 import one

2 import two

3

4 print("Hello")

1 import common

2 print("loading one")

1 import common

2 print("loading two")

1 print("import common")

1 import common

2 loading one

3 loading two

4 Hello

Exercise: Number guessing
Take the number guessing game from the earlier chapter and move
the internal while() loop
to a function.

Once that’s done, move the function out to a separate file and use it
as a module.

Exercies: Scripts and modules
Take the number guessing game: if I run it as a script execute the
whole game with repeated hidden numbers.
If I load it as a module, then let me call the function that runs a
single game with one hidden number.
We should be able to even pass the hidden number as a parameter.

Exercise: Module my_sum
Create a file called my_simple_math.py with two functions:
div(a, b), add(a, b), that will divide and add the two
numbers respectively.
Add another two functions called test_div and test_add that
will test the above two functions using assert.
Add code that will run the tests if someone execute python
my_simple_math.py running the file as if it was a script.
Create another file called use_my_simple_math.py that will
use the functions from my_math module to calculate 2 + 5 * 7
Make sure when you run python use_my_simple_math.py the
tests won’t run.
Add documentation to the “add” and “div” functions to
examples that can be used with doctest.

Can you run the tests when the file is loaded as a module?

Exercise: Convert your script to module

Take one of your real script (from work). Create a backup
copy.
Change the script so it can be import-ed as a module and then
it won’t automatically execute anything, but that it still works
when executed as a script.
Add a new function to it called self_test and in that function
add a few test-cases to your code using ‘assert’.
Write another script that will load your real file as a module
and will run the self_test.
Let me know what are the dificulties!

Exercise: Add doctests to your own code

Pick a module from your own code and create a backup copy.
(from work)
Add a function called ‘self_test’ that uses ‘assert’ to test some
of the real functions of the module.
Add code that will run the ‘self_test’ when the file is executed
as a script.
Add documentation to one of the functions and convert the
‘assert’-based tests to doctests.
Convert the mechanism that executed the ‘self_test’ to run the
doctests as well.
Let me know what are the dificulties!

Solution: Module my_sum
 1 def div(a, b):

 2 '''

 3 >>> div(8, 2)

 4 4

 5 '''

 6 return a/b

 7

 8 def add(a, b):

 9 '''

10 >>> add(2, 2)

11 4

12 '''

13 return a * b # bug added on purpose!

14

15 def test_div():

16 assert div(6, 3) == 2

17 assert div(0, 10) == 0

18 assert div(-2, 2) == -1

19 #assert div(10, 0) == ??

20

21 def test_add():

22 assert add(2, 2) == 4

23 #assert add(1, 1) == 2

24

25

26 if __name__ == "__main__":

27 test_div()

28 test_add()

1 import my_simple_math

2 print(my_simple_math.my_sum(2, 3, 5))

3

4 print(dir(my_simple_math))

5 #my_sum_as_function.test_my_sum()

Regular Expressions

What are Regular Expressions (aka.
Regexes)?

An idea on how to match some pattern in some text.
A tool/language that is available in many places.
Has many different “dialects”
Has many different modes of processing.
The grand concept is the same.
Uses the following symbols:

1 () [] {} . * + ? ^ $ | - \ \d \s \w \A \Z \1 \2 \3

What are Regular Expressions good for?

Decide if a string is part of a larger string.
Validate the format of some value (string) (e.g. is it a decimal
number?, is it a hex?)
Find if there are repetitions in a string.
Analyze a string and fetch parts of if given some loose
description.
Cut up a string into parts.
Change parts of a string.

Examples
 1 Is the input given by the user a number?

 2

 3 (BTW which one is a number: 23, 2.3, 2.3.4, 2.4e3, abc

?)

 4

 5 Is there a word in the file that is repeated 3 or more

times?

 6

 7 Replaces all occurrences of Python or python by Java ...

 8 ... but avoid replacing Monty Python.

 9

10

11 Given a text message fetch all the phone numbers:

12 Fetch numbers that look like 09-1234567

13 then also fetch +972-2-1234567

14 and maybe also 09-123-4567

15

16

17 Check if in a given text passing your network there are

credit card numbers....

18

19

20 Given a text find if the word "password" is in it and

fetch the surrounding text.

21

22

23 Given a log file like this:

24

25 [Tue Jun 12 00:01:00 2019] - (3423) - INFO - ERROR log

restarted

26 [Tue Jun 12 09:08:17 2019] - (3423) - INFO - System

starts to work

27 [Tue Jun 13 08:07:16 2019] - (3423) - ERROR - Something

is wrong

28

29 provide statistics on how many of the different levels of

log messages

30 were seen. Separate the log messages into files.

Where can I use it ?

grep, egrep
Unix tools such as sed, awk, procmail
vi, emacs, other editors

text editors such as Multi-Edit
.NET languages: C#, C++, VB.NET
Java
Perl
Python
PHP
Ruby
…
Word, Open Office …
PCRE

grep

grep gets a regex and one or more files. It goes over line-by-
line all the files and displays the lines where the regex
matched. A few examples:

1 grep python file.xml # lines that have the string

python in them in file.xml.

2 grep [34] file.xml # lines that have either 3 or 4

(or both) in file.xml.

3 grep [34] *.xml # lines that have either 3 or 4

(or both) in every xml file.

4 grep [0-9] *.xml # lines with a digit in them.

5 egrep '\b[0-9]' *.xml # only highlight digits that are

at the beginning of a numbe\

6 r.

Regexes first match
 1 import re

 2

 3 text = 'The black cat climed'

 4 match = re.search(r'lac', text)

 5 if match:

 6 print("Matching") # Matching

 7 print(match.group(0)) # lac

 8

 9 match = re.search(r'dog', text)

10 if match:

11 print("Matching")

12 else:

13 print("Did NOT match")

14 print(match) # None

The search method returns an object or None, if it could not
find any match.
If there is a match you can call the group() method. Passing 0
to it will
return the actual substring that was matched.

Match numbers
1 import re

2

3 line = 'There is a phone number 12345 in this row and an

age: 23'

4

5 match = re.search(r'\d+', line)

6 if match:

7 print(match.group(0)) # 12345

Use raw strings for regular expression: r’a\d’. Especially because \
needs it.

\d matches a digit.
+ is a quantifier and it tells \d to match one or more digits.

It matches the first occurrence.
Here we can see that the group(0) call is much more interesting
than earlier.

Capture
 1 import re

 2

 3 line = 'There is a phone number 12345 in this row and an

age: 23'

 4

 5 match = re.search(r'age: \d+', line)

 6 if match:

 7 print(match.group(0)) # age: 23

 8

 9

10 match = re.search(r'age: (\d+)', line)

11 if match:

12 print(match.group(0)) # age: 23

13 print(match.group(1)) # 23 the first group of

parentheses

14

15 print(match.groups()) # ('23',)

16 print(len(match.groups())) # 1

Parentheses in the regular expression can enclose any sub-
expression.
Whatever this sub-expression matches will be saved and can be
accessed using the group() method.

Capture more
 1 import re

 2

 3 line = 'There is a phone number 12345 in this row and an

age: 23'

 4

 5 match = re.search(r'(\w+): (\d+)', line)

 6 if match:

 7 print(match.group(0)) # age: 23

 8 print(match.group(1)) # age the first group of

parentheses

 9 print(match.group(2)) # 23 the second group of

parentheses

10

11 # print(match.group(3)) # IndexError: no such group

12 print(match.groups()) # ('age', '23')

13 print(len(match.groups())) # 2

Some groups might match ‘’ or even not match at all, in which
case we get None
in the appropriate match.group() call and in the match.groups()
call

Capture even more
 1 import re

 2

 3 line = 'There is a phone number 12345 in this row and an

age: 23'

 4

 5 match = re.search(r'((\w+): (\d+))', line)

 6 if match:

 7 print(match.group(0)) # age: 23

 8 print(match.group(1)) # age: 23

 9 print(match.group(2)) # age

10 print(match.group(3)) # 23

11

12 print(match.groups()) # ('age: 23', 'age', '23')

13 print(len(match.groups())) # 3

findall
1 import re

2

3 line1 = 'There is a phone number 12345 in this row and

another 42 number'

4 numbers1 = re.findall(r'\d+', line1)

5 print(numbers1) # ['12345', '42']

6

7 line2 = 'There are no numbers in this row. Not even one.'

8 numbers2 = re.findall(r'\d+', line2)

9 print(numbers2) # []

re.findall returns the matched substrings.

findall with capture
 1 import re

 2

 3 line = 'There is a phone number 12345 in this row and

another 42 number'

 4 match = re.search(r'\w+ \d+', line)

 5 if match:

 6 print(match.group(0)) # number 12345

 7

 8 match = re.search(r'\w+ (\d+)', line)

 9 if match:

10 print(match.group(0)) # number 12345

11 print(match.group(1)) # 12345

12

13 matches = re.findall(r'\w+ \d+', line)

14 print(matches) # ['number 12345', 'another 42']

15

16 matches = re.findall(r'\w+ (\d+)', line)

17 print(matches) # ['12345', '42']

findall with capture more than one
 1 import re

 2

 3 line = 'There is a phone number 12345 in this row and

another 42 number'

 4 match = re.search(r'(\w+) (\d+)', line)

 5 if match:

 6 print(match.group(1)) # number

 7 print(match.group(2)) # 12345

 8

 9 matches = re.findall(r'(\w+) (\d+)', line)

10 print(matches) # [('number', '12345'), ('another',

'42')]

If there are multiple capture groups then The returned list will
consist of tuples.

Any Character
. matches any one character except newline.

For example: #.#

 1 import re

 2

 3 strings = [

 4 'abc',

 5 'text: #q#',

 6 'str: #a#',

 7 'text #b# more text',

 8 '#a and this? #c#',

 9 '#a and this? # c#',

10 '#@#',

11 '#.#',

12 '# #',

13 '##'

14 '###'

15]

16

17 for s in strings:

18 print('str: ', s)

19 match = re.search(r'#.#', s)

20 if match:

21 print('match:', match.group(0))

If re.DOTALL is given newline will be also matched.

Match dot
 1 import re

 2

 3 cases = [

 4 "hello!",

 5 "hello world.",

 6 "hello. world",

 7 ".",

 8]

 9

10 for case in cases:

11 print(case)

12 match = re.search(r'.', case) # Match any character

13 if match:

14 print(match.group(0))

15

16 print("----")

17

18 for case in cases:

19 print(case)

20 match = re.search(r'\.', case) # Match a dot

21 if match:

22 print(match.group(0))

23

24 print("----")

25

26 for case in cases:

27 print(case)

28 match = re.search(r'[.]', case) # Match a dot

29 if match:

30 print(match.group(0))

Character classes

We would like to match any string that has any of the #a#, #b#,
#c#, #d#, #e#, #f#, #@# or #.#

 1 import re

 2

 3 strings = [

 4 'abc',

 5 'text: #q#',

 6 'str: #a#',

 7 'text #b# more text',

 8 '#ab#',

 9 '#@#',

10 '#.#',

11 '# #',

12 '##'

13 '###'

14]

15

16

17 for s in strings:

18 print('str: ', s)

19 match = re.search(r'#[abcdef@.]#', s)

20 if match:

21 print('match:', match.group(0))

1 r'#[abcdef@.]#'

2 r'#[a-f@.]#'

Common characer classes
\d digit: [0-9] Use stand alone: \d or as part of a bigger
character class: [abc\d]
\w word character: [0-9a-zA-Z_]
\s white space: [\f\t\n\r] form-feed, tab, newline, carriage
return and SPACE

Negated character class

[^abc] matches any one character that is not ‘a’, not ‘b’ and
not ‘c’.
D not digit [^\d]
W not word character [^\w]
S not white space [^\s]

Optional character
Match the word color or the word colour

1 Regex: r'colou?r'

1 Input: color

2 Input: colour

3 Input: colouur

Regex 0 or more quantifier
Any line with two - -es with anything in between.

1 Regex: r'-.*-'

2 Input: "ab"

3 Input: "ab - cde"

4 Input: "ab - qqqrq -"

5 Input: "ab -- cde"

6 Input: "--"

Quantifiers
Quantifiers apply to the thing in front of them

1 r'ax*a' # aa, axa, axxa, axxxa, ...

2 r'ax+a' # axa, axxa, axxxa, ...

3 r'ax?a' # aa, axa

4 r'ax{2,4}a' # axxa, axxxa, axxxxa

5 r'ax{3,}a' # axxxa, axxxxa, ...

6 r'ax{17}a' #

axxxxxxxxxxxxxxxxxa

* 0-
+ 1-
? 0-1
 n-m
 n-
 n

Quantifiers limit
 1 import re

 2

 3 strings = (

 4 "axxxa",

 5 "axxxxa",

 6 "axxxxxa",

 7)

 8

 9 for text in strings:

10 match = re.search(r'ax{4}', text)

11 if match:

12 print("Match")

13 print(match.group(0))

14 else:

15 print("NOT Match")

Quantifiers on character classes
 1 import re

 2

 3 strings = (

 4 "-a-",

 5 "-b-",

 6 "-x-",

 7 "-aa-",

 8 "-ab-",

 9 "--",

10)

11

12 for line in strings:

13 match = re.search(r'-[abc]-', line)

14 if match:

15 print(line)

16 print('=========================')

17

18 for line in strings:

19 match = re.search(r'-[abc]+-', line)

20 if match:

21 print(line)

22 print('=========================')

23

24 for line in strings:

25 match = re.search(r'-[abc]*-', line)

26 if match:

27 print(line)

Greedy quantifiers
 1 import re

 2

 3 match = re.search(r'xa*', 'xaaab')

 4 print(match.group(0))

 5

 6 match = re.search(r'xa*', 'xabxaab')

 7 print(match.group(0))

 8

 9 match = re.search(r'a*', 'xabxaab')

10 print(match.group(0))

11

12 match = re.search(r'a*', 'aaaxabxaab')

13 print(match.group(0))

They match ‘xaaa’, ‘xa’ and ‘’ respectively.

Minimal quantifiers
 1 import re

 2

 3 match = re.search(r'a.*b', 'axbzb')

 4 print(match.group(0))

 5

 6 match = re.search(r'a.*?b', 'axbzb')

 7 print(match.group(0))

 8

 9

10 match = re.search(r'a.*b', 'axy121413413bq')

11 print(match.group(0))

12

13 match = re.search(r'a.*?b', 'axyb121413413q')

14 print(match.group(0))

Anchors

A matches the beginning of the string
Z matches the end of the string
^ matches the beginning of the row (see also re.MULTILINE)
$ matches the end of the row but will accept a trailing newline
(see also re.MULTILINE)

 1 import re

 2

 3 lines = [

 4 "text with cat in the middle",

 5 "cat with dog",

 6 "dog with cat",

 7]

 8

 9 for line in lines:

10 if re.search(r'cat', line):

11 print(line)

12

13

14 print("---")

15 for line in lines:

16 if re.search(r'^cat', line):

17 print(line)

18

19 print("---")

20 for line in lines:

21 if re.search(r'\Acat', line):

22 print(line)

23

24 print("---")

25 for line in lines:

26 if re.search(r'cat$', line):

27 print(line)

28

29 print("---")

30 for line in lines:

31 if re.search(r'cat\Z', line):

32 print(line)

 1 text with cat in the middle

 2 cat with dog

 3 dog with cat

 4 ---

 5 cat with dog

 6 ---

 7 cat with dog

 8 ---

 9 dog with cat

10 ---

11 dog with cat

Anchors on both end
 1 import re

 2

 3 strings = [

 4 "123",

 5 "hello 456 world",

 6 "hello world",

 7]

 8

 9 for line in strings:

10 if re.search(r'\d+', line):

11 print(line)

12

13 print('---')

14

15 for line in strings:

16 if re.search(r'^\d+$', line):

17 print(line)

18

19

20 print('---')

21

22 for line in strings:

23 if re.search(r'\A\d+\Z', line):

24 print(line)

1 123

2 hello 456 world

3 ---

4 123

5 ---

6 123

Match ISBN numbers
1

 1 import re

 2

 3 strings = [

 4 '99921-58-10-7',

 5 '9971-5-0210-0',

 6 '960-425-059-0',

 7 '80-902734-1-6',

 8 '85-359-0277-5',

 9 '1-84356-028-3',

10 '0-684-84328-5',

11 '0-8044-2957-X',

12 '0-85131-041-9',

13 '0-943396-04-2',

14 '0-9752298-0-X',

15

16 '0-975229-1-X',

17 '0-9752298-10-X',

18 '0-9752298-0-Y',

19 '910975229-0-X',

20 '-------------',

21 '0000000000000',

22]

23 for isbn in strings:

24 print(isbn)

25

26 if (re.search(r'^[\dX-]{13}$', isbn)):

27 print("match 1")

28

29 if (re.search(r'^\d{1,5}-\d{1,7}-\d{1,5}-[\dX]$',

isbn) and len(isbn) == 13):

30 print("match 2")

Matching a section
1 import re

2

3 text = "This is <a string> with some sections <marked>

with special characters"

4

5 m = re.search(r'<.*>', text)

6 if m:

7 print(m.group(0))

Matching a section - minimal
1 import re

2

3 text = "This is <a string> with some sections <marked>

with special characters"

4

5 m = re.search(r'<.*?>', text)

6 if m:

7 print(m.group(0))

Matching a section negated character class
1 import re

2

3 text = "This is <a string> with some sections <marked>

with special characters"

4

5 m = re.search(r'<[^>]*>', text)

6 if m:

7 print(m.group(0))

DOTALL S (single line)
if re.DOTALL is given, . will match any character. Including
newlines.

 1 import re

 2

 3 line = 'Before <div>content</div> After'

 4

 5 text = '''

 6 Before

 7 <div>

 8 content

 9 </div>

10 After

11 '''

12

13 if (re.search(r'<div>.*</div>', line)):

14 print('line');

15 if (re.search(r'<div>.*</div>', text)):

16 print('text');

17

18 print('-' * 10)

19

20 if (re.search(r'<div>.*</div>', line, re.DOTALL)):

21 print('line');

22 if (re.search(r'<div>.*</div>', text, re.DOTALL)):

23 print('text');

MULTILINE M
if re.MULTILNE is given, ^ will match beginning of line and $ will
match end of line

 1 import re

 2

 3 line = 'Start blabla End'

 4

 5 text = '''

 6 prefix

 7 Start

 8 blabla

 9 End

10 postfix

11 '''

12

13 regex = r'^Start[\d\D]*End$'

14 m = re.search(regex, line)

15 if (m):

16 print('line')

17

18 m = re.search(regex, text)

19 if (m):

20 print('text')

21

22 print('-' * 10)

23

24 m = re.search(regex, line, re.MULTILINE)

25 if (m):

26 print('line')

27

28 m = re.search(regex, text, re.MULTILINE)

29 if (m):

30 print('text')

1 line

2 ----------

3 line

4 text

1 re.MULTILINE | re.DOTALL

Two regex with logical or
All the rows with either ‘apple pie’ or ‘banana pie’ in them.

 1 import re

 2

 3 strings = [

 4 'apple pie',

 5 'banana pie',

 6 'apple'

 7]

 8

 9 for s in strings:

10 #print(s)

11 match1 = re.search(r'apple pie', s)

12 match2 = re.search(r'banana pie', s)

13 if match1 or match2:

14 print('Matched in', s)

Alternatives
Alternatives

 1 import re

 2

 3 strings = [

 4 'apple pie',

 5 'banana pie',

 6 'apple'

 7]

 8

 9 for s in strings:

10 match = re.search(r'apple pie|banana pie', s)

11 if match:

12 print('Matched in', s)

Grouping and Alternatives

Move the common part in one place and limit the alternation
to the part within the parentheses.

 1 import re

 2

 3 strings = [

 4 'apple pie',

 5 'banana pie',

 6 'apple'

 7]

 8

 9 for s in strings:

10 match = re.search(r'(apple|banana) pie', s)

11 if match:

12 print('Matched in', s)

Internal variables
 1 import re

 2

 3 strings = [

 4 'banana',

 5 'apple',

 6 'infinite loop',

 7]

 8

 9 for s in strings:

10 match = re.search(r'(.)\1', s)

11 if match:

12 print(match.group(0), 'matched in', s)

13 print(match.group(1))

More internal variables
1 (.)(.)\2\1

2

3 (\d\d).*\1

4

5 (\d\d).*\1.*\1

6

7 (.{5}).*\1

Regex DNA

DNA is built from G, A, T, C
Let’s create a random DNA sequence
Then find the longest repeated sequence in it

 1 import re

 2 import random

 3

 4 chars = ['G', 'A', 'T', 'C']

 5 dna = ''

 6 for i in range(100):

 7 dna += random.choice(chars)

 8

 9 print(dna)

10

11 '''

12 Generating regexes:

13

14 ([GATC]{1}).*\1

15 ([GATC]{2}).*\1

16 ([GATC]{3}).*\1

17 ([GATC]{4}).*\1

18 '''

19 length = 1

20 result = ''

21 while True:

22 regex = r'([GATC]{' + str(length) + r'}).*\1'

23 #print(regex)

24 m = re.search(regex, dna)

25 if m:

26 result = m.group(1)

27 length += 1

28 else:

29 break

30

31 print(result)

32 print(len(result))

Regex IGNORECASE
1 import re

2

3 s = 'Python'

4

5 if (re.search('python', s)):

6 print('python matched')

7

8 if (re.search('python', s, re.IGNORECASE)):

9 print('python matched with IGNORECASE')

Regex VERBOSE X
 1 import re

 2

 3 email = "foo@bar.com"

 4

 5 m = re.search(r'\w[\w.-]*\@([\w-]+\.)+

(com|net|org|uk|hu|il)', email)

 6 if (m):

 7 print('match')

 8

 9

10 m = re.search(r'''

11 \w[\w.-]* # username

12 \@

13 ([\w-]+\.)+ # domain

14 (com|net|org|uk|hu|il) # gTLD

15 ''', email, re.VERBOSE)

16 if (m):

17 print('match')

Substitution
 1 import re

 2

 3 line = "abc123def"

 4

 5 print(re.sub(r'\d+', ' ', line)) # "abc def"

 6 print(line) # "abc123def"

 7

 8 print(re.sub(r'x', ' y', line)) # "abc123def"

 9 print(line) # "abc123def"

10

11 print(re.sub(r'([a-z]+)(\d+)([a-z]+)', r'\3\2\1', line))

"def123abc"

12 print(re.sub(r'''

13 ([a-z]+) # letters

14 (\d+) # digits

15 ([a-z]+) # more letters

16 ''', r'\3\2\1', line, flags=re.VERBOSE)) # "def123abc"

17

18 print(re.sub(r'...', 'x', line)) # "xxx"

19 print(re.sub(r'...', 'x', line, count=1)) # "x123def"

20

21 print(re.sub(r'(.)(.)', r'\2\1', line)) #

"ba1c32edf"

22 print(re.sub(r'(.)(.)', r'\2\1', line, count=2)) #

"ba1c23def"

findall capture
If there are parentheses in the regex, it will return tuples of the
matches

 1 import re

 2

 3 line = 'There is a phone number 83795 in this row and

another 42 number'

 4 print(line)

 5

 6 search = re.search(r'(\d)(\d)', line)

 7 if search:

 8 print(search.group(1)) # 8

 9 print(search.group(2)) # 3

10

11 matches = re.findall(r'(\d)(\d)', line)

12 if matches:

13 print(matches) # [('8', '3'), ('7', '9'), ('4', '2')]

14

15 matches = re.findall(r'(\d)\D*', line)

16 if matches:

17 print(matches) # [('8', '3', '7', '9', '5', '4', '2')]

18

19 matches = re.findall(r'(\d)\D*(\d?)', line)

20 print(matches) # [('8', '3'), ('7', '9'), ('5', '4'),

('2', '')]

21

22 matches = re.findall(r'(\d).*?(\d)', line)

23 print(matches) # [('8', '3'), ('7', '9'), ('5', '4')]

24

25 matches = re.findall(r'(\d+)\D+(\d+)', line)

26 print(matches) # [('83795', '42')]

27

28 matches = re.findall(r'(\d+).*?(\d+)', line)

29 print(matches) # [('83795', '42')]

30

31 matches = re.findall(r'\d', line)

32 print(matches) # ['8', '3', '7', '9', '5', '4', '2']

Fixing dates
In the input we get dates like this
2010-7-5 but we would like to make sure we have two digits
for both days and months: 2010-07-05

 1 import re

 2

 3 def fix_date(date):

 4 return re.sub(r'-(\d)\b', r'-0\1', date)

 5

 6

 7 dates = {

 8 '2010-7-5' : '2010-07-05',

 9 '2010-07-5' : '2010-07-05',

10 '2010-07-05' : '2010-07-05',

11 '2010-7-15' : '2010-07-15',

12 }

13

14 for original in sorted(dates.keys()):

15 result = fix_date(original)

16

17 assert result == dates[original]

18

19 print(f" old: {original}")

20 print(f" new: {result}")

21 print(f" expected: {dates[original]}")

22 print("")

 1 old: 2010-07-05

 2 new: 2010-07-05

 3 expected: 2010-07-05

 4

 5 old: 2010-07-5

 6 new: 2010-07-05

 7 expected: 2010-07-05

 8

 9 old: 2010-7-15

10 new: 2010-07-15

11 expected: 2010-07-15

12

13 old: 2010-7-5

14 new: 2010-07-05

15 expected: 2010-07-05

Duplicate numbers
1 import re

2

3 text = "This is 1 string with 3 numbers: 34"

4 new_text = re.sub(r'(\d+)', r'\1\1', text)

5 print(new_text) # This is 11 string with 33 numbers:

3434

6

7 double_numbers = re.sub(r'(\d+)', lambda match: str(2 *

int(match.group(0))), text)

8 print(double_numbers) # This is 2 string with 6 numbers:

68

Remove spaces
 1 line = " ab cd "

 2

 3 res = line.lstrip(" ")

 4 print(f"'{res}'") # 'ab cd '

 5

 6 res = line.rstrip(" ")

 7 print(f"'{res}'") # ' ab cd'

 8

 9 res = line.strip(" ")

10 print(f"'{res}'") # 'ab cd'

11

12 res = line.replace(" ", "")

13 print(f"'{res}'") # 'abcd'

Replace string in assembly code
 1 mv A, R3

 2 mv R2, B

 3 mv R1, R3

 4 mv B1, R4

 5 add A, R1

 6 add B, R1

 7 add R1, R2

 8 add R3, R3

 9 add R21, X

10 add R12, Y

11 mv X, R2

 1 import sys

 2 import re

 3

 4 if len(sys.argv) != 2:

 5 exit(f"Usage: {sys.argv[0]} FILENAME")

 6

 7 filename = sys.argv[1]

 8

 9 with open(filename) as fh:

10 code = fh.read()

11

12 # assuming there are no R4 values then 4 substitutions

will do

13 code = re.sub(r'R1', 'R4', code)

14 code = re.sub(r'R3', 'R1', code)

15 code = re.sub(r'R2', 'R3', code)

16 code = re.sub(r'R4', 'R2', code)

17

18 print(code)

 1 import sys

 2 import re

 3

 4 if len(sys.argv) != 2:

 5 exit(f"Usage: {sys.argv[0]} FILENAME")

 6

 7 filename = sys.argv[1]

 8

 9 with open(filename) as fh:

10 code = fh.read()

11

12

13 # or without any assumption and in one substitution:

14 mapping = {

15 'R1' : 'R2',

16 'R2' : 'R3',

17 'R3' : 'R1',

18 }

19

20 code = re.sub(r'\b(R[123])\b', lambda match:

mapping[match.group(1)], code)

21

22 print(code)

 1 import sys

 2 import re

 3

 4 if len(sys.argv) != 2:

 5 exit(f"Usage: {sys.argv[0]} FILENAME")

 6

 7 filename = sys.argv[1]

 8

 9 with open(filename) as fh:

10 code = fh.read()

11

12

13 # or without any assumption and in one substitution:

14 mapping = {

15 'R1' : 'R2',

16 'R2' : 'R3',

17 'R3' : 'R1',

18 'R12' : 'R21',

19 'R21' : 'R12',

20 }

21

22 code = re.sub(r'\b(R1|R2|R3|R12)\b', lambda match:

mapping[match.group(1)], code)

23

24 print(code)

 1 import sys

 2 import re

 3

 4 if len(sys.argv) != 2:

 5 exit(f"Usage: {sys.argv[0]} FILENAME")

 6

 7 filename = sys.argv[1]

 8

 9 with open(filename) as fh:

10 code = fh.read()

11

12

13 # or without any assumption and in one substitution:

14 mapping = {

15 'R1' : 'R2',

16 'R2' : 'R3',

17 'R3' : 'R1',

18 'R12' : 'R21',

19 'R21' : 'R12',

20 }

21

22 regex = r'\b(' + '|'.join(mapping.keys()) + r')\b'

23

24 code = re.sub(regex, lambda match:

mapping[match.group(1)], code)

25

26 print(code)

Full example of previous
 1 import sys

 2 import os

 3 import time

 4 import re

 5

 6 if len(sys.argv) <= 1:

 7 exit(f"Usage: {sys.argv[0]} INFILEs")

 8

 9 conversion = {

10 'R1' : 'R2',

11 'R2' : 'R3',

12 'R3' : 'R1',

13 'R12' : 'R21',

14 'R21' : 'R12',

15 }

16 #print(conversion)

17

18 def replace(mapping, files):

19 regex = r'\b(' + '|'.join(mapping.keys()) + r')\b'

20 #print(regex)

21 ts = time.time()

22

23 for filename in files:

24 with open(filename) as fh:

25 data = fh.read()

26 data = re.sub(regex, lambda match:

mapping[match.group(1)], data)

27 os.rename(filename, f"{filename}.{ts}") #

backup with current timestamp

28 with open(filename, 'w') as fh:

29 fh.write(data)

30

31 replace(conversion, sys.argv[1:]);

Split with regex
1 fname = Foo

2 lname = Bar

3 email=foo@bar.com

 1 import sys

 2 import re

 3

 4 # data: field_value_pairs.txt

 5 if len(sys.argv) != 2:

 6 exit(f"Usage: {sys.argv[0]} filename")

 7

 8 filename = sys.argv[1]

 9

10 with open(filename) as fh:

11 for line in fh:

12 line = line.rstrip("\n")

13 field, value = re.split(r'\s*=\s*', line)

14 print(f"{value}={field}")

1 Foo=fname

2 Bar=lname

3 foo@bar.com=email

Exercises: Regexes part 1
Pick up a file with some text in it. Write a script (one for each item)
that prints out every line from the file
that matches the requirement. You can use the script at the end of
the page as a starting point but you will
have to change it!

has a ‘q’
starts with a ‘q’
has ‘th’
has an ‘q’ or a ‘Q’
has a ‘*’ in it
starts with an ‘q’ or an ‘Q’
has both ‘a’ and ‘e’ in it
has an ‘a’ and somewhere later an ‘e’
does not have an ‘a’
does not have an ‘a’ nor ‘e’
has an ‘a’ but not ‘e’
has at least 2 consecutive vowels (a,e,i,o,u) like in the word
“bear”
has at least 3 vowels
has at least 6 characters
has at exactly 6 characters
all the words with either ‘Bar’ or ‘Baz’ in them
all the rows with either ‘apple pie’ or ‘banana pie’ in them
for each row print if it was apple or banana pie?
Bonus: Print if the same word appears twice in the same line
Bonus: has a double character (e.g. ‘oo’)

 1 import sys

 2 import re

 3

 4 if len(sys.argv) != 2:

 5 print("Usage:", sys.argv[0], "FILE")

 6 exit()

 7

 8 filename = sys.argv[1]

 9 with open(filename, 'r') as fh:

10 for line in fh:

11 print(line, end=" ")

12

13 match = re.search(r'REGEX1', line)

14 if match:

15 print(" Matching 1", match.group(0))

16

17 match = re.search(r'REGEX2', line)

18 if match:

19 print(" Matching 2", match.group(0))

Exercise: Regexes part 2
Write functions that returns true if the given value is a

Hexadecimal number
Octal number
Binary number

Write a function that given a string it return true if the string is a
number.
As there might be several definitions of what is the number create
several solutions
one for each definition:

Non negative integer.
Integer. (Will you also allow + in front of the number or only -
?
Real number. (Do you allow .3 ? What about 2. ?
In scientific notation. (something like this: 2.123e4)

1 23

2 2.3

3 2.3.4

4 2.4e3

5 abc

Exercise: Sort SNMP numbers
Given a file with SNMP numbers (one number on every line)
print them in sorted order comparing the first number of
each SNMP number first.
If they are equal then comparing the second number, etc…

input:

1 1.2.7.6

2 4.5.7.23

3 1.2.7

4 1.12.23

5 2.3.5.7.10.8.9

6 1.2.7.5

output:

1 1.2.7

2 1.2.7.5

3 1.2.7.6

4 1.12.23

5 2.3.5.7.10.8.9

6 4.5.7.23

Exercise: parse hours log file and give report
The log file looks like this

 1 09:20 Introduction

 2 11:00 Exercises

 3 11:15 Break

 4 11:35 Numbers and strings

 5 12:30 Lunch Break

 6 13:30 Exercises

 7 14:10 Solutions

 8 14:30 Break

 9 14:40 Lists

10 15:40 Exercises

11 17:00 Solutions

12 17:30 End

13

14 09:30 Lists and Tuples

15 10:30 Break

16 10:50 Exercises

17 12:00 Solutions

18 12:30 Dictionaries

19 12:45 Lunch Break

20 14:15 Exercises

21 16:00 Solutions

22 16:15 Break

23 16:30 Functions

24 17:00 Exercises

25 17:30 End

the report should look something like this:

 1 09:20-11:00 Introduction

 2 11:00-11:15 Exercises

 3 11:15-11:35 Break

 4 11:35-12:30 Numbers and strings

 5 12:30-13:30 Lunch Break

 6 13:30-14:10 Exercises

 7 14:10-14:30 Solutions

 8 14:30-14:40 Break

 9 14:40-15:40 Lists

10 15:40-17:00 Exercises

11 17:00-17:30 Solutions

12

13 09:30-10:30 Lists and Tuples

14 10:30-10:50 Break

15 10:50-12:00 Exercises

16 12:00-12:30 Solutions

17 12:30-12:45 Dictionaries

18 12:45-14:15 Lunch Break

19 14:15-16:00 Exercises

20 16:00-16:15 Solutions

21 16:15-16:30 Break

22 16:30-17:00 Functions

23 17:00-17:30 Exercises

24

25 Break 65 minutes 6%

26 Dictionaries 15 minutes 1%

27 Exercises 340 minutes 35%

28 Functions 30 minutes 3%

29 Introduction 100 minutes 10%

30 Lists 60 minutes 6%

31 Lists and Tuples 60 minutes 6%

32 Lunch Break 150 minutes 15%

33 Numbers and strings 55 minutes 5%

34 Solutions 95 minutes 9%

Exercise: Parse ini file
An ini file has sections starting by the name of the section in square
brackets and within
each section there are key = value pairs with optional spaces
around the “=” sign.
The keys can only contain letters, numbers, underscore or dash.
In addition there can be empty lines and lines starting with # which
are comments.

Given a filename, generate a 2 dimensional hash and then print it
out.
Example ini file:

 1 # comment

 2 [alpha]

 3

 4 base = moon

 5 ship= alpha 3

 6

 7 [earth]

 8 # ?

 9 base=London

10 ship= x-wing

If you print it, it should look like this (except of the nice
formatting).

 1 {

 2 'alpha': {

 3 'base': 'moon',

 4 'ship': 'alpha 3'

 5 },

 6 'earth': {

 7 'base': 'London',

 8 'ship': 'x-wing'

 9 }

10 }

Exercise: Replace Python
1 Replace all occurrences of Python or python by Java ...

2 ... but avoid replacing Monty Python.

Exercise: Extract phone numbers
1 Given a text message fetch all the phone numbers:

2 Fetch numbers that look like 09-1234567

3 then also fetch +972-2-1234567

4 and maybe also 09-123-4567

5 This 123 is not a phone number.

Solution: Sort SNMP numbers
 1 import sys

 2

 3 def process(filename):

 4 snmps = []

 5 with open(filename) as fh:

 6 for row in fh:

 7 snmps.append({

 8 'orig': row.rstrip(),

 9 })

10 #print(snmps)

11

12 max_number_of_parts = 0

13 max_number_of_digits = 0

14 for snmp in snmps:

15 snmp['split'] = snmp['orig'].split('.')

16 max_number_of_parts = max(max_number_of_parts,

len(snmp['split']))

17 for part in snmp['split']:

18 max_number_of_digits =

max(max_number_of_digits, len(part))

19

20 padding = "{:0" + str(max_number_of_digits) + "}"

21 #print(padding)

22 for snmp in snmps:

23 padded = []

24 padded_split = snmp['split'] + ['0'] *

(max_number_of_parts - len(snmp['split\

25 ']))

26

27 for part in padded_split:

28 padded.append(padding.format(int(part)))

29 snmp['padded'] = padded

30 snmp['joined'] = '.'.join(padded)

31

32

33 #print(snmps)

34 #print(max_number_of_parts)

35 #print(max_number_of_digits)

36

37 snmps.sort(key = lambda e: e['joined'])

38 sorted_snmps = []

39 for snmp in snmps:

40 sorted_snmps.append(snmp['orig'])

41 for snmp in sorted_snmps:

42 print(snmp)

43

44 # get the max number of all the snmp parts

45 # make each snmp the same length

46 # pad each part to that length with leading 0s

47

48 if len(sys.argv) < 2:

49 exit("Usage: {} FILENAME".format(sys.argv[0]))

50 process(sys.argv[1])

Solution: parse hours log file and give report
 1 import sys

 2

 3

 4 if len(sys.argv) < 2:

 5 exit("Usage: {} FILENAME".format(sys.argv[0]))

 6

 7

 8

 9 data = {}

10

11 def read_file(filename):

12 entries = []

13 with open(filename) as fh:

14 for row in fh:

15 row = row.rstrip("\n")

16 if row == '':

17 process_day(entries)

18 entries = []

19 continue

20 #print(row)

21 time, title = row.split(" ", 1)

22 #print(time)

23 #print(title)

24 #print('')

25

26 entries.append({

27 'start': time,

28 'title': title,

29 })

30 process_day(entries)

31

32 def process_day(entries):

33 for i in range(len(entries)-1):

34 start = entries[i]['start']

35 title = entries[i]['title']

36 end = entries[i+1]['start']

37 print("{}-{} {}".format(start, end, title))

38

39 # manual way to parse timestamp and calculate

elapsed time

40 # as we have not learned to use the datetim module

yet

41 start_hour, start_min = start.split(':')

42 end_hour, end_min = end.split(':')

43 start_in_min = 60*int(start_hour) + int(start_min)

44 end_in_min = 60*int(end_hour) + int(end_min)

45 elapsed_time = end_in_min - start_in_min

46 #print(elapsed_time)

47

48 if title not in data:

49 data[title] = 0

50 data[title] += elapsed_time

51

52

53 print('')

54

55 def print_summary():

56 total = 0

57 for val in data.values():

58 total += val

59

60 for key in sorted(data.keys()):

61 print("{:20} {:4} minutes {:3}%".format(key,

data[key], int(100 * data[k\

62 ey]/total)))

63

64

65 read_file(sys.argv[1])

66 print_summary()

Solution: Processing INI file manually
 1 # comment

 2

 3 # deep comment

 4

 5 outer = 42

 6

 7 [person]

 8 fname = Foo

 9 lname=Bar

10 phone = 123

11

12 [company]

13 name = Acme Corp.

14 phone = 456

 1 import sys

 2 import re

 3

 4 # Sample input data.ini

 5

 6 def parse():

 7 if len(sys.argv) != 2:

 8 exit("Usage: {} FILEAME".format(sys.argv[0]))

 9 filename = sys.argv[1]

10 data = {}

11 # print("Dealing with " + filename)

12 with open(filename) as fh:

13 section = '__DEFAULT__'

14 for line in fh:

15 if re.match(r'^\s*(#.*)?$', line):

16 continue

17 match = re.match(r'^\[([^\]]+)\]\s*$', line)

18 if (match):

19 # print('Section "

{}"'.format(m.group(1)))

20 section = match.group(1)

21 continue

22 match = re.match(r'^\s*(.+?)\s*=\s*

(.*?)\s*$', line)

23 if match:

24 # print 'field :"{}" value: "

{}"'.format(m.group(1), m.group(2))

25 if not data.get(section):

26 data[section] = {}

27 data[section][match.group(1)] =

match.group(2)

28

29 return data

30

31 if __name__ == '__main__':

32 ini = parse()

33 print(ini)

Solution: Processing config file
 1 [person]

 2 fname = Foo

 3 lname=Bar

 4 phone = 123

 5

 6 # comment

 7

 8 # deep comment

 9

10

11 [company]

12 name = Acme Corp.

13 phone = 456

 1 import configparser

 2 import sys

 3

 4 def parse():

 5 if len(sys.argv) != 2:

 6 print("Usage: " + sys.argv[0] + " FILEAME")

 7 exit()

 8 filename = sys.argv[1]

 9

10 cp = configparser.RawConfigParser()

11 cp.read(filename)

12 return cp

13

14 ini = parse()

15

16 for section in ini.sections():

17 print(section)

18 for v in ini.items(section):

19 print(" {} = {}".format(v[0], v[1]))

Solution: Extract phone numbers
 1 import re

 2

 3 filename = "phone.txt"

 4 with open(filename) as fh:

 5 for line in fh:

 6 match = re.search(r'''\b

 7 (

 8 \d\d-\d{7}

 9 |

10 \d\d\d-\d-\d{7}

11 |

12 \d\d-\d\d\d-\d\d\d\d

13)\b''', line, re.VERBOSE)

14 if match:

15 print(match.group(1))

Regular Expressions Cheat sheet

Expression Meaning
a Just an ‘a’ character
. any character except new-line

[bgh.] one of the chars listed in the
character class b,g,h or .

[b-h] The same as [bcdefgh]
[a-z] Lower case letters
[b-] The letter b or -
[^bx] Anything except b or x
\w Word characters: [a-zA-Z0-9_]
\d Digits: [0-9]

\s [\f\t\n\r] form-feed, tab, newline,
carriage return and SPACE

W [^\w]
D [^\d]
S [^\s]
a* 0-infinite ‘a’ characters
a+ 1-infinite ‘a’ characters
a? 0-1 ‘a’ characters
a n-m ‘a’ characters
() Grouping and capturing
 Alternation
\1, \2 Capture buffers

^ $ Beginning and end of string
anchors

re

Fix bad JSON

http://docs.python.org/library/re.html

 1 {

 2 subscriptions : [

 3 {

 4 name : "Foo Bar",

 5 source_name : "pypi",

 6 space names : [

 7 "Foo", "Bar"

 8]

 9 }

10]

11 }

1 import re, json, os

2

3 json_file = os.path.join(

4 os.path.dirname(__file__),

5 'bad.json'

6)

7 with open(json_file) as fh:

8 data = json.load(fh)

9 # ValueError: Expecting property name: line 2 column

4 (char 5)

 1 import re, json, os

 2

 3 def fix(s):

 4 return re.sub(r'(\s)([^:\s][^:]+[^:\s])(\s+:)',

r'\1"\2"\3', s)

 5

 6 json_file = os.path.join(

 7 os.path.dirname(__file__),

 8 'bad.json'

 9)

10 with open(json_file) as fh:

11 bad_json_rows = fh.readlines()

12 json_str = ''.join(map(fix, bad_json_rows))

13 print(json_str)

14 data = json.loads(json_str)

15 print(data)

Fix very bad JSON

 1 [

 2 {

 3 TID : "t-0_login_sucess"

 4 Test :

 5 [

 6 {SetValue : { uname : "Zorg", pass : "Rules"} },

 7 {DoAction : "login"},

 8 {CheckResult: [0, LOGGED_IN]}

 9]

10 },

11 { TID : "t-1_login_failure", Test : [{SetValue :

12 { uname : "11", pass : "im2happy78"} },

13 {DoAction : "login"}, {CheckResult: [-1000, LOGGED_OUT]}

] }

14]

 1 import re, json, os

 2

 3 json_file = os.path.join(

 4 os.path.dirname(__file__),

 5 'very_bad.json'

 6)

 7 with open(json_file, 'r') as fh:

 8 bad_json = fh.read()

 9 #print(bad_json)

10 improved_json = re.sub(r'"\s*$', '",', bad_json,

flags=re.MULTILINE)

11 #print(improved_json)

12

13 # good_json = re.sub(r'(?<!")(?P<word>

[\w-]+)\b(?!")', '"\g<word>"',

14 # improved_json)

15 # good_json = re.sub(r'(?<[\{\s])(?P<word>[\w-]+)(?=

[:\s])', '"\g<word>"',

16 # improved_json)

17 # good_json = re.sub(r'([\{\[\s])(?P<word>[\w-]+)

([:,\]\s])', '\1"\g<word>"\3',

18 # improved_json)

19 good_json = re.sub(r'(?<=[\{\[\s])(?P<word>[\w-]+)(?=

[:,\]\s])', '"\g<word>"',

20 improved_json)

21 #print(good_json)

22

23 # with open('out.js', 'w') as fh:

24 # fh.write(good_json)

25

26 data = json.loads(good_json)

27 print(data)

Raw string or escape
Let’s try to check if a string contains a back-slash?

 1 import re

 2

 3 txt = 'text with slash \ and more text'

 4 print(txt) # text with slash \ and more text

 5

 6 # m0 = re.search('\', txt)

 7 # SyntaxError: EOL while scanning string literal

 8

 9 # m0 = re.search('\\', txt)

10 # Exception: sre_constants.error: bogus escape (end

of line)

11 # because the regex engine does not know what to do

with a single \

12

13 m1 = re.search('\\\\', txt)

14 if m1:

15 print('m1') # m1

16

17 m2 = re.search(r'\\', txt)

18 if m2:

19 print('m2') # m2

Remove spaces regex
This is not necessary as we can use rstrip, lstrip, and replace.

1 import re

2

3 line = " ab cd "

4

5 res = re.sub(r'^\s+', '', line) # leading

6 print(f"'{res}'")

7

8 res = re.sub(r'\s+$', '', line) # trailing

9 print(f"'{res}'")

both ends:

1 re.sub(r'\s*(.*)\s*$', r'\1', line) # " abc " => "abc

" because of the greediness

1 re.sub('^\s*(.*?)\s*$', '\1', line) # " abc " =>

"abc" minimal match

Regex Unicode
Python 3.8 required

 1 print("\N{GREEK CAPITAL LETTER DELTA}")

 2

 3 print("\u05E9")

 4 print("\u05DC")

 5 print("\u05D5")

 6 print("\u05DD")

 7 print("\u262E")

 8 print("\u1F426") # "bird"

 9

10 print("\u05E9\u05DC\u05D5\u05DD \u262E")

1 Hello World!

2 Szia Világ!

 שלום עולם! 3

1 import re

2

3 filename = "mixed.txt"

4

5 with open(filename) as fh:

6 lines = fh.readlines()

7 for line in lines:

8 if re.search('\N{IN HEBREW}', line):

9 print(line)

Anchors Other example
 1 import re

 2

 3 strings = [

 4 "123-XYZ-456",

 5 "a 123-XYZ-456 b",

 6 "a 123-XYZ-456",

 7 "123-XYZ-456 b",

 8 "123-XYZ-456\n",

 9]

10

11 regexes = [

12 r'\d{3}-\w+-\d{3}',

13 r'^\d{3}-\w+-\d{3}',

14 r'\d{3}-\w+-\d{3}$',

15 r'^\d{3}-\w+-\d{3}$',

16 r'^\d{3}-\w+-\d{3}\Z',

17 r'\A\d{3}-\w+-\d{3}\Z',

18]

19

20 for r in regexes:

21 print(r)

22 for s in strings:

23 #print(r, s)

24 if (re.search(r, s)):

25 print(' ', s)

26 print('-' * 10)

Python standard modules

Some Standard modules

sys - System specific
os - Operating System
stat - inode table
shutil - File Operations
glob - Unix style pathname expansion
subprocess - Processes

argparse - Command Line Arguments
re - Regexes
math - Mathematics
time - timestamp and friends
datetime - time management
random - Random numbers

sys
 1 import sys,os

 2

 3 print(sys.argv) # the list of the values

 4 # on the command line sys.argv[0] is the name of the

Python script

 5

 6 print(sys.executable) # path to the python interpreter

 7

 8 # print(sys.path)

 9 # list of file-system path strings for searching for

modules

10 # hard-coded at compile time but can be changed via

the PYTHONPATH

http://docs.python.org/library/sys.html
http://docs.python.org/library/os.html
http://docs.python.org/library/stat.html
http://docs.python.org/library/shutil.html
http://docs.python.org/library/glob.html
http://docs.python.org/library/subprocess.html
http://docs.python.org/library/argparse.html
http://docs.python.org/library/re.html
http://docs.python.org/library/math.html
http://docs.python.org/library/time.html
http://docs.python.org/library/datetime.html
http://docs.python.org/library/random.html

11 # environment variable or during execution by

modifying sys.path

12

13 print(sys.version_info)

14 # sys.version_info(major=2, minor=7, micro=12,

releaselevel='final', serial=0)

15

16 print(sys.version_info.major) # 2 or 3

17

18 print(sys.platform) # darwin or linux2 or win32

19

20 print(os.uname())

21 # On Mac:

22 # ('Darwin', 'air.local', '16.3.0', 'Darwin Kernel

Version 16.3.0: Thu Nov 17 20:23:\

23 58 PST 2016; root:xnu-3789.31.2~1/RELEASE_X86_64',

'x86_64')

24

25 # On Linux:

26 # posix.uname_result(sysname='Linux',

nodename='thinkpad', release='5.0.0-32-generic\

27 ', version='#34-Ubuntu SMP Wed Oct 2 02:06:48 UTC 2019',

machine='x86_64')

 1 ['examples/sys/mysys.py']

 2

 3 /usr/bin/python

 4

 5 ['/Users/gabor/work/training/python/examples/sys',

 6 '/Users/gabor/python/lib/python2.7/site-packages/crypto-

1.1.0-py2.7.egg',

 7 ...,

 8 '/Users/gabor/python',

 9 '/Users/gabor/python/lib/python2.7/site-packages',

10 ...]

Writing to standard error (stderr)
1 import sys

2

3 print("on stdout (Standard Output)")

4 print("on stderr (Standard Error)", file=sys.stderr)

5 sys.stderr.write("in stderr again\n")

Redirection:

1 python stderr.py > out.txt 2> err.txt

2 python stderr.py 2> /dev/null

3 python stderr.py > out.txt 2>&1

Current directory (getcwd, pwd, chdir)
1 import os

2

3 this_dir = os.getcwd()

4 print(this_dir)

5

6 # os.chdir('/path/to/some/dir')

7 os.chdir('..')

OS dir (mkdir, makedirs, remove, rmdir)
1 os.mkdir(path_to_new_dir)

2 os.makedirs(path_to_new_dir)

3

4 os.remove() remove a file

5 os.unlink() (the same)

6

7 os.rmdir() single empty directory

8 os.removedirs() empty subdirectories as well

9 shutil.rmtree() rm -rf

python which OS are we running on (os,
platform)
 1 import os

 2 import platform

 3

 4 print(os.name)

 5 print(platform.system())

 6 print(platform.release())

 7

 8 # posix

 9 # Linux

10 # 5.3.0-24-generic

Get process ID
1 import os

2

3 print(os.getpid())

4 print(os.getppid())

1 93518

2 92859

1 echo $$

OS path
 1 import os

 2

 3 os.path.basename(path_to_thing)

 4 os.path.dirname(path_to_thing)

 5 os.path.abspath(path_to_file)

 6

 7 os.path.exists(path_to_file)

 8 os.path.isdir(path_to_thing)

 9

10 os.path.expanduser('~')

Traverse directory tree - list directories
recursively

 1 import os

 2 import sys

 3

 4 if len(sys.argv) != 2:

 5 exit("Usage: {}

PATH_TO_DIRECTORY".format(sys.argv[0]))

 6

 7 root = sys.argv[1]

 8

 9 for dirname, dirs, files in os.walk(root):

10 #print(dirname) # relative path (from cwd) to the

directory being processed

11 #print(dirs) # list of subdirectories in the

currently processed directory

12 #print(files) # list of files in the currently

processed directory

13

14 for filename in files:

15 print(os.path.join(dirname, filename)) #

relative path to the "current" fi\

16 le

os.path.join
1 import os

2

3 path = os.path.join('home', 'foo', 'work')

4 print(path) # home/foo/work

Directory listing
 1 import os

 2 import sys

 3

 4 if len(sys.argv) != 2:

 5 exit("Usage: {} directory".format(sys.argv[0]))

 6

 7 path = sys.argv[1]

 8 files = os.listdir(path)

 9 for name in files:

10 print(name)

11 print(os.path.join(path, name))

expanduser - handle tilde ~
1 import os

2

3 print(os.path.expanduser("~"))

4 print(os.path.expanduser("~/work"))

5 print(os.path.expanduser("~/other"))

6 print(os.path.expanduser("some/other/dir/no/expansion")

)

Listing specific files using glob
1 import glob

2

3 files = glob.glob("*.py")

4 print(files)

5

6 files = glob.glob("/usr/bin/*.sh")

7 print(files)

External command with system
1 import os

2

3 command = 'ls -l'

4

5 os.system(command)

If you wanted to list the content of a directory in an os independent
way you’d use os.listdir('.')
or you could use the glob.glob("*.py") function to have a subset
of files.

subprocess
Run external command and capture the output

1 import time

2 import sys

3

4 for i in range(3):

5 print("OUT {}".format(i))

6 print("ERR {}".format(i), file=sys.stderr)

7 time.sleep(1)

 1 import subprocess

 2 import sys

 3

 4 command = [sys.executable, 'slow.py']

 5

 6 proc = subprocess.Popen(command,

 7 stdout = subprocess.PIPE,

 8 stderr = subprocess.PIPE,

 9)

10

11 out,err = proc.communicate() # runs the code

12

13 # out and err are two strings

14

15 print('exit code:', proc.returncode)

16

17 print('out:')

18 for line in out.decode('utf8').split('\n'):

19 print(line)

20

21 print('err:')

22 for line in err.decode('utf8').split('\n'):

23 print(line)

In this example p is an instance of the subprocess.PIPE class. The
command is executed when the object is created.

subprocess in the background

 1 import subprocess

 2 import sys

 3 import time

 4

 5

 6 proc = subprocess.Popen([sys.executable, 'slow.py'],

 7 stdout = subprocess.PIPE,

 8 stderr = subprocess.PIPE,

 9)

10

11 #out, err = proc.communicate() # this is when the code

starts executing

12 #print(out)

13 #print(err)

14

15 timeout = 6

16 while True:

17 poll = proc.poll()

18 print(poll)

19 time.sleep(0.5)

20 timeout -= 0.5

21 if timeout <= 0:

22 break

23 if poll is not None:

24 break

25

26 print("Final: {}".format(poll))

27 if poll is None:

28 pass

29 else:

30 out, err = proc.communicate()

31 print(out)

32 print(err)

Accessing the system environment variables
from Python
1 import os

2

3 print(os.environ['HOME']) # /Users/gabor

4 print(os.environ.get('HOME')) # /Users/gabor

5

6 for k in os.environ.keys():

7 print("{:30} {}".format(k , os.environ[k]))

os.environ is a dictionary where the keys are the environment
variables and the values are, well, the values.

Set env and run command
1 import os

2

3 os.system("echo hello")

4 os.system("echo $HOME")

5

6 os.system("echo Before $MY_TEST")

7 os.environ['MY_TEST'] = 'qqrq'

8 os.system("echo After $MY_TEST")

We can change the environment variables and that change will
be visible in subprocesses,
but once we exit from ou Python program, the change will not
persist.

shutil
1 import shutil

2

3 shutil.copy(source, dest)

4 shutil.copytree(source, dest)

5 shutil.move(source, dest)

6 shutil.rmtree(path)

time
 1 import time

 2

 3 print(time.time()) # 1351178170.85

 4

 5 print(time.timezone) # 7200 = 2*60*60 (GMT + 2)

 6 print(time.daylight) # 1 (DST or Daylight Saving Time)

 7

 8 print(time.gmtime()) # time.struct_time

 9 # time.struct_time(tm_year=2012, tm_mon=10,

tm_mday=25,

10 # tm_hour=17, tm_min=25, tm_sec=34, tm_wday=3,

tm_yday=299, tm_isdst=0)

11

12 t = time.gmtime()

13 print(t.tm_year) # 2012

14

15 print(time.strftime('%Y-%m-%d %H:%M:%S')) # with optional

timestamp

sleep in Python
 1 import time

 2

 3 start = time.time()

 4 print("hello " + str(start))

 5

 6 time.sleep(3.5)

 7

 8 end = time.time()

 9 print("world " + str(end))

10 print("Elapsed time:" + str(end-start))

1 hello 1475217162.472256

2 world 1475217165.973437

3 Elapsed time:3.501181125640869

timer

More time-related examples.

 1 import random

 2 import time

 3

 4 #

https://docs.python.org/3/library/time.html#time.struct_tim

e

 5

 6 print(time.time()) # time since the epoch in seconds

 7 print(time.asctime()) # current local time in human-

readable format

 8 print(time.strftime("%Y-%m-%d %H:%M:%S")) # create your

own human-readable format

 9

10 print(time.gmtime(0)) # epoch

11 print(time.asctime(time.gmtime(0))) # epoch in human-

readable format

12

13 print(time.localtime()) # local time now

14 print(time.gmtime()) # time in London

15

16

17

18 print(time.process_time())

19 print(time.process_time_ns())

20

21 s = time.perf_counter()

22 ps = time.process_time()

23 print(time.monotonic())

24 time.sleep(0.1)

25 print(time.monotonic())

26 e = time.perf_counter()

27 for _ in range(100000):

28 random.random()

29 pe = time.process_time()

30 print(s)

31 print(e)

32 print(e-s)

33 print(pe-ps)

34

35 # print(time.get_clock_info('monotonic'))

Current date and time datetime now
 1 import datetime

 2

 3 now = datetime.datetime.now()

 4 print(now) # 2015-07-02 16:28:01.762244

 5 print(type(now)) # <type 'datetime.datetime'>

 6

 7 print(now.year) # 2015

 8 print(now.month) # 7

 9 print(now.day) # 2

10 print(now.hour) # 16

11 print(now.minute) # 28

12 print(now.second) # 1

13 print(now.microsecond) # 762244

14

15 print(now.strftime("%Y%m%d-%H%M%S-%f")) # 20150702-

162801-762244

16 print(now.strftime("%B %b %a %A")) # July Jul Thu

Thursday

17 print(now.strftime("%c")) # Thu Jul 2

16:28:01 2015

Converting string to datetime
 1 import datetime

 2

 3 usa_date_format = "%m/%d/%Y" # MM/DD/YYYY

 4 world_date_format = "%d/%m/%Y" # DD/MM/YYYY

 5 other_date_format = "%Y/%m/%d" # YYYY/MM/DD

 6

 7

 8 d = "2012-12-19"

 9 some_day = datetime.datetime.strptime(d, '%Y-%m-%d') #

YYYY-MM-DD

10 print(some_day) # 2012-12-19

11 print(type(some_day)) # <type 'datetime.datetime'>

12

13 t = "2013-11-04 11:23:45" # YYYY-MM-DD HH:MM:SS

14 some_time = datetime.datetime.strptime(t, '%Y-%m-%d

%H:%M:%S')

15 print(type(some_time)) # <type 'datetime.date'>

16 print(some_time) # 2013-11-04

17 print(some_time.minute) # 23

datetime arithmeticis
 1 import datetime

 2

 3 t1 = "2013-12-29T11:23:45"

 4 t2 = "2014-01-02T10:19:49"

 5 dt1 = datetime.datetime.strptime(t1, '%Y-%m-%dT%H:%M:%S')

 6 dt2 = datetime.datetime.strptime(t2, '%Y-%m-%dT%H:%M:%S')

 7 print(dt1) # 2013-12-29 11:23:45

 8 print(dt2) # 2014-01-02 10:19:49

 9

10 d = dt2-dt1

11 print(d) # 3 days, 22:56:04

12 print(type(d)) # <type 'datetime.timedelta'>

13 print(d.total_seconds()) # 341764.0

14

15 nd = dt1 + datetime.timedelta(days = 3)

16 print(nd) # 2014-01-01 11:23:45

Rounding datetime object to nearest second
1 import datetime

2

3 d = datetime.datetime.now()

4 x = d - datetime.timedelta(microseconds=d.microsecond)

5 print(d) # 2019-11-01 07:11:19.930974

6 print(x) # 2019-11-01 07:11:19

Signals and Python

man 7 signal (on Linux)
Unix: kill PID, kill -9 PID, Ctrl-C, Ctrl-Z
os.kill
signal

http://man7.org/linux/man-pages/man7/signal.7.html
https://docs.python.org/3/library/signal.html

Sending Signal
1 import signal

2 import os

3

4 print("before")

5 os.kill(os.getpid(), signal.SIGUSR1)

6 print("after")

1 before

2 User defined signal 1: 30

Catching Signal
 1 import signal

 2 import os

 3

 4 def handler(signum, frame):

 5 print('Signal handler called with signal', signum)

 6

 7 signal.signal(signal.SIGUSR1, handler)

 8

 9 print("before")

10 os.kill(os.getpid(), signal.SIGUSR1)

11 print("after")

1 before

2 ('Signal handler called with signal', 30)

3 after

Catching Ctrl-C on Unix
1 username = input('Username:')

2 print(username)

1 $ python ctrl_c.py

1 Username:^CTraceback (most recent call last):

2 File "ctrl_c.py", line 3, in <module>

3 username = input('Username:')

4 KeyboardInterrupt

1 import signal

2

3 def handler(signum, frame):

4 print('Signal handler called with signal', signum)

5

6 signal.signal(signal.SIGINT, handler)

7

8 username = input('Username:')

9 print(username)

Cannot stop using Ctrl-C !
Ctrl-Z and then kill %1
kill PID

Catching Ctrl-C on Unix confirm
 1 import signal

 2 import time

 3

 4 def handler(signum, frame):

 5 answer = input('We are almost done. Do you really

want to exit? [yes]:')

 6 if answer == 'yes':

 7 print('bye')

 8 exit()

 9 print("Then let's keep running")

10

11 signal.signal(signal.SIGINT, handler)

12

13 for _ in range(10):

14 time.sleep(5)

Alarm signal and timeouts

 1 import signal

 2

 3 class MyTimeout(Exception):

 4 pass

 5

 6 def handler(signum, frame):

 7 print('Signal handler called with signal', signum)

 8 raise MyTimeout

 9

10 try:

11 signal.signal(signal.SIGALRM, handler)

12 signal.alarm(5)

13 number = input("Divide by (5 sec):")

14 signal.alarm(0)

15 print(42/int(number))

16 except MyTimeout:

17 print('timeout')

18 except Exception as e:

19 print(e)

20 #raise

21

22 print("Still working")

deep copy list
 1 a = [

 2 {

 3 'name': 'Joe',

 4 'email': 'joe@examples.com',

 5 },

 6 {

 7 'name': 'Mary',

 8 'email': 'mary@examples.com',

 9 },

10]

11

12

13 b = a

14 a[0]['phone'] = '1234'

15 a[0]['name'] = 'Jane'

16 a.append({

17 'name': 'George'

18 })

19

20 print(a)

21 print(b)

1 [{'name': 'Jane', 'email': 'joe@examples.com', 'phone':

'1234'}, {'name': 'Mary', 'e\

2 mail': 'mary@examples.com'}, {'name': 'George'}]

3 [{'name': 'Jane', 'email': 'joe@examples.com', 'phone':

'1234'}, {'name': 'Mary', 'e\

4 mail': 'mary@examples.com'}, {'name': 'George'}]

 1 a = [

 2 {

 3 'name': 'Joe',

 4 'email': 'joe@examples.com',

 5 },

 6 {

 7 'name': 'Mary',

 8 'email': 'mary@examples.com',

 9 },

10]

11

12

13 b = a[:]

14 a[0]['phone'] = '1234'

15 a[0]['name'] = 'Jane'

16 a.append({

17 'name': 'George'

18 })

19

20 print(a)

21 print(b)

1 [{'name': 'Jane', 'email': 'joe@examples.com', 'phone':

'1234'}, {'name': 'Mary', 'e\

2 mail': 'mary@examples.com'}, {'name': 'George'}]

3 [{'name': 'Jane', 'email': 'joe@examples.com', 'phone':

'1234'}, {'name': 'Mary', 'e\

4 mail': 'mary@examples.com'}]

 1 from copy import deepcopy

 2

 3 a = [

 4 {

 5 'name': 'Joe',

 6 'email': 'joe@examples.com',

 7 },

 8 {

 9 'name': 'Mary',

10 'email': 'mary@examples.com',

11 },

12]

13

14

15 b = deepcopy(a)

16 a[0]['phone'] = '1234'

17 a[0]['name'] = 'Jane'

18 a.append({

19 'name': 'George'

20 })

21

22 print(a)

23 print(b)

1 [{'name': 'Jane', 'email': 'joe@examples.com', 'phone':

'1234'}, {'name': 'Mary', 'e\

2 mail': 'mary@examples.com'}, {'name': 'George'}]

3 [{'name': 'Joe', 'email': 'joe@examples.com'}, {'name':

'Mary', 'email': 'mary@examp\

4 les.com'}]

deep copy dictionary
 1 a = {

 2 'name': 'Foo Bar',

 3 'grades': {

 4 'math': 70,

 5 'art' : 100,

 6 },

 7 'friends': ['Mary', 'John', 'Jane', 'George'],

 8 }

 9

10 b = a

11 a['grades']['math'] = 90

12 a['email'] = 'foo@bar.com'

13 print(a)

14 print(b)

1 {'name': 'Foo Bar', 'grades': {'math': 90, 'art': 100},

'friends': ['Mary', 'John', \

2 'Jane', 'George'], 'email': 'foo@bar.com'}

3 {'name': 'Foo Bar', 'grades': {'math': 90, 'art': 100},

'friends': ['Mary', 'John', \

4 'Jane', 'George'], 'email': 'foo@bar.com'}

deepcopy

 1 from copy import deepcopy

 2

 3 a = {

 4 'name': 'Foo Bar',

 5 'grades': {

 6 'math': 70,

 7 'art' : 100,

 8 },

 9 'friends': ['Mary', 'John', 'Jane', 'George'],

10 }

11

12 b = deepcopy(a)

13 a['grades']['math'] = 90

14 a['email'] = 'foo@bar.com'

15 print(a)

16 print(b)

1 {'name': 'Foo Bar', 'grades': {'math': 90, 'art': 100},

'friends': ['Mary', 'John', \

2 'Jane', 'George'], 'email': 'foo@bar.com'}

3 {'name': 'Foo Bar', 'grades': {'math': 70, 'art': 100},

'friends': ['Mary', 'John', \

4 'Jane', 'George']}

Exercise: Catching Ctrl-C on Unix 2nd time

https://docs.python.org/library/copy.html#copy.deepcopy

When Ctrl-C is pressed display: “In order to really kill the
application press Ctrl-C again” and keep running. If the user
presses Ctrl-C again, then let id die.
Improve the previous that if 5 sec within the first Ctrl-C there
is no 2nd Ctrl-C then any further Ctrl-C will trigger the above
message again.

Exercise: Signals

What signal is sent when you run kill PID?
Write a script that will disable the kill PID for your process.
How can you kill it then?
What signal is sent when we press Ctrl-Z ?

Ctrl-z
1 import signal

2 import os

3

4 print(os.getpid())

5

6 username = input('Username:')

7 print(username)

1 kill PID

 1 import signal

 2 import os

 3

 4 print(os.getpid())

 5

 6 def handler(signum, frame):

 7 print('Signal handler called with signal', signum)

 8

 9 signal.signal(signal.SIGTERM, handler)

10

11 username = input('Username:')

12 print(username)

JSON

JSON - JavaScript Object Notation
JSON is basically the data format used by JavaScript. Because its
universal availability it became the de-facto standard for data
communication between many different languages. Most dynamic
languages have an fairly good mapping between JSON and their
own data structures.
Lists and dictionaries in the case of Python.

Documentation of the
Python json library.

1 {"lname": "Bar", "email": null, "fname": "Foo",

"children": ["Moo", "Koo", "Roo"]}

dumps
 1 import json

 2

 3 a = {

 4 "fname" : 'Foo',

 5 "lname" : 'Bar',

 6 "email" : None,

 7 "children" : [

 8 "Moo",

 9 "Koo",

10 "Roo"

11]

12 }

13 print(a)

14

15 json_str = json.dumps(a)

http://www.json.org/
http://docs.python.org/library/json.html

16 print(json_str)

17

18 with open('data.json', 'w') as fh:

19 fh.write(json_str)

1 {'lname': 'Bar', 'email': None, 'fname': 'Foo',

2 'children': ['Moo', 'Koo', 'Roo']}

3

4 {"lname": "Bar", "email": null, "fname": "Foo",

5 "children": ["Moo", "Koo", "Roo"]}

(lines were broken for readability on the slides)

dumps can be used to take a Python data structure and generate a
string in JSON format. That string can then be saved in a file,
inserted in a database, or sent over the wire.

loads
1 import json

2

3 with open('examples/json/data.json') as fh:

4 json_str = fh.read()

5

6 print(json_str)

7 b = json.loads(json_str)

8 print(b)

1 {"lname": "Bar", "email": null, "fname": "Foo",

2 "children": ["Moo", "Koo", "Roo"]}

3

4 {u'lname': u'Bar', u'email': None, u'fname': u'Foo',

5 u'children': [u'Moo', u'Koo', u'Roo']}

u is the Unicode prefix used in Python 2. In Python 3 it won’t
appear as Unicode is the default there.

dump
 1 import json

 2

 3 a = {

 4 "fname" : 'Foo',

 5 "lname" : 'Bar',

 6 "email" : None,

 7 "children" : [

 8 "Moo",

 9 "Koo",

10 "Roo"

11]

12 }

13

14 print(a)

15

16 with open('data.json', 'w') as fh:

17 json.dump(a, fh)

1 {'lname': 'Bar', 'email': None, 'fname': 'Foo',

2 'children': ['Moo', 'Koo', 'Roo']}

3

4 {"lname": "Bar", "email": null, "fname": "Foo",

5 "children": ["Moo", "Koo", "Roo"]}

(lines were broken for readability on the slides)

As a special case dump will save the string in a file or in other
stream.

load
1 import json

2

3 with open('examples/json/data.json', 'r') as fh:

4 a = json.load(fh)

5 print(a)

1 {u'lname': u'Bar', u'email': None, u'fname': u'Foo',

2 u'children': [u'Moo', u'Koo', u'Roo']}

Round trip
 1 import json

 2 import os

 3 import time

 4

 5 data = {}

 6 filename = 'mydata.json'

 7

 8 if os.path.exists(filename):

 9 with open(filename) as fh:

10 json_str = fh.read()

11 print(json_str)

12 data = json.loads(json_str)

13

14 data['name'] = 'Foo Bar'

15 data['time'] = time.time()

16

17

18 with open(filename, 'w') as fh:

19 json_str = json.dumps(data)

20 fh.write(json_str)

Pretty print JSON
 1 import json

 2

 3 data = {

 4 "name" : "Foo Bar",

 5 "grades" : [23, 47, 99, 11],

 6 "children" : {

 7 "Peti Bar" : {

 8 "email": "peti@bar.com",

 9 },

10 "Jenny Bar" : {

11 "phone": "12345",

12 },

13 }

14 }

15

16 print(data)

17 print(json.dumps(data))

18 print(json.dumps(data, indent=4, separators=(',', ': ')))

 1 {'name': 'Foo Bar', 'grades': [23, 47, 99, 11],

'children': {'Peti Bar': {'email': '\

 2 peti@bar.com'}, 'Jenny Bar': {'phone': '12345'}}}

 3 {"name": "Foo Bar", "grades": [23, 47, 99, 11],

"children": {"Peti Bar": {"email": "\

 4 peti@bar.com"}, "Jenny Bar": {"phone": "12345"}}}

 5 {

 6 "name": "Foo Bar",

 7 "grades": [

 8 23,

 9 47,

10 99,

11 11

12],

13 "children": {

14 "Peti Bar": {

15 "email": "peti@bar.com"

16 },

17 "Jenny Bar": {

18 "phone": "12345"

19 }

20 }

21 }

Sort keys in JSON
 1 import json

 2

 3 data = {

 4 "name" : "Foo Bar",

 5 "grades" : [23, 47, 99, 11],

 6 "children" : {

 7 "Peti Bar" : {

 8 "email": "peti@bar.com",

 9 },

10 "Jenny Bar" : {

11 "phone": "12345",

12 },

13 }

14 }

15

16 print(json.dumps(data, sort_keys=True, indent=4,

separators=(',', ': ')))

 1 {

 2 "children": {

 3 "Jenny Bar": {

 4 "phone": "12345"

 5 },

 6 "Peti Bar": {

 7 "email": "peti@bar.com"

 8 }

 9 },

10 "grades": [

11 23,

12 47,

13 99,

14 11

15],

16 "name": "Foo Bar"

17 }

Set order of keys in JSON - OrderedDict
 1 from collections import OrderedDict

 2

 3 d = {}

 4 d['a'] = 1

 5 d['b'] = 2

 6 d['c'] = 3

 7 d['d'] = 4

 8 print(d)

 9

10 planned_order = ('b', 'c', 'd', 'a')

11 e = OrderedDict(sorted(d.items(), key=lambda x:

planned_order.index(x[0])))

12 print(e)

13

14 print('-----')

15 # Create index to value mapping dictionary from a list of

values

16 planned_order = ('b', 'c', 'd', 'a')

17 plan = dict(zip(planned_order,

range(len(planned_order))))

18 print(plan)

19

20 f = OrderedDict(sorted(d.items(), key=lambda x:

plan[x[0]]))

21 print(f)

1 {'a': 1, 'b': 2, 'c': 3, 'd': 4}

2 OrderedDict([('b', 2), ('c', 3), ('d', 4), ('a', 1)])

3 -----

4 {'b': 0, 'c': 1, 'd': 2, 'a': 3}

5 OrderedDict([('b', 2), ('c', 3), ('d', 4), ('a', 1)])

Exercise: Counter in JSON
Write a script that will provide several counters. The user can
provide an argument on the command
line and the script will increment and display that counter.
Keep the current values of the counters in a single JSON file.
The script should behave like this:

 1 $ python counter.py foo

 2 1

 3

 4 $ python counter.py foo

 5 2

 6

 7 $ python counter.py bar

 8 1

 9

10 $ python counter.py foo

11 3

Exercise: Phone book

Write a script that acts as a phonebook. As “database” use a file in
JSON format.

 1 $ python phone.py Foo 123

 2 Foo added

 3

 4 $ python phone.py Bar

 5 Bar is not in the phnebook

 6

 7 $ python phone.py Bar 456

 8 Bar added

 9

10 $ python phone.py Bar

11 456

12

13 $ python phone.py Foo

14 123

Can it handle changes in phone numbers?
Can it remove a name from the “database”?

Exercise: Processes
Write a program that will do “some work” that can be run in
parallel
and collect the data. Make the code work in a single process by
default
and allow the user to pass a number that will be the number of
child processes
to be used. When the child process exits it should save the results
in
a file and the parent process should read them in.

The “some work” can be accessing 10-20 machines using “ssh
machine uptime”
and creating a report from the results.

It can be fetching 10-20 URLs and reporting the size of each page.

It can be any other network intensive task.

Measure the time in both cases

Solution: Counter in JSON
 1 import json

 2 import sys

 3 import os

 4

 5 filename = 'counter.json'

 6

 7 if len(sys.argv) != 2:

 8 print("Usage: " + sys.argv[0] + " COUNTER")

 9 exit()

10

11 counter = {}

12

13 if os.path.exists(filename):

14 with open(filename) as fh:

15 json_str = fh.read()

16 counter = json.loads(json_str)

17

18 name = sys.argv[1]

19 if name in counter:

20 counter[name] += 1

21 else:

22 counter[name] = 1

23

24 print(counter[name])

25

26

27 with open(filename, 'w') as fh:

28 json_str = json.dumps(counter)

29 fh.write(json_str)

Solution: Phone book

 1 import sys

 2 import json

 3 import os

 4

 5 def main():

 6 filename = 'phonebook.json'

 7 phonebook = {}

 8 if os.path.exists(filename):

 9 with open(filename) as fh:

10 json_str = fh.read()

11 phonebook = json.loads(json_str)

12

13 if len(sys.argv) == 2:

14 name = sys.argv[1]

15 if name in phonebook:

16 print(phonebook[name])

17 else:

18 print("{} is not in the

phonebook".format(name))

19 return

20

21 if len(sys.argv) == 3:

22 name = sys.argv[1]

23 phone = sys.argv[2]

24 phonebook[name] = phone

25 with open(filename, 'w') as fh:

26 json_str = json.dumps(phonebook)

27 fh.write(json_str)

28 return

29

30 print("Invalid number of parameters")

31 print("Usage: {} username

[phone]".format(sys.argv[0]))

32

33 if __name__ == '__main__':

34 main()

Command line arguments with
argparse

Modules to handle the command line
You would like to allow the user to pass arguments on the
command line. For example:

1 myprog.py --machine server_name --test name --verbose --

debug

2 myprog.py -v -d

3 myprog.py -vd

4 myprog.py file1 file2 file3

sys.argv manual parsing?
optparse (deprecated)
argparse

argparse
 1 import argparse

 2

 3 parser = argparse.ArgumentParser()

 4 parser.add_argument('--name') # optional named

parameter that requires a value

 5 parser.add_argument('--name', help="Some description")

 6

 7 parser.add_argument('--max', help='max number of

somthing', type=int) # check and co\

 8 nvert to integer

 9 parser.add_argument('--verbose', action='store_true') #

"flag" no value is expected

10

11 parser.add_argument('--color', '-c') # short name also

http://docs.python.org/library/sys.html
http://docs.python.org/library/optparse.html
http://docs.python.org/library/argparse.html

accepted

12

13

14 parser.add_argument('files', help="filenames(s)") # a

required positional argument

15 parser.add_argument('files', nargs="*") # 0 or more

positional

16 parser.add_argument('files', nargs="+") # 1 or more

positional

17

18 parser.add_argument('--files', nargs="+") # --files

a.txt b.txt c.txt

19

20

21 args = parser.parse_args()

22

23 print(args.name)

24 print(args.files)

Basic usage of argparse
Setting up the argparse already has some (little) added value.

1 import argparse

2

3 parser = argparse.ArgumentParser()

4 parser.parse_args()

5

6 print('the code...')

Running the script without any parameter will not interfere…

1 $ python argparse_basic.py

2 the code...

If the user tries to pass some parameters on the command line,
the argparse will
print an error message and stop the execution.

1 $ python argparse_basic.py foo

2 usage: argparse_basic.py [-h]

3 argparse_basic.py: error: unrecognized arguments: foo

1 $ python argparse_basic.py -h

2 usage: argparse_basic.py [-h]

3

4 optional arguments:

5 -h, --help show this help message and exit

The minimal set up of the argparse class already provides a
(minimally) useful help message.

Positional argument
1 import argparse

2

3 parser = argparse.ArgumentParser()

4 parser.add_argument('name', help='your full name')

5 args = parser.parse_args()

6

7 print(args.name)

1 $ python argparse_positional.py

2 usage: argparse_positional.py [-h] name

3 argparse_positional.py: error: too few arguments

1 $ python argparse_positional.py -h

2 usage: argparse_positional.py [-h] name

3

4 positional arguments:

5 name your full name

6

7 optional arguments:

8 -h, --help show this help message and exit

1 $ python argparse_positional.py Foo

2 Foo

1 $ python argparse_positional.py Foo Bar

2 usage: argparse_positional.py [-h] name

3 argparse_positional.py: error: unrecognized arguments:

Bar

1 $ python argparse_positional.py "Foo Bar"

2 Foo Bar

Many positional argument
1 import argparse

2

3 parser = argparse.ArgumentParser()

4 parser.add_argument('files', help='filename(s)',

nargs='+')

5 args = parser.parse_args()

6

7 print(args.files)

1 $ python argparse_positional_many.py

2 usage: argparse_positional_many.py [-h] files [files ...]

3 argparse_positional_many.py: error: too few arguments

1 air:python gabor$ python argparse_positional_many.py

a.txt b.txt

2 ['a.txt', 'b.txt']

Convert to integers
1 import argparse

2

3 parser = argparse.ArgumentParser()

4 parser.add_argument('number', help='the number to take to

the square')

5 args = parser.parse_args()

6

7 print(args.number * args.number)

1 $ python argparse_number.py abc

1 Traceback (most recent call last):

2 File "examples/argparse/argparse_number.py", line 10,

in <module>

3 print(args.number * args.number)

4 TypeError: can't multiply sequence by non-int of type

'str'

Trying to the argument received from the command
line as an integer, we get a TypeError. The same would happen
even if a number was passed, but you could call int()
on the parameter to convert to an integer.
However there is a better solution.

The same with the following

1 $ python argparse_number.py 23

1 Traceback (most recent call last):

2 File "examples/argparse/argparse_number.py", line 10,

in <module>

3 print(args.number * args.number)

4 TypeError: can't multiply sequence by non-int of type

'str'

Convert to integer
1 import argparse

2

3 parser = argparse.ArgumentParser()

4 parser.add_argument('number', help='the number to take to

the square', type=int)

5 args = parser.parse_args()

6

7 print(args.number * args.number)

1 $ argparse_type.py abc

2 usage: argparse_type.py [-h] number

3 argparse_type.py: error: argument number: invalid int

value: 'abc'

We got a much better error message as argparse already found out
the
argument was a string and not a number as expected.

1 $ argparse_type.py 23

2 529

The type parameter can be used to define the type restriction
and type conversion of the attributes.

Named arguments
1 import argparse

2

3 parser = argparse.ArgumentParser()

4 parser.add_argument('--color', help='The name of the

color')

5 args = parser.parse_args()

6

7 print(args.color)

python argparse_named.py –color Blue

1 Blue

python argparse_named.py

1 None

Named parameters are optional by default. You can pass the
required=True parameter to make them required.

Boolean Flags
 1 import argparse

 2

 3 parser = argparse.ArgumentParser()

 4 parser.add_argument('--color', help='The name of the

color')

 5 parser.add_argument('--verbose', help='Print more data',

 6 action='store_true')

 7 args = parser.parse_args()

 8

 9 print(args.color)

10 print(args.verbose)

python argparse_boolean.py –color Blue –verbose

1 Blue

2 True

python argparse_boolean.py

1 None

2 False

Short names
 1 import argparse

 2

 3 parser = argparse.ArgumentParser()

 4 parser.add_argument('--color', '-c', help='The name of

the color')

 5 parser.add_argument('--verbose', '-v', help='Print more

data',

 6 action='store_true')

 7 args = parser.parse_args()

 8

 9 print(args.color)

10 print(args.verbose)

python argparse_shortname.py -c Blue -v
python argparse_shortname.py -vc Blue

Exercise: Command line parameters
Take the code from the color selector exercise in the files section
and change it so
the user can supply the name of the file where the colors are listed
using the
--file filename option.

If the user supplies an incorrect color name (which is not listed
among the accepted colors)
give an error message and stop execution.

Allow the user to supply a flag called --force that will
override the color-name-validity checking and will allow any color
name.

Exercise: argparse positional and named

Create a script that can accept any number of filenames, the named
parameter --machine and the flag --verbose.
Like this:

1 python ex.py file1 file2 file3 --machine MACHINE --

verbose

Exception handling

Hierarchy of calls
1 main()

2 some_process()

3 for filename in some_list:

4 handle_file(filename)

5 private_module.deal_with_file(filename)

6

private_module._helper_function(filename)

7

public_module.process_file(filename)

8 with open(filename) as fh:

9 pass

Handling errors as return values

Each function that fails returns some error indicator. None ?
An object that has and attribute “error”?
None would be bad as that cannot indicate different errors.
Every called needs to check if the function returned error. If at
any point we forget our system might run with hidden failures.

1 main()

2

3 result = do_something(filename)

4 if result:

5 do_something_else(result)

1 main()

2

3 result = do_something(filename)

4 do_something_else(result)

Handling errors as exceptions

Only need to explicitely check for it at the level where we
know what to do with the problem.
But: Do we want our pacemaker to stop totally after missing
one beat? Probably not. Or better yet: not when it is in
production.

1 main()

2 try:

3

4 result = do_something(filename)

5 do_something_else(result)

6 except Exception:

7 # decide what to do

A simple exception

When something goes wrong, Python throws (raises) an
exception. For example,
trying to divide a number by 0 won’t work. If the exception is
not
handled, it will end the execution.

In some programming languags we use the expression
“throwing an exception” in other languages the expression is
“raising an exception”.
I use the two expressions interchangeably.

In the next simple example, Python will print the string before
the division,
then it will throw an exception, printing it to the standard error
that is
the screen by default. Then the script stops working and the
string “after” is not printed.

 1 def div(a, b):

 2 print("before")

 3 print(a/b)

 4 print("after")

 5

 6 div(1, 0)

 7

 8 # before

 9 # Traceback (most recent call last):

10 # File "examples/exceptions/divide_by_zero.py", line 8,

in <module>

11 # div(1, 0)

12 # File "examples/exceptions/divide_by_zero.py", line 5,

in div

13 # print(a/b)

14 # ZeroDivisionError: integer division or modulo by zero

Working on a list

In a slightly more interesting example we have a list of values.
We would like to divide a number by each one of the values.

As you can see one of the values is 0 which will generate and
exception.

The loop will finish early.

 1 def div(a, b):

 2 print("dividing {} by {} is {}".format(a, b, a/b))

 3

 4 a = 100

 5 values = [2, 5, 0, 4]

 6

 7 for v in values:

 8 div(a, v)

 9

10 # dividing 100 by 2 is 50.0

11 # dividing 100 by 5 is 20.0

12 # Traceback (most recent call last):

13 # ...

14 # ZeroDivisionError: division by zero

We can’t repair the case where the code tries to divide by 0, but
it would be nice
if we could get the rest of the results as well.

Catch ZeroDivisionError exception

For that, we’ll wrap the critical part of the code in a “try”
block.
After the “try” block we need to provide a list of exception that
are
caught by this try-block.

You could say something like “Try this code and let all the
exceptions propagate, except of the ones I listed”.

As we saw in the previous example, the specific error is called
ZeroDivisionError.

If the specified exception occurs within the try: block, instead
of the script ending,
only the try block end and the except: block is executed.

 1 def div(a, b):

 2 print("dividing {} by {} is {}".format(a, b, a/b))

 3

 4 a = 100

 5 values = [2, 5, 0, 4]

 6

 7 for v in values:

 8 try:

 9 div(a, v)

10 except ZeroDivisionError:

11 print("Cannot divide by 0")

12

13 # dividing 100 by 2 is 50.0

14 # dividing 100 by 5 is 20.0

15 # Cannot divide by 0

16 # dividing 100 by 4 is 25.0

Module to open files and calculate
something

Of course in the previous example, it would be probably
much easier if we just checked if the number was 0,
before trying to divide with it. There are many other cases

when this is not possible. For example it is impossible to
check if open a file will succeed, without actually trying
to open the file.

In this example we open the file, read the first line which
is a number and use that for division.

When the open() fails, Python throws an IOError exception.

1 def read_and_divide(filename):

2 print("before " + filename)

3 with open(filename, 'r') as fh:

4 number = int(fh.readline())

5 print(100 / number)

6 print("after " + filename)

File for exception handling example

If we have a list of files and we would like to make sure
we process as many as possible without any problem caused
in the middle, we can catch the exception.

We have the following list of files.

Notice that “two.txt” is missing and “zero.txt” has a 0 in it.

1 0

1 1

File two.txt is missing on purpose.

1 3

Open files - exception
 1 import sys

 2 import module

 3

 4 # python open_list_of_files.py one.txt zero.txt two.txt

three.txt

 5 files = sys.argv[1:]

 6

 7 for filename in files:

 8 module.read_and_divide(filename)

 9

10 # before one.txt

11 # 100.0

12 # after one.txt

13 # before zero.txt

14 # Traceback (most recent call last):

15 # ...

16 # ZeroDivisionError: division by zero

Handle divide by zero exception

Running this code will the ZeroDivisionError exception, but it
will die with a IOError exception.

 1 import sys

 2 import module

 3

 4 # python handle_divide_by_zero.py one.txt zero.txt

two.txt three.txt

 5 files = sys.argv[1:]

 6

 7 for filename in files:

 8 try:

 9 module.read_and_divide(filename)

10 except ZeroDivisionError:

11 print("Cannot divide by 0 in file

{}".format(filename))

12

13

14 # before one.txt

15 # 100.0

16 # after one.txt

17 # before zero.txt

18 # Cannot divide by 0 in file zero.txt

19 # before two.txt

20 # IOError: [Errno 2] No such file or directory: 'two.txt'

Handle files - exception

We can add multiple “except” statement at the end of the “try”
block and handle several exceptions. Each one in a different
way.

 1 import sys

 2 import module

 3

 4 # python handle_both_exceptions.py one.txt zero.txt

two.txt three.txt

 5 files = sys.argv[1:]

 6

 7 for filename in files:

 8 try:

 9 module.read_and_divide(filename)

10 except ZeroDivisionError:

11 print("Cannot divide by 0 in file

{}".format(filename))

12 except IOError:

13 print("Cannot open file {}".format(filename))

14

15

16 # before one.txt

17 # 100.0

18 # after one.txt

19 # before zero.txt

20 # Cannot divide by 0 in file zero.txt

21 # before two.txt

22 # Cannot open file two.txt

23 # before three.txt

24 # 33.333333333333336

25 # after three.txt

Catch all the exceptions and show their type

We can also use the “except Exception” to catch all exceptions.
In this case we might want to also print out the text and the
type of the exception by ourselves.

 1 import sys

 2 import module

 3

 4 # python show_exceptions_type.py one.txt zero.txt two.txt

three.txt

 5 files = sys.argv[1:]

 6

 7 for filename in files:

 8 try:

 9 module.read_and_divide(filename)

10 except Exception as err:

11 print(" There was a problem in " + filename)

12 print(" Text: {}".format(err))

13 print(" Name: {}".format(type(err).__name__))

14

15 # before one.txt

16 # 100.0

17 # after one.txt

18 # before zero.txt

19 # There was a problem in zero.txt

20 # Text: division by zero

21 # Name: ZeroDivisionError

22 # before two.txt

23 # There was a problem in two.txt

24 # Text: [Errno 2] No such file or directory: 'two.txt'

25 # Name: FileNotFoundError

26 # before three.txt

27 # 33.333333333333336

28 # after three.txt

List exception types

We can list more than one exceptions to be caught one after the
other in a single “except” statement.

1 except (IOError, ZeroDivisionError):

 1 import sys

 2 import module

 3

 4 # python handle_both_exceptions.py one.txt zero.txt

two.txt three.txt

 5 files = sys.argv[1:]

 6

 7 for filename in files:

 8 try:

 9 module.read_and_divide(filename)

10 except (ZeroDivisionError, IOError):

11 print("We have a problem with file

{}".format(filename))

12

13

14 # before one.txt

15 # 100.0

16 # after one.txt

17 # before zero.txt

18 # We have a problem with file zero.txt

19 # before two.txt

20 # We have a problem with file two.txt

21 # before three.txt

22 # 33.333333333333336

23 # after three.txt

Exceptions

There are many kinds of exceptions in Python and each
module can define its own exception types as well.
On this page you’ll find the list and hierarchy of exceptions in
Python.

exceptions

How to raise an exception

As you create more and more complex applications you’ll
reach a point where you write a function, probably in a module
that needs to report some error condition.
You can raise an exception in a simple way.

 1 def some():

 2 raise Exception("Some Error")

 3

 4 def main():

 5 try:

http://docs.python.org/library/exceptions.html

 6 some()

 7 except Exception as err:

 8 print(err)

 9 print("Type: " + type(err).__name__)

10

11 main()

12

13 # Some Error

14 # Type: Exception

Stack trace
 1 import traceback

 2

 3 def bar():

 4 foo()

 5

 6 def foo():

 7 raise Exception("hi")

 8

 9 def main():

10 try:

11 bar()

12 except Exception as err:

13 track = traceback.format_exc()

14 print(track)

15

16 print("---------------------")

17 bar()

18

19

20 main()

 1 Traceback (most recent call last):

 2 File "stack_trace.py", line 11, in main

 3 bar()

 4 File "stack_trace.py", line 4, in bar

 5 foo()

 6 File "stack_trace.py", line 7, in foo

 7 raise Exception("hi")

 8 Exception: hi

 9

10 ---------------------

11 Traceback (most recent call last):

12 File "stack_trace.py", line 20, in <module>

13 main()

14 File "stack_trace.py", line 17, in main

15 bar()

16 File "stack_trace.py", line 4, in bar

17 foo()

18 File "stack_trace.py", line 7, in foo

19 raise Exception("hi")

20 Exception: hi

Exercies: Exception int conversion

In the earlier example we learned how to handle both
ZeroDivisionError and IOError exceptions. Now try this

1 cd examples/exceptions

2 python handle_both_exceptions.py one.txt zero.txt two.txt

text.txt three.txt

 1 before one.txt

 2 100.0

 3 after one.txt

 4 before zero.txt

 5 Cannot divide by 0 in file zero.txt

 6 before two.txt

 7 Cannot open file two.txt

 8 before text.txt

 9 Traceback (most recent call last):

10 File "handle_both_exceptions.py", line 9, in <module>

11 module.read_and_divide(filename)

12 File

"/home/gabor/work/slides/python/examples/exceptions/module.

py", line 4, in re\

13 ad_and_divide

14 number = int(fh.readline())

15 ValueError: invalid literal for int() with base 10:

'3.14\n'

This will raise a ValueError exception before handling file
three.txt
Fix it by capturing the spcific exception.
Fix by capturing “all other exceptions”.

1 3.14

Exercies: Raise Exception
Write a function that expects a positive integer as its single
parameter.
Raise exception if the parameter is not a number.
Raise a different exception if the parameter is not positive.
Raise a different exception if the parameter is not whole
number.

Solution: Exception int conversion (specific)
 1 import sys

 2 import module

 3

 4 # python handle_both_exceptions.py one.txt zero.txt

two.txt three.txt

 5 files = sys.argv[1:]

 6

 7 for filename in files:

 8 try:

 9 module.read_and_divide(filename)

10 except ZeroDivisionError:

11 print("Cannot divide by 0 in file

{}".format(filename))

12 except IOError:

13 print("Cannot open file {}".format(filename))

14 except ValueError as ex:

15 print("ValueError {} in file {}".format(ex,

filename))

 1 before one.txt

 2 100.0

 3 after one.txt

 4 before zero.txt

 5 Cannot divide by 0 in file zero.txt

 6 before two.txt

 7 Cannot open file two.txt

 8 before text.txt

 9 ValueError invalid literal for int() with base 10:

'3.14\n' in file text.txt

10 before three.txt

11 33.333333333333336

12 after three.txt

Solution: Exception int conversion (all other)
 1 import sys

 2 import module

 3

 4 # python handle_both_exceptions.py one.txt zero.txt

two.txt three.txt

 5 files = sys.argv[1:]

 6

 7 for filename in files:

 8 try:

 9 module.read_and_divide(filename)

10 except ZeroDivisionError:

11 print("Cannot divide by 0 in file

{}".format(filename))

12 except IOError:

13 print("Cannot open file {}".format(filename))

14 except Exception as ex:

15 print("Exception type {} {} in file

{}".format(type(ex).__name__, ex, filena\

16 me))

 1 before one.txt

 2 100.0

 3 after one.txt

 4 before zero.txt

 5 Cannot divide by 0 in file zero.txt

 6 before two.txt

 7 Cannot open file two.txt

 8 before text.txt

 9 Exception type ValueError invalid literal for int() with

base 10: '3.14\n' in file t\

10 ext.txt

11 before three.txt

12 33.333333333333336

13 after three.txt

Solution: Raise Exception
 1 def positive(num):

 2 if type(num).__name__ == 'float':

 3 raise Exception("The given parameter {} is a float

and not an int.".format(nu\

 4 m))

 5

 6 if type(num).__name__ != 'int':

 7 raise Exception("The given parameter {} is of type

{} and not int.".format(nu\

 8 m, type(num).__name__))

 9

10 if num < 0:

11 raise Exception("The given number {} is not

positive.".format(num))

12

13 for val in [14, 24.3, "hi", -10]:

14 print(val)

15 print(type(val).__name__)

16 try:

17 positive(val)

18 except Exception as ex:

19 print("Exception: {}".format(ex))

Classes - OOP - Object Oriented
Programming

Why Object Oriented Programming?

Better encapsulation of intent.
Integration between data and functionality (attributes and
methods)
Better modelling for some part of the world.
Another level of code-reuse.
Clearer separation between “usage” and “implementation”.
(Private data in some cases)
Clearer connection between “classes” of things.
In reality: avoid using “global”.

Generic Object Oriented Programming terms

OOP differs a lot among programming languages!
Classes (blueprints)
Objectes / instances (actual)
Members: Attributes and Methods
Attributes / Properties (variables - data)
Methods (functions) (private, public, virtual)
Inheritance (is a)
Composition (has a)
Constructor
Destructor

OOP in Python

Everything is an object
Numbers, strings, list, … even classes are objects.
Class objects
Instance objects
Nothing is private.

OOP in Python (numbers, strings, lists)
 1 # numbers

 2 print((255).bit_length()) # 8

 3 print((256).bit_length()) # 9

 4

 5 # strings

 6 print("hello WOrld".capitalize()) # Hello world

 7 print(":".join(["a", "b", "c"])) # a:b:c

 8

 9

10 # lists

11 numbers = [2, 17, 4]

12 print(numbers) # [2, 17, 4]

13

14 numbers.append(7)

15 print(numbers) # [2, 17, 4, 7]

16

17 numbers.sort()

18 print(numbers) # [2, 4, 7, 17]

OOP in Python (argparse)
 1 import argparse

 2 def get_args():

 3 parser = argparse.ArgumentParser()

 4 parser.add_argument('--name')

 5 parser.add_argument('--email')

 6

 7 print(type(parser).__name__)

 8 print(parser.__class__)

 9

10 # print(dir(parser))

11 print(parser.format_help())

12 parser.print_help()

13

14 return parser.parse_args()

15

16 args = get_args()

17 print(args.__class__)

18 print(args.name)

Create a class
 1 # class Person(object):

 2 # pass

 3

 4 class Person:

 5 pass

 6

 7 if __name__ == '__main__':

 8 p = Person()

 9 print(p)

10 print(type(p))

11 print(p.__class__.__name__)

12

13 members = dir(p)

14 print(members)

1 <__main__.Person object at 0x7fc4e3ec1da0>

2 <class '__main__.Person'>

3 Person

4 ['__class__', '__delattr__', '__dict__', '__dir__',

'__doc__', '__eq__', '__format__\

5 ', '__ge__', '__getattribute__', '__gt__', '__hash__',

'__init__', '__init_subclass_\

6 _', '__le__', '__lt__', '__module__', '__ne__',

'__new__', '__reduce__', '__reduce_e\

7 x__', '__repr__', '__setattr__', '__sizeof__', '__str__',

'__subclasshook__', '__wea\

8 kref__']

In Python 2.x classes needed to inherit from ‘object’ in order to
become ‘new style’ classes.

Import module containing class
1 import ppl

2

3 p = ppl.Person()

4 print(p) # <person.Person object at

0x101a8a190>

5 print(type(p)) # <class 'person.Person'>

6 print(p.__class__.__name__) # Person

1 <ppl.Person object at 0x7f973024a780>

2 <class 'ppl.Person'>

3 Person

Import class from module
1 from ppl import Person

2

3 p = Person()

4 print(p) # <person.Person object at

0x101a8a190>

5 print(type(p)) # <class 'person.Person'>

6 print(p.__class__.__name__) # Person

Initialize a class - constructor, attributes
 1 class Person():

 2 def __init__(self, given_name):

 3 self.name = given_name

 4

 5 if __name__ == '__main__':

 6 p1 = Person("Joe")

 7 print(p1) # <__main__.Person

object at 0x0000021EC664B358>

 8 print(p1.__class__.__name__) # Person

 9 print(p1.name) # Joe

10

11 p2 = Person("Jane")

12 print(p2) # <__main__.Person

object at 0x0000021EC664B470>

13 print(p2.name) # Jane

14

15 p1.name = "Joseph"

16 print(p1) # <__main__.Person

object at 0x0000021EC664B358>

17 print(p1.name) # Josheph

Attributes are not special
 1 class Person():

 2 def __init__(self, given_name):

 3 self.name = given_name

 4

 5 if __name__ == '__main__':

 6 p1 = Person("Joe")

 7 print(p1.__class__.__name__) # Person

 8 print(p1.name) # Joe

 9

10 p2 = Person("Jane")

11 print(p2.name) # Jane

12

13 p1.address = "Main street 12"

14 print(p1.address) # Main street 12

15

16

17 print(p2.address) # AttributeError:

'Person' object has no attribute\

18 'address'

Create Point class
1 import shapes

2

3 p = shapes.Point()

4 print(p) # <shapes.Point instance at

0x7fb58c31ccb0>

1 class Point():

2 pass

Initialize a class - constructor, attributes
1 import shapes

2

3 p1 = shapes.Point(2, 3)

4 print(p1) # <shapes.Point instance at

0x7fb58c31ccb0>

5 print(p1.x) # 2

6 print(p1.y) # 3

7

8 p1.x = 7

9 print(p1.x) # 7

1 class Point():

2 def __init__(self, a, b):

3 self.x = a

4 self.y = b

Methods
 1 import shapes

 2

 3 p1 = shapes.Point(2, 3)

 4

 5 print(p1.x) # 2

 6 print(p1.y) # 3

 7

 8 p1.move(4, 5)

 9 print(p1.x) # 6

10 print(p1.y) # 8

11

12

13 print(p1) # <shapes.Point object at 0x7fb0691c3e48>

1 class Point():

2 def __init__(self, a, b):

3 self.x = a

4 self.y = b

5

6 def move(self, dx, dy):

7 self.x += dx

8 self.y += dy

Stringify class

repr “should” return Python-like code
str should return readable representation
If str does not exist, repr is called instead.

1 import shapes

2

3 p1 = shapes.Point(2, 3)

4 print(p1) # Point(2, 3)

 1 class Point():

 2 def __init__(self, x, y):

 3 self.x = x

 4 self.y = y

 5

 6 def __repr__(self):

 7 return 'Point({}, {})'.format(self.x, self.y)

 8

 9 def move(self, dx, dy):

10 self.x += dx

11 self.y += dy

Inheritance
 1 class Point():

 2 def __init__(self, x, y):

 3 print('__init__ of Point')

 4 self.x = x

 5 self.y = y

 6

 7 def move(self, dx, dy):

 8 self.x += dx

 9 self.y += dy

10

11 class Circle(Point):

12 def __init__(self, x, y, r):

13 print('__init__ of Circle')

14 super().__init__(x, y)

15 self.r = r

16

17 def area(self):

18 return self.r * self.r * 3.14

 1 import shapes

 2

 3 c = shapes.Circle(2, 3, 10) # __init__ of Circle

 4 # __init__ of Point

 5 print(c) # <shapes.Circle instance at

0x7fb58c31ccb0>

 6 print(c.x) # 2

 7 print(c.y) # 3

 8 print(c.r) # 10

 9

10 c.move(4, 5)

11 print(c.x) # 6

12 print(c.y) # 8

13 print(c.area()) # 314.0

Inheritance - another level
 1 class Point():

 2 def __init__(self, x, y):

 3 print('__init__ of Point')

 4 self.x = x

 5 self.y = y

 6

 7 class Circle(Point):

 8 def __init__(self, x, y, r):

 9 print('__init__ of Circle')

10 super().__init__(x, y)

11 self.r = r

12

13 def area(self):

14 return self.r * self.r * 3.14

15

16 class Ball(Circle):

17 def __init__(self, x, y, r, z):

18 print('__init__ of Ball')

19 super().__init__(x, y, r)

20 self.z = z

21

22

23 b = Ball(2, 3, 9, 7)

24 print(b)

25 print(b.area())

26

27 # __init__ of Ball

28 # __init__ of Circle

29 # __init__ of Point

30 # <__main__.Ball object at 0x103dea190>

31 # 254.34

Modes of method inheritance

Implicit
Override
Extend
Delegate - Provide

Modes of method inheritance - implicit
Inherit method

 1 class Parent():

 2 def greet(self):

 3 print("Hello World")

 4

 5 class Child(Parent):

 6 pass

 7

 8 p = Parent()

 9 p.greet() # Hello World

10

11 c = Child()

12 c.greet() # Hello World

Modes of method inheritance - override
Replace method

 1 class Parent():

 2 def greet(self):

 3 print("Hello World")

 4

 5 class Child(Parent):

 6 def greet(self):

 7 print("Hi five!")

 8

 9 p = Parent()

10 p.greet()

11

12 c = Child()

13 c.greet()

14

15 super(Child, c).greet()

1 Hello World

2 Hi five!

3 Hello World

Modes of method inheritance - extend
Extend method before or after calling original.

 1 class Parent():

 2 def greet(self):

 3 print("Hello World")

 4

 5 class Child(Parent):

 6 def greet(self):

 7 print("Hi five!")

 8 super().greet()

 9 print("This is my world!")

10

11 p = Parent()

12 p.greet() # Hello World

13

14 c = Child()

15 c.greet()

16

17 # Hi five!

18 # Hello World

19 # This is my world!

Modes of method inheritance - delegate -
provide
Let the child implement the functionality.

 1 class Parent():

 2 def greet(self):

 3 print("Hello", self.get_name())

 4

 5 class Child(Parent):

 6 def __init__(self, name):

 7 self.name = name

 8

 9 def get_name(self):

10 return self.name

11

12 # Should not create instance from Parent

13 # p = Parent()

14 # p.greet() # AttributeError: 'Parent' object has no

attribute 'get_name'

15

16 c = Child('Foo')

17 c.greet() # Hello Foo

Should we have a version of greet() in the Parent that throws
an exception?
Do we want to allow the creation of instance of the Parent
class?

Abstract Base Class (abc)

Composition - Line
When an object holds references to one or more other objects.

Pythagorean theorem

 1 class Point():

 2 def __init__(self, x, y):

 3 self.x = x

 4 self.y = y

 5

 6 class Line():

 7 def __init__(self, a, b):

 8 self.a = a

 9 self.b = b

10

11 def length(self):

12 return ((self.a.x - self.b.x) ** 2 + (self.a.y -

self.b.y) ** 2) ** 0.5

13

14 p1 = Point(2, 3)

15 p2 = Point(5, 7)

16 blue_line = Line(p1, p2)

17

18 print(blue_line.a) # <__main__.Point object at

0x0000022174B637B8>

19 print(blue_line.b) # <__main__.Point object at

0x0000022174B3C7B8>

20 print(blue_line.length()) # 5.0

Some comments
There are no private attributes. The convention is to use
leading underscore to communicate to other developers what is
private.
Using the name self for the current object is just a consensus.

https://en.wikipedia.org/wiki/Pythagorean_theorem

Class in function
1 def creator():

2 class MyClass():

3 pass

4 o = MyClass()

5 print(o.__class__.__name__) # MyClass

6

7 creator()

8 # MyClass() # NameError: name 'MyClass' is not defined

Serialization of instances with pickle
 1 import pickle

 2

 3 class aClass(object):

 4 def __init__(self, amount, name):

 5 self.amount = amount

 6 self.name = name

 7

 8

 9 the_instance = aClass(42, "FooBar")

10

11 a = {

12 "name": "Some Name",

13 "address" : ['country', 'city', 'street'],

14 'repr' : the_instance,

15 }

16

17 print(a)

18

19 pickle_string = pickle.dumps(a)

20

21 b = pickle.loads(pickle_string)

22

23 print(b)

24

25 print(b['repr'].amount)

26 print(b['repr'].name)

Quick Class definition and usage

1 class Quick(object):

2 def __init__(self, name, email):

3 self.name = name

4 self.email = email

5

6 q = Quick(name = "Foo", email = "foo@bar.com")

7 print(q.name)

8 print(q.email)

Exercise: Add move_rad to based on radians

From the Python: Methods take the
examples/classes/methods/shapes.py and add a method called
move_rad(dist, angle) that accpets a distance and an angle
and moved the point accordingly.

1 delta_x = dist * cos(angle)

2 delta_y = dist * sin(angle)

Exercise: Improve previous examples

Take the previous example Python: Inheritance - another
level and the example file called
examples/classes/inheritance/ball_shape.py and change it so
the Ball class will accept x, y, z, r.
Add a method called move to the new Ball class that will
accept dx, dy, dz.
Implement a method that will return the volume of the ball.

Exercise: Polygon
Implement a class representing a Point.
Make the printing of a point instance nice.

Implement a class representing a Polygon. (A list of points)
Allow the user to “move a polygon” calling poly.move(dx, dy)
that will change the coordinates of every point by (dx, dy)

 1 class Point():

 2 pass

 3

 4 class Polygon():

 5 pass

 6

 7 p1 = Point(0, 0) # Point(0, 0)

 8 p2 = Point(5, 7) # Point(5, 7)

 9 p3 = Point(4, 9) # Point(4, 9)

10 print(p1)

11 print(p2)

12 print(p3)

13 p1.move(2, 3)

14 print(p1) # Point(2, 3)

15

16 poly = Polygon(p1, p2, p3)

17 print(poly) # Polygon(Point(2, 3), Point(5, 7),

Point(4, 9))

18 poly.move(-1, 1)

19 print(poly) # Polygon(Point(1, 4), Point(4, 8),

Point(3, 10))

Exercise: Number
Turn the Number guessing game into a class. Replace every print
statement with a call to an output method.
Do the same with the way you get the input.
Then create a subclass where you override these methods.
You will be able to launch the game with a hidden value you decide
upon.
The input will feed a pre-defined list of values as guesses to the
game
and the output methods will collect the values that the game prints
in a list.

Exercise: Library
Create a class hierarchy to represent a library that will be able to
represent the following entities.

Author (name, birthdate, books)
Book (title, author, language, who_has_it_now?,
is_on_waiting_list_for_whom?)
Reader (name, birthdate, books_currently_lending)

Methods:

write_book(title, language,)

Exercise: Bookexchange
It is like the library example, but instead of having a central library
with books,
each person owns and lends out books to other people.

Exercise: Represent turtle graphics
There is a cursor (or turtle) in the x-y two-dimensional sphere. It
has some (x,y) coordinates.
It can go forward n pixels. It can turn left n degrees. It can lift up
the pencil or put it down.

Solution - Polygon
 1 class Point:

 2 def __init__(self, x, y):

 3 self.x = x

 4 self.y = y

 5

 6 def __repr__(self):

 7 return "Point({}, {})".format(self.x, self.y)

 8

 9 def move(self, dx, dy):

10 self.x += dx

11 self.y += dy

12

13 class Polygon:

14 def __init__(self, *args):

15 self.points = args

16

17 def __repr__(self):

18 return 'Polygon(' + ', '.join(map(lambda p:

str(p), self.points)) + ')'

19

20 def move(self, dx, dy):

21 for p in self.points:

22 p.move(dx, dy)

23

24 p1 = Point(0, 0) # Point(0, 0)

25 p2 = Point(5, 7) # Point(5, 7)

26 p3 = Point(4, 9) # Point(4, 9)

27 print(p1)

28 print(p2)

29 print(p3)

30 p1.move(2, 3)

31 print(p1) # Point(2, 3)

32

33 poly = Polygon(p1, p2, p3)

34 print(poly) # Polygon(Point(2, 3), Point(5, 7),

Point(4, 9))

35 poly.move(-1, 1)

36 print(poly) # Polygon(Point(1, 4), Point(4, 8),

Point(3, 10))

PyPi - Python Package Index

What is PyPi?

pypi

Easy Install

setuptools

1 $ easy_install module_name

pip
1 $ pip install package_name

Upgrade pip

pip install –upgrade pip Will probably not work on Windows
because file is in use…
easy_install pip Will work on Windows as well.

PYTHONPATH
1 export PYTHONPATH=~/python

2 easy_install -d ~/python Genshi

Virtualenv

http://pypi.python.org/
http://pypi.python.org/pypi/setuptools

1 $ pip install virtualenv

2

3 $ cd project_dir

4 $ virtualenv venv

5 $ source venv/bin/activate

6 $...

7 $ deactivate

On Windows:

1 venv\Source\activate.bat

The virtualenv command will create a copy of python in the
given directory inside the current directory.
In the above example it will create the copy in the ‘venv’
directory inside the ‘project_dir’.
After source-ing the ‘activate’ file the PATH will include the
local python with a local version of pip
and easy_install. This requires bash or zsh.

See also the Python guide.

Virtualenv for Python 3
1 virtualenv -p python3 venv3

2 source venv3/bin/activate

3 ...

4 deactivate

http://docs.python-guide.org/en/latest/dev/virtualenvs/

SQLite Database Access

SQLite

sqlite3

Connecting to SQLite database
1 import sqlite3

2

3 conn = sqlite3.connect("sample.db")

4 c = conn.cursor()

5

6 # use the database here

7

8 conn.close()

Create TABLE in SQLite
execute and commit

 1 import sqlite3

 2

 3 conn = sqlite3.connect("sample.db")

 4 c = conn.cursor()

 5

 6 try:

 7 c.execute('''CREATE TABLE companies (

 8 id PRIMARY KEY,

 9 name VARCRCHAR(100) UNIQUE NOT NULL,

10 employees INTEGER DEFAULT 0)''')

11 except sqlite3.OperationalError as e:

12 print('sqlite error:', e.args[0]) # table companies

already exists

13

http://docs.python.org/library/sqlite3.html

14 conn.commit()

15

16 conn.close()

17

18 print('done')

INSERT data into SQLite database
Use placeholders (?) supply the data in tuples.

 1 import sqlite3

 2

 3 conn = sqlite3.connect("sample.db")

 4 c = conn.cursor()

 5

 6 my_company = 'Acme'

 7

 8 try:

 9 c.execute('''INSERT INTO companies (name) VALUES

(?)''', (my_company,))

10 except sqlite3.IntegrityError as e:

11 print('sqlite error: ', e.args[0]) # column name is not

unique

12 conn.commit()

13

14 companies = [

15 ('Foo', 12),

16 ('Bar', 7),

17 ('Moo', 99),

18]

19

20 try:

21 sql = '''INSERT INTO companies (name, employees) VALUES

(?, ?)'''

22 c.executemany(sql, companies)

23 except sqlite3.IntegrityError as e:

24 print('sqlite error: ', e.args[0]) # column name is not

unique

25 conn.commit()

26

27

28 conn.close()

29

30 print('done')

UPDATE works quite similar, but it might have a WHERE clause.

SELECT data from SQLite database
 1 import sqlite3

 2

 3 conn = sqlite3.connect("sample.db")

 4 c = conn.cursor()

 5

 6 minimum = 0

 7

 8 sql = '''SELECT * FROM companies WHERE employees >= ?'''

 9 for company in c.execute(sql, (minimum,)):

10 print(company)

11

12 sql = '''SELECT COUNT(*) FROM companies WHERE employees

>= ?'''

13 c.execute(sql, (minimum,))

14 print(c.fetchone()[0])

15

16 conn.close()

Use the result as an iterator, or call the fetchone method. If the
result set might be empty,
then the fetchone might return None. Check for it!

A counter
 1 """

 2 Counter using an SQLite backend

 3 --list list all the counters

 4 --start name creates the counter for 'name'

 5 name counts for 'name'

 6 """

 7

 8 import sys

 9 import os

10 import sqlite3

11

12 database_file = "counter.db"

13

14 def usage():

15 print('TODO print doc')

16 conn.close()

17 exit()

18

19 def main():

20 global conn

21 conn = sqlite3.connect(database_file)

22 c = conn.cursor()

23 try:

24 c.execute('''CREATE TABLE counters (

25 id PRIMARY KEY,

26 name VARCRCHAR(100) UNIQUE NOT NULL,

27 count INTEGER NOT NULL

28)''')

29 except sqlite3.OperationalError as e:

30 pass

31 # print('sqlite error:', e.args[0]) # table

counters already exists

32

33 # print(len(sys.argv))

34 # print(sys.argv)

35

36 if len(sys.argv) == 1:

37 usage()

38

39 if len(sys.argv) == 2:

40 if sys.argv[1] == '--list':

41 print('List counters:')

42 for r in c.execute("SELECT name FROM

counters"):

43 print(r[0])

44 exit()

45 name = sys.argv[1]

46 c.execute("SELECT count FROM counters WHERE name

= ?", (name,))

47 line = c.fetchone()

48 if line == None:

49 print("Invalid counter name

'{}'".format(name))

50 exit()

51 value = line[0]

52 value = value +1

53 c.execute("UPDATE counters SET count=? WHERE name

= ?", (value, name))

54 conn.commit()

55 print("{} {}".format(name, value))

56 #print("increment counter {} was:

{}".format(name, value))

57 exit()

58

59 if len(sys.argv) == 3 and sys.argv[1] == '--start':

60 name = sys.argv[2]

61 print("Start counter", name)

62 try:

63 c.execute("INSERT INTO counters (name, count)

VALUES(?,?)", (name, 0))

64 conn.commit()

65 except sqlite3.IntegrityError:

66 print("Name '{}' already

exists".format(name))

67 exit()

68

69 exit()

70

71 print('none')

72 usage()

73

74 main()

75

76 #print "TODO get the value of 'name' from the database"

77 # if it was not there then add

78

79

80 #try:

81 # c.execute('''INSERT INTO companies (name) VALUES

('Stonehenge')''')

82 #except sqlite3.IntegrityError as e:

83 # print 'sqlite error: ', e.args[0] # column name is not

unique

84

85 #conn.commit()

86

87 #conn.close()

88

89 #print "done"

MySQL

Install MySQL support

Anaconda on MS Windows: conda install mysql-connector-
python
Otherwise: pip install mysql-connector

Create database user (manually)
 1 $ mysql -u root -p

 2

 3 SHOW DATABASES;

 4

 5 CREATE USER 'foobar'@'localhost' IDENTIFIED BY 'no

secret';

 6 GRANT ALL PRIVILEGES ON fb_db . * TO

'foobar'@'localhost';

 7 GRANT ALL PRIVILEGES ON * . * TO 'foobar'@'%'

IDENTIFIED BY 'no secret';

 8 FLUSH PRIVILEGES;

 9

10 exit

1 vim /etc/mysql/mysql.conf.d/mysqld.cnf

2 comment out

3 # bind-address = 127.0.0.1

4

5 service mysql restart

Create database (manually)
1 $ mysql -u foobar -p

2

3 CREATE DATABASE fb_db;

4

5 DROP DATABASE fb_db;

6 exit

Create table (manually)
 1 $ mysql -u foobar -p

 2

 3 USE fb_db;

 4 CREATE TABLE person (

 5 id INTEGER PRIMARY KEY AUTO_INCREMENT,

 6 name VARCHAR(255),

 7 birthdate DATE,

 8 score REAL

 9);

10

11 INSERT INTO person (name, birthdate, score)

12 VALUES ("Foo Bar", "1998-05-23", 42.1)

Connect to MySQL
 1 import mysql.connector

 2

 3 def main():

 4 conn = mysql.connector.connect(

 5 host = 'localhost',

 6 database = 'fb_db',

 7 user = 'foobar',

 8 password='no secret')

 9

10 print("Connected:", conn)

11

12 conn.close()

13

14 if __name__ == "__main__":

15 main()

1 $ python3 examples/mysql/connect.py

Change some of the parameters and try again

Connect to MySQL and Handle exception
 1 import mysql.connector

 2

 3 def main():

 4 try:

 5 conn = mysql.connector.connect(

 6 host = 'localhost',

 7 database = 'fb_db',

 8 user = 'foobar',

 9 password='no secret')

10 except mysql.connector.Error as e:

11 print("MySQL exception: ", e)

12 return

13 #except Exception as e:

14 # print("Other exception", e);

15 # return

16

17 print("Connected:", conn)

18

19 conn.close()

20

21 if __name__ == "__main__":

22 main()

Select data
 1 import mysql.connector

 2

 3

 4 def main():

 5 conn = mysql.connector.connect(

 6 host = 'localhost',

 7 database = 'fb_db',

 8 user = 'foobar',

 9 password='no secret')

10

11 cursor = conn.cursor()

12 cursor.execute("SELECT * FROM person")

13

14 row = cursor.fetchone()

15 print(row)

16

17 # cursor.close() #

mysql.connector.errors.InternalError: Unread result found.

18 conn.close()

19

20 if __name__ == "__main__":

21 main()

Select more data
 1 import mysql.connector

 2

 3

 4 def main():

 5 conn = mysql.connector.connect(

 6 host = 'localhost',

 7 database = 'fb_db',

 8 user = 'foobar',

 9 password='no secret')

10

11 cursor = conn.cursor()

12 cursor.execute("SELECT * FROM person")

13

14 while True:

15 row = cursor.fetchone()

16 if not row:

17 break

18 print(row)

19

20 cursor.close()

21 conn.close()

22

23 if __name__ == "__main__":

24 main()

Select all data fetchall
 1 import mysql.connector

 2

 3

 4 def main():

 5 conn = mysql.connector.connect(

 6 host = 'localhost',

 7 database = 'fb_db',

 8 user = 'foobar',

 9 password='no secret')

10

11 cursor = conn.cursor()

12 cursor.execute("SELECT * FROM person")

13

14 rows = cursor.fetchall()

15

16 print(len(rows))

17 for row in rows:

18 print(row)

19

20 cursor.close()

21 conn.close()

22

23 if __name__ == "__main__":

24 main()

Select some data fetchmany
 1 import mysql.connector

 2

 3

 4 def main():

 5 conn = mysql.connector.connect(

 6 host = 'localhost',

 7 database = 'fb_db',

 8 user = 'foobar',

 9 password='no secret')

10

11 cursor = conn.cursor()

12 cursor.execute("SELECT * FROM person")

13

14 size = 2

15

16 while True:

17 rows = cursor.fetchmany(size)

18 if not rows:

19 break

20 print(len(rows))

21 for row in rows:

22 print(row)

23

24 cursor.close()

25 conn.close()

26

27 if __name__ == "__main__":

28 main()

Select some data WHERE clause
Bobby Tables

 1 import mysql.connector

 2

 3

 4 def main(min_score):

 5 conn = mysql.connector.connect(

 6 host = 'localhost',

 7 database = 'fb_db',

 8 user = 'foobar',

 9 password='no secret')

10

11 cursor = conn.cursor()

12 cursor.execute("SELECT * FROM person WHERE score >

%s", (min_score,))

13

14 size = 2

15

16 while True:

17 rows = cursor.fetchmany(size)

18 if not rows:

19 break

20 print(len(rows))

21 for row in rows:

22 print(row)

23

24 cursor.close()

25 conn.close()

26

http://bobby-tables.com/

27 if __name__ == "__main__":

28 main(40)

Select into dictionaries
 1 import mysql.connector

 2

 3

 4 def main():

 5 conn = mysql.connector.connect(

 6 host = 'localhost',

 7 database = 'fb_db',

 8 user = 'foobar',

 9 password='no secret')

10

11 cursor = conn.cursor(dictionary=True)

12 cursor.execute("SELECT * FROM person")

13

14 for row in cursor:

15 print(row)

16

17 cursor.close()

18 conn.close()

19

20 if __name__ == "__main__":

21 main()

Insert data
 1 import mysql.connector

 2

 3

 4 def main(name, birthdate, score):

 5 conn = mysql.connector.connect(

 6 host = 'localhost',

 7 database = 'fb_db',

 8 user = 'foobar',

 9 password='no secret')

10

11 cursor = conn.cursor()

12 cursor.execute(

13 "INSERT INTO person (name, birthdate, score)

VALUES (%s, %s, %s)",

14 (name, birthdate, score))

15

16 if cursor.lastrowid:

17 print('last insert id', cursor.lastrowid)

18 else:

19 print('last insert id not found')

20 conn.commit()

21

22 conn.close()

23

24 if __name__ == "__main__":

25 main('Monty Python', '1969-10-05', 100)

Update data
 1 import mysql.connector

 2

 3

 4 def main(uid, score):

 5 conn = mysql.connector.connect(

 6 host = 'localhost',

 7 database = 'fb_db',

 8 user = 'foobar',

 9 password='no secret')

10

11 cursor = conn.cursor()

12 cursor.execute("UPDATE person SET score=%s WHERE

id=%s",

13 (score, uid))

14 conn.commit()

15

16 conn.close()

17

18 if __name__ == "__main__":

19 main(12, 32)

Delete data

 1 import mysql.connector

 2

 3

 4 def main(uid):

 5 conn = mysql.connector.connect(

 6 host = 'localhost',

 7 database = 'fb_db',

 8 user = 'foobar',

 9 password='no secret')

10

11 cursor = conn.cursor()

12 cursor.execute("DELETE FROM person WHERE id=%s",

(uid,))

13 conn.commit()

14

15 conn.close()

16

17 if __name__ == "__main__":

18 main(11)

Exercise MySQL

1. Create a user with a password manually.
2. Create a database manually.
3. Create a table manually for describing fleet of cars: id, license-

plate, year-built, brand, owner. (Owner is the name of the
owner)

4. Create a program that accepts values on the command line and
insterts the data in the database

5. Create another program that lists all the cars.
6. Improve the selector program to accept command line

paramter –minage N and –maxage N and show the cars within
those age limits (N is a number of years e.g. 3)

7. Create program to delete a car.
8. Create program to change the owner of a car.

Exercise: MySQL Connection
Instead of hard-coding the connection details in the script, let’s
create an INI file that contains the connection information and use
that.

1 [development]

2 host = localhost

3 database = fb_db

4 user = foobar

5 password = no secret

Solution: MySQL Connection
 1 import configparser

 2 import mysql.connector

 3

 4 config_file = 'examples/mysql/connect.ini'

 5

 6 def read_config(section = 'development'):

 7 print(section)

 8 cp = configparser.ConfigParser()

 9 cp.read(config_file)

10 if not cp.has_section(section):

11 raise Exception("No configuration found for

'{}'".format(section))

12

13 return cp[section]

14

15 def main():

16 try:

17 db = read_config()

18 print(db['password'])

19 print(db)

20 conn = mysql.connector.connect(**db)

21 except mysql.connector.Error as e:

22 print("MySQL exception: ", e)

23 return

24 except Exception as e:

25 print("Other exception", e);

26 return

27

28 if conn.is_connected():

29 print("is connected")

30 print("Connected:", conn)

31

32 conn.close()

33

34 if __name__ == "__main__":

35 main()

PostgreSQL

PostgreSQL install
 1 $ sudo aptitude install postgresql

 2

 3 $ sudo -i -u postgres

 4 $ createuser --interactive

 5 Add "ubuntu" as superuser (we need a username that

matches our Linux username)

 6 $ createdb testdb

 7

 8 $ psql

 9 $ sudo -u postgres psql

10

11 $ psql testdb

12 testdb=# CREATE TABLE people (id INTEGER PRIMARY KEY,

name VARCHAR(100));

Python and Postgresql
1 $ sudo aptitude install python3-postgresql

2 $ sudo aptitude install python3-psycopg2

PostgreSQL connect
1 import psycopg2

2

3 try:

4 conn = psycopg2.connect("postgresql:///testdb")

5 #conn = psycopg2.connect("dbname='testdb'

user='ubuntu' host='localhost' passwor\

6 d='secret'")

7 except Exception as e:

8 print("I am unable to connect to the database: ", e)

INSERT
 1 import psycopg2

 2

 3 try:

 4 conn = psycopg2.connect("postgresql:///testdb")

 5 except Exception as e:

 6 print("I am unable to connect to the database: ", e)

 7

 8 cur = conn.cursor()

 9

10 uid = 1

11 name = 'Foo'

12

13 try:

14 cur.execute("INSERT INTO people (id, name) VALUES

(%s, %s)", (uid, name))

15 conn.commit()

16 except Exception as e:

17 print(e)

1 duplicate key value violates unique constraint

"people_pkey"

2 DETAIL: Key (id)=(1) already exists.

INSERT (from command line)
 1 import psycopg2

 2 import sys

 3

 4 if len(sys.argv) != 3:

 5 exit("Usage: {} ID NAME".format(sys.argv[0]))

 6

 7 uid, name = sys.argv[1:]

 8

 9

10 try:

11 conn = psycopg2.connect("postgresql:///testdb")

12 except Exception as e:

13 print("I am unable to connect to the database: ", e)

14

15 cur = conn.cursor()

16

17 try:

18 cur.execute("INSERT INTO people (id, name) VALUES

(%s, %s)", (uid, name))

19 conn.commit()

20 except Exception as e:

21 print(e)

SELECT
 1 import psycopg2

 2

 3 try:

 4 conn = psycopg2.connect("postgresql:///testdb")

 5 except Exception as e:

 6 print("I am unable to connect to the database: ", e)

 7

 8 cur = conn.cursor()

 9

10 try:

11 cur.execute("SELECT * from people")

12 for r in cur.fetchall():

13 print(r)

14 except Exception as e:

15 print(e)

DELETE
 1 import psycopg2

 2

 3 try:

 4 conn = psycopg2.connect("postgresql:///testdb")

 5 except Exception as e:

 6 print("I am unable to connect to the database: ", e)

 7

 8 cur = conn.cursor()

 9

10 try:

11 cur.execute("DELETE FROM people")

12 conn.commit()

13 except Exception as e:

14 print(e)

15

16 try:

17 cur.execute("SELECT * from people")

18 for r in cur.fetchall():

19 print(r)

20 except Exception as e:

21 print(e)

SQLAlchemy

SQLAlchemy hierarchy

ORM
Table, Metadata, Reflection, DDL - standardized language
Engine - standardize low-level access (placeholders)

SQLAlchemy engine
1 engine = create_engine('sqlite:///test.db')

relative path

2 engine = create_engine('sqlite:////full/path/to/test.db')

full path

3 engine = create_engine('sqlite://')

in memory database

PostgreSQL

1 engine =

create_engine('postgresql://user:password@hostname/dbname')

2 engine =

create_engine('postgresql+psycopg2://user:password@hostname

/dbname')

MySQL

1 engine =

create_engine("mysql://user:password@hostname/dbname",

encoding='latin1') #\

2 defaults to utf-8

SQLAlchemy autocommit
Unlike the underlying database engines, SQLAlchemy uses
autocommit.
That is, usually we don’t need to call commit(), but if we would
like to have a transaction we need to
start it using begin() and end it either with commit() or with
rollback().

SQLAlchemy engine CREATE TABLE
 1 import os

 2 from sqlalchemy import create_engine

 3

 4 dbname = 'test.db'

 5 if os.path.exists(dbname):

 6 os.unlink(dbname)

 7

 8 engine = create_engine('sqlite:///' + dbname) # Engine

 9

10 engine.execute('''

11 CREATE TABLE person (

12 id INTEGER PRIMARY KEY,

13 name VARCHAR(100) UNIQUE,

14 balance INTEGER NOT NULL

15);

16 ''')

SQLAlchemy engine INSERT
 1 import os

 2 from sqlalchemy import create_engine

 3

 4 dbname = 'test.db'

 5

 6 engine = create_engine('sqlite:///' + dbname)

 7

 8 engine.execute('INSERT INTO person (name, balance) VALUES

(:name, :balance)', name =\

 9 'Joe', balance = 100)

10 engine.execute('INSERT INTO person (name, balance) VALUES

(:name, :balance)', name =\

11 'Jane', balance = 100)

12 engine.execute('INSERT INTO person (name, balance) VALUES

(:name, :balance)', name =\

13 'Melinda', balance = 100)

14 engine.execute('INSERT INTO person (name, balance) VALUES

(:name, :balance)', name =\

15 'George', balance = 100)

SQLAlchemy engine SELECT
 1 from sqlalchemy import create_engine

 2

 3 dbname = 'test.db'

 4

 5 engine = create_engine('sqlite:///' + dbname)

 6 result = engine.execute('SELECT * FROM person WHERE

id=:id', id=3)

 7

 8 print(result) #

<sqlalchemy.engine.result.ResultProxy object at 0x1013c9d\

 9 a0>

10

11 row = result.fetchone()

12 print(row) # (3, 'Melinda', 100) - Its a

tuple

13 print(row['name']) # Melinda - And a

dictionary

14 print(row.name) # Melinda - and object with

methods for the columns

15

16 for k in row.keys(): # keys also works on it

17 print(k) # id, name, balance

18

19 result.close()

SQLAlchemy engine SELECT all

 1 import os

 2 from sqlalchemy import create_engine

 3

 4 dbname = 'test.db'

 5

 6 engine = create_engine('sqlite:///' + dbname)

 7 result = engine.execute('SELECT * FROM person')

 8

 9 for row in result:

10 print(row)

11

12 result.close()

13

14 # (1, 'Joe', 100)

15 # (2, 'Jane', 100)

16 # (3, 'Melinda', 100)

17 # (4, 'George', 100)

SQLAlchemy engine SELECT fetchall
 1 from sqlalchemy import create_engine

 2

 3 dbname = 'test.db'

 4

 5 engine = create_engine('sqlite:///' + dbname)

 6 result = engine.execute('SELECT * FROM person WHERE id >=

:id', id=3)

 7

 8 rows = result.fetchall()

 9 print(rows) # [(3, 'Melinda', 100), (4, 'George',

100)]

10

11 result.close()

SQLAlchemy engine SELECT aggregate
 1 from sqlalchemy import create_engine

 2

 3 dbname = 'test.db'

 4

 5 engine = create_engine('sqlite:///' + dbname)

 6 result = engine.execute('SELECT COUNT(*) FROM person')

 7

 8 r = result.fetchone()[0]

 9 print(r)

10

11 result.close()

SQLAlchemy engine SELECT IN
 1 from sqlalchemy import create_engine

 2

 3 dbname = 'test.db'

 4

 5 engine = create_engine('sqlite:///' + dbname)

 6

 7 results = engine.execute("SELECT * FROM person WHERE name

IN ('Joe', 'Jane')")

 8 print(results.fetchall()) # [(2, 'Jane', 100), (1, 'Joe',

100)]

 9

10 # engine.execute("SELECT * FROM person WHERE name IN

(:a0, :a1)", a0 = 'Joe', a1 = '\

11 Jane')

SQLAlchemy engine SELECT IN with
placeholders
 1 from sqlalchemy import create_engine

 2

 3 dbname = 'test.db'

 4

 5 engine = create_engine('sqlite:///' + dbname)

 6

 7

 8 names = ['Joe', 'Jane']

 9 placeholders = []

10 data = {}

11 for i in range(len(names)):

12 placeholders.append(':a' + str(i))

13 data['a' + str(i)] = names[i]

14

15 # print(placeholders) # [':a0', ':a1']

16 # print(data) # {'a0': 'Joe', 'a1': 'Jane'}

17

18 sql = "SELECT * FROM person WHERE name IN ({})".format(',

'.join(placeholders))

19 # print(sql) # SELECT * FROM person WHERE name IN (:a0,

:a1)

20

21 #results = engine.execute(sql, a0 = 'Jane', a1 = 'Joe')

22 results = engine.execute(sql, **data)

23 print(results.fetchall()) # [(2, 'Jane', 100), (1, 'Joe',

100)]

SQLAlchemy engine connection
 1 from sqlalchemy import create_engine

 2

 3 dbname = 'test.db'

 4

 5 engine = create_engine('sqlite:///' + dbname)

 6

 7 conn = engine.connect()

 8 results = conn.execute('SELECT balance, name FROM person

WHERE id < :id', id = 3)

 9 print(results.fetchall()) # [(100, 'Joe'), (100,

'Jane')]

10 conn.close()

SQLAlchemy engine transaction
 1 from sqlalchemy import create_engine

 2

 3 dbname = 'test.db'

 4

 5 engine = create_engine('sqlite:///' + dbname)

 6

 7 conn = engine.connect()

 8

 9 trans = conn.begin()

10

11 src = 'Joe'

12 dst = 'Jane'

13 payment = 3

14

15 results = conn.execute("SELECT balance, name FROM person

WHERE name = :name", name =\

16 src)

17 src_balance = results.fetchone()[0]

18 results.fetchall()

19 print(src_balance)

20

21

22 results = conn.execute("SELECT balance, name FROM person

WHERE name = :name", name =\

23 dst)

24 dst_balance = results.fetchone()[0]

25 results.fetchall()

26 print(dst_balance)

27

28 conn.execute('UPDATE person SET balance = :balance WHERE

name=:name', balance = src_\

29 balance - payment, name = src)

30 conn.execute('UPDATE person SET balance = :balance WHERE

name=:name', balance = dst_\

31 balance + payment, name = dst)

32

33 trans.commit()

34

35 # trans.rollback()

36

37 conn.close()

38

39 results = engine.execute("SELECT * FROM person")

40 print(results.fetchall())

SQLAlchemy engine using context managers
1 with engine.begin() as trans:

2 conn.execute(...)

3 conn.execute(...)

4 raise Exception() # for rollback

Exercise: Create table
Create the following schema

 1 CREATE TABLE node (

 2 id INTEGER PRIMARY KEY,

 3 name VARCHAR(100)

 4);

 5

 6 CREATE TABLE interface (

 7 id INTEGER PRIMARY KEY,

 8 node_id INTEGER NOT NULL,

 9 ipv4 VARCHAR(15) UNIQUE,

10 ipv6 VARCHAR(80) UNIQUE,

11 FOREIGN KEY (node_id) REFERENCES node(id)

12);

13

14 CREATE TABLE connection (

15 a INTEGER NOT NULL,

16 b INTEGER NOT NULL,

17 FOREIGN KEY (a) REFERENCES interface(id),

18 FOREIGN KEY (b) REFERENCES interface(id)

19);

Insert a few data items. Write a few select statements.

SQLAlchemy Metada
Describe the Schema, the structure of the database (tables,
columns, constraints, etc.) in Python.

SQL generation from the metadata, generate to a schema.
Reflection (Introspection) - Create the metadata from an
existing database, from an existing schema.

 1 from sqlalchemy import MetaData

 2 from sqlalchemy import Table, Column

 3 from sqlalchemy import Integer, String

 4

 5 metadata = MetaData()

 6 user_table = Table('user', metadata,

 7 Column('id', Integer,

primary_key=True),

 8 Column('name', String(100),

unique=True),

 9 Column('balance', Integer,

nullable=False)

10)

11 print(user_table.name)

12 print(user_table.c.name)

13 print(user_table.c.id)

14

15 print(user_table.c)

16 print(user_table.columns) # A bit like a Python

dictionary, but it is an associativ\

17 e array

18

19

20

21 from sqlalchemy import create_engine

22 engine = create_engine('sqlite://')

23 metadata.create_all(engine)

24

25 from sqlalchemy import ForeignKey

26

27 address_table = Table('address', metadata,

28 Column('id', Integer, primary_key=True),

29 Column('stree', String(100)),

30 Column('user_id', Integer,

ForeignKey('user.id'))

31)

32 address_table.create(engine)

33

34 from sqlalchemy import Unicode, UnicodeText,

ForeignKeyConstraint, DateTime

35

36 story_table = Table('story', metadata,

37 Column('id', Integer,

primary_key=True),

38 Column('version', Integer,

primary_key=True),

39 Column('headline', Unicode(100),

nullable=False),

40 Column('body', UnicodeText)

41)

42 published_table = Table('published', metadata,

43 Column('id', Integer,

primary_key=True),

44 Column('timestamp', DateTime,

nullable=False),

45 Column('story_id', Integer,

nullable=False),

46 Column('version', Integer,

nullable=False),

47 ForeignKeyConstraint(

48 ['story_id', 'version_id'],

49 ['story.story_id',

'story.version_id']

50)

51)

52

53

54 conn.execute(user_table.insert(), [

55 {'username': 'Jack', 'fullname': 'Jack Burger'},

56 {'username': 'Jane', 'fullname': 'Jane Doe'}

57])

58

59 from sqlalchemy import select

60 select_stmt = select([user_table.c.username,

user_table.c.fullname]).where(user_tabl\

61 e.c.username == 'ed')

62 result = conn.execute(select_stmt)

63 for row in result:

64 print(row)

65

66 select_stmt = select([user_table])

67 conn.execute(select_stmt).fetchall()

68

69 select_stmt = select([user_table]).where(

70 or_(

71 user_table.c.username == 'ed',

72 user_table.c.usernane == 'wendy'

73)

74)

75

76 joined_obj = user_table.join(address_table,

user_table.c.id = address_table.c.user_i\

77 d)

SQLAlchemy types

Integer() - INT
String() - ASCII strings - VARCHAR
Unicode() - Unicode string - VARCHAR or NVARCHAR
depending on database
Boolean() - BOOLEAN, INT, TINYINT depending on db
support for boolean type
DateTime() - DATETIME or TIMESTAMP returns Python
datetime() objects.
Float() - floating point values
Numeric() - precision numbers using Python Decimal()

SQLAlchemy ORM - Object Relational
Mapping

Domain model
Mapping between Domain Object - Table Row

SQLAlchemy ORM create
 1 import os

 2 from sqlalchemy import Column, ForeignKey, Integer,

String

 3 from sqlalchemy.ext.declarative import declarative_base

 4 from sqlalchemy.orm import relationship

 5 from sqlalchemy import create_engine

 6

 7 Base = declarative_base()

 8

 9

10 class Person(Base):

11 __tablename__ = 'person'

12 id = Column(Integer, primary_key=True)

13 name = Column(String(250), nullable=False,

unique=True)

14

15 class Genre(Base):

16 __tablename__ = 'genre'

17 id = Column(Integer, primary_key=True)

18 name = Column(String(250), nullable=False,

unique=True)

19

20 class Movie(Base):

21 __tablename__ = 'movie'

22 id = Column(Integer, primary_key=True)

23 title = Column(String(250), nullable=False,

unique=True)

24 genre_id = Column(Integer, ForeignKey('genre.id'))

25 genre = relationship(Genre)

26

27 class Cast(Base):

28 __tablename__ = 'cast'

29 id = Column(Integer, primary_key=True)

30 character = Column(String(250))

31 person_id = Column(Integer, ForeignKey('person.id'))

32 movie_id = Column(Integer, ForeignKey('movie.id'))

33

34

35

36 if __name__ == '__main__':

37 dbname = 'imdb.db'

38 if os.path.exists(dbname):

39 os.unlink(dbname)

40 engine = create_engine('sqlite:///' + dbname)

41 Base.metadata.create_all(engine)

SQLAlchemy ORM schema
1 echo .schema | sqlite3 imdb.db

 1 CREATE TABLE person (

 2 id INTEGER NOT NULL,

 3 name VARCHAR(250) NOT NULL,

 4 PRIMARY KEY (id)

 5);

 6 CREATE TABLE genre (

 7 id INTEGER NOT NULL,

 8 title VARCHAR(250),

 9 PRIMARY KEY (id)

10);

11 CREATE TABLE movie (

12 id INTEGER NOT NULL,

13 title VARCHAR(250),

14 genre_id INTEGER,

15 PRIMARY KEY (id),

16 FOREIGN KEY(genre_id) REFERENCES genre (id)

17);

18 CREATE TABLE "cast" (

19 id INTEGER NOT NULL,

20 character VARCHAR(250),

21 person_id INTEGER,

22 movie_id INTEGER,

23 PRIMARY KEY (id),

24 FOREIGN KEY(person_id) REFERENCES person (id),

25 FOREIGN KEY(movie_id) REFERENCES movie (id)

26);

SQLAlchemy ORM reflection
 1 from sqlalchemy import create_engine

 2 from sqlalchemy.orm import Session

 3 from sqlalchemy.ext.automap import automap_base

 4

 5 Base = automap_base()

 6

 7 dbname = 'imdb.db'

 8 engine = create_engine('sqlite:///' + dbname)

 9

10 Base.prepare(engine, reflect=True)

11 Genre = Base.classes.genre

12

13 print(Genre.metadata.sorted_tables)

14

15 for c in Base.classes:

16 print(c)

17

18 #session = Session(engine)

19 #session.add(Address(email_address="foo@bar.com",

user=User(name="foo")))

20 #session.commit()

SQLAlchemy ORM INSERT after automap
 1 from sqlalchemy import create_engine

 2 from sqlalchemy.orm import Session

 3 from sqlalchemy.ext.automap import automap_base

 4

 5 Base = automap_base()

 6

 7 dbname = 'imdb.db'

 8 engine = create_engine('sqlite:///' + dbname)

 9

10 Base.prepare(engine, reflect=True)

11 Genre = Base.classes.genre

12 Movie = Base.classes.movie

13 Person = Base.classes.person

14 Cast = Base.classes.cast

15

16

17

18 session = Session(engine)

19 for name in ('Action', 'Animation', 'Comedy',

'Documentary', 'Family', 'Horror'):

20 session.add(Genre(name = name))

21

22 session.add(Movie(title = "Sing", genre_id=2))

23 session.add(Movie(title = "Moana", genre_id=2))

24 session.add(Movie(title = "Trolls", genre_id=2))

25 session.add(Movie(title = "Power Rangers", genre_id=1))

26

27 session.commit()

SQLAlchemy ORM INSERT
 1 from sqlalchemy import create_engine

 2 from sqlalchemy.orm import Session

 3 from orm_create_db import Base, Genre, Movie, Person,

Cast

 4

 5 dbname = 'imdb.db'

 6 engine = create_engine('sqlite:///' + dbname)

 7

 8 Base.metadata.bind = engine

 9

10 session = Session(engine)

11 genre = {}

12 for name in ('Action', 'Animation', 'Comedy',

'Documentary', 'Family', 'Horror'):

13 genre[name] = Genre(name = name)

14 session.add(genre[name])

15

16 print(genre['Animation'].name) # Animation

17 print(genre['Animation'].id) # None

18 session.commit()

19

20 print(genre['Animation'].name) # Animation

21 print(genre['Animation'].id) # 2

22 session.add(Movie(title = "Sing", genre =

genre['Animation']))

23 session.commit()

SQLAlchemy ORM SELECT
 1 from sqlalchemy import create_engine

 2 from sqlalchemy.orm import Session

 3 from orm_create_db import Base, Genre, Movie, Person,

Cast

 4

 5 dbname = 'imdb.db'

 6 engine = create_engine('sqlite:///' + dbname)

 7

 8 Base.metadata.bind = engine

 9

10 session = Session(engine)

11

12 for g in session.query(Genre).all():

13 print(g.name, g.id)

14

15 print("---")

16 animation = session.query(Genre).filter(Genre.name ==

'Animation').one()

17 print(animation.name, animation.id)

SQLAlchemy ORM SELECT cross tables

 1 from sqlalchemy import create_engine

 2 from sqlalchemy.orm import Session

 3 from orm_create_db import Base, Genre, Movie, Person,

Cast

 4

 5 dbname = 'imdb.db'

 6 engine = create_engine('sqlite:///' + dbname)

 7

 8 Base.metadata.bind = engine

 9

10 session = Session(engine)

11

12 movies = session.query(Movie).all()

13 for m in movies:

14 print(m.title, "-", m.genre.name)

SQLAlchemy ORM SELECT and INSERT
 1 from sqlalchemy import create_engine

 2 from sqlalchemy.orm import Session

 3 from orm_create_db import Base, Genre, Movie, Person,

Cast

 4

 5 dbname = 'imdb.db'

 6 engine = create_engine('sqlite:///' + dbname)

 7

 8 Base.metadata.bind = engine

 9

10 session = Session(engine)

11

12 animation = session.query(Genre).filter(Genre.name ==

'Animation').one()

13 session.add(Movie(title = "Moana", genre = animation))

14 session.add(Movie(title = "Trolls", genre = animation))

15

16 action = session.query(Genre).filter(Genre.name ==

'Action').one()

17 session.add(Movie(title = "Power Rangers", genre =

action))

18

19 comedy = session.query(Genre).filter(Genre.name ==

'Comedy').one()

20 session.add(Movie(title = "Gostbuster", genre = comedy))

21

22

23 session.commit()

SQLAlchemy ORM UPDATE
 1 from sqlalchemy import create_engine

 2 from sqlalchemy.orm import Session

 3 from orm_create_db import Base, Genre, Movie, Person,

Cast

 4

 5 dbname = 'imdb.db'

 6 engine = create_engine('sqlite:///' + dbname)

 7

 8 Base.metadata.bind = engine

 9

10 session = Session(engine)

11

12 movie = session.query(Movie).filter(Movie.title ==

'Gostbuster').one()

13 print(movie.title)

14 movie.title = 'Ghostbusters'

15 session.commit()

16

17 print(movie.title)

SQLAlchemy ORM logging
 1 from sqlalchemy import create_engine

 2 from sqlalchemy.orm import Session

 3 from orm_create_db import Base, Genre, Movie, Person,

Cast

 4

 5 import logging

 6

 7 logging.basicConfig()

 8

logging.getLogger('sqlalchemy.engine').setLevel(logging.INF

O)

 9

10 logger = logging.getLogger('demo')

11 logger.setLevel(logging.INFO)

12

13 dbname = 'imdb.db'

14 engine = create_engine('sqlite:///' + dbname)

15

16 Base.metadata.bind = engine

17

18 session = Session(engine)

19

20

21 logger.info("Selecting all")

22 movies = session.query(Movie).all()

23 for m in movies:

24 logger.info("------------")

25 #print(m.title, "-", m.genre_id)

26 print(m.title, "-", m.genre.name)

Solution: Create table
Create the followig schema

 1 from sqlalchemy import create_engine

 2 from sqlalchemy import MetaData

 3 from sqlalchemy import Table, Column

 4 from sqlalchemy import Integer, String

 5 from sqlalchemy import ForeignKey

 6

 7 metadata = MetaData()

 8

 9 node_table = Table('node', metadata,

10 Column('id', Integer,

primary_key=True),

11 Column('name', String(100),

unique=True)

12)

13

14 interface_table = Table('interface', metadata,

15 Column('id', Integer,

primary_key=True),

16 Column('node_id', Integer,

ForeignKey('node.id'), nullable=False),

17 Column('ipv4', String(14),

unique=True),

18 Column('ipv6', String(80),

unique=True),

19)

20

21 connection_table = Table('connection', metadata,

22 Column('a', Integer,

ForeignKey('interface.id'), nullable=False),

23 Column('b', Integer,

ForeignKey('interface.id'), nullable=False)

24)

25

26 engine = create_engine('sqlite://', echo=True)

27 metadata.create_all(engine)

Exercise: Inspector
Use the inspector to list all the tables and all the columns in every
table.

 1 from sqlalchemy import create_engine

 2 from sqlalchemy import MetaData

 3 from sqlalchemy import Table, Column

 4 from sqlalchemy import Integer, String

 5 from sqlalchemy import ForeignKey

 6

 7 metadata = MetaData()

 8

 9 node_table = Table('node', metadata,

10 Column('id', Integer,

primary_key=True),

11 Column('name', String(100),

unique=True)

12)

13

14 interface_table = Table('interface', metadata,

15 Column('id', Integer,

primary_key=True),

16 Column('node_id', Integer,

ForeignKey('node.id'), nullable=False),

17 Column('ipv4', String(14),

unique=True),

18 Column('ipv6', String(80),

unique=True),

19)

20

21 connection_table = Table('connection', metadata,

22 Column('a', Integer,

ForeignKey('interface.id'), nullable=False),

23 Column('b', Integer,

ForeignKey('interface.id'), nullable=False)

24)

25

26 engine = create_engine('sqlite://', echo=True)

27 metadata.create_all(engine)

28

29

30 m2 = MetaData()

31 m2_node_table = Table('node', m2, autoload=True,

autoload_with=engine)

32 m2_interface_table = Table('interface', m2,

autoload=True, autoload_with=engine)

33 print(m2_node_table.columns)

34 print(m2_interface_table.columns)

35 print(m2_node_table.__repr__())

36

37 from sqlalchemy import inspect

38

39 inspector = inspect(engine)

40 inspector.get_columns('address')

41 inspector.get_foreign_keys('address')

SQLAlchemy CREATE and DROP

metadata.create_all(engine, checkfirst=True|False) emits
CREATE statement for all tables.
table.create(engine, checkfirst=False|True) emits CREATE
statement for a single table.
metadata.drop_all(engine, checkfirst=True|False) emits
DROPT statement for all the tables.
table.drop(engine, checkfirst=False|True) emits DROPT
statement for a single table.

metada can create (or drop) the tables in the correct order to
maintain the dependencies.

SQLAlchemy Notes

Multi-column primary key (composite primary key).
Composite foreign key.

SQLAlchemy Meta SQLite CREATE
 1 from sqlalchemy import create_engine

 2 import os

 3 from sqlite_meta_schema import get_meta

 4

 5 dbname = 'test.db'

 6 if os.path.exists(dbname):

 7 os.unlink(dbname)

 8 engine = create_engine('sqlite:///test.db')

 9

10 metadata = get_meta()

11 metadata.create_all(engine)

 1 from sqlalchemy import MetaData

 2 from sqlalchemy import Table, Column

 3 from sqlalchemy import Integer, String

 4 from sqlalchemy import ForeignKey

 5

 6

 7 def get_meta():

 8 metadata = MetaData()

 9

10 node_table = Table('node', metadata,

11 Column('id', Integer,

primary_key=True),

12 Column('name', String(100),

unique=True)

13)

14

15 interface_table = Table('interface', metadata,

16 Column('id', Integer,

primary_key=True),

17 Column('node_id', Integer,

ForeignKey('node.id'), nullab\

18 le=False),

19 Column('ipv4', String(14),

unique=True),

20 Column('ipv6', String(80),

unique=True),

21)

22

23 connection_table = Table('connection', metadata,

24 Column('a', Integer,

ForeignKey('interface.id'), nullab\

25 le=False),

26 Column('b', Integer,

ForeignKey('interface.id'), nullab\

27 le=False)

28)

29 return metadata

SQLAlchemy Meta Reflection
 1 from sqlalchemy import create_engine

 2 import os

 3 #from sqlalchemy import inspect

 4 from sqlalchemy.engine import reflection

 5

 6 dbname = 'test.db'

 7 if not os.path.exists(dbname):

 8 exit("Database file '{}' could not be

found".format(dbname))

 9

10 engine = create_engine('sqlite:///test.db')

11 # inspector = inspect(engine)

12 # print(inspector)

13 # print(inspector.get_columns('address'))

14 # print(inspector.get_foreign_keys('address'))

15

16 insp = reflection.Inspector.from_engine(engine)

17 print(insp.get_table_names())

SQLAlchemy Meta INSERT
1

SQLAlchemy Meta SELECT
1

NoSQL

Types of NoSQL databases

Document oriented - MongoDB
Key-Value store - Redis
Graph - Neo4j
Tuple store - Apache River, TIBCO

MongoDB

MongoDB CRUD

Create, Read, Update, Delete

Install MongoDB support

Otherwise: pip install pymongo

Python MongoDB insert
 1 from pymongo import MongoClient

 2 import datetime

 3

 4 client = MongoClient()

 5 db = client.demo

 6

 7 foo = {

 8 'name' : 'Foo',

 9 'email' : 'foo@example.com',

10 'birthdate' : datetime.datetime.strptime('2002-01-

02', '%Y-%m-%d'),

11 'student' : True,

12 }

13

14 bar = {

15 'name' : 'Bar',

16 'email' : 'bar@example.com',

17 'birthdate' : datetime.datetime.strptime('1998-08-

03', '%Y-%m-%d'),

18 'student' : True,

19 'teacher' : False,

20 }

21

22 zorg = {

23 'name' : 'Zorg',

24 'email' : 'zorg@corp.com',

25 'birthdate' : datetime.datetime.strptime('1995-12-

12', '%Y-%m-%d'),

26 'teacher' : True,

27 }

28

29

30 db.people.insert(foo)

31 db.people.insert(bar)

32 db.people.insert(zorg)

MongoDB CLI
 1 $ mongo

 2 > help

 3 ...

 4 > show dbs

 5 admin (empty)

 6 demo 0.078GB

 7 local 0.078GB

 8

 9 > use demo (name of db)

10 switched to db demo

11

12 > show collections

13 people

14 system.indexes

15

16 > db.people.find()

17 { "_id" : ObjectId("58a3e9b2962d747a9c6e676c"), "email" :

"foo@example.com", "studen\

18 t" : true,

19 "birthdate" : ISODate("2002-01-02T00:00:00Z"), "name"

: "Foo" }

20 { "_id" : ObjectId("58a3e9b2962d747a9c6e676d"), "email" :

"bar@example.com", "name" \

21 : "Bar", "student" : true,

22 "birthdate" : ISODate("1998-08-03T00:00:00Z"),

"teacher" : false }

23 { "_id" : ObjectId("58a3e9b2962d747a9c6e676e"), "email" :

"zorg@corp.com",

24 "birthdate" : ISODate("1995-12-12T00:00:00Z"),

"teacher" : true, "name" : "Zorg"\

25 }

26

27 > db.people.drop() (drop a collection)

28 > db.dropDatabase() (drop a whole database)

Python MongoDB find
1 from pymongo import MongoClient

2 import datetime

3

4 client = MongoClient()

5 db = client.demo

6

7 for p in db.people.find():

8 print(p)

Python MongoDB find refine
1 from pymongo import MongoClient

2 import datetime

3

4 client = MongoClient()

5 db = client.demo

6

7 for p in db.people.find({ 'name' : 'Foo'}):

8 print(p)

Python MongoDB update
1 from pymongo import MongoClient

2 import datetime

3

4 client = MongoClient()

5 db = client.demo

6

7 db.people.update({ 'name' : 'Zorg'}, { '$set' : {

'salary' : 1000 } })

8 for p in db.people.find({ 'name' : 'Zorg'}):

9 print(p)

Python MongoDB remove (delete)
1 from pymongo import MongoClient

2 import datetime

3

4 client = MongoClient()

5 db = client.demo

6

7 db.people.remove({ 'name' : 'Zorg'})

8 for p in db.people.find():

9 print(p)

Redis

Redis CLI
redis-cli

 1 $ redis-cli

 2 > set name foo

 3 > get name

 4 > set name "foo bar"

 5 > get name

 6

 7 > set a 1

 8 > get a

 9 > incr a

10 > get a

11

12 > set b 1

13 > keys *

14 > del b

Redis list keys
1 import redis

2 r = redis.StrictRedis()

3

4 for k in r.keys('*'):

5 print(k)

Redis set get
1 import redis

2 r = redis.StrictRedis()

3

https://redis.io/topics/rediscli

4 r.set("name", "some value")

5 print(r.get("name"))

Redis incr
1 import redis

2 r = redis.StrictRedis()

3

4 r.set("counter", 40)

5 print(r.get("counter"))

6 print(r.incr("counter"))

7 print(r.incr("counter"))

8 print(r.get("counter"))

Redis incrby
1 import redis

2 r = redis.StrictRedis()

3

4 r.set("counter", 19)

5 print(r.get("counter"))

6 print(r.incrby("counter", 23))

7 print(r.get("counter"))

Redis setex
Set with expiration time in seconds.

 1 import redis

 2 import time

 3 r = redis.StrictRedis()

 4

 5

 6 r.setex("login", 2, 'foobar')

 7 print(r.get("login")) # 'foobar'

 8 time.sleep(1)

 9 print(r.get("login")) # 'foobar'

10 time.sleep(1)

11 print(r.get("login")) # None

Web client

urllib the web client
 1 import urllib

 2

 3 # f is like a filehand for http requests, but it cannot

be user "with"

 4 # Only works in Python 2

 5 f = urllib.urlopen('http://python.org/')

 6 html = f.read() # is like a get() request

 7 f.close()

 8

 9 print(html)

10

11

12 # retrieve a file and save it locally:

13 urllib.urlretrieve('http://www.python.org/images/python-

logo.gif', 'logo.gif')

urllib2 the web client

urllib2 is better than urllib as it will indicate if there was an
error retreiving

 1 import urllib2

 2

 3 # f is like a filehand for http requests

 4 f = urllib2.urlopen('http://python.org/')

 5 html = f.read() # is like a get() request

 6 f.close()

 7 print(html)

 8

 9

10 try:

11 f =

urllib2.urlopen('http://python.org/some_missing_page')

12 html = f.read()

13 f.close()

14 print(html)

15 except urllib2.HTTPError as e:

16 print(e) # HTTP Error 404: OK

httpbin.org

httpbin.org
source

requests get
1 import requests

2

3 r = requests.get('http://httpbin.org/')

4 print(type(r))

5 print(r.status_code)

6 print(r.headers)

7 print(r.headers['content-type'])

HTTP status codes
Python requests

Download image using requests
1 import requests

2

3 url =

'https://bloximages.newyork1.vip.townnews.com/wpsdlocal6.co

m/content/tncms/ass\

4 ets/v3/editorial/7/22/722f8401-e134-5758-9f4b-

a542ed88a101/5d41b45d92106.image.jpg'

5 filename = "source.jpg"

http://httpbin.org/
https://github.com/Runscope/httpbin
https://en.wikipedia.org/wiki/List_of_HTTP_status_codes
http://docs.python-requests.org/

6 res = requests.get(url)

7 print(res.status_code)

8 with open(filename, 'wb') as fh:

9 fh.write(res.content)

Download image as a stream using requests
 1 import requests

 2 import shutil

 3

 4 url =

'https://bloximages.newyork1.vip.townnews.com/wpsdlocal6.co

m/content/tncms/ass\

 5 ets/v3/editorial/7/22/722f8401-e134-5758-9f4b-

a542ed88a101/5d41b45d92106.image.jpg'

 6 filename = "source.jpg"

 7 res = requests.get(url, stream=True)

 8 print(res.status_code)

 9 with open(filename, 'wb') as fh:

10 res.raw.decode_content

11 shutil.copyfileobj(res.raw, fh)

Download zip file
 1 import requests

 2 import shutil

 3

 4 url = "https://code-

maven.com/public/developer_survey_2019.zip"

 5 filename = "developer_survey_2019.zip"

 6

 7 res = requests.get(url, stream=True)

 8 print(res.status_code)

 9 if res.status_code == 200:

10 with open(filename, 'wb') as fh:

11 res.raw.decode_content

12 shutil.copyfileobj(res.raw, fh)

Extract zip file

1 import zipfile

2

3 path = "developer_survey_2019.zip"

4 z = zipfile.ZipFile(path)

5 z.extractall()

Interactive Requests
1 import requests

2

3 r = requests.get('http://httpbin.org/')

4

5 import code

6 code.interact(local=locals())

requests get JSON
1 import requests

2

3 r = requests.get('http://httpbin.org/ip')

4 print(r.headers['content-type'])

5 print(r.text)

6 data = r.json()

7 print(data)

8 print(data['origin'])

requests get JSON UserAgent
1 import requests

2

3 r = requests.get('http://httpbin.org/user-agent')

4 print(r.headers['content-type'])

5 print(r.text)

6 data = r.json()

7 print(data)

8 print(data['user-agent'])

requests get JSON UserAgent
1 import requests

2

3 r = requests.get('http://httpbin.org/user-agent',

4 headers = {'User-agent': 'Internet Explorer/2.0'})

5 print(r.headers['content-type'])

6 print(r.text)

7 data = r.json()

8 print(data)

9 print(data['user-agent'])

requests get header
 1 import requests

 2

 3 r = requests.get('http://httpbin.org/headers')

 4 print(r.text)

 5

 6 # {

 7 # "headers": {

 8 # "Accept": "*/*",

 9 # "Accept-Encoding": "gzip, deflate",

10 # "Host": "httpbin.org",

11 # "User-Agent": "python-requests/2.3.0 CPython/2.7.12

Darwin/16.3.0"

12 # }

13 # }

requests change header
 1 import requests

 2

 3 r = requests.get('http://httpbin.org/headers',

 4 headers = {

 5 'User-agent' : 'Internet Explorer/2.0',

 6 'SOAPAction' :

'http://www.corp.net/some/path/CustMsagDown.Check',

 7 'Content-type': 'text/xml'

 8 }

 9)

10 print(r.text)

11

12 # {

13 # "headers": {

14 # "Accept": "*/*",

15 # "Accept-Encoding": "gzip, deflate",

16 # "Content-Type": "text/xml",

17 # "Host": "httpbin.org",

18 # "Soapaction":

"http://www.corp.net/some/path/CustMsagDown.Check",

19 # "User-Agent": "Internet Explorer/2.0"

20 # }

21 # }

requests post
 1 import requests

 2

 3 payload = '''

 4 <soapenv:Envelope

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:cu\

 5 s="http://www.corp.net/Request.XSD">

 6 <soapenv:Header/>

 7 <soapenv:Body>

 8 <cus:CustMsagDown.Check>

 9 <cus:MainCustNum>327</cus:MainCustNum>

10 <cus:SourceSystem></cus:SourceSystem>

11 </cus:CustMsagDown.Check>

12 </soapenv:Body>

13 </soapenv:Envelope>

14 '''

15

16 r = requests.post('http://httpbin.org/post',

17 headers = {

18 'User-agent' : 'Internet Explorer/2.0',

19 'SOAPAction' :

'http://www.corp.net/some/path/CustMsagDown.Check',

20 'Content-type': 'text/xml'

21 },

22 data = payload,

23)

24 print(r.headers['content-type'])

25 print(r.text)

Tweet
 1 import configparser

 2 import twitter

 3 import os

 4

 5 config = configparser.ConfigParser()

 6

config.read(os.path.join(os.path.dirname(os.path.abspath(__

file__)), 'api.cfg'));

 7 api = twitter.Api(**config['twitter'])

 8

 9 status = api.PostUpdate('My first Tweet using Python')

10 print(status.text)

API config file
1 [twitter]

2 consumer_key=

3 consumer_secret=

4 access_token_key=

5 access_token_secret=

6

7 [bitly]

8 access_token=

bit.ly
 1 import configparser

 2 import os

 3 import requests

 4

 5 def shorten(uri):

 6 config = configparser.ConfigParser()

 7 #config.read(os.path.join(os.path.expanduser('~'),

'api.cfg'))

 8

config.read(os.path.join(os.path.dirname(os.path.abspath(__

file__)), 'api.cfg'))

 9

10 query_params = {

11 'access_token': bitly_config['bitly']

['access_token'],

12 'longUrl': uri

13 }

14

15 endpoint = 'https://api-ssl.bitly.com/v3/shorten'

16 response = requests.get(endpoint,

params=query_params, verify=False)

17

18 data = response.json()

19

20 if not data['status_code'] == 200:

21 exit("Unexpected status_code: {} in bitly

response. {}".format(data['status_\

22 code'], response.text))

23 return data['data']['url']

24

25 print(shorten("http://code-maven.com/"))

Exercise: Combine web server and client
Write a web application that can get a site and a text as input (e.g.
http://cnn.com and ‘Korea’)
check if on the given site the word appears or not?

Extended version: Only get the URL as the input and create
statistics, which are the most
frequent words on the given page.

Python Web server

Hello world web
 1 from wsgiref.util import setup_testing_defaults

 2 from wsgiref.simple_server import make_server

 3

 4 import time

 5

 6 def hello_world(environ, start_response):

 7 setup_testing_defaults(environ)

 8

 9 status = '200 OK'

10 headers = [('Content-type', 'text/plain')]

11

12 start_response(status, headers)

13

14 return "Hello World " + str(time.time())

15

16 port = 8080

17 httpd = make_server('0.0.0.0', port, hello_world)

18 print("Serving on port {}...".format(port))

19 httpd.serve_forever()

Dump web environment info
 1 from wsgiref.util import setup_testing_defaults

 2 from wsgiref.simple_server import make_server

 3

 4 # A relatively simple WSGI application. It's going to

print out the

 5 # environment dictionary after being updated by

setup_testing_defaults

 6 def simple_app(environ, start_response):

 7 setup_testing_defaults(environ)

 8

 9 status = '200 OK'

10 headers = [('Content-type', 'text/plain')]

11

12 start_response(status, headers)

13

14 ret = ["{}: {}\n".format(key, value)

15 for key, value in environ.iteritems()]

16 return ret

17

18 httpd = make_server('', 8000, simple_app)

19 print("Serving on port 8000...")

20 httpd.serve_forever()

21

22 # taken from the standard documentation of Python

Web echo
 1 from wsgiref.util import setup_testing_defaults

 2 from wsgiref.simple_server import make_server

 3

 4 import time

 5 import cgi

 6

 7 def hello_world(environ, start_response):

 8 setup_testing_defaults(environ)

 9

10 status = '200 OK'

11 headers = [('Content-type', 'text/html')]

12

13 start_response(status, headers)

14

15 form = cgi.FieldStorage(fp=environ['wsgi.input'],

environ=environ)

16 if 'txt' in form:

17 return 'Echo: ' + form['txt'].value

18

19 return """

20 <form>

21 <input name="txt" />

22 <input type="submit" value="Echo" />

23 </form>

24 """

25 httpd = make_server('', 8000, hello_world)

26 print("Serving on port 8000...")

27 httpd.serve_forever()

Web form
 1 from wsgiref.util import setup_testing_defaults

 2 from wsgiref.simple_server import make_server

 3

 4 import time

 5 import cgi

 6

 7 def hello_world(environ, start_response):

 8 setup_testing_defaults(environ)

 9

10 status = '200 OK'

11 headers = [('Content-type', 'text/html')]

12

13 start_response(status, headers)

14

15 form = cgi.FieldStorage(fp=environ['wsgi.input'],

environ=environ)

16 html = ''

17 for f in form:

18 html += f + '==' + form[f].value + '
'

19

20 if not html:

21 html = """

22 click

23 <form>

24 Username: <input name="username" />

25 Password: <input type="password" name="pw" />

26 Age group: Under 18 <input type="radio" name="age"

value="kid" >

27 18-30 <input type="radio" name="age" value="young" >

28 30- <input type="radio" name="age" value="old" >

29 <input type="submit" value="Send" />

30 </form>

31 """

32 return html

33

34 httpd = make_server('', 8000, hello_world)

35 print("Serving on port 8000...")

36 httpd.serve_forever()

Resources

wsgi tutorial

http://archimedeanco.com/wsgi-tutorial/

Python Flask

Python Flask intro

Flask
Jinja
Werkzeug

Python Flask installation
1 virtualenv venv -p python3

2 source venv/bin/activate

3

4 pip install flask

Flask: Hello World
1 from flask import Flask

2 app = Flask(__name__)

3

4 @app.route("/")

5 def hello():

6 return "Hello World!"

7

8 if __name__ == "__main__":

9 app.run()

1 $ python hello_world.py

2 Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)

Flask hello world + test

http://flask.pocoo.org/
http://jinja.pocoo.org/
http://werkzeug.pocoo.org/

1 from flask import Flask

2

3 app = Flask(__name__)

4

5 @app.route("/")

6 def hello():

7 return "Hello World!"

1 FLASK_APP=app FLASK_DEBUG=1 flask run

2

3 Visit: http://127.0.0.1:5000/

4 curl http://localhost:5000/

Windows on the command line or in the terminal of Pycharm.

1 set FLASK_APP=app

2 set FLASK_DEBUG=1

3 flask run

1 import app

2

3 def test_app():

4 web = app.app.test_client()

5

6 rv = web.get('/')

7 assert rv.status == '200 OK'

8 assert rv.data == b'Hello World!'

1 pytest

Flask generated page - time
 1 from flask import Flask

 2 import time

 3

 4 app = Flask(__name__)

 5

 6 @app.route("/")

 7 def main():

 8 return 'time'

 9

10 @app.route("/time")

11 def echo():

12 return str(time.time())

 1 import app

 2 import re

 3

 4 def test_home():

 5 web = app.app.test_client()

 6

 7 rv = web.get('/')

 8 assert rv.status == '200 OK'

 9 assert rv.data == b'time'

10

11 def test_time():

12 web = app.app.test_client()

13

14 rv = web.get('/time')

15 assert rv.status == '200 OK'

16 assert re.search(r'\d+\.\d+$', rv.data.decode('utf-

8'))

Flask: Echo GET
 1 from flask import Flask, request

 2 app = Flask(__name__)

 3

 4 @app.route("/")

 5 def main():

 6 return '''

 7 <form action="/echo" method="GET">

 8 <input name="text">

 9 <input type="submit" value="Echo">

10 </form>

11 '''

12

13 @app.route("/echo")

14 def echo():

15 return "You said: " + request.args.get('text', '')

 1 import app

 2

 3 def test_app():

 4 web = app.app.test_client()

 5

 6 rv = web.get('/')

 7 assert rv.status == '200 OK'

 8 assert '<form action="/echo" method="GET">' in

rv.data.decode('utf-8')

 9

10 rv = web.get('/echo')

11 assert rv.status == '200 OK'

12 assert b"You said: " == rv.data

13

14 rv = web.get('/echo?text=foo+bar')

15 assert rv.status == '200 OK'

16 assert b"You said: foo bar" == rv.data

1 curl http://localhost:5000/

2 curl http://localhost:5000/echo?text=Sanch+Panza

1 import requests

2

3 res = requests.get('http://localhost:5000/')

4 print(res.status_code)

5 print(res.text)

6

7 res = requests.get('http://localhost:5000/echo?text=Hello

World!')

8 print(res.status_code)

9 print(res.text)

Flask: Echo POST
 1 from flask import Flask, request

 2

 3 app = Flask(__name__)

 4

 5 @app.route("/")

 6 def main():

 7 return '''

 8 <form action="/echo" method="POST">

 9 <input name="text">

10 <input type="submit" value="Echo">

11 </form>

12 '''

13

14 @app.route("/echo", methods=['POST'])

15 def echo():

16 if 'text' in request.form:

17 return "You said: " + request.form['text']

18 else:

19 return "Nothing to say?"

 1 import app

 2

 3 def test_app():

 4 web = app.app.test_client()

 5

 6 rv = web.get('/')

 7 assert rv.status == '200 OK'

 8 assert '<form action="/echo" method="POST">' in

rv.data.decode('utf-8')

 9

10

11 rv = web.get('/echo')

12 assert rv.status == '405 METHOD NOT ALLOWED'

13 assert '<title>405 Method Not Allowed</title>' in

rv.data.decode('utf-8')

14

15

16 rv = web.post('/echo')

17 assert rv.status == '200 OK'

18 assert b"Nothing to say?" == rv.data

19

20

21 rv = web.post('/echo', data={ "text": "foo bar" })

22 assert rv.status == '200 OK'

23 assert b"You said: foo bar" == rv.data

1 curl --data "text=Sancho Panza"

http://localhost:5000/echo

 1 import requests

 2

 3 res = requests.get('http://localhost:5000/')

 4 print(res.status_code)

 5 print(res.text)

 6

 7

 8 res = requests.post('http://localhost:5000/echo', data=

{"text": "Hello World!"})

 9 print(res.status_code)

10 print(res.text)

Flask: templates
 1 from flask import Flask, request

 2 app = Flask(__name__)

 3

 4 @app.route("/")

 5 def main():

 6 return render_template('index.html')

 7

 8 @app.route("/echo", methods=['POST'])

 9 def echo():

10 return "You said: " + request.form['text']

1 <form action="/echo" method="POST">

2 <input name="text">

3 <input type="submit" value="Echo">

4 </form>

1 FLASK_APP=echo_post FLASK_DEBUG=0 flask run

Internal Server Error

1 FLASK_APP=echo_post FLASK_DEBUG=1 flask run

Flask: templates

 1 from flask import Flask, request, render_template

 2 app = Flask(__name__)

 3

 4 @app.route("/")

 5 def main():

 6 return render_template('index.html')

 7

 8 @app.route("/echo", methods=['POST'])

 9 def echo():

10 return "You said: " + request.form['text']

Flask: templates with parameters
 1 from flask import Flask, request, render_template

 2 app = Flask(__name__)

 3

 4 @app.route("/")

 5 def main():

 6 return render_template('echo.html')

 7

 8 @app.route("/echo", methods=['POST'])

 9 def echo():

10 return render_template('echo.html',

text=request.form['text'])

1 <form action="/echo" method="POST">

2 <input name="text">

3 <input type="submit" value="Echo">

4 </form>

5

6 {% if text %}

7 You said: {{ text }}

8 {% endif %}

 1 import echo

 2

 3 def test_app():

 4 web = echo.app.test_client()

 5

 6 rv = web.get('/')

 7 assert rv.status == '200 OK'

 8 assert '<form action="/echo" method="POST">' in

rv.data.decode('utf-8')

 9

10 rv = web.post('/echo', data={ "text": "foo bar" })

11 assert rv.status == '200 OK'

12 assert "You said: foo bar" in rv.data.decode('utf-8')

Flask: runner
1 $ cd examples/flask/params

1 $ export FLASK_APP=echo

2 $ export FLASK_DEBUG=1

3 $ flask run

or

1 $ FLASK_APP=echo.py FLASK_DEBUG=1 flask run

on windows

1 > set FLASK_APP=echo

2 > set FLASK_DEBUG=1

3 > flask run

Other parameters

1 $ FLASK_APP=echo.py FLASK_DEBUG=1 flask run --port 8080

--host 0.0.0.0

Exercise: Flask calculator
Write a web application that has two entry boxes and a button and
that will add the two numbers inserted into the entry boxes.

Static files
 1 from flask import Flask, request, render_template,

url_for

 2 app = Flask(__name__)

 3

 4 @app.route("/")

 5 def main():

 6 return render_template('main.html')

 7

 8 @app.route("/other")

 9 def other():

10 return render_template('other.html',

11 img_path = url_for('static',

filename='img/python.png'))

1 <h1>Main page</h1>

2

3 <p>

4 other

1 <h2>Other page</h2>

2 img_path: {{ img_path }}

3 <p>

4

5 <p>

6 main

1 .

2 ├── app.py

3 ├── static

4 │ └── img

5 │ └── python.png

6 └── templates

7 ├── main.html

8 └── other.html

Flask Logging

1 from flask import Flask

2 app = Flask(__name__)

3

4 @app.route("/")

5 def main():

6 app.logger.debug("Some debug message")

7 app.logger.warning("Some warning message")

8 app.logger.error("Some error message")

9 return "Hello World"

Flask: Counter
 1 from flask import Flask

 2 app = Flask(__name__)

 3

 4 counter = 1

 5

 6 @app.route("/")

 7 def main():

 8 global counter

 9 counter += 1

10 return str(counter)

Access the page from several browsers. There is one single counter
that lives as long as the process lives.

Color selector without session
 1 from flask import Flask, request, render_template

 2 import re

 3 app = Flask(__name__)

 4

 5 @app.route("/",methods=['GET', 'POST'])

 6 def main():

 7 color = "FFFFFF"

 8 new_color = request.form.get('color', '')

 9 if re.search(r'^[0-9A-F]{6}$', new_color):

10 color = new_color

11

12 return render_template('main.html', color = color)

 1 <style>

 2 * {

 3 background-color: #{{ color }};

 4 }

 5 </style>

 6

 7 <form method="POST">

 8 <input name="color" value="{{ color }}">

 9 <input type="submit" value="Set">

10 </form>

11 <p>

12 home

Session management
 1 from flask import Flask, request, render_template,

session

 2 import re

 3 app = Flask(__name__)

 4 app.secret_key = 'blabla'

 5

 6 @app.route("/",methods=['GET', 'POST'])

 7 def main():

 8 color = session.get('color', 'FFFFFF')

 9 app.logger.debug("Color: " + color)

10

11 new_color = request.form.get('color', '')

12 if re.search(r'^[0-9A-F]{6}$', new_color):

13 app.logger.debug('New color: ' + new_color)

14 session['color'] = new_color

15 color = new_color

16

17 return render_template('main.html', color = color)

Flask custom 404 page
1 from flask import Flask

2 app = Flask(__name__)

3

4 @app.route("/")

5 def main():

6 return '''

7 Main

8 404 page

9 '''

 1 from flask import Flask

 2 app = Flask(__name__)

 3

 4 @app.route("/")

 5 def main():

 6 return '''

 7 Main

 8 404 page

 9 '''

10

11 @app.errorhandler(404)

12 def not_found(e):

13 return "Our Page not found", 404

1 curl -I http://localhost:5000/not

2

3 HTTP/1.0 404 NOT FOUND

Flask Error page
 1 from flask import Flask

 2 app = Flask(__name__)

 3

 4 @app.route("/")

 5 def main():

 6 return '''

 7 Main

 8 bad

 9 '''

10

11 @app.route("/bad")

12 def bad():

13 raise Exception("This is a bad page")

14 return 'Bad page'

Will not trigger in debug mode!

1 $ FLASK_APP=echo.py FLASK_DEBUG=0 flask run

1 curl -I http://localhost:5000/not

2

3 HTTP/1.0 500 INTERNAL SERVER ERROR

 1 from flask import Flask

 2 app = Flask(__name__)

 3

 4 @app.route("/")

 5 def main():

 6 return '''

 7 Main

 8 bad

 9 '''

10

11 @app.route("/bad")

12 def bad():

13 raise Exception("This is a bad page")

14 return 'Bad page'

15

16 @app.errorhandler(500)

17 def not_found(err):

18 #raise Exception("Oups")

19 return "Our Page crashed", 500

Flask URL routing

The mapping of the path part of a URL, so the one that comes
after the domain name and
after the port number (if it is included) is the path. Mapping
that to a function call
is called routing.

In the following pages we are going to see several examples on
how to map routes to functions.

It is also called “url route registration”.

Flask Path params
 1 from flask import Flask, jsonify

 2 app = Flask(__name__)

 3

 4 @app.route("/")

 5 def main():

 6 return '''

 7 Main

 8 23

 9 42

10 Joe

11 '''

12

13 @app.route("/user/<uid>")

14 def api_info(uid):

15 return uid

1 FLASK_APP=app.py FLASK_DEBUG=0 flask run

Flask Path params (int)
 1 from flask import Flask, jsonify

 2 app = Flask(__name__)

 3

 4 @app.route("/")

 5 def main():

 6 return '''

 7 Main

 8 23

 9 42

10 Joe

11 '''

12

13 @app.route("/user/<int:uid>")

14 def api_info(uid):

15 return str(uid)

1 FLASK_APP=app.py FLASK_DEBUG=0 flask run

Flask Path params add (int)
 1 from flask import Flask, jsonify

 2 app = Flask(__name__)

 3

 4 @app.route("/")

 5 def main():

 6 return '''

 7 Main add

 8 '''

 9

10 @app.route("/add/<int:a>/<int:b>")

11 def api_info(a, b):

12 return str(a+b)

1 FLASK_APP=app.py FLASK_DEBUG=0 flask run

Flask Path params add (path)

Accept any path, including slashes:

 1 from flask import Flask, jsonify

 2 app = Flask(__name__)

 3

 4 @app.route("/")

 5 def main():

 6 return '''

 7 Main

 8 /user/name

 9 /user/other/dir

10 /usre/hi.html

11 '''

12

13 @app.route("/user/<path:fullpath>")

14 def api_info(fullpath):

15 return fullpath

1 FLASK_APP=app.py FLASK_DEBUG=0 flask run

Jinja loop, conditional, include
1 .

2 ├── app.py

3 └── templates

4 ├── incl

5 │ ├── footer.html

6 │ └── header.html

7 └── main.html

 1 from flask import Flask, render_template

 2 app = Flask(__name__)

 3

 4 @app.route("/")

 5 def main():

 6 languages = [

 7 {

 8 "name": "Python",

 9 "year": 1991,

10 },

11 {

12 "name": "JavaScript",

13 "year": 1995,

14 },

15 {

16 "name": "C",

17 }

18]

19 return render_template('main.html',

20 title = "Code Maven Jinja example",

21 languages = languages,

22)

 1 {% include 'incl/header.html' %}

 2

 3

 4 <h2>Languages</h2>

 5

 6 {% for lang in languages %}

 7 {{ lang.name }}

 8 {% if lang.year %}

 9 {{ lang.year }}

10 {% else %}

11 Timeless

12 {% endif %}

13

14 {% endfor %}

15

16

17 {% include 'incl/footer.html' %}

 1 <!DOCTYPE html>

 2 <html lang="en">

 3 <head>

 4 <meta charset="utf-8">

 5 <meta name="viewport" content="width=device-width,

initial-scale=1, user-scalabl\

 6 e=yes">

 7 <title>{{ title }}</title>

 8 </head>

 9 <body>

10 <h1>{{ title }}</h1>

1 </body>

2 </html>

Exercise: Flask persistent
Create a Flask-based application with a persistent counter that even
after restarting the application
the counter will keep increasing.

Exercise: Flask persistent
Create a Flask-based application with a persistent counter that even
after restarting the application
the counter will keep increasing. For each user have its own
counter as identified by the username they type in.

Flask Exercises
Shopping list
TODO

Flask login
 1 from flask import Flask, render_template, url_for,

redirect, request, session

 2 app = Flask(__name__)

 3 app.secret_key = 'loginner'

 4

 5 users = {

 6 'admin' : 'secret',

 7 'foo' : 'myfoo',

 8 }

 9

10 @app.route("/")

11 def main():

12 return render_template('main.html')

13

14 @app.route('/login')

15 def login_form():

16 return render_template('login.html')

17

18 @app.route('/login', methods=['POST'])

19 def login():

20 username = request.form.get('username')

21 password = request.form.get('password')

22 if username and password and username in users and

users[username] == password:

23 session['logged_in'] = True

https://code-maven.com/shopping-list
https://code-maven.com/todo

24 return redirect(url_for('account'))

25

26 return render_template('login.html')

27

28 @app.route("/account")

29 def account():

30 if not session.get('logged_in'):

31 return redirect(url_for('login'))

32

33 return render_template('account.html')

34

35 @app.route('/logout')

36 def logout():

37 if not session.get('logged_in'):

38 return "Not logged in"

39 else:

40 session['logged_in'] = False

41 return render_template('logout.html')

1 {% include 'header.html' %}

2 Account information.

1 <div>

2 home | login | logout | <\

3 a href="/account">account

4 </div>

1 {% include 'header.html' %}

2 Home page

1 {% include 'header.html' %}

2 <form method="POST">

3 <input name="username" placeholder="username">

4 <input name="password" placeholder="password"

type="password">

5 <input type="submit" value="Login">

6 </form>

1 {% include 'header.html' %}

2 Bye bye

1 {% include 'header.html' %}

2 Home

Flask JSON API
 1 from flask import Flask, jsonify

 2 app = Flask(__name__)

 3

 4 @app.route("/")

 5 def main():

 6 return '''

 7 Main

 8 info

 9 '''

10

11 @app.route("/api/info")

12 def api_info():

13 info = {

14 "ip" : "127.0.0.1",

15 "hostname" : "everest",

16 "description" : "Main server",

17 "load" : [3.21, 7, 14]

18 }

19 return jsonify(info)

1 $ curl -I http://localhost:5000/api/info

2 HTTP/1.0 200 OK

3 Content-Type: application/json

Flask and AJAX
 1 from flask import Flask, jsonify, render_template,

request

 2 import time

 3 app = Flask(__name__)

 4

 5 @app.route("/")

 6 def main():

 7 return render_template('main.html', reload =

time.time())

 8

 9 @app.route("/api/info")

10 def api_info():

11 info = {

12 "ip" : "127.0.0.1",

13 "hostname" : "everest",

14 "description" : "Main server",

15 "load" : [3.21, 7, 14]

16 }

17 return jsonify(info)

18

19 @app.route("/api/calc")

20 def add():

21 a = int(request.args.get('a', 0))

22 b = int(request.args.get('b', 0))

23 div = 'na'

24 if b != 0:

25 div = a/b

26 return jsonify({

27 "a" : a,

28 "b" : b,

29 "add" : a+b,

30 "multiply" : a*b,

31 "subtract" : a-b,

32 "divide" : div,

33 })

 1 (function() {

 2 var ajax_get = function(url, callback) {

 3 xmlhttp = new XMLHttpRequest();

 4 xmlhttp.onreadystatechange = function() {

 5 if (xmlhttp.readyState == 4 && xmlhttp.status

== 200) {

 6 console.log('responseText:' +

xmlhttp.responseText);

 7 try {

 8 var data =

JSON.parse(xmlhttp.responseText);

 9 } catch(err) {

10 console.log(err.message + " in " +

xmlhttp.responseText);

11 return;

12 }

13 callback(data);

14 }

15 };

16

17 xmlhttp.open("GET", url, true);

18 xmlhttp.send();

19 };

20

21 ajax_get('/api/info', function(data) {

22 console.log('get info');

23 document.getElementById('info').innerHTML =

JSON.stringify(data, null, ' '\

24);

25 document.getElementById('description').innerHTML

= data['description'];

26 });

27

28 var calc = document.getElementById('calc');

29 calc.addEventListener('click', function() {

30 document.getElementById('info').style.display =

"none";

31

document.getElementById('description').style.display =

"none";

32 var url = '/api/calc?a=' +

document.getElementById('a').value + '&b=' + docu\

33 ment.getElementById('b').value;

34 //console.log(url);

35 ajax_get(url, function(data) {

36 document.getElementById('add').innerHTML =

data['a'] + ' + ' + data['b']\

37 + ' = ' + data['add'];

38 document.getElementById('subtract').innerHTML

= data['a'] + ' - ' + data\

39 ['b'] + ' = ' + data['subtract'];

40 document.getElementById('multiply').innerHTML

= data['a'] + ' * ' + data\

41 ['b'] + ' = ' + data['multiply'];

42 document.getElementById('divide').innerHTML =

data['a'] + ' / ' + data['\

43 b'] + ' = ' + data['divide'];

44 });

45 });

46 })()

 1 <html>

 2 <head>

 3 </head>

 4 <body>

 5 <input type="number" id="a">

 6 <input type="number" id="b">

 7 <button id="calc">Calc</button>

 8 <div id="results">

 9 <div id="add"></div>

10 <div id="subtract"></div>

11 <div id="multiply"></div>

12 <div id="divide"></div>

13 </div>

14

15 <pre id="info"></pre>

16 <div id="description"></div>

17

18 <script src="/static/math.js?r={{reload}}"></script>

19 </body>

20 </html>

Flask and AJAX
 1 from flask import Flask, jsonify, render_template,

request

 2 import time

 3 app = Flask(__name__)

 4

 5 @app.route("/")

 6 def main():

 7 return render_template('main.html', reload =

time.time())

 8

 9 @app.route("/api/info")

10 def api_info():

11 info = {

12 "ip" : "127.0.0.1",

13 "hostname" : "everest",

14 "description" : "Main server",

15 "load" : [3.21, 7, 14]

16 }

17 return jsonify(info)

18

19 @app.route("/api/calc")

20 def add():

21 a = int(request.args.get('a', 0))

22 b = int(request.args.get('b', 0))

23 div = 'na'

24 if b != 0:

25 div = a/b

26 return jsonify({

27 "a" : a,

28 "b" : b,

29 "add" : a+b,

30 "multiply" : a*b,

31 "subtract" : a-b,

32 "divide" : div,

33 })

 1 $(function() {

 2 $.ajax({

 3 url: '/api/info',

 4 success: function(data) {

 5 console.log('get info');

 6 $('#info').html(JSON.stringify(data, null, '

'));

 7 $('#description').html(data['description']);

 8 }

 9 });

10

11 $('#calc').click(function() {

12 $('#info').css('display', "none");

13 $('#description').css('display', "none");

14 //console.log(url);

15 $.ajax({

16 url : '/api/calc?a=' +

document.getElementById('a').value + '&b=' + docu\

17 ment.getElementById('b').value,

18 success: function(data) {

19 $('#add').html(data['a'] + ' + ' +

data['b'] + ' = ' + data['add']);

20 $('#subtract').html(data['a'] + ' - ' +

data['b'] + ' = ' + data['su\

21 btract']);

22 $('#multiply').html(data['a'] + ' * ' +

data['b'] + ' = ' + data['mu\

23 ltiply']);

24 $('#divide').html(data['a'] + ' / ' +

data['b'] + ' = ' + data['divi\

25 de']);

26 }

27 });

28 });

29 })

 1 <html>

 2 <head>

 3 </head>

 4 <body>

 5 <input type="number" id="a">

 6 <input type="number" id="b">

 7 <button id="calc">Calc</button>

 8 <div id="results">

 9 <div id="add"></div>

10 <div id="subtract"></div>

11 <div id="multiply"></div>

12 <div id="divide"></div>

13 </div>

14

15 <pre id="info"></pre>

16 <div id="description"></div>

17

18 <script src="/static/jquery-3.1.1.min.js"></script>

19 <script src="/static/math.js?r={{reload}}"></script>

20 </body>

21 </html>

passlib
 1 from passlib.hash import pbkdf2_sha256

 2 import sys

 3

 4 if len(sys.argv) != 2:

 5 exit("Usage: {} PASSWORD".format(sys.argv[0]))

 6

 7 pw = sys.argv[1]

 8

 9 hash1 = pbkdf2_sha256.hash(pw)

10 print(hash1)

11

12 hash2 = pbkdf2_sha256.hash(pw)

13 print(hash2)

14

15 print(pbkdf2_sha256.verify(pw, hash1))

16 print(pbkdf2_sha256.verify(pw, hash2))

1 $ python use_passlib.py "my secret"

2 $pbkdf2-

sha256$29000$svZ.7z2HEEJIiVHqPeecMw$QAWd8P7MaPDXlEwtsv9AqhF

EP2hp8MvZ9QxasIw4\

3 Pgw

4 $pbkdf2-

sha256$29000$XQuh9N57r9W69x6jtDaG0A$VtD35zfeZhXsE/jxGl6wB7M

jwj/5iDGZv6QC7XBJ\

5 jrI

6 True

7 True

Flask Testing
 1 from flask import Flask, jsonify

 2 myapp = Flask(__name__)

 3

 4 @myapp.route("/")

 5 def main():

 6 return '''

 7 Main add

 8 '''

 9

10 @myapp.route("/add/<int:a>/<int:b>")

11 def api_info(a, b):

12 return str(a+b)

 1 from app import myapp

 2 import unittest

 3

 4 # python -m unittest test_app

 5

 6

 7 class TestMyApp(unittest.TestCase):

 8 def setUp(self):

 9 self.app = myapp.test_client()

10

11 def test_main(self):

12 rv = self.app.get('/')

13 assert rv.status == '200 OK'

14 assert b'Main' in rv.data

15 #assert False

16

17 def test_add(self):

18 rv = self.app.get('/add/2/3')

19 self.assertEqual(rv.status, '200 OK')

20 self.assertEqual(rv.data, '5')

21

22 rv = self.app.get('/add/0/10')

23 self.assertEqual(rv.status, '200 OK')

24 self.assertEqual(rv.data, '10')

25

26 def test_404(self):

27 rv = self.app.get('/other')

28 self.assertEqual(rv.status, '404 NOT FOUND')

Flask Deploy app
1 from flask import Flask

2 myapp = Flask(__name__)

3

4 @myapp.route("/")

5 def main():

6 return 'Main'

uwsgi

1 [uwsgi]

2 socket = :9091

3 plugin = python

4 wsgi-file = /home/gabor/work/my/app.py

https://uwsgi-docs.readthedocs.io/

5 process = 3

6 callable = myapp

nginx

 1 server {

 2 server_name example.com;

 3

 4

 5 access_log /var/log/nginx/example.log main;

 6 error_log /var/log/nginx/example.error.log;

 7

 8 location ~ /.git/ {

 9 deny all;

10 }

11

12 #error_page 404 /404.html;

13

14 location '/' {

15 include uwsgi_params;

16 uwsgi_pass 127.0.0.1:9091;

17 }

18

19 root /home/gabor/work/example.com/html/;

20 }

Flask Simple Authentication + test
 1 from flask import Flask

 2 from flask_httpauth import HTTPBasicAuth

 3 from werkzeug.security import generate_password_hash,

check_password_hash

 4

 5 app = Flask(__name__)

 6 auth = HTTPBasicAuth()

 7

 8 users = {

 9 "john": generate_password_hash("nhoj"),

10 "jane": generate_password_hash("enaj")

11 }

12

13 @app.route("/")

https://nginx.org/

14 def hello():

15 return "Hello World!"

16

17 @auth.verify_password

18 def verify_password(username, password):

19 if username in users:

20 return check_password_hash(users.get(username),

password)

21 return False

22

23

24 @app.route("/admin")

25 @auth.login_required

26 def admin():

27 return "Hello Admin"

 1 import app

 2 import base64

 3

 4 def test_app():

 5 web = app.app.test_client()

 6

 7 rv = web.get('/')

 8 assert rv.status == '200 OK'

 9 assert rv.data == b'Hello World!'

10

11 def test_admin_unauth():

12 web = app.app.test_client()

13

14 rv = web.get('/admin')

15 assert rv.status == '401 UNAUTHORIZED'

16 assert rv.data == b'Unauthorized Access'

17 assert 'WWW-Authenticate' in rv.headers

18 assert rv.headers['WWW-Authenticate'] == 'Basic

realm="Authentication Required"'

19

20 def test_admin_auth():

21 web = app.app.test_client()

22

23 credentials =

base64.b64encode(b'john:nhoj').decode('utf-8')

24 rv = web.get('/admin', headers={

25 'Authorization': 'Basic ' + credentials

26 })

27

28 assert rv.status == '200 OK'

29 assert rv.data == b'Hello Admin'

Flask REST API

flask-restful

Flask REST API - Echo
 1 from flask import Flask, request

 2 from flask_restful import Api, Resource

 3

 4 app = Flask(__name__)

 5

 6 api = Api(app)

 7

 8 class Echo(Resource):

 9 def get(self):

10 return { "prompt": "Type in something" }

11 def post(self):

12 return { "echo": "This" }

13

14 api.add_resource(Echo, '/echo')

 1 import api

 2

 3 def test_echo():

 4 web = api.app.test_client()

 5

 6 rv = web.get('/echo')

 7 assert rv.status == '200 OK'

 8 assert rv.headers['Content-Type'] ==

'application/json'

 9 assert rv.json == {"prompt": "Type in something"}

10

11

12 rv = web.post('/echo')

13 assert rv.status == '200 OK'

14 assert rv.headers['Content-Type'] ==

https://flask-restful.readthedocs.io/en/latest/quickstart.html

'application/json'

15 assert rv.json == {"echo": "This"}

Flask REST API - parameters in path
 1 from flask import Flask, request

 2 from flask_restful import Api, Resource

 3

 4 app = Flask(__name__)

 5

 6 api = Api(app)

 7

 8 class Echo(Resource):

 9 def get(self, me):

10 return { "res": f"Text: {me}" }

11

12 def post(self, me):

13 return { "Answer": f"You said: {me}" }

14

15

16 api.add_resource(Echo, '/echo/<me>')

 1 import api

 2

 3 def test_echo():

 4 web = api.app.test_client()

 5

 6 rv = web.get('/echo/hello')

 7 assert rv.status == '200 OK'

 8 assert rv.headers['Content-Type'] ==

'application/json'

 9 assert rv.json == {'res': 'Text: hello'}

10

11

12 rv = web.post('/echo/ciao')

13 assert rv.status == '200 OK'

14 assert rv.headers['Content-Type'] ==

'application/json'

15 assert rv.json == {'Answer': 'You said: ciao'}

Flask REST API - parameter parsing
 1 from flask import Flask, request

 2 from flask_restful import Api, Resource, reqparse

 3

 4 app = Flask(__name__)

 5

 6 api = Api(app)

 7

 8

 9 class Echo(Resource):

10 def get(self):

11 parser = reqparse.RequestParser()

12 parser.add_argument('text', help='Type in some

text')

13 args = parser.parse_args()

14 return { "res": f"Text: {args['text']}" }

15

16 def post(self):

17 parser = reqparse.RequestParser()

18 parser.add_argument('text', help='Type in some

text')

19 args = parser.parse_args()

20 return { "Answer": f"You said: {args['text']}" }

21

22

23 api.add_resource(Echo, '/echo')

 1 import api

 2

 3 def test_echo():

 4 web = api.app.test_client()

 5

 6 rv = web.get('/echo?text=hello')

 7 assert rv.status == '200 OK'

 8 assert rv.headers['Content-Type'] ==

'application/json'

 9 assert rv.json == {'res': 'Text: hello'}

10

11 rv = web.post('/echo', data={'text': 'ciao'})

12 assert rv.status == '200 OK'

13 assert rv.headers['Content-Type'] ==

'application/json'

14 assert rv.json == {'Answer': 'You said: ciao'}

15

16

17 # If the parameter is missing the parser just returns

None

18 rv = web.get('/echo')

19 assert rv.status == '200 OK'

20 assert rv.headers['Content-Type'] ==

'application/json'

21 assert rv.json == {'res': 'Text: None'}

Flask REST API - parameter parsing -
required
 1 from flask import Flask, request

 2 from flask_restful import Api, Resource, reqparse

 3

 4 app = Flask(__name__)

 5

 6 api = Api(app)

 7

 8

 9 class Echo(Resource):

10 def get(self):

11 parser = reqparse.RequestParser()

12 parser.add_argument('text', help='Type in some

text', required=True)

13 args = parser.parse_args()

14 return { "res": f"Text: {args['text']}" }

15

16 def post(self):

17 parser = reqparse.RequestParser()

18 parser.add_argument('text', help='Type in some

text')

19 args = parser.parse_args()

20 return { "Answer": f"You said: {args['text']}" }

21

22

23 api.add_resource(Echo, '/echo')

 1 import api

 2

 3 def test_echo():

 4 web = api.app.test_client()

 5

 6 rv = web.get('/echo?text=hello')

 7 assert rv.status == '200 OK'

 8 assert rv.headers['Content-Type'] ==

'application/json'

 9 assert rv.json == {'res': 'Text: hello'}

10

11 rv = web.post('/echo', data={'text': 'ciao'})

12 assert rv.status == '200 OK'

13 assert rv.headers['Content-Type'] ==

'application/json'

14 assert rv.json == {'Answer': 'You said: ciao'}

15

16

17 # If the parameter is missing the parser just returns

None

18 rv = web.get('/echo')

19 assert rv.status == '400 BAD REQUEST'

20 assert rv.headers['Content-Type'] ==

'application/json'

21 assert rv.json == {'message': {'text': 'Type in some

text'}}

Networking

Secure shell

subprocess + external ssh client
Paramiko
Fabric

ssh

On Windows install putty

 1 import subprocess

 2 import sys

 3

 4 if len(sys.argv) !=2:

 5 exit("Usage: " + sys.argv[0] + " hostname")

 6

 7 host = sys.argv[1]

 8 command = "uname -a"

 9

10 ssh = subprocess.Popen(["ssh", host, command],

11 shell=False,

12 stdout=subprocess.PIPE,

13 stderr=subprocess.PIPE)

14 result = ssh.stdout.readlines()

15 error = ssh.stderr.readlines()

16 if error:

17 for err in error:

18 sys.stderr.write("ERROR: {}\n".format(err))

19 if result:

20 print(result)

ssh from Windows

http://www.paramiko.org/
http://www.fabfile.org/
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

1 $ ssh foobar@hostname-or-ip

2 -o "StrictHostKeyChecking no"

3

4 $ plink.exe -ssh foobar@hostname-or-ip -pw "password" -C

"uname -a"

5 $ plink.exe", "-ssh", "foobar@username-or-ip", "-pw", "no

secret", "-C", "uname -a"

 1 import subprocess

 2 import sys

 3

 4 ssh =

subprocess.Popen([r"c:\Users\foobar\download\plink.exe", "-

ssh",

 5 "foobar@username-or-ip",

 6 "-pw", "password",

 7 "-C", "uname -a"],

 8 shell=False,

 9 stdout=subprocess.PIPE,

10 stderr=subprocess.PIPE)

11 result = ssh.stdout.readlines()

12 error = ssh.stderr.readlines()

13 if error:

14 for err in error:

15 sys.stderr.write("ERROR: {}\n".format(err))

16 if result:

17 print(result)

Parallel ssh

parallel-ssh
pip install parallel-ssh

1 from pssh import ParallelSSHClient

2 hosts = ['myhost1', 'myhost2']

3 client = ParallelSSHClient(hosts)

4 output = client.run_command('ls -ltrh /tmp/', sudo=True)

telnet

http://parallel-ssh.readthedocs.io/

 1 import telnetlib

 2

 3 hostname = '104.131.87.33'

 4 user = 'gabor'

 5 password = 'robag'

 6

 7 tn = telnetlib.Telnet(hostname)

 8 tn.read_until("login: ")

 9 tn.write(user + "\n")

10

11 tn.read_until("Password: ")

12 tn.write(password + "\n")

13 tn.read_until("~$")

14

15 tn.write("hostname\n")

16 print(tn.read_until("~$"))

17 print("-------");

18

19

20 tn.write("uptime\n")

21 print(tn.read_until("~$"))

22 print("-------");

23

24

25 print("going to exit")

26 tn.write("exit\n")

27

28 print("--------")

29 print(tn.read_all())

prompt for password
1 import getpass

2

3 password = getpass.getpass("Password:")

4

5 print(password)

Python nmap

 1 import nmap

 2 nm = nmap.PortScanner()

 3 nm.scan('127.0.0.1', '20-1024')

 4 print(nm.command_line())

 5

 6 for host in nm.all_hosts():

 7 print('--

------')

 8 print('Host : {} ({})'.format(host,

nm[host].hostname()))

 9 print('State : {}'.format(nm[host].state()))

10 for proto in nm[host].all_protocols():

11 print('----------')

12 print('Protocol : {}'.format(proto))

13

14 lport = nm[host][proto].keys()

15 for port in lport:

16 print ('port : {}\tstate : {}'.format(port,

nm[host][proto][port]['state\

17 ']))

1 nmap -oX - -p 10-1024 -sV 127.0.0.1

2 --

3 Host : 127.0.0.1 ()

4 State : up

5 ----------

6 Protocol : tcp

7 port : 21 state : open

8 port : 22 state : open

9 port : 23 state : open

ftp
1 $ sudo aptitude install proftpd

2 $ sudo /etc/init.d/proftpd start

3 $ sudo adduser (user: foo pw: bar)

 1 from ftplib import FTP

 2 ftp = FTP('localhost')

 3 ftp.login("foo", "bar")

 4

 5 print(ftp.retrlines('LIST'))

 6

 7 print('-------')

 8 for f in ftp.nlst():

 9 print("file: " + f)

10

11 filename = 'ssh.py'

12

13 ftp.storlines("STOR " + filename, open(filename))

14

15 print('-------')

16 for f in ftp.nlst():

17 print("file: " + f)

18

19 ftp.delete(filename)

20

21 print('-------')

22 for f in ftp.nlst():

23 print("file: " + f)

24

25

26

 1 -rw-rw-r-- 1 foo foo 6 Feb 18 19:18

a.txt

 2 -rw-rw-r-- 1 foo foo 6 Feb 18 19:18

b.txt

 3 226 Transfer complete

 4 -------

 5 file: b.txt

 6 file: a.txt

 7 -------

 8 file: b.txt

 9 file: a.txt

10 file: ssh.py

11 -------

12 file: b.txt

13 file: a.txt

Interactive shell

The Python interactive shell
Type python without any arguments on the command line and
you’ll get into the Interactive shell of Python.
In the interactive shell you can type:

 1 >>> print "hello"

 2 hello

 3

 4 >>> "hello"

 5 'hello'

 6

 7 >>> 6

 8 6

 9

10 >>> len("abc")

11 3

12

13 >>> "abc" + 6

14 Traceback (most recent call last):

15 File "<stdin>", line 1, in <module>

16 TypeError: cannot concatenate 'str' and 'int' objects

17

18 >>> "abc" + str(6)

19 'abc6'

REPL - Read Evaluate Print Loop
A variable comes to existence the first time we assign a value to it.
It points to an object and that object knows about its type.

 1 >>> a = "abc"

 2 >>> len(a)

 3 3

 4

 5 >>> a = '3'

 6 >>> a + 3

 7 Traceback (most recent call last):

 8 File "<stdin>", line 1, in <module>

 9 TypeError: cannot concatenate 'str' and 'int' objects

10

11 >>> int(a) + 3

12 6

13

14 >>> a = '2.3'

15 >>> float(a) + 1

16 3.3

Using Modules
Python has lots of standard (and not standard) modules. You can
load one of them using the
import keyword. Once loaded, you can use functions from the
module
or access its objects. For example the sys module has a
sys.version

and a sys.executable variable.

1 >>> import sys

2 >>> sys.version

3 '2.7.3 (default, Apr 10 2012, 23:24:47) [MSC v.1500 64

bit (AMD64)]'

1 >>> sys.executable

2 'c:\\Python27\\python.exe'

You can also load specific object directly into your code.

1 >>> from sys import executable

2 >>> executable

3 'c:\\Python27\\python.exe'

To quit the interpreter call the exit() function.

1 >>> exit

2 Use exit() or Ctrl-Z plus Return to exit

The import binds the word sys to whatever it loaded from the file.

Getting help
 1 >>> help

 2 Type help() for interactive help, or help(object) for

help about object.

 3 >>> help() - entering an internal shell:

 4 ...

 5 help> dir - explains about the dir command. Navigate

using SPACE/ENTER/q

 6 help> Ctrl-D - to quite, (Ctrl-Z ENTER on Windows)

 7 >>> help(dir) - the same explanation as before

 8

 9 >>> dir()

10 ['__builtins__', '__doc__', '__name__', '__package__']

11 >>> dir("") - list of string related methods

12 ['__add__', '__class__', ... 'upper', 'zfill']

13

14 >>> dir(1) - list of integer related methods

15 ['__abs__', '__add__', ... 'numerator', 'real']

16

17 >>> dir(__builtins__)

18 ... - functions available in python

19

20 >>> help(abs) - exlain how abs() works

21 >>> help(sum)

22 >>> help(zip)

23 >>> help(int)

24 >>> help(str)

25

26 >>> help("".upper) - explain how the upper method of

strings work

27

28 >>> import sys

29 >>> dir(sys)

30 >>> help(sys)

31 >>> help(sys)

32 >>> help(sys.path)

33 >>> help(sys.path.pop)

Exercise: Interactive shell

Start the REPL and check the examples.
Check the documentation in the REPL.

Testing Demo

How do you test your code?
* What kind of things do you test?

Web application?
Command line application?
Databases?
…

What is testing?

Fixture + Input = Expected Output

What is testing really?

Fixture + Input = Expected Output + Bugs

Testing demo - AUT - Application Under Test
Given the following module with a single function, how can we use
this function and how can
we test it?

1 def add(x, y):

2 return x * y

3

4 # Yes, I know there is a bug in this code!

Testing demo - use the module
 1 import mymath

 2 import sys

 3

 4 if len(sys.argv) != 3:

 5 exit(f"Usage {sys.argv[0]} NUMBER NUMBER")

 6

 7 a = int(sys.argv[1])

 8 b = int(sys.argv[2])

 9

10 print(mymath.add(a, b))

1 python use_mymath.py 2 2

2 4

Testing demo: doctets
1 def add(x, y):

2 """

3 >>> add(2, 2)

4 4

5 """

6 return x * y

1 python -m doctest mymath_doctest_first.py

2 echo $?

3 0

4

5 echo %ERRORLEVEL%

6 0

1 def add(x, y):

2 """

3 >>> add(2, 2)

4 4

5 >>> add(3, 3)

6 6

7 """

8 return x * y

1 python -m doctest mymath_doctest.py

2 echo $?

3 1

 1

 2 File "/home/gabor/work/slides/python/examples/testing-

demo/mymath_doctest.py", line \

 3 5, in mymath_doctest.add

 4 Failed example:

 5 add(3, 3)

 6 Expected:

 7 6

 8 Got:

 9 9

10

11 1 items had failures:

12 1 of 2 in mymath_doctest.add

13 ***Test Failed*** 1 failures.

Testing demo: Unittest success
1 import unittest

2 import mymath

3

4 class TestMath(unittest.TestCase):

5 def test_math(self):

6 self.assertEqual(mymath.add(2, 2), 4)

1 python -m unittest test_one_with_unittest.py

2 echo $?

3 0

1 .

2 ---

3 Ran 1 test in 0.000s

4

5 OK

Testing demo: Unittest failure
1 import unittest

2 import mymath

3

4 class TestMath(unittest.TestCase):

5 def test_math(self):

6 self.assertEqual(mymath.add(2, 2), 4)

7

8 def test_more_math(self):

9 self.assertEqual(mymath.add(3, 3), 6)

1 python -m unittest test_with_unittest.py

2 echo $?

3 1

 1 .F

 2

===

===========

 3 FAIL: test_more_math (test_with_unittest.TestMath)

 4 ---

 5 Traceback (most recent call last):

 6 File "/home/gabor/work/slides/python/examples/testing-

demo/test_with_unittest.py",\

 7 line 9, in test_more_math

 8 self.assertEqual(mymath.add(3, 3), 6)

 9 AssertionError: 9 != 6

10

11 ---

12 Ran 2 tests in 0.000s

13

14 FAILED (failures=1)

Testing demo: pytest using classes
1 import mymath

2

3 class TestMath():

4 def test_math(self):

5 assert mymath.add(2, 2) == 4

6

7 def test_more_math(self):

8 assert mymath.add(3, 3) == 6

1 pytest test_with_pytest_class.py

 1 ============================= test session starts

==============================

 2 platform linux -- Python 3.7.3, pytest-5.1.1, py-1.8.0,

pluggy-0.13.0

 3 rootdir: /home/gabor/work/slides/python/examples/testing-

demo

 4 plugins: flake8-1.0.4

 5 collected 2 items

 6

 7 test_with_pytest_class.py .F

[100%]

 8

 9 =================================== FAILURES

===================================

10 ___________________________ TestMath.test_more_math

11

12 self = <test_with_pytest_class.TestMath object at

0x7fc1ea617828>

13

14 def test_more_math(self):

15 > assert mymath.add(3, 3) == 6

16 E assert 9 == 6

17 E + where 9 = <function add at 0x7fc1ea6caf28>(3,

3)

18 E + where <function add at 0x7fc1ea6caf28> =

mymath.add

19

20 test_with_pytest_class.py:8: AssertionError

21 ========================= 1 failed, 1 passed in 0.03s

==========================

Testing demo: pytest without classes
1 import mymath

2

3 def test_math():

4 assert mymath.add(2, 2) == 4

5

6 def test_more_math():

7 assert mymath.add(3, 3) == 6

1 pytest test_with_pytest.py

 1 ============================= test session starts

==============================

 2 platform linux -- Python 3.7.3, pytest-5.1.1, py-1.8.0,

pluggy-0.13.0

 3 rootdir: /home/gabor/work/slides/python/examples/testing-

demo

 4 plugins: flake8-1.0.4

 5 collected 2 items

 6

 7 test_with_pytest.py .F

[100%]

 8

 9 =================================== FAILURES

===================================

10 ________________________________ test_more_math

11

12 def test_more_math():

13 > assert mymath.add(3, 3) == 6

14 E assert 9 == 6

15 E + where 9 = <function add at 0x7f36e78db0d0>(3,

3)

16 E + where <function add at 0x7f36e78db0d0> =

mymath.add

17

18 test_with_pytest.py:7: AssertionError

19 ========================= 1 failed, 1 passed in 0.02s

==========================

Testing demo: pytest run doctests
1 pytest --doctest-modules mymath_doctest_first.py

2 pytest --doctest-modules mymath_doctest.py

Testing demo: pytest run unittest
1 pytest -v test_with_unittest.py

Exercise: Testing demo

An anagram is a pair of words that are created from exactly the
same set of characters, but of different order.
For example listen and silent
Or bad credit and debit card
Given the following module with the is_anagram function
write tests for it. (in a file called test_anagram.py)
Write a failing test as well.
Try doctest, unittest, and pytest as well.

1 def is_anagram(a_word, b_word):

2 return sorted(a_word) == sorted(b_word)

Sample code to use the Anagram module.

 1 from anagram import is_anagram

 2 import sys

https://en.wikipedia.org/wiki/Anagram

 3

 4 if len(sys.argv) != 3:

 5 exit(f"Usage {sys.argv[0]} WORD WORD")

 6

 7 if is_anagram(sys.argv[1], sys.argv[2]):

 8 print("Anagram")

 9 else:

10 print("NOT")

Solution: Testing demo
 1 from anagram import is_anagram

 2

 3 def test_anagram():

 4 assert is_anagram("silent", "listen")

 5 assert is_anagram("bad credit", "debit card")

 6

 7 def test_not_anagram():

 8 assert not is_anagram("abc", "def")

 9

10 def test_should_be_anagram_spaces():

11 assert is_anagram("anagram", "nag a ram")

12

13

14 def test_should_be_anagram_case():

15 assert is_anagram("Silent", "Listen")

Types in Python

mypy

mypy
Type Checking
type hints

1 pip install mypy

Types of variables
1 x :int = 0

2

3 x = 2

4 print(x)

5

6 x = "hello"

7 print(x)

python variables.py

1 2

2 hello

mypy variables.py

1 variables.py:7: error: Incompatible types in assignment

(expression has type "str", \

2 variable has type "int")

3 Found 1 error in 1 file (checked 1 source file)

http://mypy-lang.org/
https://realpython.com/python-type-checking/
https://docs.python.org/library/typing.html

Types of function parameters
1 def add(a :int, b :int) -> int:

2 return a+b

3

4 print(add(2, 3))

5 print(add("Foo", "Bar"))

1 5

2 FooBar

1 function.py:6: error: Argument 1 to "add" has

incompatible type "str"; expected "int"

2 function.py:6: error: Argument 2 to "add" has

incompatible type "str"; expected "int"

3 Found 2 errors in 1 file (checked 1 source file)

Types used properly
1 def add(a :int, b :int) -> int:

2 return a+b

3

4 print(add(2, 3))

5

6 x :int = 0

7

8 x = 2

9 print(x)

1 5

2 2

1 Success: no issues found in 1 source file

TODO: mypy

Complex data structures?
My types/classes?
Allow None (or not) for a variable.

Testing Intro

The software testing equasion
1 INPUT + PROCESS = EXPECTED_OUTPUT

The software testing equasion (fixed)
1 INPUT + PROCESS = EXPECTED_OUTPUT + BUGS

The pieces of your software?

Web application with HTML interface?
Web application with HTML + JavaScript? Which
frameworks?
Web application with JSON interface? (API)
What kind of databases do you have in the system? SQL?
NoSQL? What size is the database?
Source and the format of your input? Zip? CSV? XML? SQL
Dump? JSON?
The format of your output?
HTML/PDF/CSV/JSON/XML/Excel/Email/..?
Are you pushing out your results or are your cliens pulling
them? e.g. via an API?
What external dependencies do you have? Slack, Twilio, What
kind of APIs?

Manual testing

How do you check your application now?

What to tests?

Happy path
Sad path

Valid input
Valid edge cases (0, -1, empty string, etc.)
Broken input (string instead of number, invalid values, too
long input, etc.)
Extreme load
System failure (power failure, network outage, lack of
memory, lack of disk, …)
Third-party error or failure - How does your system work if the
3rd party API returns rubbish?

Continuous Integration
Reduce feedback cycle
Avoid regression
On every push
Every few hours full coverage

Functional programming

Functional programming

Immutability (variables don’t change)
Separation of data and functions.
First-class functions (you can assign function to another name
and you can pass function to other functions and return them as
well. We can also manipulate functions)

Higher order functions: a functions that either takes a function
as a parameter or returns a function as a parameter.

Iterators (Iterables)

You already know that there are all kinds of objects in Python
that you can iterate over using the for in construct.
For example you can iterate over the characters of a string, or
the elements of a list, or whatever range() returns.
You can also iterate over the lines of a file
and you have probably seen the for in construct in other cases
as well. The objects that can be iterated over are collectively
called
iterables.
You can do all kind of interesting things on such iterables.
We’ll see a few now.

https://docs.python.org/3/glossary.html#term-iterable

A few data type we can iterate over using the for … in …
construct. (strings, files, tuples, lists, list comprehension)

 1 numbers = [101, 2, 3, 42]

 2 for num in numbers:

 3 print(num)

 4 print(numbers)

 5

 6 print()

 7

 8 name = "FooBar"

 9 for cr in name:

10 print(cr)

11 print(name)

12

13 print()

14

15 rng = range(3, 9, 2)

16 for num in rng:

17 print(num)

18 print(rng)

 1 101

 2 2

 3 3

 4 42

 5 [101, 2, 3, 42]

 6

 7 F

 8 o

 9 o

10 B

11 a

12 r

13 FooBar

14

15 3

16 5

17 7

18 range(3, 9, 2)

range

So what does range really return?

Instead of returning the list of numbers (as it used to do in
Python 2), now it returns a range object that provides “the
opportunity to go over
the specific series of numbers” without actually creating the
list of numbers. Getting an object instead of the whole list has
a number of advantages.
One is space. In the next example we’ll see how much memory
is needed for the object returned by the range function and
how much would it take to have the corresponding list of
numbers in memory. For now let’s see how can we use it:

range(start, end, step)

range(start, end) - step defaults to 1
range(end) - start defaults to 0, step defaults to 1

 1 rng = range(3, 9, 2)

 2 print(rng)

 3 print(type(rng).__name__)

 4

 5 print()

 6

 7 for num in rng:

 8 print(num)

 9

10 print()

11

12 for num in rng:

13 print(num)

14

15 print()

16

17 print(rng[2])

 1 range(3, 9, 2)

 2 range

 3

 4 3

 5 5

 6 7

 7

 8 3

 9 5

10 7

11

12 7

range with list

Using the list function we can tell the range object to generate
the whole list immediately. Either using
the variable that holds the range object, or wrapping the
range() call in a list() call.

You might recall at the beginning of the course we saw the
sys.getsizeof() function that returns the size of a Python object
in the memory. If you don’t recall, no problem, we’ll see it
used now. As you can see the size of the range object is only
48 bytes
while the size of the 3-element list is already 112 bytes. It
seems the range object is better than even such a short lists.
On the next page we’ll see a more detailed analyzis.

 1 import sys

 2

 3 rng = range(3, 9, 2)

 4 numbers = list(rng)

 5 print(rng) # range(3, 9, 2)

 6 print(numbers) # [3, 5, 7]

 7

 8 others = list(range(2, 11, 3))

 9 print(others) # [2, 5, 8]

10

11 print(sys.getsizeof(rng)) # 48

12 print(sys.getsizeof(numbers)) # 112

range vs. list size

In this example we have a loop iterating over range(21), but
that’s only for the convenience, the interesting part is inside the
loop.
On every iteration call range() with the current number, then
we convert the resulting object into a list of numbert. Finally
we print out
the current number and the size of both the object returned by
range() and the list generated from the object. As you can see
the memory usage
of the range object remains the same 48 byttes, while the
memory usage of the list growth as the list gets longer.

1 import sys

2

3 for ix in range(21):

4 rng = range(ix)

5 numbers = list(rng)

6 print("{:>3} {:>3} {:>4}".format(ix,

sys.getsizeof(rng), sys.getsizeof(numbers)))

 1 0 48 64

 2 1 48 96

 3 2 48 104

 4 3 48 112

 5 4 48 120

 6 5 48 128

 7 6 48 136

 8 7 48 144

 9 8 48 160

10 9 48 192

11 10 48 200

12 11 48 208

13 12 48 216

14 13 48 224

15 14 48 232

16 15 48 240

17 16 48 256

18 17 48 264

19 18 48 272

20 19 48 280

21 20 48 288

for loop with transformation

There are many cases when we have a list of some values and
we need to apply some transformation to each value. At the
end we would
like to have the list of the resulting values.

A very simple such transformation would be to double each
value. Other, more interesting examples might be reversing
each string,
computing some more complex function on each number, etc.)

In this example we just double the values and use append to
add each value to the list containing the results.

 1 def double(n):

 2 return 2 * n

 3

 4 numbers = [1, 2, 3, 4]

 5 name = "FooBar"

 6

 7 double_numbers = []

 8

 9 for num in numbers:

10 double_numbers.append(double(num))

11 print(double_numbers)

12

13 double_letters = []

14 for cr in name:

15 double_letters.append(double(cr))

16 print(double_letters)

1 [2, 4, 6, 8]

2 ['FF', 'oo', 'oo', 'BB', 'aa', 'rr']

There are better ways to do this.

map

map(function, iterable, ...)

The map function of Python applies a function to every item in
an iterable and returns an iterator
that can be used to iterate over the results. Wow, how many
times I repeated the word iter…something. Instead of trying to
untangle that sentence,
let’s look at the following exampe:

We have a list of numbers in the brilliantly named variable
numbers with 1, 2, 3, 4 as the content. We could like to ceate a
list of all the doubles (so that would be 2, 4, 6, 8 in this casse)
and then iterate over them printing them on the screen. Sure,
you probably have some more complex operation to do on the
numbers than simple double them, but in this example I did not
want to complicate
that part. Suffice to say that you have some computation to do
in every element.

So you encapsulate your computation in a regular Python
function (in our case the function is called double). Then you
call map and pass to it two parameters. The first parameter is
the double function itself, the second parameter is the list of
the values you would like to work on. map will no go over all
the values in the numbers list, call the double function with
each number and provide allow you to iterate over the results.
Something like this:

https://docs.python.org/library/functions.html#map

double_numbers = [double(1), double(2), double(3),
double(4)]

Except, that the above is not true.

When Python executes the double_numbers = map(double,
numbers) line, no computation happens and no resulting list is
created. Python only prepars “the possibility to do the
computations”. In the upcoming examples we’ll see what does
this sentence really mean, for now let’s see what do we have in
this example: double_numbers contains a **map object*, but
when you iterate
over it using the for num in double_numbers construct you
get the expected values.

In the second half of the example you can see the same works
on strings as well.

 1 def double(n):

 2 return 2 * n

 3

 4 numbers = [1, 2, 3, 4]

 5 name = "FooBar"

 6

 7 double_numbers = map(double, numbers)

 8 print(double_numbers) # <map object at 0x7f8eb2d849e8>

 9 for num in double_numbers:

10 print(num)

11

12 double_letters = map(double, name)

13 print(double_letters) # <map object at 0x7f8eb2d84cc0>

14 for cr in double_letters:

15 print(cr)

 1 <map object at 0x7ff0c0d89da0>

 2 2

 3 4

 4 6

 5 8

 6 <map object at 0x7ff0c0d89a20>

 7 FF

 8 oo

 9 oo

10 BB

11 aa

12 rr

map delaying function call

In this example we have added a call to print in the double
function in order to see when is it really executed. You can see
that the first output
comes from the print statement that was after the map call.
Then on each iteration we see the output from inside the
“double” function and then the
result from the loop. In a nutshell Python does not execute the
“double” function at the point where we called map. It only
executes it when we iterate over
the resulting object.

 1 def double(n):

 2 print(f"double {n}")

 3 return 2 * n

 4

 5 numbers = [1, 4, 2, -1]

 6

 7 double_numbers = map(double, numbers)

 8 print(double_numbers)

 9

10 for num in double_numbers:

11 print(num)

1 <map object at 0x7f90df760f98>

2 double 1

3 2

4 double 4

5 8

6 double 2

7 4

8 double -1

9 -2

map on many values

Now imagine you have a very long list. I know this is not such
a long list, but I trust you can imagin a long list of numbers.
We would like to run
some function on each element and then iterate over the
results, but what if at one point in the iteration we decide to
break out of the loop?

 1 import sys

 2

 3 def double(n):

 4 print(f"double {n}")

 5 return 2 * n

 6

 7 numbers = [1, 4, 2, -1, 23, 12, 5, 6, 34, 143123, 98,

213]

 8

 9 double_numbers = map(double, numbers)

10 print(double_numbers)

11 for num in double_numbers:

12 print(num)

13 if num > 42:

14 break

15

16 print()

17 print(sys.getsizeof(numbers))

18 print(sys.getsizeof(double_numbers))

 1 <map object at 0x7fe5c5270d68>

 2 double 1

 3 2

 4 double 4

 5 8

 6 double 2

 7 4

 8 double -1

 9 -2

10 double 23

11 46

12

13 160

14 56

You can see that it did not need to waste time calculating the
doubles of all the values, as it was calculating on-demand. You
can also see that the object returned
from map takes up only 56 bytes. Regardless of the size of the
original array.

map with list

Here too you can use the list function to convert all the values
at once, but there is an advantage of keeping it as
a map object. Not only the size that we already saw with the
range case, but also the processing time saved by
not calculating the results till you actually need it.

Imagine a case where you apply several expensive (time
consuming) transformations to some original list and then you
iterate over the end-results
looking for the first value that matches some condition. What if
you find the value you were looking for after only a few
iteration. Then
making all that expensive calculations to the whole list was a
waste of time.

This lazy evaluation can help you save both memory and time
and you always have the option to force the immediate
calculation by calling the list
function.

 1 def double(num):

 2 return 2 * num

 3

 4 numbers = [1, 2, 3, 4]

 5 name = "FooBar"

 6

 7 double_numbers = list(map(double, numbers))

 8 print(double_numbers)

 9

10 double_letters = list(map(double, name))

11 print(double_letters)

1 [2, 4, 6, 8]

2 ['FF', 'oo', 'oo', 'BB', 'aa', 'rr']

double with lambda

There are many other cases besides map where we need to
pass a function as a parameter to some other function.
Many cases the function we pass is some almost trivial
function with a single operation in it.
In those cases creating a named function like the “double”
function in the previous examples is an overkill.

In this example we also used the list function to force the full
evaluation of the map object to make it easier to show
the results. Normally you probably would not use the list
function here.

 1 numbers = [1, 2, 3, 4]

 2 name = "FooBar"

 3

 4

 5 double_numbers = list(map(lambda n: n * 2, numbers))

 6 print(double_numbers)

 7

 8

 9 double_letters = map(lambda n: n * 2, name)

10 for cr in double_letters:

11 print(cr)

1 [2, 4, 6, 8]

2 FF

3 oo

4 oo

5 BB

6 aa

7 rr

What is lambda in Python?

Lambda creates simple anonymous function. It is simple
because it can only have one statement in its body. It is
anonymous because usually it does not have a name.

The usual use is as we saw earlier when we passed it as a
parameter to the map function. However, in the next example
we show that you can assign the
lambda-function to a name and then you could used that name
just as any other function you would define using def.

1 def dbl(n):

2 return 2*n

3 print(dbl(3))

4

5 double = lambda n: 2*n

6 print(double(3))

1 6

2 6

lambda returning tuple

A lambda function can return complex data structures as well.
e.g. a tuple.

1 dbl = lambda n: (n, 2*n)

2

3 ret = dbl(12)

4

5 print(ret)

1 (12, 24)

map returning tuples
1 numbers = [1, 2, 3, 4]

2

3 pairs = map(lambda n: (n, 2*n), numbers)

4 print(pairs)

5

6 for pair in pairs:

7 print(pair)

1 <map object at 0x7fcd264a15f8>

2 (1, 2)

3 (2, 4)

4 (3, 6)

5 (4, 8)

lambda with two parameters

A lambda-function can have more than one parameters:

1 add = lambda x,y: x+y

2 print(add(2, 3))

1 5

map for more than one iterable
Lets “add” together two lists of numbers. Using + will just join the
two lists together, but we can use the “map” function to add the
values pair-wise.

1 v1 = [1, 3, 5, 9]

2 v2 = [2, 6, 4, 8]

3

4 v3 = v1 + v2

5 print(v3)

6

7 sums = map(lambda x,y: x+y, v1, v2)

8 print(sums)

9 print(list(sums))

1 [1, 3, 5, 9, 2, 6, 4, 8]

2 <map object at 0x7fcbecc8c668>

3 [3, 9, 9, 17]

map on uneven lists

In Python 3 the iterator stops when the shortest iterable is
exhausted.

In Python 2 it used to extend the shorter lists by None values.

1 v1 = [1, 3, 5, 9]

2 v2 = [2, 6, 4, 8, 10]

3

4 sums = map(lambda x,y: x+y, v1, v2)

5 print(sums)

6

7 print(list(sums))

1 <map object at 0x7ff9469a8da0>

2 [3, 9, 9, 17]

replace None (for Python 2)

In Python 2 map used to extend the shorter lists by None
values.
So to avoid exceptions, we had some exra code replacing the
None values by 0, using the ternary operator.

1 v1 = [1, 3, 5, 9]

2 v2 = [2, 6, 4, 8, 10]

3

4 print(map(lambda x,y: (0 if x is None else x) + (0 if y

is None else y), v1, v2))

5 # [3, 9, 9, 17, 10]

map on uneven lists - fixed (for Python 2)

A nicer fix was this:

1 v1 = [1, 3, 5, 9]

2 v2 = [2, 6, 4, 8, 10]

3

4 print(map(lambda x,y: (x or 0) + (y or 0), v1, v2))

5 # [3, 9, 9, 17, 10]

map mixed iterators

map works on any iterable, so we might end up passing one
list and one string to it.

1 v1 = ['foo', 'bar', 'baz']

2 v2 = 'abc'

3

4 result = map(lambda x,y: x+y, v1, v2)

5 print(result)

6 print(list(result))

1 <map object at 0x7fc5e9ff4e80>

2 ['fooa', 'barb', 'bazc']

map fetch value from dict
 1 people = [

 2 {

 3 'name': 'Foo',

 4 'phone': '123',

 5 },

 6 {

 7 'name': 'Bar',

 8 'phone': '456',

 9 },

10 {

11 'name': 'SnowWhite',

12 'phone': '7-dwarfs',

13 }

14]

15

16 names = map(lambda d: d['name'], people)

17

18 print(names)

19 print(list(names))

1 <map object at 0x7f5afffaeb00>

2 ['Foo', 'Bar', 'SnowWhite']

Exercise: string to length
Given a list of strings, create an iterator that will provide the length
of each string.

Exercise: row to length
Given a file, create an iterator that will provide the length of each
row. Can you do it without actually reading the file?

Exercise: compare rows
Create an iterator that given two files will return true for each line
where the first space in the first file is earlier than the first space in
the second file. So

given: “ab cd” vs “abc d” the value is true
given: “ab cd” vs “ab cd” the value is false
given: “ab cd” vs “a bcd” the value is false

Solution: string to length
1 animals = ['chicken', 'cow', 'snail', 'elephant', 'pig',

'zebra', 'gnu', 'praying ma\

2 ntiss', 'snake']

3

4 length = map(len, animals)

5 print(length)

6 print(list(length))

Solution: row to length
1 filename = __file__ # just being lazy and using ourselves

as the input file

2

3 with open(filename) as fh:

4 length = map(len, fh)

5 print(length)

6 for ln in length:

7 print(ln)

8 # if ln > 10:

9 # break

Solution: compare rows
 1 import sys

 2

 3 file_a = 'map_string_to_len.py'

 4 file_b = 'map_row_to_length.py'

 5

 6 def compare(row_a, row_b):

 7 a = row_a.find(' ')

 8 b = row_b.find(' ')

 9 return a < b

10

11 with open(file_a) as fh_a, open(file_b) as fh_b:

12 results = map(compare, fh_a, fh_b)

13 print(results)

14 print(sys.getsizeof(results))

15

16 truth = list(results)

17 print(truth)

18 print(sys.getsizeof(truth))

1 <map object at 0x7f0858d3f8d0>

2 56

3 [False, True, False, True, True]

4 128

filter

filter(function, iterable)

filter will return an iterable object that will return all the
items of the original iterable that evaluate the function to True.
This can have only one iterable!

1 numbers = [1, 3, 27, 10, 38]

2 def big(n):

3 return n > 10

4

5 reduced = filter(big, numbers)

6 print(reduced)

7 print(list(reduced))

1 <filter object at 0x7f4bc37355c0>

2 [27, 38]

filter with lambda
1 numbers = [1, 3, 27, 10, 38]

2

3 reduced = filter(lambda n: n > 10, numbers)

4 print(reduced)

5 print(list(reduced))

1 <filter object at 0x7faed0fe57b8>

2 [27, 38]

filter - map example
 1 numbers = [1, 7, 19, 5, 57, 23, 8]

 2

 3 def big(x):

 4 print(f"filtering {x}")

 5 return x > 10

 6

 7 def double(y):

 8 print(f"double {y}")

 9 return 2*y

10

11 big_numbers = filter(big, numbers)

12 print(big_numbers)

13

14 doubles = map(double, big_numbers)

15 print(doubles)

16

17 for num in doubles:

18 print(num)

 1 <filter object at 0x7ffad9f82f28>

 2 <map object at 0x7ffad9f829e8>

 3 filtering 1

 4 filtering 7

 5 filtering 19

 6 double 19

 7 38

 8 filtering 5

 9 filtering 57

10 double 57

11 114

12 filtering 23

13 double 23

14 46

15 filtering 8

filter - map in one expression
 1 numbers = [1, 7, 19, 5, 57, 23, 8]

 2

 3 def big(x):

 4 print(f"filtering {x}")

 5 return x > 10

 6

 7 def double(y):

 8 print(f"double {y}")

 9 return 2*y

10

11

12 for num in map(double, filter(big, numbers)):

13 print(num)

 1 filtering 1

 2 filtering 7

 3 filtering 19

 4 double 19

 5 38

 6 filtering 5

 7 filtering 57

 8 double 57

 9 114

10 filtering 23

11 double 23

12 46

13 filtering 8

Get indexes of values

filter can help us get a sublist of values from an iterable, eg.
from a list that match some condition.
In this example we see how to get all the names that are
exactly 3 characters long.

What if, however if instead of the values themselves, you
would like to know their location? The indexes of the
places where these value can be found. In that case, you would
run the filter on the indexes from 0 till the last

valid index of the list. You can do that using the range
function.

Finally there is another example that shows how to get the
indexes of all the names that have an “e” in them.
Just to show you that we can use any arbitray condition there.

 1 names = ["Helen", "Ann", "Mary", "Harry", "Joe", "Peter"]

 2 names3 = filter(lambda w: len(w) == 3, names)

 3 print(list(names3))

 4

 5 loc3 = filter(lambda i: len(names[i]) == 3,

range(len(names)))

 6 print(list(loc3))

 7

 8

 9 has_e = filter(lambda i: "e" in names[i],

range(len(names)))

10

11 print(list(has_e))

1 ['Ann', 'Joe']

2 [1, 4]

3 [0, 4, 5]

reduce

In Python 2 it was still part of the language.

reduce(function, iterable[, initializer])

 1 from functools import reduce

 2

 3 numbers = [1, 2, 3, 4]

 4

 5 print(reduce(lambda x,y: x+y, numbers)) # 10 =

((1+2)+3)+4

 6 print(reduce(lambda x,y: x*y, numbers)) # 24 =

((1*2)*3)*4

 7 print(reduce(lambda x,y: x/y, [8, 4, 2])) # 1.0

 8

 9 print(reduce(lambda x,y: x+y, [2])) # 2

10 print()

11

12 # print(reduce(lambda x,y: x+y, []))

13 # TypeError: reduce() of empty sequence with no

initial value

14 print(reduce(lambda x,y: x+y, [], 0)) # 0

15 print(reduce(lambda x,y: x+y, [2,4], 1)) # 7

16 print()

17

18 mysum = 0

19 for num in numbers:

20 mysum += num

21 print(mysum) # 10

22

23 mymultiple = 1

24 for num in numbers:

25 mymultiple *= num

26 print(mymultiple) #24

 1 10

 2 24

 3 1.0

 4 2

 5

 6 0

 7 7

 8

 9 10

10 24

The initializer is used as the 0th element returned by the iterable. It
is mostly interesting in case the iterable is empty.

reduce with default
1 from functools import reduce

2

3 print(reduce(lambda x,y: x+y, [], 0)) # 0

4 print(reduce(lambda x,y: x+y, [1, 2], 0)) # 3

5

6 print(reduce(lambda x,y: x*y, [1, 2], 0)) # 0

7 print(reduce(lambda x,y: x*y, [2, 3], 1)) # 6

8 print(reduce(lambda x,y: x*y, [], 0)) # 0

1 0

2 3

3 0

4 6

5 0

zip
1 fname = ['Graham', 'Eric', 'Terry',

2 'Terry', 'John', 'Michael']

3 lname = ['Chapman', 'Idle', 'Gilliam',

4 'Jones', 'Cleese', 'Palin']

5 born = ['8 January 1941', '29 March 1943', '22

November 1940',

6 '1 February 1942', '27 October 1939', '5 May

1943']

7

8 for f_name, l_name, b_date in zip(fname, lname, born):

9 print("{:10} {:10} was born {}".format(f_name,

l_name, b_date))

1 Graham Chapman was born 8 January 1941

2 Eric Idle was born 29 March 1943

3 Terry Gilliam was born 22 November 1940

4 Terry Jones was born 1 February 1942

5 John Cleese was born 27 October 1939

6 Michael Palin was born 5 May 1943

Monty Python

Creating dictionary from two lists using zip
 1 names = ['Jan', 'Feb', 'Mar', 'Apr']

 2 days = [31, 28, 31, 30]

 3

 4 zipped = zip(names, days)

 5 print(zipped)

 6

 7 pairs = list(zipped)

 8 print(pairs)

 9

10 month = dict(zipped)

11 print(month) # this is empty because zipped was already

exhausted by the "list" ca\

12 ll

13

14 zipped = zip(names, days)

15 month = dict(zipped)

16 print(month)

1 <zip object at 0x7ff021949788>

2 [('Jan', 31), ('Feb', 28), ('Mar', 31), ('Apr', 30)]

3 {}

4 {'Jan': 31, 'Feb': 28, 'Mar': 31, 'Apr': 30}

all, any

all(iterable) - returns True if all the elements of iterable
return True
any(iterable) - returns True if any of the elements in iterable
return True

https://en.wikipedia.org/wiki/Monty_Python

 1 a = [True, True]

 2 b = [True, False]

 3 c = [False, False]

 4

 5 print(all(a)) # True

 6 print(all(b)) # False

 7 print(all(c)) # False

 8 print()

 9 print(any(a)) # True

10 print(any(b)) # True

11 print(any(c)) # False

Compare elements of list with scalar
 1 print(2 > 1) # True

 2 print(0 > 1) # False

 3 print()

 4

 5 numbers = [2, 4]

 6 # Comparing different types does not make sense, but

nevertheless Python 2 would sti\

 7 ll do it.

 8 # Python 3 raises exception:

 9 # TypeError: '>' not supported between instances of

'list' and 'int'

10 # print(numbers > 1) # True

11 # print(numbers > 7) # True

12 # print()

13

14 # compare each element with the scalar and then check if

'all' were True

15 print(all(map(lambda x: x > 1, numbers))) # True

16 print(all(map(lambda x: x > 2, numbers))) # False

List comprehension - double

We take the original example where we had a function called
double, and this time we

write a different expression to run the function on every
element of an iterable.

 1 def double(n):

 2 return 2*n

 3

 4 numbers = [1, 2, 3, 4]

 5 name = "FooBar"

 6

 7 double_numbers = [double(n) for n in numbers]

 8 print(double_numbers) # [2, 4, 6, 8]

 9

10

11 double_chars = [double(n) for n in name]

12 print(double_chars) # ['FF', 'oo', 'oo', 'BB', 'aa',

'rr']

List comprehension - simple expression
 1 import sys

 2

 3 numbers = [0, 1, 2, 3]

 4

 5 sqrs = map(lambda n: n*n, numbers)

 6 print(sqrs) # <map object at 0x7fdcab2f5940>

 7 print(list(sqrs)) # [0, 1, 4, 9]

 8 print(sys.getsizeof(sqrs))

 9 print()

10

11 squares = [n*n for n in numbers]

12 print(squares) # [0, 1, 4, 9]

13 print(sys.getsizeof(squares))

1 <map object at 0x7fa9cf2eb9e8>

2 [0, 1, 4, 9]

3 56

4

5 [0, 1, 4, 9]

6 96

List generator
Going over the values of the generator will empty the generator.

 1 import sys

 2

 3 numbers = [0, 1, 2, 3, 4, 5, 6]

 4

 5 gn = (n*n for n in numbers)

 6 print(gn)

 7 print(sys.getsizeof(gn))

 8 print()

 9

10 for num in gn:

11 print(num)

12 print()

13

14 gn = (n*n for n in numbers)

15 squares = list(gn)

16 print(sys.getsizeof(squares))

17 print(squares)

18

19 print(list(gn)) # the generator was already exhausted

 1 <generator object <genexpr> at 0x7f8c0bda2930>

 2 120

 3

 4 0

 5 1

 6 4

 7 9

 8 16

 9 25

10 36

11

12 160

13 [0, 1, 4, 9, 16, 25, 36]

14 []

List comprehension

 1 text = ['aaaa', 'bb', 'ccc ccc']

 2

 3 length_1 = map(lambda x: len(x), text)

 4 print(length_1) # <map object at 0x7f60ceb90f98>

 5 print(list(length_1)) # [4, 2, 7]

 6

 7

 8 length_2 = map(len, text)

 9 print(length_2) # <map object at 0x7f60ceb90fd0>

10 print(list(length_2)) # [4, 2, 7]

11

12

13 length_3 = [len(s) for s in text]

14 print(length_3) # [4, 2, 7]

In LISP this would be a mapcar.

Dict comprehension
1 people = {

2 'Foo': 123,

3 'Bar': 456,

4 'SnowWhite': 7,

5 }

6

7 doubles = { k:v*2 for (k, v) in people.items() }

8 print(doubles) # {'Foo': 246, 'Bar': 912, 'SnowWhite':

14}

Lookup table with lambda
 1 import sys

 2

 3 table = {

 4 "cat" : lambda : print("miau"),

 5 "dog" : lambda : print("hauhau"),

 6 "duck" : lambda : print("hap hap"),

 7 }

 8

 9

10 def main():

11 if len(sys.argv) != 2:

12 exit(f"Usage: {sys.argv[0]} NAME")

13

14 animal = sys.argv[1]

15 if animal in table:

16 table[animal]()

17

18 main()

Read lines without newlines
 1 import sys

 2

 3 if len(sys.argv) != 2:

 4 exit(f"Usage: {sys.argv[0]}")

 5

 6 filename = sys.argv[1]

 7

 8 with open(filename) as fh:

 9 rows = map(lambda s: s.rstrip("\n"), fh.readlines())

10

11 for row in rows:

12 print(row)

Read key-value pairs
1 name=Foo Bar

2 email=foo@bar.com

3 address=Foo street 42

 1 import sys

 2

 3 if len(sys.argv) != 2:

 4 exit(f"Usage: {sys.argv[0]}")

 5

 6 filename = sys.argv[1]

 7

 8 with open(filename) as fh:

 9 pairs = dict(map(lambda x: x.split('='), map(lambda

s: s.rstrip("\n"), fh.readli\

10 nes())))

11

12 print(pairs)

1 {'name': 'Foo Bar', 'email': 'foo@bar.com', 'address':

'Foo street 42'}

Create index-to-value mapping in a
dictionary based on a list of values
1 planned_order = ('b', 'c', 'd', 'a')

2 plan = dict(zip(range(len(planned_order)),

planned_order))

3 print(plan)

1 {0: 'b', 1: 'c', 2: 'd', 3: 'a'}

Exercise: min, max, factorial

Implement an expression to calculate “min”, and another
expression to calculate “max” of lists.
Implement an expression that will calculate factorial. f(n)
should return the value of n! (n! = n * (n-1) * (n-2) * … * 1)
Implement an expression that given 2 lists will return a new
list in which each element is the max() for each pair from the
input lists. E.g. given [1, 3, 6] and [2, 4, 5] the result is [2, 4, 6]
Use reduce, map, lambda

Exercise: Prime numbers

Calculate and print the prime numbers between 2 and N. Use filter.

Exercise: Many validator functions
Given several validator functions (that get a parameter and return
True or False),
and given a list of values, return a sublist of values that pass all the
validation
checks. See the sekeleton:

 1 def is_big(x):

 2 return x > 100

 3

 4 def is_even(x):

 5 return not x % 2

 6

 7 numbers = [90, 102, 101, 104]

 8

 9 cond = [is_big, is_even]

10

11 # z = ...

12 print(z) # [102, 104]

Exercise: Calculator using lookup table
Write a script that will accept a math expression such as python
calc.py 2 + 3 and will print the result.
Use lookup tables select the implementation of the actual
computation. (supporting +, - , *, /) is enought

Exercise: parse file
In the following file we have lines:

1 SOURCE/FILENAME.json,TARGET

read in the file and create

a single dictionary where the SOURCE/FILENAME.json is the
key and the TARGET is the value.
list of dictionaries in which the keys are ‘source’, ‘filename’,
and ‘target’ and the values are from the respective columns
(SOURCE, FILENAME.json, and TARGET)

You can solve this for-loop or with map and list-comprehensions.
Do it in both ways.

 1 agile/agile.json,agile

 2 ansible/ansible.json,ansible

 3 ansible-intro/ansible.json,ansible-intro

 4 aws-lambda/aws.json,aws-lambda

 5 bash/bash.json,bash

 6 css/css.json,css

 7 collab-dev/collab.json,collab-dev

 8 data-science/data.json,data-science

 9 dart-programming/dart.json,dart-programming

10 docker/docker.json,docker

11 google-gcp/gcp.json,google-gcp

12 git/git.json,git

13 git-intro/git.json,git-intro

14 github-ci/github-ci.json,github-ci

15 golang/go.json,golang

16 groovy/groovy.json,groovy

17 java-programming/java.json,java-programming

18 javascript-programming/javascript.json,javascript-

programming

19 jenkins/jenkins.json,jenkins

20 jenkins-intro/jenkins.json,jenkins-intro

21 linux/linux.json,linux

22 linux-intro/linux.json,linux-intro

23 mobile/mobile.json,mobile

24 mojolicious/mojolicious.json,mojolicious

25 mongodb/mongodb.json,mongodb

26 nodejs/nodejs.json,nodejs

27 nosql/nosql.json,nosql

28 pair-programming/pair.json,pair-programming

29 perl-intro/perl.json,perl-intro

30 perl-programming/perl.json,perl-programming

31 perl-programming/testing.json,test-automation-using-perl

32 php-programming/php.json,php-programming

33 programming/programming.json,programming

34 python-mocking/python.json,python-mocking

35 python-programming/python.json,python-programming

36 ruby-programming/ruby.json,ruby=programming

37 sql/sql.json,sql

38 value/value.json,value

39 vim/vim.json,vim

40 web/web.json,web

41 windows-cmd/windows.json,windows-cmd

42 talks/real_world.json,real-world

43 talks/github-pages.json,github-pages

44 talks/python-pair-programming-and-tdd-

workshop.json,python-pair-programming-and-tdd-\

45 workshop

Solution: min, max, factorial
 1 from functools import reduce

 2

 3 numbers = [2, 1, 4, 3]

 4

 5 # min

 6 print(reduce(lambda x,y: x if x < y else y, numbers)) #

1

 7 # max

 8 print(reduce(lambda x,y: x if x > y else y, numbers)) #

4

 9

10 # factorial

11 n = 4

12 print(reduce(lambda x,y: x*y, range(1, n+1), 1)) # 24

13 # The 1 at the end is the initializor of reduce to

provide

14 # correct results for n = 0.

15

16 a = [1, 3, 6]

17 b = [2, 4, 5]

18 c = map(lambda x,y: x if x > y else y, a, b)

19 print(list(c)) # [2, 4, 6]

Solution: Prime numbers
Calculating the prime numbers

1 n = 50

2

3 nums = range(2, n)

4 for i in range(2, 1+int(n ** 0.5)):

5 nums = filter(lambda x: x == i or x % i, nums)

6

7 print(nums)

Solution: Many validator functions
 1 def is_big(x):

 2 return x > 100

 3

 4 def is_even(x):

 5 return not x % 2

 6

 7 numbers = [90, 102, 101, 104]

 8

 9 cond = [is_big, is_even]

10

11 z = filter(lambda n: all([f(n) for f in cond]),

numbers)

12 print(z) # [102, 104]

Solution: Calculator using lookup table
 1 import sys

 2

 3 table = {

 4 "+" : lambda x, y: x+y,

 5 "-" : lambda x, y: x-y,

 6 "*" : lambda x, y: x*y,

 7 "/" : lambda x, y: x/y,

 8 }

 9

10

11 def main():

12 if len(sys.argv) != 4:

13 exit(f"Usage: {sys.argv[0]} NUMBER OP NUMBER")

14 action = table[sys.argv[2]]

15 print(action(int(sys.argv[1]), int(sys.argv[3])))

16

17 main()

map with condtion

The conversion function can do anything. It can have a
condition inside.

 1 numbers = [1, 2, 3, 4]

 2

 3 def cond_double(n):

 4 if n % 2:

 5 return 2*n

 6 else:

 7 return n

 8

 9 cd = map(cond_double, numbers)

10 print(cd) # [2, 2, 6, 4]

map with lambda
 1 numbers = [1, 2, 3, 4]

 2

 3 def dbl(x):

 4 return 2*x

 5 d1 = map(dbl, numbers)

 6 print(d1) # [2, 4, 6, 8]

 7

 8 double = lambda x: 2*x

 9 d2 = map(double, numbers)

10 print(d2) # [2, 4, 6, 8]

11

12 d3 = map(lambda n: 2*n, numbers)

13 print(d3) # [2, 4, 6, 8]

map with lambda with condition
1 numbers = [1, 2, 3, 4]

2

3 a = map(lambda n: 2*n if n % 2 else n, numbers)

4 print(a) # [2, 2, 6, 4]

List comprehension - complex
 1 numbers = [1, 3, 2, 4]

 2

 3 t = filter(lambda n: n > 2, numbers)

 4 print(t) # [3, 4]

 5

 6 n1 = map(lambda n: n*n, t)

 7 print(n1) # [9, 16]

 8

 9

10 n2 = map(lambda n: n*n, filter(lambda n: n > 2, numbers))

11 print(n2) # [9, 16]

12

13

14

15 n3 = [n*n for n in numbers if n > 2]

16 print(n3) # [9, 16]

Iterators - with and without Itertools

Advantages of iterators and generators

Lazy evaluation
Save processing (or at least delay the use)
Save memory
Handle an infinite series of information
Turn complex operations into a simple matter of for loop.

The Fibonacci research institute

We have a bunch of mathematicians who research the
Fibonacci series.
We have a bunch of people who research a series of DNA
sequences.
???

Fibonacci plain

We don’t call this as this has an infinite loop

1 def fibonacci():

2 a, b = 0, 1

3 while True:

4 a, b = b, a+b

5

6 # fibonacci()

Fibonacci copy-paste

 1 def fibonacci():

 2 a, b = 0, 1

 3 while True:

 4 a, b = b, a+b

 5

 6 print(a)

 7 if a % 17 == 0:

 8 print('found')

 9 break

10

11 if a > 200:

12 print('not found')

13 break

14

15 fibonacci()

Iterators Glossary

iterable (Can be iterated over using a for loop.)
iterator
Every iterator is also iterable
Iterators (and iterables) are not necessarily addressable like
lists with the thing[index] construct.
Iterator Types
The standard type hierarchy

What are iterators and iterables?
All of them are iterables
A filehandle and the map object are also iterators. (Side note:
You should always open files using the with statement and not
like this.)
iter() would return the iterator from an iterable. We don’t
need this.

https://docs.python.org/glossary.html#term-iterable
https://docs.python.org/glossary.html#term-iterator
https://docs.python.org/library/stdtypes.html#typeiter
https://docs.python.org/reference/datamodel.html#types

 1 from collections.abc import Iterator, Iterable

 2

 3 a_string = "Hello World"

 4 a_list = ["Tiger", "Mouse"]

 5 a_tuple = ("Blue", "Red")

 6 a_range = range(10)

 7 a_fh = open(__file__)

 8 a_map = map(lambda x: x*2, a_list)

 9

10 for thing in [a_string, a_list, a_tuple, a_range, a_map,

a_fh]:

11 print(thing.__class__.__name__)

12 print(issubclass(thing.__class__, Iterator))

13 print(issubclass(thing.__class__, Iterable))

14 zorg = iter(thing)

15 print(zorg.__class__.__name__)

16 print(issubclass(zorg.__class__, Iterator))

17

18 print()

19

20 a_fh.close()

 1 str

 2 False

 3 True

 4 str_iterator

 5 True

 6

 7 list

 8 False

 9 True

10 list_iterator

11 True

12

13 tuple

14 False

15 True

16 tuple_iterator

17 True

18

19 range

20 False

21 True

22 range_iterator

23 True

24

25 TextIOWrapper

26 True

27 True

28 TextIOWrapper

29 True

A file-handle is an iterator

This slightly a repetition of the previous statement, that
filehandles are iterators.

 1 from collections.abc import Iterator, Iterable

 2 from io import TextIOWrapper

 3

 4 with open(__file__) as fh:

 5 print(fh.__class__.__name__)

 6 print(issubclass(fh.__class__, TextIOWrapper))

 7 print(issubclass(fh.__class__, Iterator))

 8 print(issubclass(fh.__class__, Iterable))

 9

10 for line in fh:

11 pass

12 #print(line, end="")

1 TextIOWrapper

2 True

3 True

4 True

range is iterable but it is not an iterator

Just as a string or a list, the range function in Python is also an
“iterable” but it is not an “iterator”.
In many aspects it behaves as an iterator. Specifically it allows
us to iterate over numbers.
Range Is Not An Iterator

range

 1 for n in range(2, 12, 3):

 2 print(n)

 3 print()

 4

 5 for n in range(3):

 6 print(n)

 7 print()

 8

 9 for n in range(2, 5):

10 print(n)

11 print()

12

13 from collections.abc import Iterator, Iterable

14 rng = range(2, 5)

15 print(issubclass(rng.__class__, Iterator))

16 print(issubclass(rng.__class__, Iterable))

 1 2

 2 5

 3 8

 4 11

 5

 6 0

 7 1

 8 2

 9

10 2

11 3

12 4

13

https://treyhunner.com/2018/02/python-range-is-not-an-iterator/
https://docs.python.org/library/functions.html#func-range

14 False

15 True

Iterator: a counter

We can create a iterator using a class. We are required to
implement the __iter__ method that returns the iterator object
and the __next__ method that returns the next element in our
iteration. We can indicated that the iteration was exhaused
by raising a StopIteration exception.

The instance-object that is created from this class-object is the
iterator, not the class-object itself!

__iter__

__next__ (in Python 2 this used to called next)
raise StopIteration

 1 class Counter():

 2 def __init__(self):

 3 self.count = 0

 4

 5 def __iter__(self):

 6 return self

 7

 8 def __next__(self):

 9 self.count += 1

10 if self.count > 3:

11 raise StopIteration

12 return self.count

Using iterator

The class returned an iterator, we could use a for loop to
iterate over the element.
We tried to run through the iterator again, but it did not print
anything. It was exhausted.

1 from counter import Counter

2

3 cnt = Counter()

4 for c in cnt:

5 print(c)

6

7 for c in cnt:

8 print(c)

1 1

2 2

3 3

Iterator without temporary variable
1 from counter import Counter

2

3 for c in Counter():

4 print(c)

1 1

2 2

3 3

The type of the iterator

How can we know it is an iterator? We check it.

1 from collections.abc import Iterator, Iterable

2 from counter import Counter

3

4 cnt = Counter()

5 print(cnt.__class__.__name__)

6 print(issubclass(cnt.__class__, Iterator))

7 print(issubclass(cnt.__class__, Iterable))

1 Counter

2 True

3 True

Using iterator with next

A feature of any iterator is that we could iterate over it using
the next call.

 1 from counter import Counter

 2

 3 cnt = Counter()

 4

 5 while True:

 6 try:

 7 a = next(cnt)

 8 print(a)

 9 except Exception as ex:

10 print(ex.__class__.__name__)

11 break

1 1

2 2

3 3

4 StopIteration

Mixing for and next

You can even use next inside a for loop, but then you will
have to handle the StopIteration exception
that migh happen during your call of next.

I am not really sure when would we want to use this.

 1 from counter import Counter

 2

 3 cnt = Counter()

 4

 5 for i in cnt:

 6 print(f"i: {i}")

 7 try:

 8 n = next(cnt)

 9 print(f"n: {n}")

10 except Exception as ex:

11 print(ex.__class__.__name__)

12 break

1 i: 1

2 n: 2

3 i: 3

4 StopIteration

Iterable which is not an iterator
 1 from counter import Counter

 2

 3 class GetMyIterable():

 4 def __init__(self):

 5 pass

 6 def __iter__(self):

 7 return Counter()

 8

 9

10 thing = GetMyIterable()

11

12 from collections.abc import Iterator, Iterable

13 print(issubclass(thing.__class__, Iterator))

14 print(issubclass(thing.__class__, Iterable))

15

16 for i in thing:

17 print(i)

1 False

2 True

3 1

4 2

5 3

Iterator returning multiple values
 1 class SquareCounter():

 2 def __init__(self):

 3 self.count = 0

 4

 5 def __iter__(self):

 6 return self

 7

 8 def __next__(self):

 9 self.count += 1

10 if self.count > 5:

11 raise StopIteration

12 return self.count, self.count ** 2

13

14 for cnt, sqr in SquareCounter():

15 print(f"{cnt} {sqr}")

1 1 1

2 2 4

3 3 9

4 4 16

5 5 25

Range-like iterator

 1 class Range():

 2 def __init__(self, start, end):

 3 self.current = start

 4 self.end = end

 5

 6 def __iter__(self):

 7 return self

 8

 9 def __next__(self):

10 if self.current >= self.end:

11 raise StopIteration

12 v = self.current

13 self.current += 1

14 return v

 1 import it

 2

 3 r = it.Range(1, 4)

 4 for n in r:

 5 print(n)

 6

 7 print('---')

 8

 9 for n in it.Range(2, 5):

10 print(n)

1 1

2 2

3 3

4 ---

5 2

6 3

7 4

Unbound or infinite iterator

So far each iterator had a beginning and an end. However we
can also create infinte or unbounded iterators.

The nice thing about them is that we can pass them around as
we do with any other object and we can execute
operations on them without burning our CPU.

Of course the user will have to be carefull not to try to flatten
the iterator, not to try to get all the values
from it, as that will only create an infinite loop or a never
ending operation.

In this very simple example we count from 0 and we never
stop.

When we use the Counter in the for loop we need to include a
stop-condition, otherwise our loop will never end.

 1 class Counter():

 2 def __init__(self):

 3 self.count = 0

 4

 5 def __iter__(self):

 6 return self

 7

 8 def __next__(self):

 9 self.count += 1

10 return self.count

11

12 for c in Counter():

13 print(c)

14 if c > 10:

15 break

 1 1

 2 2

 3 3

 4 4

 5 5

 6 6

 7 7

 8 8

 9 9

10 10

11 11

Unbound iterator Fibonacci

Now we can get back to our original problem, the slightly
more complex Fibonacci series. In this example we created
an unbounded iterator that on every iteration will return the
next element of the Fibonacci series.

 1 class Fibonacci():

 2 def __init__(self):

 3 self.values = []

 4

 5 def __iter__(self):

 6 return self

 7

 8 def __next__(self):

 9 if len(self.values) == 0:

10 self.values.append(1)

11 return 1

12

13 if len(self.values) == 1:

14 self.values.append(1)

15 return 1

16

17 self.values.append(self.values[-1] +

self.values[-2])

18 self.values.pop(0)

19

20 return self.values[-1]

1 from fibonacci import Fibonacci

2 for v in Fibonacci():

3 print(v)

4 if v > 10:

5 break

1 1

2 1

3 2

4 3

5 5

6 8

7 13

Operations on Unbound iterator
 1 from fibonacci import Fibonacci

 2

 3 fib = Fibonacci()

 4

 5 #odd = [x for x in fib if x % 2 == 1]

 6 odd = filter(lambda x: x % 2 == 1, fib)

 7

 8 print("Let's see")

 9

10 for v in odd:

11 print(v)

12 if v > 10:

13 break

1 Let's see

2 1

3 1

4 3

5 5

6 13

itertools

itertools

http://docs.python.org/library/itertools.html

itertools is a standard Python library that provides a number of
interesting iterators.
We are going to see a few examples here:

itertools - count

Unbound counter: Count from N to infinity.

 1 import itertools

 2

 3 for c in itertools.count(start=19, step=1):

 4 print(c)

 5 if c > 23:

 6 break

 7

 8 # 19

 9 # 20

10 # 21

11 # 22

12 # 23

13 # 24

itertools - cycle
 1 import itertools

 2

 3 ix = 0

 4 for c in itertools.cycle(['A', 'B', 'C']):

 5 print(c)

 6 ix += 1

 7 if ix >= 5:

 8 break

 9

10 print('')

11

12 ix = 0

13 for c in itertools.cycle('DEF'):

14 print(c)

15 ix += 1

16 if ix >= 5:

17 break

 1 A

 2 B

 3 C

 4 A

 5 B

 6

 7 D

 8 E

 9 F

10 D

11 E

Exercise: iterators - reimplement the range
function
In one of the first slides of this chapter we saw a partial
implementation of the range function.
Change that code to have a full implementation, that can accept 1,
2, or 3 parameters.

Exercise: iterators - cycle
Reimplement the cycle functions of itertools using iterator
class.

Exercise: iterators - alter

Implement the alter functions as an iterator that will return

1 1

2 -2

3 3

4 -4

5 5

6 -6

7 ...

Optionally provide a start and end parameters
start defaults to 1
end defaults to unlimited

Exercise: iterators - limit Fibonacci
Change the Iterator version of the Fibonacci series so optionally
you will be able to provide
a parameter called “limit” to the constructor. If the limit is
provided, the iterator should stop
when the value passes the limit.

Exercise: iterators - Fibonacci less memory
Change the Iterator version of the Fibonacci series so it will NOT
hold the previous values in memory.

Exercise: read char
Create an iterator that given a filename will return an object that on
every iteration will
return a single character. As an option let the user skip newlines, or
maybe any pre-defined character.

Exercise: read section

Create an iterator that given the name of a file like the
following, will return once section at a time.

It will return a list one each iteration and each element of the
list will be a line from the current section.
Other ideas what should be returned on each iteration?

 1 name = Mercury

 2 distance = 0.4

 3 mass = 0.055

 4

 5

 6 name = Venus

 7 distance = 0.7

 8 mass = 0.815

 9

10

11 name = Earth

12 distance = 1

13 mass = 1

14

15 name = Mars

16 distance = 1.5

17 mass = 0.107

Exercise: collect packets
You get a series of packets (e.g. lines in a file)
In each line you have several fields: id, seqid, maxseq, content
id is a unique identifier of a series of packets (lines)
seqid is the seuence id of a packet in a series. (an integer)
maxseq is the length of the sequence.
content is the actual content.

In each iteration return a message that is built up from all the
packages in the given sequence.

 1 12,1,5,First of Twelve

 2 12,2,5,Second of Twelve

 3 12,3,5,Third of Twelve

 4 12,4,5,Fourth of Twelve

 5 12,5,5,Fifth of Twelve

 6

 7 9,1,4,First of Nine

 8 9,2,4,Second of Nine

 9 9,3,4,Third of Nine

10 9,4,4,Fourth of Nine

11

12 11,1,3,First of Eleven

13 11,2,3,Second of Eleven

14 11,3,3,Third of Eleven

1 ['First of Twelve', 'Second of Twelve', 'Third of

Twelve', 'Fourth of Twelve', 'Fift\

2 h of Twelve']

3 ['First of Nine', 'Second of Nine', 'Third of Nine',

'Fourth of Nine']

4 ['First of Eleven', 'Second of Eleven', 'Third of

Eleven']

 1 12,1,5,First of Twelve

 2 11,1,3,First of Eleven

 3 9,1,4,First of Nine

 4 12,2,5,Second of Twelve

 5 9,2,4,Second of Nine

 6 11,2,3,Second of Eleven

 7 12,3,5,Third of Twelve

 8 9,3,4,Third of Nine

 9 12,4,5,Fourth of Twelve

10 12,5,5,Fifth of Twelve

11 9,4,4,Fourth of Nine

12 11,3,3,Third of Eleven

 1 11,2,3,Second of Eleven

 2 11,1,3,First of Eleven

 3 9,1,4,First of Nine

 4 12,1,5,First of Twelve

 5 9,3,4,Third of Nine

 6 9,2,4,Second of Nine

 7 12,3,5,Third of Twelve

 8 12,4,5,Fourth of Twelve

 9 12,2,5,Second of Twelve

10

11 12,5,5,Fifth of Twelve

12 9,4,4,Fourth of Nine

13 11,3,3,Third of Eleven

Exercise: compare files
Compare two files line-by-line, and create a 3rd file listing the lines
that are different.

1 One

2 Two

3 Three

4 Four

5 Five

1 One

2 Two

3 Tree

4 Four

5 Five

Expected output:

1 2,Three,Tree

Solution: iterators - limit Fibonacci
 1 class Fibonacci:

 2 def __init__(self, limit=0):

 3 self.values = []

 4 self.limit = limit

 5 def __iter__(self):

 6 return self

 7 def next(self):

 8 if self.limit and len(self.values) >= self.limit:

 9 raise StopIteration

10 if len(self.values) == 0:

11 self.values.append(1)

12 return 1

13 if len(self.values) == 1:

14 self.values.append(1)

15 return 1

16 self.values.append(self.values[-1] +

self.values[-2])

17 return self.values[-1]

 1 import fibonacci

 2 f = fibonacci.Fibonacci(limit = 10)

 3 print(f)

 4 for v in f:

 5 print(v)

 6

 7 print('-----')

 8 f = fibonacci.Fibonacci()

 9 for v in f:

10 print(v)

11 if v > 30:

12 break

Solution: iterators - Fibonacci less memory
 1 class Fibonacci:

 2 def __init__(self, limit=0):

 3 self.values = ()

 4 self.limit = limit

 5 def __iter__(self):

 6 return self

 7 def next(self):

 8 if self.limit and len(self.values) and

self.values[-1] >= self.limit:

 9 raise StopIteration

10 if len(self.values) == 0:

11 self.values = (1,)

12 return 1

13 if len(self.values) == 1:

14 self.values = (1, 1)

15 return 1

16 self.values = (self.values[-1], self.values[-1] +

self.values[-2])

17 return self.values[-1]

 1 import fibonacci

 2 f = fibonacci.Fibonacci(limit = 10)

 3 print(f)

 4 for v in f:

 5 print(v)

 6

 7 print('-----')

 8 f = fibonacci.Fibonacci()

 9 for v in f:

10 print(v)

11 if v > 30:

12 break

Solution: read section
 1 import re

 2

 3 class SectionReader():

 4 def __init__(self, filename):

 5 self.filename = filename

 6 self.fh = open(filename)

 7

 8 def __iter__(self):

 9 return self

10

11 def __next__(self):

12 self.section = []

13 while True:

14 line = self.fh.readline()

15 if not line:

16 if self.section:

17 return self.section

18 else:

19 self.fh.close()

20 raise StopIteration

21 if re.search(r'\A\s*\Z', line):

22 if self.section:

23 return self.section

24 else:

25 continue

26 self.section.append(line)

27

28

29 filename = 'planets.txt'

30 for sec in SectionReader(filename):

31 print(sec)

Solution: compare files
 1 import sys

 2

 3 def main():

 4 if len(sys.argv) != 4:

 5 exit(f"Usage: {sys.argv[0]} IN_FILE IN_FILE

OUT_FILE")

 6 infile_a, infile_b = sys.argv[1:3]

 7 outfile = sys.argv[3]

 8

 9 with open(outfile, 'w') as out_fh, open(infile_a) as

in_a, open(infile_b) as in_\

10 b:

11 cnt = 0

12 for lines in zip(in_a, in_b):

13 #print(lines)

14 lines = list(map(lambda s: s.rstrip('\n'),

lines))

15 #print(lines)

16 if lines[0] != lines[1]:

17 out_fh.write(f"{cnt},{lines[0]},

{lines[1]}\n")

18 cnt += 1

19

20 main()

1 python diff.py first.txt second.txt diff.txt

Solution: collect packets
The implementation

 1 class Packets():

 2 def __init__(self, filename):

 3 self.filename = filename

 4 self.fh = open(filename)

 5 self.packets = {}

 6 self.max = {}

 7

 8 def __iter__(self):

 9 return self

10

11 def __next__(self):

12 while True:

13 line = self.fh.readline()

14 #print(f"line: {line}")

15 if line == '':

16 raise StopIteration

17

18 line = line.rstrip("\n")

19 if line == '':

20 continue

21

22 pid, seqid, maxseq, content = line.split(",")

23 pid = int(pid)

24 seqid = int(seqid)

25 maxseq = int(maxseq)

26 if pid not in self.packets:

27 self.packets[pid] = {}

28 self.max[pid] = maxseq

29 if seqid in self.packets[pid]:

30 raise Exception("pid arrived twice")

31 if maxseq != self.max[pid]:

32 raise Exception("maxseq changed")

33 self.packets[pid][seqid] = content

34 if len(self.packets[pid].keys()) ==

self.max[pid]:

35 content = list(map(lambda i:

self.packets[pid][i+1], range(self.max[\

36 pid])))

37 del(self.max[pid])

38 del(self.packets[pid])

39 return content

The use:

1 import sys

2 from packets import Packets

3

4 if len(sys.argv) < 2:

5 exit(f"Usage: {sys.argv[0]} FILENAME")

6

7 for packet in Packets(sys.argv[1]):

8 print(packet)

The test to verify it

 1 import os

 2 import json

 3 import pytest

 4

 5 from packets import Packets

 6

 7 root = os.path.dirname(os.path.abspath(__file__))

 8

 9 with open(os.path.join(root, 'packets.json')) as fh:

10 expected_results = json.load(fh)

11

12 @pytest.mark.parametrize('filename', ['packets.txt',

'packets1.txt', 'packets2.txt'])

13 def test_packetes(filename):

14 filepath = os.path.join(root, filename)

15

16 results = []

17 for packet in Packets(filepath):

18 results.append(packet)

19 assert results == expected_results

Expected result:

1 [["First of Twelve", "Second of Twelve", "Third of

Twelve", "Fourth of Twelve", "Fif\

2 th of Twelve"], ["First of Nine", "Second of Nine",

"Third of Nine", "Fourth of Nine\

3 "], ["First of Eleven", "Second of Eleven", "Third of

Eleven"]]

Generators and Generator
Expressions

Generators Glossary

generator (a function that returns a “generator iterator”)
generator-iterator (an object created by a generator)
Generator types
generator-expression

Generators are basically a way to create iterators without a
class.

Iterators vs Generators
a generator is an iterator
an iterator is an iterable

1 from collections.abc import Iterator, Iterable

2 from types import GeneratorType

3

4 print(issubclass(GeneratorType, Iterator)) # True

5 print(issubclass(Iterator, Iterable)) # True

Genarators are a simpler way to create an iterable object than
iterators, but iterators allow for more complex iterables.
To create an iterator we need a class with two methods:
__iter__ and __next__, and a raise StopIteration.

https://docs.python.org/glossary.html#term-generator
https://docs.python.org/glossary.html#term-generator-iterator
https://docs.python.org/library/stdtypes.html#generator-types
https://docs.python.org/glossary.html#term-generator-expression

To create a generator we only need a single function with
`yield .

List comprehension and Generator
Expression

However, before learning about yield let’s see an even simpler
way to create a generator. What we call a generator expression.

You are probably already familiar with list comprehensions
where you have a an for expression inside square brackets.
That returns a list of values.

If you replace the square brackets with parentheses then you
get a generator expression.

You can iterate over either of those. So what’s the difference?

 1 a_list = [i*2 for i in range(3)]

 2 print(a_list)

 3 for x in a_list:

 4 print(x)

 5 print()

 6

 7 a_generator = (i*2 for i in range(3))

 8 print(a_generator)

 9 for x in a_generator:

10 print(x)

1 [0, 2, 4]

2 0

3 2

4 4

5

6 <generator object <genexpr> at 0x7f0af6f97a50>

7 0

8 2

9 4

List comprehension vs Generator
Expression - less memory

Let’s use a bigger range of numbers and create the
corresponding list and generator. Then check the size of both
of them.
You can see the list is much bigger. That’s becuse the list
already contains all the elements, while the generator contains
only the promise to give you all the elements.

As we could see in the previous example, this is not an empty
promise, you can indeed iterate over the elements of a
generator
just as you can iterate over the elements of a list.

However, you cannot access an arbitrary element of a
generator because the generator is not subscriptable.

 1 import sys

 2

 3 lst = [n*2 for n in range(1000)] # List comprehension

 4 gen = (n*2 for n in range(1000)) # Generator expression

 5

 6 print(sys.getsizeof(lst))

 7 print(sys.getsizeof(gen))

 8 print()

 9

10 print(type(lst))

11 print(type(gen))

12 print()

13

14 print(lst[4])

15 print()

16

17 print(gen[4])

 1 9016

 2 112

 3

 4 <class 'list'>

 5 <class 'generator'>

 6

 7 8

 8

 9 Traceback (most recent call last):

10 File "generator_expression.py", line 17, in <module>

11 print(gen[4])

12 TypeError: 'generator' object is not subscriptable

List Comprehension vs Generator Expressions

List comprehension vs Generator
Expression - lazy evaluation

The second big difference between list comprehension and
generator expressions is that the latter has lazy evaluation.
In this example you can see that once we assign to list
comprehension to a variable the sqr function is called on each
element.

In the case of the generator expression, only when we iterate
over the elements will Python call the sqr function.
If we exit from the loop before we go over all the values than
we saved time by not executing the expression on every
element up-front. If the computation is complex and if our list
is long, this can have a substantial impact.

https://code-maven.com/list-comprehension-vs-generator-expression

 1 def sqr(n):

 2 print(f"sqr {n}")

 3 return n ** 2

 4

 5 numbers = [1, 3, 7]

 6

 7 # list comprehension

 8 n1 = [sqr(n) for n in numbers]

 9 print("we have the list")

10 for i in n1:

11 print(i)

12 print("-------")

13

14 # generator expression

15 n2 = (sqr(n) for n in numbers)

16 print("we have the generator")

17 for i in n2:

18 print(i)

 1 sqr 1

 2 sqr 3

 3 sqr 7

 4 we have the list

 5 1

 6 9

 7 49

 8 -------

 9 we have the generator

10 sqr 1

11 1

12 sqr 3

13 9

14 sqr 7

15 49

Generator: function with yield - call next

We can create a function that has multiple yield expressions
inside.
We call the function and what we get back is a generator.
A generator is also an iterator so we can call the next
function on it and it will give us the next yield value.

If we call it one too many times we get a StopIteration
exception.

 1 def number():

 2 yield 42

 3 yield 19

 4 yield 23

 5

 6 num = number()

 7 print(type(num))

 8 print(next(num))

 9 print(next(num))

10 print(next(num))

11 print(next(num))

1 <class 'generator'>

2 42

3 19

4 23

5 Traceback (most recent call last):

6 File "simple_generator_next.py", line 11, in <module>

7 print(next(num))

8 StopIteration

Generators - call next

We can also use a for loop on the generator and then we
don’t need to worry about the exception.

1 def number():

2 yield 42

3 yield 19

4 yield 23

5

6 num = number()

7 print(type(num))

8 for n in num:

9 print(n)

1 <class 'generator'>

2 42

3 19

4 23

Generator with yield

We don’t even need to use a temporary variable for it.

1 def number():

2 yield 42

3 yield 19

4 yield 23

5

6 for n in number():

7 print(n)

1 42

2 19

3 23

Generators - fixed counter

 1 def counter():

 2 n = 1

 3 yield n

 4

 5 n += 1

 6 yield n

 7

 8 n += 1

 9 yield n

10

11 for c in counter():

12 print(c)

1 1

2 2

3 3

Generators - counter
 1 def counter():

 2 n = 1

 3 while True:

 4 yield n

 5 n += 1

 6

 7 for c in counter():

 8 print(c)

 9 if c >= 10:

10 break

 1 1

 2 2

 3 3

 4 4

 5 5

 6 6

 7 7

 8 8

 9 9

10 10

Generators - counter with parameter
 1 def counter(n = 1):

 2 while True:

 3 yield n

 4 n += 1

 5

 6 for c in counter():

 7 print(c)

 8 if c >= 4:

 9 break

10 print()

11

12 for c in counter(8):

13 print(c)

14 if c >= 12:

15 break

 1 1

 2 2

 3 3

 4 4

 5

 6 8

 7 9

 8 10

 9 11

10 12

Generators - my_range
 1 import sys

 2

 3 def my_range(limit = 1):

 4 n = 0

 5 while n < limit:

 6 yield n

 7 n += 1

 8

 9 for i in my_range(5):

10 print(i)

11 print()

12

13 print(sum(my_range(10)))

14 print()

15

16 x = my_range(10000)

17 print(x)

18 print(sys.getsizeof(x))

 1 0

 2 1

 3 2

 4 3

 5 4

 6

 7 45

 8

 9 <generator object my_range at 0x7f36f6089930>

10 120

Fibonacci - generator
 1 def fibonacci():

 2 a, b = 0, 1

 3 while True:

 4 a, b = b, a+b

 5 yield a

 6

 7 for a in fibonacci():

 8 print(a)

 9 if a % 17 == 0:

10 print('found')

11 break

12

13 if a > 200:

14 print('not found')

15 break

The fibonacci() function is called 5 times. When it reached the
‘yield’ command it returns the value
as if it was a normal return call, but when the function is called
again, it will be executed starting
from the next statement. Hence the word ‘after’ will be printed
after each call.

Infinite series

The Fibonacci was already infinite, let’s see a few more.

Integers
1 from series import integers

2

3 for i in integers():

4 print(i)

5 if i >= 10:

6 break

 1 1

 2 2

 3 3

 4 4

 5 5

 6 6

 7 7

 8 8

 9 9

10 10

Integers + 3

1 from series import integers

2

3 n3 = (n+3 for n in integers())

4 # n3 = integers(3)

5 for i in n3:

6 print(i)

7 if i >= 10:

8 break

1 4

2 5

3 6

4 7

5 8

6 9

7 10

Integers + Integers
 1 from series import integers

 2

 3 def mysum(nums):

 4 print(nums)

 5 total = 0

 6 for n in nums:

 7 total += n

 8 return total

 9

10 n3 = integers(3)

11 n7 = integers(7)

12 d = (mysum(p) for p in zip(n3, n7))

13

14 print("start")

15 for i in d:

16 print(i)

17 if i >= 20:

18 break

 1 start

 2 (3, 7)

 3 10

 4 (4, 8)

 5 12

 6 (5, 9)

 7 14

 8 (6, 10)

 9 16

10 (7, 11)

11 18

12 (8, 12)

13 20

Filtered Fibonacci
1 from series import fibonacci

2

3 even = (fib for fib in fibonacci() if fib % 2 == 0)

4 for e in even:

5 print(e)

6 if e > 40:

7 break

1 0

2 2

3 8

4 34

5 144

The series.py
This is the module behind the previous examples.

 1 def integers(n = 1):

 2 while True:

 3 yield n

 4 n += 1

 5

 6 def fibonacci():

 7 a, b = 0, 1

 8 while True:

 9 yield a

10 a, b = b, a+b

11

12

13 def gfibonacci(size = 2):

14 """Generalized Fibonacci. """

15 values = [0]

16 while True:

17 yield values[-1]

18 if len(values) < size:

19 values.append(1)

20 else:

21 values.append(sum(values))

22 values = values[1:]

23

24 def pascal():

25 values = [1]

26 while True:

27 yield values

28 new = [1]

29 for i in range(0, len(values)-1):

30 new.append(values[i] + values[i+1])

31 new.append(1)

32 values = new

generator - unbound count (with yield)
 1 def count(start=0, step=1):

 2 n = start

 3 while True:

 4 yield n

 5 n += step

 6

 7

 8 for c in count(start=19, step=1):

 9 print(c)

10 if c > 23:

11 break

1 19

2 20

3 21

4 22

5 23

6 24

iterator - cycle
 1 def cycle(values=[]):

 2 my_values = []

 3 for v in values:

 4 my_values.append(v)

 5 yield v

 6 while True:

 7 for v in my_values:

 8 yield v

 9

10 i = 0

11 for c in cycle(['A', 'B', 'C']):

12 print(c)

13 i += 1

14 if i >= 4:

15 break

1 A

2 B

3 C

4 A

Exercise: Alternator
Create a generator for the following number series: 1, -2, 3, -4, 5,
-6, …

Exercise: Prime number generator
Create a generator that will return the prime numbers:
2, 3, 5, 7, 11, 13, 17, …

Exercise: generator

Take the two generator examples (increment number and
Fibonacci) and change them to provide infinite iterations.
Then try to run them in a for loop. Just make sure you have some
other condition to leave the for-loop.

Exercise: Tower of Hanoi
There are 3 sticks. On the first stick there are n rings of different
sizes. The smaller the ring the higher it is on the stick.
Move over all the rings to the 3rd stick by always moving only one
ring and making sure that never will there be a large ring on top
of a smaller ring.

Tower of Hanoi

Exercise: Binary file reader
Create a generator that given a filename and a number n will return
the content of the file in chunks of n characters.

Exercise: File reader with records
In a file we have “records” of data. Each record starts with three
bytes in which we have the length of the record.
Then the content.

1 8 ABCDEFGH 5 XYZQR

Given this source file

1 First line

2 Second record

3 Third row of the records

4 Fourth

https://en.wikipedia.org/wiki/Tower_of_Hanoi

5 5

6 END

using this code

1 filename = "rows.txt"

2 records = "records.txt"

3

4 with open(filename) as in_fh:

5 with open(records, 'w') as out_fh:

6 for line in in_fh:

7 line = line.rstrip("\n")

8 out_fh.write("{:>3}{}".format(len(line),

line))

we can create this file:

1 10First line 13Second record 24Third row of the records

6Fourth 15 3END

The exercise is to create an iterator/generator that can read such a
file record-by-record.

Logging

Simple logging
 1 import logging

 2

 3 logging.debug("debug")

 4 logging.info("info")

 5 logging.warning("warning")

 6 logging.error("error")

 7 logging.critical("critical")

 8

 9 logging.log(logging.WARNING, "another warning")

10 logging.log(40, "another error")

1 WARNING:root:warning

2 ERROR:root:error

3 CRITICAL:root:critical

4 WARNING:root:another warning

5 ERROR:root:another error

Written on STDERR

Simple logging - set level
1 import logging

2

3 logging.basicConfig(level = logging.INFO)

4

5 logging.debug("debug")

6 logging.info("info")

7 logging.warning("warning")

8 logging.error("error")

9 logging.critical("critical")

1 INFO:root:info

2 WARNING:root:warning

3 ERROR:root:error

4 CRITICAL:root:critical

Simple logging to a file
 1 import logging

 2 import time

 3

 4 logging.basicConfig(level = logging.INFO, filename =

time.strftime("my-%Y-%m-%d.log"\

 5))

 6

 7 logging.debug("debug")

 8 logging.info("info")

 9 logging.warning("warning")

10 logging.error("error")

11 logging.critical("critical")

Simple logging format
 1 import logging

 2

 3 logging.basicConfig(format = '%(asctime)s %

(levelname)-10s %(processName)s %(name\

 4)s %(message)s')

 5

 6 logging.debug("debug")

 7 logging.info("info")

 8 logging.warning("warning")

 9 logging.error("error")

10 logging.critical("critical")

Simple logging change date format
 1 import logging

 2

 3 logging.basicConfig(format = '%(asctime)s %

(levelname)-10s %(processName)s %(name\

 4)s %(message)s', datefmt = "%Y-%m-%d-%H-%M-%S")

 5

 6 logging.debug("debug")

 7 logging.info("info")

 8 logging.warning("warning")

 9 logging.error("error")

10 logging.critical("critical")

1 2020-04-22-18-59-16 WARNING MainProcess root warning

2 2020-04-22-18-59-16 ERROR MainProcess root error

3 2020-04-22-18-59-16 CRITICAL MainProcess root

critical

getLogger
 1 import logging

 2

 3 logger = logging.getLogger(__name__)

 4 logger.setLevel(logging.DEBUG)

 5

 6 fh = logging.FileHandler('my.log')

 7 fh.setLevel(logging.INFO)

 8 fh.setFormatter(logging.Formatter('%(asctime)s - %

(name)s - %(levelname)-10s - %(me\

 9 ssage)s'))

10 logger.addHandler(fh)

11

12

13 sh = logging.StreamHandler()

14 sh.setLevel(logging.DEBUG)

15 sh.setFormatter(logging.Formatter('%(asctime)s - %

(levelname)-10s - %(message)s'))

16 logger.addHandler(sh)

17

18

19

20 log = logging.getLogger(__name__)

21 log.debug("debug")

22 log.info("info")

23 log.warning("warning")

24 log.error("error")

25 log.critical("critical")

Time-based logrotation
 1 import logging

 2

 3 log_file = "my.log"

 4

 5 logger = logging.getLogger(__name__)

 6 logger.setLevel(logging.DEBUG)

 7

 8 ch = logging.handlers.TimedRotatingFileHandler(log_file,

when='M', backupCount=2)

 9 ch.setLevel(logging.INFO)

10 ch.setFormatter(logging.Formatter('%(asctime)s - %

(name)s - %(levelname)-10s - %(me\

11 ssage)s'))

12 logger.addHandler(ch)

13

14

15 log = logging.getLogger(__name__)

16 log.debug("debug")

17 log.info("info")

18 log.warning("warning")

19 log.error("error")

20 log.critical("critical")

Size-based logrotation
 1 import logging

 2

 3 log_file = "my.log"

 4

 5 logger = logging.getLogger(__name__)

 6 logger.setLevel(logging.DEBUG)

 7

 8 ch = logging.handlers.RotatingFileHandler(log_file,

maxBytes=100, backupCount=2)

 9 ch.setLevel(logging.INFO)

10 ch.setFormatter(logging.Formatter('%(asctime)s - %

(name)s - %(levelname)-10s - %(me\

11 ssage)s'))

12 logger.addHandler(ch)

13

14

15 log = logging.getLogger(__name__)

16 log.debug("debug")

17 log.info("info")

18 log.warning("warning")

19 log.error("error")

20 log.critical("critical")

Closures

Counter local - not working
1 def counter():

2 count = 0

3 count += 1

4 return count

5

6 print(counter())

7 print(counter())

8 print(counter())

1 1

2 1

3 1

Counter with global
 1 count = 0

 2 def counter():

 3 global count

 4 count += 1

 5 return count

 6

 7 print(counter())

 8 print(counter())

 9 print(counter())

10

11 count = -42

12 print(counter())

1 1

2 2

3 3

4 -41

Create incrementors
In order to use in various map-expressions, we need a couple of
functions that - for simplicity - need to increment a number:

 1 def f3(x):

 2 return x + 3

 3

 4 def f7(x):

 5 return x + 7

 6

 7 def f23(x):

 8 return x + 23

 9

10 print(f3(2))

11 print(f7(3))

12 print(f3(4))

13 print(f7(10))

14 print(f23(19))

1 5

2 10

3 7

4 17

5 42

Create internal function
1 def create_func():

2 def internal():

3 print("Hello world")

4 internal()

5

6

7 func = create_func()

8 internal()

1 Hello world

2 Traceback (most recent call last):

3 File "create_internal_func.py", line 8, in <module>

4 internal()

5 NameError: name 'internal' is not defined

Create function by a function
 1 def create_func():

 2 def internal():

 3 print("Hello world")

 4 #internal()

 5

 6 return internal

 7

 8 func = create_func()

 9 #internal()

10 func()

1 Hello world

Create function with parameters
 1 def create_func(name):

 2 def internal():

 3 print(f"Hello {name}")

 4

 5 return internal

 6

 7 foo = create_func("Foo")

 8 foo()

 9

10

11 bar = create_func("Bar")

12 bar()

1 Hello Foo

2 Hello Bar

Counter closure
 1 def create_counter():

 2 count = 0

 3 def internal():

 4 nonlocal count

 5 count += 1

 6 return count

 7 return internal

 8

 9 counter = create_counter()

10

11 print(counter())

12 print(counter())

13 print(counter())

14 print()

15

16 other = create_counter()

17 print(counter())

18 print(other())

19 print(counter())

20 print(other())

21

22 print()

23 print(count)

 1 1

 2 2

 3 3

 4

 5 4

 6 1

 7 5

 8 2

 9

10 Traceback (most recent call last):

11 File "counter.py", line 23, in <module>

12 print(count)

13 NameError: name 'count' is not defined

Make incrementor with def (closure)

 1 def make_incrementor(n):

 2 def inc(x):

 3 return x + n

 4 return inc

 5

 6 f3 = make_incrementor(3)

 7 f7 = make_incrementor(7)

 8

 9 print(f3(2))

10 print(f7(3))

11 print(f3(4))

12 print(f7(10))

1 5

2 10

3 7

4 17

Make incrementor with lambda
 1 def make_incrementor(n):

 2 return lambda x: x + n

 3

 4 f3 = make_incrementor(3)

 5 f7 = make_incrementor(7)

 6

 7 print(f3(2))

 8 print(f7(3))

 9 print(f3(4))

10 print(f7(10))

1 5

2 10

3 7

4 17

Exercise: closure bank

Create a closure that returns a function that holds a number
(like a bank account) that can be incremented or decremented
as follows:
Allow for an extra paramter called prev that defaults to False.
If True is passed then instead of returning the new balance,
return the old balance.

 1 bank = create_bank(20)

 2

 3 print(bank()) # 20

 4 print(bank(7)) # 27

 5 print(bank()) # 27

 6 print(bank(-3)) # 24

 7 print(bank()) # 24

 8

 9

10 print(bank(10, prev=True)) # 24

11 print(bank()) # 34

Exercise: counter with parameter

Change the counter example to accept a parameter and start
counting from that number.

Solution: closure bank
 1 def create_bank(n = 0):

 2 balance = n

 3 def bnk(change = 0, prev=False):

 4 nonlocal balance

 5 prev_balance = balance

 6 balance += change

 7 if prev:

 8 return prev_balance

 9 else:

10 return balance

11 return bnk

12

13

14 bank = create_bank(20)

15

16 print(bank()) # 20

17 print(bank(7)) # 27

18 print(bank()) # 27

19 print(bank(-3)) # 24

20 print(bank()) # 24

21

22

23 print(bank(10, prev=True)) # 24

24 print(bank()) # 34

1 20

2 27

3 27

4 24

5 24

6 24

7 34

Solution: counter with parameter
 1 def create_counter(count=0):

 2 def internal():

 3 nonlocal count

 4 count += 1

 5 return count

 6 return internal

 7

 8 counter = create_counter()

 9

10 print(counter())

11 print(counter())

12 print(counter())

13 print()

14

15 other = create_counter(42)

16 print(counter())

17 print(other())

18 print(counter())

19 print(other())

1 1

2 2

3 3

4

5 4

6 43

7 5

8 44

Decorators

Function assignment

Before we learn about decorators let’s remember that we can
assign function names
to other names and then use the new name:

 1 say = print

 2 say("Hello World")

 3

 4 print = lambda n: n**n

 5 res = print(3)

 6 say("Hi")

 7 say(res)

 8

 9

10 def add(x, y):

11 return x + y

12

13 combine = add

14

15 say(combine(2, 3))

1 Hello World

2 Hi

3 27

4 5

Function inside other function

Let’s also remember that we can defind a function inside
another function
and then the internally defined function only exists in the scope
of the function
where it was defined in. Not outside.

1 def f():

2 def g():

3 print("in g")

4 print("start f")

5 g()

6 print("end f")

7

8 f()

9 g()

1 start f

2 in g

3 end f

4 Traceback (most recent call last):

5 File "examples/decorators/function_in_function.py",

line 9, in <module>

6 g()

7 NameError: name 'g' is not defined

Decorator

A function that changes the behaviour of other functions.
The input of a decorator is a function.
The returned value of a decorator is a modified version of the
same function.

1 from some_module import some_decorator

2

3 @some_decorator

4 def f(...):

5 ...

1 def f(...):

2 ...

1 f = some_decorator(f)

Use cases for decorators in Python

Common decorators are classmethod() and staticmethod().
Flask uses them to mark and configure the routes.
Pytest uses them to add marks to the tests.

Logging calls with parameters.
Logging elapsed time of calls.
Access control in Django or other web frameworks. (e.g. login
required)
Memoization (caching)
Retry
Function timeout
Locking for thread safety
Decorator Library

A recursive Fibonacci
1 def fibo(n):

2 if n in (1,2):

3 return 1

4 return fibo(n-1) + fibo(n-2)

5

6 print(fibo(5)) # 5

trace fibo

https://wiki.python.org/moin/PythonDecoratorLibrary

1 import decor

2

3 @decor.tron

4 def fibo(n):

5 if n in (1,2):

6 return 1

7 return fibo(n-1) + fibo(n-2)

8

9 print(fibo(5))

 1 Calling fibo(5)

 2 Calling fibo(4)

 3 Calling fibo(3)

 4 Calling fibo(2)

 5 Calling fibo(1)

 6 Calling fibo(2)

 7 Calling fibo(3)

 8 Calling fibo(2)

 9 Calling fibo(1)

10 5

tron decorator
1 def tron(func):

2 def new_func(v):

3 print("Calling {}({})".format(func.__name__, v))

4 return func(v)

5 return new_func

Decorate with direct call
 1 import decor

 2

 3 def fibo(n):

 4 if n in (1,2):

 5 return 1

 6 return fibo(n-1) + fibo(n-2)

 7

 8 fibo = decor.tron(fibo)

 9

10 print(fibo(5))

Decorate with parameter
1 import decor_param

2

3 @decor_param.tron('foo')

4 def fibo(n):

5 if n in (1,2):

6 return 1

7 return fibo(n-1) + fibo(n-2)

8

9 print(fibo(5))

 1 foo Calling fibo(5)

 2 foo Calling fibo(4)

 3 foo Calling fibo(3)

 4 foo Calling fibo(2)

 5 foo Calling fibo(1)

 6 foo Calling fibo(2)

 7 foo Calling fibo(3)

 8 foo Calling fibo(2)

 9 foo Calling fibo(1)

10 5

Decorator accepting parameter
1 def tron(prefix):

2 def real_tron(func):

3 def new_func(v):

4 print("{} Calling {}({})".format(prefix,

func.__name__, v))

5 return func(v)

6 return new_func

7 return real_tron

Decorate function with any signature

How can we decorate a function that is flexible on the number
of arguments?
Accept *args and **kwargs and pass them on.

 1 from decor_any import tron

 2

 3

 4 @tron

 5 def one(param):

 6 print(f"one({param})")

 7

 8 @tron

 9 def two(first, second = 42):

10 print(f"two({first}, {second})")

11

12

13 one("hello")

14 one(param = "world")

15

16 two("hi")

17 two(first = "Foo", second = "Bar")

Decorate function with any signature -
implementation
1 def tron(func):

2 def new_func(*args, **kw):

3 params = list(map(lambda p: str(p), args))

4 for (k, v) in kw.items():

5 params.append(f"{k}={v}")

6 print("Calling {}({})".format(func.__name__, ',

'.join(params)))

7 return func(*args, **kw)

8 return new_func

1 Calling one(hello)

2 one(hello)

3 Calling one(param=world)

4 one(world)

5 Calling two(hi)

6 two(hi, 42)

7 Calling two(first=Foo, second=Bar)

8 two(Foo, Bar)

Exercise: Logger decorator

In the previous pages we created a decorator that can decorate
arbitrary function logging the call and its parameters.
Add time measurement to each call to see how long each
function took.

Exercise: memoize decorator
Write a function that gets a functions as attribute and returns a new
functions while memoizing (caching) the input/output pairs.
Then write a unit test that checks it.
You probably will need to create a subroutine to be memoized.

Write tests for the fibonacci functions.
Implement the memoize decorator for a function with a single
parameter.
Apply the decorator.
Run the tests again.
Check the speed differences.
or decorate with tron to see the calls…

Solution: Logger decorator
 1 import time

 2 def tron(func):

 3 def new_func(*args, **kwargs):

 4 start = time.time()

 5 print("Calling {}({}, {})".format(func.__name__,

args, kwargs))

 6 out = func(*args, **kwargs)

 7 end = time.time()

 8 print("Finished {}({})".format(func.__name__,

out))

 9 print("Elapsed time: {}".format(end - start))

10 return out

11 return new_func

Solution: Logger decorator (testing)
 1 from logger_decor import tron

 2

 3 @tron

 4 def f(a, b=1, *args, **kwargs):

 5 print('a: ', a)

 6 print('b: ', b)

 7 print('args: ', args)

 8 print('kwargs:', kwargs)

 9 return a + b

10

11 f(2, 3, 4, 5, c=6, d=7)

12 print()

13 f(2, c=5, d=6)

14 print()

15 f(10)

 1 Calling f((2, 3, 4, 5), {'c': 6, 'd': 7})

 2 a: 2

 3 b: 3

 4 args: (4, 5)

 5 kwargs: {'c': 6, 'd': 7}

 6 Finished f(5)

 7 Elapsed time: 1.3589859008789062e-05

 8

 9 Calling f((2,), {'c': 5, 'd': 6})

10 a: 2

11 b: 1

12 args: ()

13 kwargs: {'c': 5, 'd': 6}

14 Finished f(3)

15 Elapsed time: 5.245208740234375e-06

16

17 Calling f((10,), {})

18 a: 10

19 b: 1

20 args: ()

21 kwargs: {}

22 Finished f(11)

23 Elapsed time: 4.291534423828125e-06

Solution memoize decorator
 1 import sys

 2 import memoize_attribute

 3 import memoize_nonlocal

 4 import decor_any

 5

 6 #@memoize_attribute.memoize

 7 #@memoize_nonlocal.memoize

 8 #@decor_any.tron

 9 def fibonacci(n):

10 if n == 1:

11 return 1

12 if n == 2:

13 return 1

14 return fibonacci(n-1) + fibonacci(n-2)

15

16 if __name__ == '__main__':

17 if len(sys.argv) != 2:

18 sys.stderr.write("Usage: {}

N\n".format(sys.argv[0]))

19 exit(1)

20 print(fibonacci(int(sys.argv[1])))

 1 def memoize(f):

 2 data = {}

 3 def caching(n):

 4 nonlocal data

 5 key = n

 6 if key not in data:

 7 data[key] = f(n)

 8 return data[key]

 9

10 return caching

 1 def memoize(f):

 2 def caching(n):

 3 key = n

 4 #if 'data' not in caching.__dict__:

 5 # caching.data = {}

 6 if key not in caching.data:

 7 caching.data[key] = f(n)

 8 return caching.data[key]

 9 caching.data = {}

10

11 return caching

Before

1 $ time python fibonacci.py 35

2 9227465

3

4 real 0m3.850s

5 user 0m3.832s

6 sys 0m0.015s

After

1 $ time python fibonacci.py 35

2 9227465

3

4 real 0m0.034s

5 user 0m0.019s

6 sys 0m0.014s

Context managers (with statement)

Why use context managers?
In certain operations you might want to ensure that when the
operation is done there will be an opportunity to clean up
after it. Even if decided to end the operation early or if there is an
exception in the middle of the operation.

In the following pseudo-code example you can see that cleanup
must be called both at the end and before the early-end, but
that still leaves the bad-code that raises exception avoiding the
cleanup. That forces us to wrap the whole section in a try-block.

1 start

2 do

3 do

4 do

5 do

6 cleanup

What is we have some conditions for early termination?

1 start

2 do

3 do

4 if we are done early:

5 cleanup

6 early-end

7 do

8 do

9 cleanup

What if we might have an exception in the code?

 1 start

 2 try:

 3 do

 4 do

 5 if we are done early:

 6 cleanup

 7 early-end

 8 do

 9 bad-code (raises exception)

10 do

11 cleanup

12 finally:

13 cleanup

It is a lot of unnecessary code duplication and we can easily forget
to add it in every location where we early-end our code.

Context Manager examples
A few examples where context managers can be useful:

Opening a file - close it once we are done with it so we don’t
leak file descriptors.
Changing directory - change back when we are done.
Create temporary directory - remove when we are done.
Open connection to database - close connection.
Open SSH connection - close connection.

More information about context managers

cd in a function

https://jeffknupp.com/blog/2016/03/07/python-with-context-managers/

In this example we have a function in which we change to a
directory and then when we are done we change back to the
original directory.
For this to work first we save the current working directory
using the os.getcwd call. Unfortunatelly in the middle of the
code there
is a conditional call to return. If that condition is True we
won’t change back to the original directory. We could fix this
by
calling os.chdir(start_dir) just before calling return.
However this would still not solve the problem if there is an
exception
in the function.

 1 import sys

 2 import os

 3

 4 def do_something(path):

 5 start_dir = os.getcwd()

 6 os.chdir(path)

 7

 8 content = os.listdir()

 9 number = len(content)

10 print(number)

11 if number < 15:

12 return

13

14 os.chdir(start_dir)

15

16 def main():

17 if len(sys.argv) != 2:

18 exit(f"Usage: {sys.argv[0]} PATH")

19 path = sys.argv[1]

20 print(os.getcwd())

21 do_something(path)

22 print(os.getcwd())

23

24 main()

1 $ python no_context_cd.py /tmp/

2

3 /home/gabor/work/slides/python-

programming/examples/advanced

4 19

5 /home/gabor/work/slides/python-

programming/examples/advanced

1 $ python no_context_cd.py /opt/

2

3 /home/gabor/work/slides/python-

programming/examples/advanced

4 9

5 /opt

In the second example return was called and thus we stayed
on the /opt directory.:w

open in function

This is not the recommended way to open a file, but this is how
it was done before the introduction of the with context
manager.
Here we have the same issue. We have a conditional call to
return where we forgot to close the file.

 1 import sys

 2 import re

 3

 4 def do_something(filename):

 5 fh = open(filename)

 6

 7 while True:

 8 line = fh.readline()

 9 if line is None:

10 break

11 line = line.rstrip("\n")

12

13 if re.search(r'\A\s*\Z', line):

14 return

15 print(line)

16

17 fh.close()

18

19 def main():

20 if len(sys.argv) != 2:

21 exit(f"Usage: {sys.argv[0]} FILENAME")

22 filename = sys.argv[1]

23 do_something(filename)

24

25 main()

open in for loop

Calling write does not immediately write to disk. The
Operating System provides buffering as an optimization
to avoid frequent access to the disk. In this case it means the
file has not been saved before we already check its size.

 1 import os

 2

 3 for ix in range(10):

 4 filename = f'data{ix}.txt'

 5 fh = open(filename, 'w')

 6 fh.write('hello')

 7 if ix == 0:

 8 break

 9 fh.close()

10 stat = os.stat(filename)

11 print(stat.st_size) # 0, the file has not been saved

yet

open in function using with

If we open the file in the recommended way using the with
statement then we can be sure that the close method
of the fh object will be called when we leave the context of the
with statement.

 1 import sys

 2 import re

 3

 4 def do_something(filename):

 5 with open(filename) as fh:

 6

 7 while True:

 8 line = fh.readline()

 9 if line is None:

10 break

11 line = line.rstrip("\n")

12

13 if re.search(r'\A\s*\Z', line):

14 return

15 print(line)

16

17

18 def main():

19 if len(sys.argv) != 2:

20 exit(f"Usage: {sys.argv[0]} FILENAME")

21 filename = sys.argv[1]

22 do_something(filename)

23

24 main()

Plain context manager
 1 from contextlib import contextmanager

 2

 3 @contextmanager

 4 def my_plain_context():

 5 print("start context")

 6 yield

 7 print("end context")

 8

 9 print("START")

10 with my_plain_context():

11 print(" In plain context")

12 print(" More work")

13

14 print("END")

1 START

2 start context

3 In plain context

4 More work

5 end context

6 END

Param context manager
 1 from contextlib import contextmanager

 2

 3 @contextmanager

 4 def my_param_context(name):

 5 print(f"start {name}")

 6 yield

 7 print(f"end {name}")

 8

 9 with my_param_context("foo"):

10 print("In param context")

1 start foo

2 In param context

3 end foo

Context manager that returns a value

 1 from contextlib import contextmanager

 2

 3 import time

 4 import random

 5 import os

 6 import shutil

 7

 8

 9 @contextmanager

10 def my_tempdir():

11 print("start return")

12 tmpdir = '/tmp/' + str(time.time()) +

str(random.random())

13 os.mkdir(tmpdir)

14 try:

15 yield tmpdir

16 finally:

17 shutil.rmtree(tmpdir)

18 print("end return")

 1 import os

 2 from my_tempdir import my_tempdir

 3

 4 with my_tempdir() as tmp_dir:

 5 print(f"In return context with {tmp_dir}")

 6 with open(tmp_dir + '/data.txt', 'w') as fh:

 7 fh.write("hello")

 8 print(os.listdir(tmp_dir))

 9

10 print('')

11 print(tmp_dir)

12 print(os.path.exists(tmp_dir))

1 start return

2 In return context with

/tmp/1578211890.49409370.6063140788762365

3 ['data.txt']

4 end return

5

6 /tmp/1578211890.49409370.6063140788762365

7 False

Use my tempdir - return
 1 import os

 2 from my_tempdir import my_tempdir

 3

 4 def some_code():

 5 with my_tempdir() as tmp_dir:

 6 print(f"In return context with {tmp_dir}")

 7 with open(tmp_dir + '/data.txt', 'w') as fh:

 8 fh.write("hello")

 9 print(os.listdir(tmp_dir))

10 return

11

12 print('')

13 print(tmp_dir)

14 print(os.path.exists(tmp_dir))

15

16 some_code()

1 start return

2 In return context with

/tmp/1578211902.3545020.7667694368935928

3 ['data.txt']

4 end return

Use my tempdir - exception
 1 import os

 2 from my_tempdir import my_tempdir

 3

 4 with my_tempdir() as tmp_dir:

 5 print(f"In return context with {tmp_dir}")

 6 with open(tmp_dir + '/data.txt', 'w') as fh:

 7 fh.write("hello")

 8 print(os.listdir(tmp_dir))

 9 raise Exception('trouble')

10

11 print('')

12 print(tmp_dir)

13 print(os.path.exists(tmp_dir))

1 start return

2 In return context with

/tmp/1578211921.12552210.9000097350821897

3 ['data.txt']

4 end return

5 Traceback (most recent call last):

6 File "use_my_tempdir_exception.py", line 9, in <module>

7 raise Exception('trouble')

8 Exception: trouble

cwd context manager
 1 import os

 2 from contextlib import contextmanager

 3

 4 @contextmanager

 5 def cwd(path):

 6 oldpwd = os.getcwd()

 7 os.chdir(path)

 8 try:

 9 yield

10 finally:

11 os.chdir(oldpwd)

 1 import sys

 2 import os

 3 from mycwd import cwd

 4

 5 def do_something(path):

 6 with cwd(path):

 7 content = os.listdir()

 8 if len(content) < 10:

 9 return

10

11 def main():

12 if len(sys.argv) != 2:

13 exit(f"Usage: {sys.argv[0]} PATH")

14 path = sys.argv[1]

15 print(os.getcwd())

16 do_something(path)

17 print(os.getcwd())

18

19 main()

1 $ python context_cd.py /tmp

2 /home/gabor/work/slides/python/examples/advanced

3 /home/gabor/work/slides/python/examples/advanced

4

5 $ python context_cd.py /opt

6 /home/gabor/work/slides/python/examples/advanced

7 /home/gabor/work/slides/python/examples/advanced

tempdir context manager
 1 import os

 2 from contextlib import contextmanager

 3 import tempfile

 4 import shutil

 5

 6 @contextmanager

 7 def tmpdir():

 8 dd = tempfile.mkdtemp()

 9 try:

10 yield dd

11 finally:

12 shutil.rmtree(dd)

 1 from mytmpdir import tmpdir

 2 import os

 3

 4 with tmpdir() as temp_dir:

 5 print(temp_dir)

 6 with open(os.path.join(temp_dir, 'some.txt'), 'w')

as fh:

 7 fh.write("hello")

 8 print(os.path.exists(temp_dir))

 9 print(os.listdir(temp_dir))

10

11 print(os.path.exists(temp_dir))

1 /tmp/tmprpuywa3_

2 True

3 ['some.txt']

4 False

Context manager with class
 1 class MyCM:

 2 def __init__(self, name):

 3 self.name = name

 4

 5 def __enter__(self):

 6 print(f'__enter__ {self.name}')

 7 return self

 8

 9 def __exit__(self, exception_type, exception,

traceback):

10 print(f'__exit__ {self.name}')

11

12 def something(self):

13 print(f'something {self.name}')

14

15 def main():

16 with MyCM('Foo') as cm:

17 print(cm.name)

18 cm.something()

19 #raise Exception('nono')

20 print('in main - after')

21

22 main()

23 print('after main')

Context managers with class
Even if there was en exception in the middle of the process,
the exit methods of each object will be called.

 1 class MyCM:

 2 def __init__(self, n):

 3 self.name = n

 4

 5 def __enter__(self):

 6 print('__enter__', self.name)

 7

 8 def __exit__(self, exception_type, exception,

traceback):

 9 print('__exit__ ', self.name)

10

11 def something(self):

12 print('something', self.name)

13

14 def main():

15 a = MyCM('a')

16 b = MyCM('b')

17 with a, b:

18 a.partner = b

19 b.partner = a

20 a.something()

21 raise Exception('nono')

22 b.something()

23 print('in main - after')

24

25 main()

26 print('after main')

 1 __enter__ a

 2 __enter__ b

 3 something a

 4 __exit__ b

 5 __exit__ a

 6 Traceback (most recent call last):

 7 File "context-managers.py", line 27, in <module>

 8 main()

 9 File "context-managers.py", line 23, in main

10 raise Exception('nono')

11 Exception: nono

Context manager: with for file
 1 import sys

 2

 3 if len(sys.argv) != 2:

 4 sys.stderr.write('Usage: {}

FILENAME\n'.format(sys.argv[0]))

 5 exit()

 6

 7 file = sys.argv[1]

 8 print(file)

 9 with open(file) as f:

10 for line in f:

11 val = 30/int(line)

12

13 print('done')

With - context managers
 1 class WithClass:

 2 def __init__(self, name='default'):

 3 self.name = name

 4

 5 def __enter__(self):

 6 print('entering the system')

 7 return self.name

 8

 9 def __exit__(self, exc_type, exc_value, traceback):

10 print('exiting the system')

11

12 def __str__(self):

13 return 'WithObject:'+self.name

14

15 x = WithClass()

16 with x as y:

17 print(x,y)

Exercise: Context manager
Create a few CSV file likes these:

1 a11,a12

2 a21,a22

1 b13,b14

2 b23,b24

1 c15,c16

2 c25,c26

Merge them horizontally to get this:

1 a11,a12,b13,b14,c15,c16

2 a21,a22,b23,b24,c25,c26

Do it without your own context manager
Create a context manager called myopen that accepts N
filenames. It opens the first one to write and the other N-1 to
read

1 with myopen(outfile, infile1, infile2, infile3) as out,

ins:

2 ...

Exercise: Tempdir on Windows
Make the tempdir context manager example work on windows as
well. Probably need to cd out of the directory.

Solution: Context manager
 1 import sys

 2 from contextlib import contextmanager

 3

 4 if len(sys.argv) < 3:

 5 exit(f"Usage: {sys.argv[0]} OUTFILE INFILEs")

 6

 7 outfile = sys.argv[1]

 8 infiles = sys.argv[2:]

 9 #print(outfile)

10 #print(infiles)

11

12 @contextmanager

13 def myopen(outfile, *infiles):

14 #print(len(infiles))

15 out = open(outfile, 'w')

16 ins = []

17 for filename in infiles:

18 ins.append(open(filename, 'r'))

19 try:

20 yield out, ins

21 except Exception as ex:

22 print(ex)

23 pass

24 finally:

25 out.close()

26 for fh in ins:

27 fh.close()

28

29

30 with myopen(outfile, *infiles) as (out_fh, input_fhs):

31 #print(out_fh.__class__.__name__)

32 #print(len(input_fhs))

33 while True:

34 row = ''

35 done = False

36 for infh in (input_fhs):

37 line = infh.readline()

38 #print(f"'{line}'")

39 if not line:

40 done = True

41 break

42 if row:

43 row += ','

44 row += line.rstrip("\n")

45 if done:

46 break

47 out_fh.write(row)

48 out_fh.write("\n")

Advanced lists

Change list while looping: endless list
1 numbers = [1, 1]

2 for n in numbers:

3 print(n)

4 numbers.append(numbers[-1] + numbers[-2])

5

6 if n > 100:

7 break

8

9 print(numbers)

Creating a Fibonacci series in a crazy way.

Change list while looping
Probably not a good idea…

1 numbers = [1, 2, 3, 4]

2 for n in numbers:

3 print(n)

4 if n == 2:

5 numbers.remove(2)

6

7

8 print(numbers)

1 1

2 2

3 4

4 [1, 3, 4]

Note, the loop only iterated 3 times, and it skipped value 3

Copy list before iteration
It is better to copy the list using list slices before the iteration starts.

1 numbers = [1, 2, 3, 4]

2 for n in numbers[:]:

3 print(n)

4 if n == 2:

5 numbers.remove(2)

6

7

8 print(numbers)

1 1

2 2

3 3

4 4

5 [1, 3, 4]

for with flag
 1 names = ['Foo', 'Bar', 'Baz']

 2

 3 ok = False

 4 for i in range(3):

 5 name = input('Your name please: ')

 6 if name in names:

 7 ok = True

 8 break

 9

10 if not ok:

11 print("Not OK")

12 exit()

13

14 print("OK....")

for else

The else statement of the for loop is executed when the iteration
ends normally. (without calling break)

 1 names = ['Foo', 'Bar', 'Baz']

 2

 3

 4 for i in range(3):

 5 name = input('Your name please: ')

 6 if name in names:

 7 break

 8 else:

 9 print("Not OK")

10 exit()

11

12 print("OK....")

enumerate
1 names = ['Foo', 'Bar', 'Baz']

2

3 for i in range(len(names)):

4 print(i, names[i])

5

6 print('')

7

8 for i, n in enumerate(names):

9 print(i, n)

1 0 Foo

2 1 Bar

3 2 Baz

4

5 0 Foo

6 1 Bar

7 2 Baz

do while
There is no do-while in Python, but you can emulate it:

1 while True:

2 do_stuff()

3 if not loop_condition():

4 break

1 x = 0

2

3 while True:

4 x += 1

5 print(x)

6 if x > 0:

7 break

list slice is copy
1 x = [1, 1, 2, 3, 5, 8, 13, 21, 34]

2 y = x[2:5]

3 print(y) # [2, 3, 5]

4

5 x[2] = 20

6 print(x) # [1, 1, 20, 3, 5, 8, 13, 21, 34]

7 print(y) # [2, 3, 5]

Advanced Exception handling

Exceptions else

The else part will be execute after each successful “try”. (So
when there was no exception.)

 1 import sys

 2 import module

 3

 4 # python else.py one.txt zero.txt two.txt three.txt

 5 files = sys.argv[1:]

 6

 7 for filename in files:

 8 try:

 9 module.read_and_divide(filename)

10 except ZeroDivisionError as err:

11 print("Exception {} of type {} in file

{}".format(err, type(err).__name__, f\

12 ilename))

13 else:

14 print("In else part after trying file {} and

succeeding".format(filename))

15 # Will run only if there was no exception.

16 print()

 1 before one.txt

 2 100.0

 3 after one.txt

 4 In else part after trying file one.txt and succeeding

 5

 6 before zero.txt

 7 Exception division by zero of type ZeroDivisionError in

file zero.txt

 8

 9 before two.txt

10 Traceback (most recent call last):

11 File "else.py", line 9, in <module>

12 module.read_and_divide(filename)

13 File "/home/gabor/work/slides/python-

programming/examples/exceptions/module.py", l\

14 ine 3, in read_and_divide

15 with open(filename, 'r') as fh:

16 FileNotFoundError: [Errno 2] No such file or directory:

'two.txt'

Exceptions finally

We can add a “finally” section to the end of the “try” -
“except” construct.
The code in this block will be executed after every time we
enter the try.
When we finish it successfully. When we catch an exception.
(In this case a ZeroDivisionError exception in file zero.txt)
Even when we don’t catch an exception. Before the exception
propagates up in the call stack, we still see the “finally” section
executed.

 1 import sys

 2 import module

 3

 4 # python finally.py one.txt zero.txt two.txt three.txt

 5 files = sys.argv[1:]

 6

 7 for filename in files:

 8 try:

 9 module.read_and_divide(filename)

10 except ZeroDivisionError as err:

11 print("Exception {} of type {} in file

{}".format(err, type(err).__name__, f\

12 ilename))

13 finally:

14 print("In finally after trying file

{}".format(filename))

15 print('')

 1 before one.txt

 2 100.0

 3 after one.txt

 4 In finally after trying file one.txt

 5

 6 before zero.txt

 7 Exception division by zero of type ZeroDivisionError in

file zero.txt

 8 In finally after trying file zero.txt

 9

10 before two.txt

11 In finally after trying file two.txt

12 Traceback (most recent call last):

13 File "finally.py", line 9, in <module>

14 module.read_and_divide(filename)

15 File "/home/gabor/work/slides/python-

programming/examples/exceptions/module.py", l\

16 ine 3, in read_and_divide

17 with open(filename, 'r') as fh:

18 FileNotFoundError: [Errno 2] No such file or directory:

'two.txt'

Exit and finally

The “finally” part will be called even if we call “return” or
“exit” in the “try” block.

 1 def f():

 2 try:

 3 return

 4 finally:

 5 print("finally in f")

 6

 7 def g():

 8 try:

 9 exit()

10 finally:

11 print("finally in g")

12

13 print("before")

14 f()

15 print("after f")

16 g()

17 print("after g")

18

19 # before

20 # finally in f

21 # after f

22 # finally in g

Catching exceptions
 1 def divide(x, y):

 2 return x/y

 3

 4 def main():

 5 cnt = 6

 6 for num in [2, 0, 'a']:

 7 try:

 8 divide(cnt, num)

 9 except ZeroDivisionError:

10 pass

11 except (IOError, MemoryError) as err:

12 print(err)

13 else:

14 print("This will run if there was no

exception at all")

15 finally:

16 print("Always executes. {}/{}

ended.".format(cnt, num))

17

18 print("done")

19

20

21 main()

 1 This will run if there was no exception at all

 2 Always executes. 6/2 ended.

 3 Always executes. 6/0 ended.

 4 Always executes. 6/a ended.

 5 Traceback (most recent call last):

 6 File "try.py", line 22, in <module>

 7 main()

 8 File "try.py", line 9, in main

 9 divide(cnt, num)

10 File "try.py", line 3, in divide

11 return x/y

12 TypeError: unsupported operand type(s) for /: 'int' and

'str'

Home made exception

You can create your own exception classes that will allow the
user to know what kind of an exception was caught or to
capture only the exceptions of that type.

 1 class MyException(Exception):

 2 pass

 3

 4 def some():

 5 raise MyException("Some Error")

 6

 7 def main():

 8 try:

 9 some()

10 except Exception as err:

11 print(err)

12 print("Type: " + type(err).__name__)

13

14 try:

15 some()

16 except MyException as err:

17 print(err)

18

19 main()

1 Some Error

2 Type: MyException

3 Some Error

Home made exception with attributes
 1 class MyException(Exception):

 2 def __init__(self, name, address):

 3 self.name = name

 4 self.address = address

 5 def __str__(self):

 6 return 'Have you encountered problems? name:{}

address:{}'.format(self.name\

 7 , self.address)

 8

 9

10 def some():

11 raise MyException(name = "Foo Bar", address =

"Somewhere deep in the code")

12

13 def main():

14 try:

15 some()

16 except Exception as err:

17 print(err)

18 print("Type: " + type(err).__name__)

19 print(err.name)

20 print(err.address)

21

22 main()

23

24 # Have you encountered problems? name:Foo Bar

address:Somewhere deep in the code

25 # Type: MyException

26 # Foo Bar

27 # Somewhere deep in the code

Home made exception hierarcy
 1 class MyError(Exception):

 2 pass

 3

 4 class MyGreenError(MyError):

 5 pass

 6

 7 class MyBlueError(MyError):

 8 pass

 9

10

11 def green():

12 raise MyGreenError('Hulk')

13

14 def blue():

15 raise MyBlueError('Frozen')

16

17 def red():

18 red_alert()

Home made exception hierarcy - 1
 1 import colors as cl

 2

 3 def main():

 4 print("start")

 5 try:

 6 cl.green()

 7 except Exception as err:

 8 print(err)

 9 print(type(err).__name__)

10 print("done")

11

12

13 main()

1 start

2 Hulk

3 MyGreenError

4 done

Home made exception hierarcy - 2
 1 import colors as cl

 2

 3 def main():

 4 print("start")

 5 try:

 6 cl.green()

 7 except cl.MyGreenError as err:

 8 print(err)

 9 print(type(err).__name__)

10 print("done")

11

12

13 main()

1 start

2 Hulk

3 MyGreenError

4 done

Home made exception hierarcy - 3
 1 import colors as cl

 2

 3 def main():

 4 print("start")

 5

 6 try:

 7 cl.green()

 8 except cl.MyError as err:

 9 print(err)

10 print(type(err).__name__)

11

12 try:

13 cl.blue()

14 except cl.MyError as err:

15 print(err)

16 print(type(err).__name__)

17

18 try:

19 cl.red()

20 except cl.MyError as err:

21 print(err)

22 print(type(err).__name__)

23

24

25

26

27 print("done")

28

29

30 main()

 1 start

 2 Hulk

 3 MyGreenError

 4 Frozen

 5 MyBlueError

 6 Traceback (most recent call last):

 7 File "hierarchy3.py", line 30, in <module>

 8 main()

 9 File "hierarchy3.py", line 19, in main

10 cl.red()

11 File

"/home/gabor/work/slides/python/examples/exceptions/colors.

py", line 18, in r\

12 ed

13 red_alert()

14 NameError: name 'red_alert' is not defined

Exercise: spacefight with exceptions
Take the number guessing game (or one-dimensional space-fight)
and add exceptions
for cases when the guess is out of space (0-200 by default), or
when the guess is not
a number.

 1 import random

 2

 3 class Game:

 4 def __init__(self):

 5 self.lower_limit = 0

 6 self.upper_limit = 200

 7

 8 self.number = random.randrange(self.lower_limit,

self.upper_limit)

 9 self.is_debug = False

10 self.running = True

11

12 def debug(self):

13 self.is_debug = not self.is_debug

14

15 def guess(self, num):

16 if num == 'd':

17 self.debug()

18 return

19

20 if self.is_debug:

21 print("Hidden number {}. Your guess is

{}".format(self.number, num))

22

23 if num < self.number:

24 print("Too small")

25 elif num > self.number:

26 print("Too big")

27 else:

28 print("Bingo")

29 self.running = False

30

31

32 g = Game()

33 g.guess('d')

34

35 try:

36 g.guess('z')

37 except Exception as e:

38 print(e)

39

40 try:

41 g.guess('201')

42 except Exception as e:

43 print(e)

44

45 try:

46 g.guess('-1')

47 except Exception as e:

48 print(e)

Exercies: Raise My Exception
This is very similar to the exercise the first chapter about
exceptions, but
in this case you need to create your own hierarchy of exception
classes.

Write a function that expects a positive integer as its single
parameter.
Raise exception if the parameter is not a number.
Raise a different exception if the parameter is not positive.
Raise a different exception if the parameter is not whole
number.
In each case make sure both the text and the type of the
exceptions are different.
Include the actual value received as an attribute in the
exception object.

Solution: spacefight with exceptions
 1 import random

 2

 3 class SpaceShipError(Exception):

 4 def __init__(self, inp):

 5 self.inp = inp

 6

 7 class NumberTooBigError(SpaceShipError):

 8 def __str__(self):

 9 return "Number {} is too big".format(self.inp)

10

11 class NumberTooSmallError(SpaceShipError):

12 def __str__(self):

13 return "Number {} is too small".format(self.inp)

14

15

16 class NotANumberError(SpaceShipError):

17 def __str__(self):

18 return "Not a Number {}".format(self.inp)

19

20

21 class Game:

22 def __init__(self):

23 self.lower_limit = 0

24 self.upper_limit = 200

25

26 self.number = random.randrange(self.lower_limit,

self.upper_limit)

27 self.is_debug = False

28 self.running = True

29

30 def debug(self):

31 self.is_debug = not self.is_debug

32

33 def guess(self, num):

34 if num == 'd':

35 self.debug()

36 return

37

38 if self.is_debug:

39 print("Hidden number {}. Your guess is

{}".format(self.number, num))

40

41 try:

42 num = int(num)

43 except Exception:

44 raise NotANumberError(num)

45

46 if num > self.upper_limit:

47 raise NumberTooBigError(num)

48

49 if num < self.upper_limit:

50 raise NumberTooSmallError(num)

51

52 if num < self.number:

53 print("Too small")

54 elif num > self.number:

55 print("Too big")

56 else:

57 print("Bingo")

58 self.running = False

59

60

61 g = Game()

62 g.guess('d')

63

64 try:

65 g.guess('z')

66 except Exception as e:

67 print(e)

68

69 try:

70 g.guess('201')

71 except Exception as e:

72 print(e)

73

74 try:

75 g.guess('-1')

76 except Exception as e:

77 print(e)

78

79

80

81 #while g.running:

82 # guess = input("Please type in your guess: ")

83 # g.guess(int(guess))

1 Hidden number 137. Your guess is z

2 Not a Number z

3 Hidden number 137. Your guess is 201

4 Number 201 is too big

5 Hidden number 137. Your guess is -1

6 Number -1 is too small

Solution: Raise My Exception
 1 class MyValueError(ValueError):

 2 def __init__(self, val):

 3 self.value = val

 4

 5 class MyFloatError(MyValueError):

 6 def __str__(self):

 7 return "The given parameter {} is a float and not

an int.".format(self.value)

 8

 9 class MyTypeError(MyValueError):

10 def __init__(self, val, val_type):

11 self.value_type = val_type

12 super(MyTypeError, self).__init__(val)

13

14 def __str__(self):

15 return "The given parameter {} is of type {} and

not int.".format(self.value,\

16 self.value_type)

17

18 class MyNegativeError(MyValueError):

19 def __str__(self):

20 return "The given number {} is not

positive.".format(self.value)

21

22 def positive(num):

23 if type(num).__name__ == 'float':

24 raise MyFloatError(num)

25

26 if type(num).__name__ != 'int':

27 raise MyTypeError(num, type(num).__name__)

28

29 if num < 0:

30 raise MyNegativeError(num)

31

32 for val in [14, 24.3, "hi", -10]:

33 print(val)

34 print(type(val).__name__)

35 try:

36 positive(val)

37 except MyValueError as ex:

38 print("Exception: {}".format(ex))

39 print("Exception type

{}".format(type(ex).__name__))

40

41 # Exception, ValueError

Exception finally return
 1 def div(a, b):

 2 try:

 3 print("try")

 4 c = a / b

 5 except Exception:

 6 print("exception")

 7 return

 8 finally:

 9 print("finally")

10

11 div(2, 1)

12 print('---')

13 div(2, 0)

Warnings

Warnings
 1 from warnings import warn

 2

 3 def foo():

 4 warn("foo will be deprecated soon. Use bar()

instead", DeprecationWarning)

 5 print("foo still works")

 6

 7

 8 def main():

 9 foo()

10 print("afterfoo")

11

12 main()

CSV

Reading CSV the naive way
1 Tudor;Vidor;10;Hapci

2 Szundi;Morgo;7;Szende

3 Kuka;Hofeherke;100;Kiralyno

4 Boszorkany;Herceg;9;Meselo

 1 import sys, csv

 2

 3 if len(sys.argv) != 2:

 4 sys.stderr.write("Usage: {}

FILENAME\n".format(sys.argv[0]))

 5 exit()

 6

 7 file = sys.argv[1]

 8 fh = open(file, 'rb')

 9

10 count = 0

11 for line in fh:

12 line = line.rstrip("\n")

13 row = line.split(';')

14 print(row)

15 count += int(row[2])

16

17 print("Total: {}".format(count))

python examples/csv/read_csv_split.py
examples/csv/process_csv_file.csv

CSV with quotes and newlines
1 Tudor;Vidor;10;Hapci

2 Szundi;Morgo;7;Szende

3 Kuka;"Hofeherke; alma";100;Kiralyno

4 Boszorkany;Herceg;9;Meselo

1 Tudor;Vidor;10;Hapci

2 Szundi;Morgo;7;Szende

3 Kuka;"Hofeherke;

4 alma";100;Kiralyno

5 Boszorkany;Herceg;9;Meselo

Reading a CSV file
 1 import sys, csv

 2

 3 if len(sys.argv) != 2:

 4 sys.stderr.write("Usage: {}

FILENAME\n".format(sys.argv[0]))

 5 exit()

 6

 7 file = sys.argv[1]

 8 count = 0

 9 with open(file) as fh: # Python 2 might need 'rb'

10 rd = csv.reader(fh, delimiter=';')

11

12 for row in rd:

13 print(row)

14 count += int(row[2])

15

16 print("Total: {}".format(count))

python examples/csv/read_csv.py
examples/csv/process_csv_file.csv

Dialects of CSV files. See also:
csv

CSV dialects

http://docs.python.org/3/library/csv.html

 1 import csv

 2

 3 for dname in csv.list_dialects():

 4 print(dname)

 5 d = csv.get_dialect(dname)

 6 for n in ['delimiter', 'doublequote', 'escapechar',

 7 'lineterminator', 'quotechar',

 8 'quoting', 'skipinitialspace', 'strict']:

 9 attr = getattr(d, n)

10 if attr == '\t':

11 attr = '\\t'

12 if attr == '\r\n':

13 attr = '\\r\\n'

14 print(" {:16} '{}'".format(n, attr))

 1 excel-tab

 2 delimiter '\t'

 3 doublequote '1'

 4 escapechar 'None'

 5 lineterminator '\r\n'

 6 quotechar '"'

 7 quoting '0'

 8 skipinitialspace '0'

 9 strict '0'

10 excel

11 delimiter ','

12 doublequote '1'

13 escapechar 'None'

14 lineterminator '\r\n'

15 quotechar '"'

16 quoting '0'

17 skipinitialspace '0'

18 strict '0'

CSV to dictionary
1 fname,lname,born

2 Graham,Chapman,8 January 1941

3 Eric,Idle,29 March 1943

4 Terry,Gilliam,22 November 1940

5 Terry,Jones,1 February 1942

6 John,Cleese,27 October 1939

7 Michael,Palin,5 May 1943

1 import csv

2

3 file = 'examples/csv/monty_python.csv'

4 with open(file) as fh:

5 rd = csv.DictReader(fh, delimiter=',')

6 for row in rd:

7 print(row)

1 {'lname': 'Chapman', 'born': '8 January 1941', 'fname':

'Graham'}

2 {'lname': 'Idle', 'born': '29 March 1943', 'fname':

'Eric'}

3 {'lname': 'Gilliam', 'born': '22 November 1940', 'fname':

'Terry'}

4 {'lname': 'Jones', 'born': '1 February 1942', 'fname':

'Terry'}

5 {'lname': 'Cleese', 'born': '27 October 1939', 'fname':

'John'}

6 {'lname': 'Palin', 'born': '5 May 1943', 'fname':

'Michael'}

Exercise: CSV
Given the CSV file of Monty Python troupe, create a dictionary
where we can look up information
about them based on the first name. For example:

1 people = read_csv_file()

2 print(people["Graham"]["lname"]) # Champman

3 print(people["John"]["born"]) # 27 October 1939

4 print(people["Michael"])

5 # {'lname': 'Palin', 'born': '5 May 1943', 'fname':

'Michael'}

6 print(people["Terry"]["lname"]) # Gilliam

For extra bonus create another dictionary where we can look up the
information based on their fname and lname.

Solution: CSV
 1 import csv

 2

 3 def read_csv_file():

 4 file = 'examples/csv/monty_python.csv'

 5 name_of = {}

 6 with open(file) as fh:

 7 rd = csv.DictReader(fh, delimiter=',')

 8 for row in rd:

 9 name_of[row['fname']] = row

10 print(name_of)

11 return name_of

12

13 people = read_csv_file()

14 print(people["Graham"]["lname"]) # Champman

15 print(people["John"]["born"]) # 27 October 1939

16 print(people["Michael"])

17 # {'lname': 'Palin', 'born': '5 May 1943', 'fname':

'Michael'}

18 print(people["Terry"]["lname"]) # Gilliam

Excel

Spreadsheets

CSV files - use the standard csv library
Microsoft Excel files (various versions and formats)
Open Office / Libre Office Calc

Python Excel

Python Excel
openpyxl
xlsxwriter
xlrd
xlwt
xlutils using xlrd and xlwt. Mostly obsolete.

Create an Excel file from scratch
 1 import openpyxl

 2 import datetime

 3

 4 wb = openpyxl.Workbook()

 5

 6 ws = wb.active

 7

 8 ws['A1'] = 42

 9

10 ws['A2'] = datetime.datetime.now()

11 #ws.column_dimensions['A'].width = 20.0

12

13 wb.save("first.xlsx")

http://www.python-excel.org/
https://openpyxl.readthedocs.org/
https://xlsxwriter.readthedocs.org/
http://xlrd.readthedocs.io/
http://xlrd.readthedocs.io/
http://xlutils.readthedocs.io/

Worksheets in Excel
 1 import openpyxl

 2 import datetime

 3

 4 wb = openpyxl.Workbook()

 5 ws = wb.active

 6 ws['A1'] = 42

 7 ws.title = "First"

 8

 9 ws2 = wb.create_sheet()

10 ws2.title = "Second sheet"

11 ws2['A1'] = datetime.datetime.now()

12 ws2.sheet_properties.tabColor = "1072BA"

13

14 wb.save("two_worksheets.xlsx")

Add expressions to Excel
Nothing special needed.

 1 import openpyxl

 2 import datetime

 3

 4 wb = openpyxl.Workbook()

 5

 6 ws = wb.active

 7

 8 ws['A1'] = 19

 9 ws['A2'] = 23

10

11 ws['A3'] = "=A1+A2"

12

13 wb.save("expression.xlsx")

Format field
 1 import openpyxl

 2 import datetime

 3

 4 wb = openpyxl.Workbook()

 5

 6 ws = wb.active

 7

 8 ws['A1'] = 123456.78

 9 ws['A2'] = 123456.78

10 ws['A3'] = 123456.78

11 ws['A4'] = -123456.78

12 ws['A5'] = datetime.datetime.now()

13 ws.column_dimensions['A'].width = 20.0

14

15 ws['A2'].number_format = '0.00E+00'

16 ws['A3'].number_format = '#,##0_);[RED](#,##0)'

17 ws['A4'].number_format = '#,##0_);[RED](#,##0)'

18

19 wb.save("format.xlsx")

Number series and chart
 1 import openpyxl

 2

 3 wb = openpyxl.Workbook()

 4

 5 ws = wb.active

 6 ws.title = "Chart"

 7

 8 a = ["First", 20, 28, 30, 37, 18, 47]

 9 b = ["Second", 35, 30, 40, 40, 38, 35]

10

11 # write them as columns

12 for i in range(len(a)):

13 ws.cell(row=i+1, column=1).value = a[i]

14 ws.cell(row=i+1, column=2).value = b[i]

15

16 lc = openpyxl.chart.LineChart()

17 lc.title = "Two Lines Chart"

18 #lc.style=13

19 data = openpyxl.chart.Reference(ws,

20 min_col=1,

21 min_row=1,

22 max_col=2,

23 max_row=len(a))

24 lc.add_data(data, titles_from_data=True)

25

26 ws.add_chart(lc, "D1")

27 wb.save("chart.xlsx")

Read Excel file
1 import openpyxl

2 wb = openpyxl.load_workbook(filename = 'chart.xlsx')

3 for ws in wb.worksheets:

4 print(ws.title)

5

6 ws = wb.worksheets[0]

7 print(ws['A1'].value)

Update Excel file
 1 import openpyxl

 2

 3 wb = openpyxl.load_workbook(filename = 'chart.xlsx')

 4 for ws in wb.worksheets:

 5 print(ws.title)

 6

 7 ws = wb.worksheets[0]

 8 c = ["Third", 40, 20, 35, 25, 20, 35]

 9

10 for i in range(len(c)):

11 ws.cell(row=i+1, column=3).value = c[i]

12

13 lc = openpyxl.chart.LineChart()

14 lc.title = "Three Lines Chart"

15 data = openpyxl.chart .Reference(ws,

16 min_col=1,

17 min_row=1,

18 max_col=3,

19 max_row=len(c))

20 lc.add_data(data, titles_from_data=True)

21

22 ws.add_chart(lc, "D1")

23

24 wb.save("chart.xlsx")

Exercise: Excel

Create a series of 10 random numbers between 1 and 100 and
save them in an Excel file in a column.
Create a graph showing the values.
Add a second series of 10 random numbers, add them to the
Excel file as a second column next to the first one.
Add a 3rd colum containing the average of the first two
columns.
Update the graph to include all 3 number serieses

XML

XML Data
 1 <?xml version="1.0"?>

 2 <main>

 3 <person id="1">

 4 <fname>Foo</fname>

 5 <lname>Bar</lname>

 6 </person>

 7 <person id="3">

 8 <fname>Moo</fname>

 9 <lname>Zorg</lname>

10 <email id="home">moo@zorghome.com</email>

11 <email id="work">moo@work.com</email>

12 </person>

13 </main>

Expat - Callbacks
 1 import xml.parsers.expat

 2

 3 file = 'examples/xml/data.xml'

 4

 5

 6 def start_element(name, attrs):

 7 print('Start element: {} {}'.format(name, attrs))

 8

 9

10 def end_element(name):

11 print('End element: {}'.format(name))

12

13

14 def char_data(data):

15 print('Character data: {}'.format(repr(data)))

16

17

18 p = xml.parsers.expat.ParserCreate()

19

20 p.StartElementHandler = start_element

21 p.EndElementHandler = end_element

22 p.CharacterDataHandler = char_data

23

24 p.ParseFile(open(file, 'rb'))

25

26 print('done')

XML DOM - Document Object Model
 1 import xml.dom.minidom

 2

 3 file = 'examples/xml/data.xml'

 4

 5 dom = xml.dom.minidom.parse(file)

 6

 7 root = dom.firstChild

 8 print(root.tagName)

 9

10 print('')

11

12 for node in root.childNodes:

13 if node.nodeType != node.TEXT_NODE:

14 print('name: ', node.tagName)

15 print('id: ', node.getAttribute('id'))

16

17 print('')

18

19 emails = dom.getElementsByTagName("email")

20 for e in emails:

21 print('email', e.getAttribute('id'),

e.firstChild.data)

1 main

2

3 name: person

4 id: 1

5 name: person

6 id: 3

7

8 email home moo@zorghome.com

9 email work moo@work.com

xml.dom
xml.dom.minidom

XML SAX - Simple API for XML
 1 import xml.sax

 2

 3 file = 'examples/xml/data.xml'

 4

 5

 6 class EventHandler(xml.sax.ContentHandler):

 7 def startElement(self, name, attrs):

 8 print('start', (name, attrs._attrs))

 9

10 def characters(self, text):

11 if not text.isspace():

12 print('text', text)

13

14 def endElement(self, name):

15 print('end', name)

16

17

18 xml.sax.parse(file, EventHandler())

 1 start (u'main', {})

 2 start (u'person', {u'id': u'1'})

 3 start (u'fname', {})

 4 text Foo

 5 end fname

 6 start (u'lname', {})

 7 text Bar

 8 end lname

 9 end person

10 start (u'person', {u'id': u'3'})

11 start (u'fname', {})

12 text Moo

13 end fname

14 start (u'lname', {})

http://docs.python.org/library/xml.dom.html
http://docs.python.org/library/xml.dom.minidom.html

15 text Zorg

16 end lname

17 start (u'email', {u'id': u'home'})

18 text moo@zorghome.com

19 end email

20 start (u'email', {u'id': u'work'})

21 text moo@work.com

22 end email

23 end person

24 end main

xml.sax
xml.sax.hanldler
xml.sax.reader

SAX collect
 1 import xml.sax

 2

 3 file = 'examples/xml/data.xml'

 4

 5 class EventHandler(xml.sax.ContentHandler):

 6 def __init__(self, c):

 7 self.path = []

 8 self.collector = c

 9

10 def startElement(self, name, attrs):

11 self.path.append({ 'name' : name, 'attr' :

attrs._attrs })

12

13 def characters(self, text):

14 self.path[-1]['text'] = text

15

16 def endElement(self, name):

17 element = self.path.pop()

18 print('End name: ', name)

19 if element['name'] == 'email':

20 collector.append(element)

21

22 collector = []

http://docs.python.org/library/xml.sax.html
http://docs.python.org/library/xml.sax.handler.html
http://docs.python.org/library/xml.sax.reader.html

23 xml.sax.parse(file, EventHandler(collector))

24 print(collector)

 1 End name: fname

 2 End name: lname

 3 End name: person

 4 End name: fname

 5 End name: lname

 6 End name: email

 7 End name: email

 8 End name: person

 9 End name: main

10 [{'text': u'moo@zorghome.com', 'name': u'email', 'attr':

{u'id': u'home'}},

11 {'text': u'moo@work.com', 'name': u'email', 'attr':

{u'id': u'work'}}]

XML elementtree
 1 import xml.etree.ElementTree as ET

 2

 3 file = 'examples/xml/data.xml'

 4

 5 tree = ET.parse(file)

 6 root = tree.getroot()

 7 print(root.tag)

 8

 9 for p in root.iter('person'):

10 print(p.attrib)

11

12 print('')

13

14 for p in root.iter('email'):

15 print(p.attrib, p.text)

16

17 print('')

18

19 elements = tree.findall(".//*[@id='home']")

20 for e in elements:

21 print(e.tag, e.attrib)

1 main

2 {'id': '1'}

3 {'id': '3'}

4

5 {'id': 'home'} moo@zorghome.com

6 {'id': 'work'} moo@work.com

7

8 email {'id': 'home'}

xml.etree.elementtree

http://docs.python.org/library/xml.etree.elementtree.html

SciPy - for Scientific Computing in
Python

Data Science tools in Python

SciPy ecosystem of open-source software for mathematics,
science, and engineering.
Biopython tools for biological computation.
NumPy to handle N-dimensional arrays.
Pandas Python Data Analysis Library. (Data Frames)
Matplotlib a 2D plotting library.
Seaborn data visualization library based on matplotlib.
Bokeh interactive visualization library.
SciKit-Learn Machine Learning in Python.
TensorFlow Machine learning framework. (developed by
Google engineer)
Keras Python Deep learning (neural-network) library. (On top
of Tensorflow.)
Orange machine learning and data visualization tool. Written
partially in Python.

Airflow Workflow management platform
Luigi Data pipelines (from Spotify)

Showing speed improvement using a GPU with CUDA and
Python with numpy on Nvidia Quadro 2000D

Octave (Open Source Matlab replacement - not related to
Python)

https://www.scipy.org/
https://biopython.org/
http://www.numpy.org/
https://pandas.pydata.org/
http://matplotlib.org/
https://seaborn.pydata.org/
https://bokeh.pydata.org/
http://scikit-learn.org/
https://www.tensorflow.org/
https://keras.io/
https://orange.biolab.si/
https://airflow.apache.org/
https://github.com/spotify/luigi
https://code-maven.com/showing-speed-improvement-with-gpu-cuda-numpy
https://www.gnu.org/software/octave/

Data Analysis resources

Exploratory data analysis by John Tukey
Think Bayes - Bayesian Statistics Made Simple
Statistical Signal Extraction and Filtering: Structual Time
Series Models
Panel Data

For Econometrics

Econometric Analysis
Microeconometric Modeling and Discrete Choice Analysis
with Cross Section and Panel Data

For Intro Stats,

Applied Statistics with R
Statistics: A Fresh Approach

Datasets

Climate
Open Weather map
PRB

https://en.wikipedia.org/wiki/Exploratory_data_analysis
http://www.greenteapress.com/thinkbayes/thinkbayes.pdf
https://www.le.ac.uk/users/dsgp1/ERCSTUFF/ercimstruct.pdf
https://en.wikipedia.org/wiki/Panel_data
http://pages.stern.nyu.edu/~wgreene/Text/econometricanalysis.htm
http://people.stern.nyu.edu/wgreene/Microeconometrics.htm
https://daviddalpiaz.github.io/appliedstats/
https://www.amazon.com/Statistics-Approach-Donald-H-Sanders/dp/0070546789
http://www.worldclim.org/
https://openweathermap.org/bulk
https://www.prb.org/

Python and Biology

Biopython

Biopython
Biopython GitHub project
Biopython Tutorial and Cookbook

Biopython background

Sequence formats (FASTA, FASTQ, EMBL, …)
FASTA
FASTQ
EMBL European Molecular Biology Laboratory
Gene names symbols

Bio python sequences
 1 from Bio.Seq import Seq

 2

 3 # Nucleotide Sequences

 4 my_dna = Seq("AGTACACTGGTAGGCCTTACAG_T")

 5 print(my_dna) #

AGTACACTGGTAGGCCTTACAG_T

 6 print(my_dna.complement()) #

TCATGTGACCATCCGGAATGTC_A

 7 print(my_dna.reverse_complement()) #

A_CTGTAAGGCCTACCAGTGTACT

 8 print(my_dna.transcribe()) #

AGUACACUGGUAGGCCUUACAG_U

 9

10 my_rna = Seq("GAC_U")

11 print(my_rna) # GAC_U

http://biopython.org/
https://github.com/biopython/biopython
http://biopython.org/DIST/docs/tutorial/Tutorial.html
https://www.genomatix.de/online_help/help/sequence_formats.html
https://en.wikipedia.org/wiki/FASTA_format
https://en.wikipedia.org/wiki/FASTQ_format
https://en.wikipedia.org/wiki/European_Molecular_Biology_Laboratory
https://ghr.nlm.nih.gov/about/gene-names-symbols

12 print(my_rna.reverse_complement()) # A_GUC

13 print(my_rna.reverse_complement()) # A_GUC

14 print(my_rna.transcribe()) # GAC_U

1 from Bio.Seq import Seq

2

3 what_is_this = Seq("AGTC_U")

4 what_is_this.complement() # ValueError: Mixed RNA/DNA

found

Download data
Use the NCBI (National Center for Biotechnology Information)
database to search manually for nucleotide
or tons of other types of data. Then one can download the files
manually from the web site.

Read FASTA, GenBank files
For example the data about Orchids in two formats:

ls_orchid.fasta in FASTA format
ls_orchid.gbk in GenBank format

Download those files and use them:

 1 from Bio import SeqIO

 2 import requests

 3

 4 def get_file(url, filename):

 5 res = requests.get(url)

 6 if res.status_code != 200:

 7 raise Exception("Could not get file")

 8

 9 with open(filename, 'w') as fh:

10 fh.write(res.text)

11

12

https://www.ncbi.nlm.nih.gov/nucleotide
https://raw.githubusercontent.com/biopython/biopython/master/Doc/examples/ls_orchid.fasta
https://raw.githubusercontent.com/biopython/biopython/master/Doc/examples/ls_orchid.gbk

13 def process_file(filename, file_type):

14 for seq_record in SeqIO.parse(filename, file_type):

15 print(seq_record.id)

16 print(repr(seq_record.seq))

17 print(len(seq_record))

18

19

20 fasta_url =

'https://raw.githubusercontent.com/biopython/biopython/mast

er/Doc/exampl\

21 es/ls_orchid.fasta'

22 filename = "ls_orchid.fasta"

23 file_type = "fasta"

24 get_file(fasta_url, filename)

25 process_file(filename, file_type)

26

27

28 genbank_url =

"https://raw.githubusercontent.com/biopython/biopython/mast

er/Doc/exam\

29 ples/ls_orchid.gbk"

30 filename = "ls_orchid.gbk"

31 file_type = "genbank"

32 get_file(genbank_url, filename)

33 process_file(filename, file_type)

Search nucleotids
You can also search the same database programmatically.

 1 from Bio import Entrez

 2 Entrez.email = "gabor@szabgab.com"

 3

 4 term = "Cypripedioideae[Orgn] AND matK[Gene]"

 5

 6 handle = Entrez.esearch(db="nucleotide", term=term,

idtype="acc", retmax=30)

 7 record = Entrez.read(handle)

 8 print(record["Count"]) # 538

 9 print(record["IdList"]) # ['MK792700.1',

'MK792699.1', 'MK792698.1', ..., 'MK79\

10 2681.1']

11 print(len(record["IdList"])) # 30

12 handle.close()

13

14

15 # term = "Orchid"

16 # 530077

17 # ['NZ_SELD00000000.2', 'NZ_SELD02000072.1',

Download nucleotids
 1 from Bio import Entrez, SeqIO

 2

 3 Entrez.email = "gabor@szabgab.com"

 4

 5 #doc_id = 'MK792700.1'

 6 doc_id = "EU490707"

 7

 8 # rettype="fasta"

 9 handle = Entrez.efetch(db="nucleotide", id=doc_id,

rettype="gb", retmode="text")

10 data = handle.read()

11 handle.close()

12 #print(data)

13

14 filename = "temp.data"

15 with open(filename, 'w') as fh:

16 fh.write(data)

17

18 file_type = "genbank"

19 for seq_record in SeqIO.parse(filename, file_type):

20 print(seq_record.id)

21 print(repr(seq_record.seq)) # A short part of the

sequence

22 print()

23 print(seq_record.seq) # The full sequence

24 print()

25 print(len(seq_record.seq))

26 print()

27 print(seq_record.name)

28 print()

29 print(seq_record.annotations)

30 #print()

31 #print(dir(seq_record))

Exercise: Nucleotid

Search for your favorite nucleotid
Print out the number of results
Download the 3 different sequences from the list (using the id)
in GeneBank format and save them in files using the id as the
name of the file and .gb as the extension
Write a separate script that reads and displays the sequences.

Biology background
Genetics - inheritance
Genetic inheritance
What’s a genome Chp2 1
What’s a genome Chp4 1
alleles, genotype, phenotype

https://www.nhs.uk/conditions/genetics/inheritance/
https://basicbiology.net/micro/genetics/genetic-inheritance
http://www.genomenewsnetwork.org/resources/whats_a_genome/Chp2_1.shtml
http://www.genomenewsnetwork.org/resources/whats_a_genome/Chp4_1.shtml

Chemistry

Chemistry links

Python for Chemistry students
Open Babel The Open Source Chemistry Toolbox
Chemical table file to describe molecules and chemical
reactions.
Pytim Interfacial Analysis of Molecular Simulations

Awesome Python Chemistry (article)
Awesome Python Chemistry (list on GitHub)

downloads
Open Babel module
Pybel

1 import sdf

2 import pybel

Bond length

Bond length
Distance between two points Pythagorean theorem
Video
XYZ fileformat to specify the molecule geometry.

Covalent radius

https://pythoninchemistry.org/
http://openbabel.org/
https://en.wikipedia.org/wiki/Chemical_table_file
https://marcello-sega.github.io/pytim/
http://lukaszmentel.com/blog/awesome-python-chemistry/index.html
https://github.com/lmmentel/awesome-python-chemistry
https://www.ebi.ac.uk/chebi/downloadsForward.do
http://openbabel.org/docs/2.3.1/UseTheLibrary/PythonDoc.html
http://openbabel.org/docs/2.3.1/UseTheLibrary/Python_Pybel.html
https://en.wikipedia.org/wiki/Bond_length
https://en.wikipedia.org/wiki/Pythagorean_theorem
https://www.youtube.com/watch?v=8IuyJMvaaas
https://en.wikipedia.org/wiki/XYZ_file_format

Covalent radius
Video
tmpchem/computational_chemistry

Python energy landscape explorer

Python energy landscape explorer

Other chemistry links

Periodic table
Diatomic molecule
VMD - Visual Molecular Dynamics and application to
visualize molecules.

https://en.wikipedia.org/wiki/Covalent_radius
https://www.youtube.com/watch?v=b_X4-pTDsWA
https://github.com/tmpchem/computational_chemistry
https://github.com/pele-python/pele
https://ptable.com/
https://en.wikipedia.org/wiki/Diatomic_molecule
https://www.ks.uiuc.edu/Research/vmd/

numpy

What is NumPy

numpy
High-level mathematical functions to operate on large, multi-
dimensional arrays and matrices. ndarray

Numpy - vector
 1 import numpy as np

 2

 3 a = np.array([3, 4, 7])

 4 print(a) # [3 4 7]

 5 print(a * 3) # [9 12 21]

 6 print(a + 4) # [7 8 11]

 7 print(a.dtype) # int64

 8 print(a.ndim) # 1

 9 print(a.shape) # (3,)

10

11 b = np.array([2, 3.14, -1])

12 print(b.dtype) # float64

13 print(b.shape) # (3,)

14

15 c = np.array(['one', 'two', 'three'])

16 print(c.dtype) # <U5 (Unicode less than 5

characters)

Basic types
dtypes

NumPy 2D arrays

http://www.numpy.org/
https://docs.scipy.org/doc/numpy/user/basics.types.html
https://docs.scipy.org/doc/numpy-1.9.3/reference/arrays.dtypes.html

 1 import numpy as np

 2

 3 a = np.array([

 4 [1, 2, 3, 4, 5],

 5 [2, 3, 4, 5, 6]

 6])

 7

 8 print(a)

 9 # [[1 2 3 4 5]

10 # [2 3 4 5 6]]

11

12 print(a.shape) # (2, 5)

13 print(a.ndim) # 2

14

15

16 print(a * 3)

17 # [[3 6 9 12 15]

18 # [6 9 12 15 18]]

19

20 print(a + 7)

21 # [[8 9 10 11 12]

22 # [9 10 11 12 13]]

Numpy - set type
1 import numpy as np

2

3 a = np.array([3, 4, 7], dtype='int8')

4 print(a) # [3 4 7]

5 print(a * 3) # [9 12 21]

6 print(a + 4) # [7 8 11]

7 print(a.dtype) # int8

NumPy arrays: ones and zeros
 1 import numpy as np

 2

 3 c = np.ones(4, dtype='int32')

 4 print(c) # [1 1 1 1]

 5 print(c.dtype) # int32

 6 print(c.shape) # (4,)

 7 print()

 8

 9

10 d = np.zeros(3, dtype='float32')

11 print(d) # [0. 0. 0.]

12 print(d.dtype) # float32

13 print(d.shape) # (3,)

14 print()

15

16

17 a = np.ones([2, 3])

18 print(a)

19 # [[1., 1., 1.],

20 # [1., 1., 1.]]

21 print(a.dtype) # float64

22 print(a.shape) # (2, 3)

Numpy: eye
1 import numpy as np

2

3 a = np.eye(4)

4 print(a)

5 print()

6

7 b = np.eye(3, 5)

8 print(b)

1 [[1. 0. 0. 0.]

2 [0. 1. 0. 0.]

3 [0. 0. 1. 0.]

4 [0. 0. 0. 1.]]

5

6 [[1. 0. 0. 0. 0.]

7 [0. 1. 0. 0. 0.]

8 [0. 0. 1. 0. 0.]]

NumPy array random

1 import numpy as np

2

3 a = np.random.random((2, 5)) # in the range [0.0, 1.0)

4 print(a)

5 print()

6

7 rng = np.random.default_rng()

8 b = rng.random(size=(3, 4))

9 print(b)

1 [[0.32151126 0.07688622 0.95666894 0.42396291 0.93592235]

2 [0.71406863 0.95152079 0.20199695 0.72628099

0.33545885]]

3

4 [[0.46643834 0.71350899 0.40279583 0.85148985]

5 [0.19367868 0.53288449 0.97181597 0.86311691]

6 [0.70687485 0.78534671 0.16654183 0.9371896]]

random sampling

NumPy Random integers
1 import numpy as np

2

3 a = np.random.randint(10, size=(3, 4))

4 print(a)

5

6 rng = np.random.default_rng()

7 b = rng.integers(42, size=(3, 4))

8 print(b)

1 [[1 2 2 6]

2 [2 2 9 8]

3 [8 8 9 5]]

4 [[13 31 7 11]

5 [22 2 6 18]

6 [24 10 12 0]]

https://docs.scipy.org/doc/numpy/reference/random/index.html

integer generator

NumPy array type change by division (int to
float)
 1 import numpy as np

 2

 3 a = np.array([3, 4, 7])

 4 print(a.dtype) # int64

 5 print(a.shape) # (3,)

 6

 7 x = (a / 2)

 8 print(x) # [1.5 2. 3.5]

 9 print(x.dtype) # float64

10 print(x.shape) # (3,)

Numpy: Array methods: transpose
 1 import numpy

 2

 3 a = numpy.array([

 4 [1, 2, 3, 4, 5],

 5 [2, 3, 4, 5, 6]

 6])

 7

 8 b = a.transpose()

 9

10 print(b)

11 # [[1 2]

12 # [2 3]

13 # [3 4]

14 # [4 5]

15 # [5 6]]

16

17 print(a)

18 # [[1 2 3 4 5]

19 # [2 3 4 5 6]]

Numpy: reference, not copy

https://docs.scipy.org/doc/numpy/reference/random/generated/numpy.random.Generator.integers.html

 1 import numpy

 2

 3 a = numpy.array([

 4 [1, 2, 3, 4, 5],

 5 [2, 3, 4, 5, 6]

 6])

 7

 8 b = a.transpose()

 9 a[0][0] = 42

10

11 print(b)

12 # [[42 2]

13 # [2 3]

14 # [3 4]

15 # [4 5]

16 # [5 6]]

17

18 print(a)

19 # [[42 2 3 4 5]

20 # [2 3 4 5 6]]

Numpy: copy array
 1 import numpy

 2

 3 a = numpy.array([

 4 [1, 2, 3, 4, 5],

 5 [2, 3, 4, 5, 6]

 6])

 7

 8 b = a.copy().transpose()

 9 a[0][0] = 42

10

11 print(b)

12 # [[1 2]

13 # [2 3]

14 # [3 4]

15 # [4 5]

16 # [5 6]]

17

18 print(a)

19 # [[42 2 3 4 5]

20 # [2 3 4 5 6]]

Numpy: Elementwise Operations on Arrays
 1 import numpy as np

 2

 3 a = np.array([

 4 [1, 2, 3, 4, 5],

 5 [2, 3, 4, 5, 6]

 6])

 7 b = np.array([

 8 [7, 3, 8, 9, 4],

 9 [1, 3, 6, 1, 2]

10])

11

12 print(a+b)

13 # [[8 5 11 13 9]

14 # [3 6 10 6 8]]

15

16 print(a*b)

17 # [[7 6 24 36 20]

18 # [2 9 24 5 12]]

Numpy: multiply, matmul, dot for vectors

multiply
matmul
dot

 1 import numpy as np

 2

 3 a = np.array([3, 4, 7])

 4 b = np.array([6, 5, 2])

 5 print(a) # [3 4 7]

 6 print(b) # [6 5 2]

 7

 8 c = np.multiply(a, b)

 9 print(c) # [18 20 14]

10

11 d = np.dot(a, b)

12 print(d) # 52

https://docs.scipy.org/doc/numpy/reference/generated/numpy.multiply.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.matmul.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.dot.html

13

14 m = np.matmul(a, b)

15 print(m) # 52

Numpy: multiply, matmul, dot for vector and
matrix
 1 import numpy as np

 2

 3 a = np.array([[1, 2, 3], [4, 5, 6]])

 4 b = np.array([1, 2, 4])

 5 print(a)

 6 print(b)

 7 print()

 8

 9 print(a*b)

10 print(b*a)

11 print()

12

13 print(np.multiply(a, b))

14

15 print()

16 print(np.dot(a, b))

17 print(np.matmul(a, b))

 1 [[1 2 3]

 2 [4 5 6]]

 3 [1 2 4]

 4

 5 [[1 4 12]

 6 [4 10 24]]

 7 [[1 4 12]

 8 [4 10 24]]

 9

10 [[1 4 12]

11 [4 10 24]]

12

13 [17 38]

14 [17 38]

Numpy: multiply, matmul, dot for matrices
 1 import numpy as np

 2

 3 a = np.array([[1, 2, 3], [4, 5, 6]])

 4 b = np.array([[1, 3, 4], [7, 8, 0]])

 5 print(a)

 6 print(b)

 7 print()

 8

 9 print(a*b)

10 print(b*a)

11 print()

12

13 print(np.multiply(a, b))

14

15 print()

16 print(np.dot(a, b.transpose()))

17 print(np.matmul(a, b.transpose()))

18

19 print()

20 print(np.dot(a.transpose(), b))

21 print(np.matmul(a.transpose(), b))

 1 [[1 2 3]

 2 [4 5 6]]

 3 [[1 3 4]

 4 [7 8 0]]

 5

 6 [[1 6 12]

 7 [28 40 0]]

 8 [[1 6 12]

 9 [28 40 0]]

10

11 [[1 6 12]

12 [28 40 0]]

13

14 [[19 23]

15 [43 68]]

16 [[19 23]

17 [43 68]]

18

19 [[29 35 4]

20 [37 46 8]

21 [45 57 12]]

22 [[29 35 4]

23 [37 46 8]

24 [45 57 12]]

Numpy: casting - converting from strings to
integer.
 1 import numpy as np

 2

 3 a = np.array([

 4 ["12", "23", "3", "4"],

 5 ["2", "3", "4", "5"]

 6])

 7

 8 print(a)

 9 #[['12' '23' '3' '4']

10 # ['2' '3' '4' '5']]

11

12 try:

13 b = a + 1

14 except Exception as e:

15 print(e)

16 # TypeError: ufunc 'add' did not contain a loop with

17 # signature matching types dtype('<U3') dtype('<U3')

dtype('<U3')

18

19

20 c = a.astype(np.int) + 1

21 print(c)

22 # [[13 24 4 5]

23 # [3 4 5 6]]

Numpy: indexing 1d array
1 import numpy as np

2

3 a = np.array([1, 1, 2, 3, 5, 8, 13, 21, 34])

4 print(a) # [1 1 2 3 5 8 13 21 34]

5

6 print(a[4]) # 5

7 print(a[2:5]) # [2 3 5]

Numpy: slice is a reference
The slice in numpy does not copy the data structure

 1 import numpy as np

 2

 3 a = np.array([1, 1, 2, 3, 5, 8, 13, 21, 34])

 4 print(a) # [1 1 2 3 5 8 13 21 34]

 5

 6 b = a[2:5]

 7 print(b) # [2 3 5]

 8

 9 a[2] = 20

10 print(a) # [1 1 20 3 5 8 13 21 34]

11 print(b) # [20 3 5]

Numpy: slice - copy
 1 import numpy as np

 2

 3 a = np.array([1, 1, 2, 3, 5, 8, 13, 21, 34])

 4 print(a) # [1 1 2 3 5 8 13 21 34]

 5

 6 b = a[2:5].copy()

 7 print(b) # [2 3 5]

 8

 9 a[2] = 20

10 print(a) # [1 1 20 3 5 8 13 21 34]

11 print(b) # [2 3 5]

Numpy: abs value on a Numpy array
 1 import numpy as np

 2

 3 a = np.array([[-1, 2, -3], [-4, 5, -7]])

 4 print(a)

 5 print(a.dtype)

 6 print()

 7

 8 abs_a = np.absolute(a)

 9 print(abs_a)

10 print(abs_a.dtype)

1 [[-1 2 -3]

2 [-4 5 -7]]

3 int64

4

5 [[1 2 3]

6 [4 5 7]]

7 int64

absolute

Numpy: Logical not on a Numpy array
 1 import numpy as np

 2

 3 a = np.array([True, True, False])

 4 print(a.dtype)

 5 print(a)

 6 print()

 7

 8 not_a = np.logical_not(a)

 9 print(not_a.dtype)

10 print(not_a)

11 print()

12

13 b = np.array([True, True, False, 0, 42])

14 print(b.dtype)

15 print(b)

16 print()

17

18 not_b = np.logical_not(b)

19 print(not_b.dtype)

20 print(not_b)

21 print()

https://docs.scipy.org/doc/numpy/reference/generated/numpy.absolute.html

 1 bool

 2 [True True False]

 3

 4 bool

 5 [False False True]

 6

 7 int64

 8 [1 1 0 0 42]

 9

10 bool

11 [False False True True False]

logical not

Numpy: Vectorize a function
 1 import numpy as np

 2

 3 def fibo(n):

 4 if n == 1 or n == 2:

 5 return 1

 6 a, b = 1, 1

 7 for _ in range(n-2):

 8 a, b = b, a + b

 9 return b

10

11 vfibo = np.vectorize(fibo)

12 a = np.array([

13 [1, 2, 3, 4, 5, 6],

14 [7, 8, 9, 10, 11, 12],

15])

16 print(a)

17 print(a.dtype)

18 print()

19

20 b = vfibo(a)

21 print(b)

22 print(b.dtype)

1 [[1 2 3 4 5 6]

2 [7 8 9 10 11 12]]

https://docs.scipy.org/doc/numpy/reference/generated/numpy.logical_not.html

3 int64

4

5 [[1 1 2 3 5 8]

6 [13 21 34 55 89 144]]

7 int64

vectorize

Numpy: Vectorize len
1 import numpy as np

2

3 animals = np.array(['Cow', 'Elephant', 'Snake', 'Camel',

'Praying Mantis'])

4 print(animals)

5

6 vlen = np.vectorize(len)

7 print(vlen(animals))

1 ['Cow' 'Elephant' 'Snake' 'Camel' 'Praying Mantis']

2 [3 8 5 5 14]

Numpy: Vectorize lambda
1 import numpy as np

2

3 animals = np.array(['Cow', 'Elephant', 'Snake', 'Camel',

'Praying Mantis'])

4 print(animals)

5

6 longer_than_5 = np.vectorize(lambda x: len(x) > 5)

7 long_animals_bool = longer_than_5(animals)

8 print(long_animals_bool)

1 ['Cow' 'Elephant' 'Snake' 'Camel' 'Praying Mantis']

2 [False True False False True]

https://docs.scipy.org/doc/numpy/reference/generated/numpy.vectorize.html

Numpy: Filtering array
 1 import numpy as np

 2

 3 animals = np.array(['Cow', 'Elephant', 'Snake', 'Camel',

'Praying Mantis'])

 4 print(animals)

 5

 6 longer_than_5 = np.vectorize(lambda x: len(x) > 5)

 7 long_animals_bool = longer_than_5(animals)

 8 print(long_animals_bool)

 9

10 long_animals = animals[long_animals_bool]

11 print(long_animals)

1 ['Cow' 'Elephant' 'Snake' 'Camel' 'Praying Mantis']

2 [False True False False True]

3 ['Elephant' 'Praying Mantis']

Numpy: Filter matrix values
 1 import numpy as np

 2 import re

 3

 4 scores = np.array([

 5 [23, 37, 18, 97, 13, 40],

 6 [10, 15, 20, 30, 39, 50],

 7 [99, 20, 83, 42, 19, 31],

 8 [19, 11, 55, 78, 39, 27]

 9])

10 print(scores)

11 print()

12

13 high_scores_boolean = (scores > 20)

14 print(high_scores_boolean)

15 print()

16

17 high_scores = scores[high_scores_boolean]

18 print(high_scores)

 1 [[23 37 18 97 13 40]

 2 [10 15 20 30 39 50]

 3 [99 20 83 42 19 31]

 4 [19 11 55 78 39 27]]

 5

 6 [[True True False True False True]

 7 [False False False True True True]

 8 [True False True True False True]

 9 [False False True True True True]]

10

11 [23 37 97 40 30 39 50 99 83 42 31 55 78 39 27]

Numpy: Filter matrix rows
 1 import numpy as np

 2

 3 names = np.array(['Mary', 'Bar', 'Joe', 'Jane'])

 4 print(names)

 5 print()

 6

 7 def has_ar(text):

 8 return "ar" in text

 9 # if "ar" in text:

10 # return True

11 # else:

12 # return False

13

14 names_with_ar_selector = np.vectorize(has_ar)

15 names_with_ar_bool = names_with_ar_selector(names)

16 print(names_with_ar_bool)

17 print()

18

19 scores = np.array([

20 [23, 37, 18, 97, 13, 40],

21 [10, 15, 20, 30, 39, 50],

22 [99, 20, 83, 42, 19, 31],

23 [19, 11, 55, 78, 39, 27]

24])

25

26 print(scores[names_with_ar_bool])

1 ['Mary' 'Bar' 'Joe' 'Jane']

2

3 [True True False False]

4

5 [[23 37 18 97 13 40]

6 [10 15 20 30 39 50]]

7

8 [[23 37 18 97 13 40]

9 [10 15 20 30 39 50]]

Numpy: Stat
 1 import numpy as np

 2

 3 scores = np.array([23, 37, 18, 97, 13, 40])

 4 print(scores.sum()) # 228

 5 print(len(scores)) # 6

 6 print(scores.mean()) # 38.0

 7

 8 print(scores.std()) # 28.0950766743 standard

deviation

 9 print(scores.var()) # 789.333333333 variance

10 print(np.median(scores)) # 30.0

11 print(scores.max()) # 97

12 print(scores.min()) # 13

13

14 print(scores.cumsum()) # [23 60 78 175 188 228]

Numpy: Serialization
 1 import numpy as np

 2

 3 scores = np.array([

 4 [23, 37, 18, 97, 13, 40],

 5 [10, 15, 20, 30, 39, 50],

 6 [99, 20, 83, 42, 19, 31],

 7 [19, 11, 55, 78, 39, 27]

 8])

 9 filename = 'scores.npy'

10 np.save(filename, scores)

11

12 s = np.load(filename)

13 print(s)

Numpy: Load from Matlab file
1 import scipy.io

2

3 file_path = 'data.mat'

4 mat = scipy.io.loadmat(file_path)

5 data = mat['data']

6 print(type(data))

7 print(data)

numpy.ndarray

Numpy: Save as Matlab file
1 import scipy.io

2 import numpy as np

3

4 data = np.random.random((2, 5))

5 print(data)

6

7 file_path = 'data.mat'

8 scipy.io.savemat(file_path, {'data': data})

Numpy: Horizontal stack vectors (hstack)
 1 import numpy as np

 2

 3 a = np.array([1, 2, 3])

 4 b = np.array([4, 5, 6])

 5 c = np.array([7, 8, 9])

 6 print(a)

 7 print(b)

 8 print(c)

 9 print()

10

11 d = np.hstack([a, b])

12 print(d)

13 print()

14

15 e = np.hstack([d, c])

16 print(e)

1 [1 2 3]

2 [4 5 6]

3 [7 8 9]

4

5 [1 2 3 4 5 6]

6

7 [1 2 3 4 5 6 7 8 9]

Numpy: Append or vertically stack vectors
and matrices (vstack)
 1 import numpy as np

 2

 3 a = np.array([1, 2, 3])

 4 b = np.array([4, 5, 6])

 5 c = np.array([7, 8, 9])

 6 print(a)

 7 print(b)

 8 print(c)

 9 print()

10

11 m = np.vstack([a, b])

12 print(m)

13 print()

14

15 d3 = np.vstack([m, c])

16 print(d3)

 1 [1 2 3]

 2 [4 5 6]

 3 [7 8 9]

 4

 5 [[1 2 3]

 6 [4 5 6]]

 7

 8 [[1 2 3]

 9 [4 5 6]

10 [7 8 9]]

Numpy uint8
 1 import numpy as np

 2

 3 a = np.array([127], 'uint8')

 4 print(a.dtype) # uint8

 5 print(a) # [127]

 6

 7 a[0] += 1 # [128]

 8 print(a)

 9

10 a[0] -= 1 # [127]

11 print(a)

12

13 a[0] = 255

14 print(a) # [255]

15

16 a[0] += 1

17 print(a) # [0]

Numpy int8
 1 import numpy as np

 2

 3 a = np.array([127], 'int8')

 4 print(a.dtype) # int8

 5 print(a) # [127]

 6

 7 a[0] += 1 # [-128]

 8 print(a)

 9

10 a[0] -= 1 # [127]

11 print(a)

12

13 a[0] = 255

14 print(a) # [-1]

15

16 a[0] += 1

17 print(a) # [0]

Pandas

Pandas

Pandas Python Data Analysis Library
Handle data sequences
A Beginner’s Guide to Optimizing Pandas Code for Speed

Planets
 1 name,distance,mass

 2 Mercury,0.4,0.055

 3 Venus,0.7,0.815

 4 Earth,1,1

 5 Mars,1.5,0.107

 6 Ceres,2.77,0.00015

 7 Jupiter,5.2,318

 8 Saturn,9.5,95

 9 Uranus,19.6,14

10 Neptune,30,17

11 Pluto,39,0.00218

12 Charon,39,0.000254

Pandas Planets - Dataframes
 1 import pandas as pd

 2

 3 df = pd.read_csv('planets.csv', index_col='name')

 4 print(type(df)) # <class 'pandas.core.frame.DataFrame'>

 5 print(df)

 6

 7 df['dm'] = df['distance'] * df['mass']

 8 print(df.head())

 9

https://pandas.pydata.org/
https://engineering.upside.com/a-beginners-guide-to-optimizing-pandas-code-for-speed-c09ef2c6a4d6

10 big = df[df['mass'] > 20]

11 print(big)

 1 distance mass

 2 name

 3 Mercury 0.40 0.055000

 4 Venus 0.70 0.815000

 5 Earth 1.00 1.000000

 6 Mars 1.50 0.107000

 7 Ceres 2.77 0.000150

 8 Jupiter 5.20 318.000000

 9 Saturn 9.50 95.000000

10 Uranus 19.60 14.000000

11 Neptune 30.00 17.000000

12 Pluto 39.00 0.002180

13 Charon 39.00 0.000254

1 distance mass dm

2 name

3 Mercury 0.40 0.05500 0.022000

4 Venus 0.70 0.81500 0.570500

5 Earth 1.00 1.00000 1.000000

6 Mars 1.50 0.10700 0.160500

7 Ceres 2.77 0.00015 0.000415

1 distance mass dm

2 name

3 Jupiter 5.2 318.0 1653.6

4 Saturn 9.5 95.0 902.5

Pandas Stocks
 1 import pandas

 2 import pandas_datareader.data as web

 3 all_data = { ticker: web.get_data_yahoo(ticker) for

ticker in ['AAPL', 'IBM', 'MSFT'\

 4 , 'GOOG']}

 5

 6 print(all_data.keys()) # dict_keys(['MSFT',

'IBM', 'AAPL', 'GOOG'])

 7 print(all_data['MSFT'].keys()) # Index(['Open', 'High',

'Low', 'Close', 'Volume', '\

 8 Adj Close'], dtype='object')

 9

10 price = pandas.DataFrame({ticker: data['Adj Close'] for

ticker, data in all_data.ite\

11 ms()})

12

13 print(price.head())

14

15 volume = pandas.DataFrame({ticker: data['Volume'] for

ticker, data in all_data.items\

16 ()})

17

18 print(volume.tail())

19

20 returns = price.pct_change() # change in percentage

21 print(returns.head())

22

23 # correlation

24 print(returns.MSFT.corr(returns.IBM)) # 0.49532932971

25 print(returns.MSFT.corr(returns.AAPL)) # 0.389551383559

26

27 # covariance

28 print(returns.MSFT.cov(returns.IBM)) # 8.50115754064e-

05

29 print(returns.MSFT.cov(returns.AAPL)) # 9.15254855961e-

05

Pandas Stocks
1 import pandas

2 prices = pandas.read_csv('stock_prices.csv')

3 print(prices)

Merge Dataframes
 1 import pandas as pd

 2 import numpy as np

 3 import matplotlib.pyplot as plt

 4

 5 # s = pd.Series([1,3,5,np.nan,6,8])

 6 # dates = pd.date_range('20130101', periods=6)

 7 # x = pd.date_range('20130101', periods=6, freq='3D')

 8 # df = pd.DataFrame(np.random.randn(6,4), index=dates,

columns=list('ABCD'))

 9 # df = pd.DataFrame(np.random.randn(6,4), index=dates,

columns=list('ABCD'))

10 # df = pd.DataFrame(np.random.randn(6,4), index=dates,

columns=list('ABC'))

11 # df2 = pd.DataFrame({ 'A' : 1.,

12 # 'B' : pd.Timestamp('20130102'),

13 # 'C' :

pd.Series(1,index=list(range(4)),dtype='float32'),

14 # 'D' : np.array([3] *

4,dtype='int32'),

15 # 'E' :

pd.Categorical(["test","train","test","train"]),

16 # 'F' : 'foo' })

17 a = pd.DataFrame({ 'A' : ['Joe', 'Jane', 'Foo', 'Bar'],

'B' : [1, 23, 12, 5] })

18 b = pd.DataFrame({ 'A' : ['Joe', 'Jane', 'Foo', 'Bar'],

'B' : [7, 10, 27, 1] })

19 #c = pd.DataFrame({ 'A' : ['Jane', 'Joe', 'Foo', 'Bar'],

'B' : [10, 7, 27, 1] })

20 c = b.sort_values(by = 'A')

21 print(a)

22 print(b)

23 print(c)

24 print('---')

25 #print(a+b)

26 x = pd.merge(a, b, on='A')

27 z = pd.DataFrame({ 'A' : x.A, 'B' : x.B_x + x.B_y })

28 print(z)

29

30

31

32 #sa = a.sort_values(by = 'A')

33 #sc = c.sort_values(by = 'A')

34 print('-----')

35 #print(sa)

36 #print(sc)

37 y = pd.merge(a, c, on='A')

38 #print(x)

39 q = pd.DataFrame({ 'A' : y.A, 'B' : y.B_x + y.B_y })

40 print(z)

Analyze Alerts
1 import pandas

2 alerts = pandas.read_csv('../../data/alerts.csv')

3 print(alerts.head())

4 #print(alerts.count())

Analyze IFMetrics
 1 import pandas

 2 data = pandas.read_csv('../../data/ifmetrics.csv',

na_values=['(null)'])

 3 data.fillna(0, inplace=True)

 4 # , parse_dates=True)

 5 # print(type(data)) # pandas.core.frame.DataFrame

 6 print(data.columns) # Index([...], dtype='object',

length=135)

 7

 8 #print(data['Utilization In - Threshold Exception

Rate'].head(3))

 9

10 for col in ['Utilization In - Threshold Exception Rate',

'Overall Exception Rate']:

11 dt = data[col]

12 print(dt[dt != 0])

13

14

15 #print(data.head(1))

16 #print(data.get_values())

Create Excel file for experiment with random
data
Input is an excel file with the following columns:

1 genome name, c1, c2, c3, c4, c5, c6

c1-c3 are numbers of cond1

c4-c6 are numbers of cond2

We would like to filter to the lines that fulfill the following
equations:

1 log2(avg(1-3) / avg(4-6)) > limit

2 other_limit > p.value()

 1 import numpy as np

 2 import pandas as pd

 3 import datetime

 4 import sys

 5

 6 if len(sys.argv) < 2:

 7 exit("Need number of rows")

 8

 9 rows_num = int(sys.argv[1])

10 cols_num = 6

11

12 start = datetime.datetime.now()

13 x = np.random.rand(rows_num, cols_num)

14

15 genome_names = list(map(lambda i: f'g{i}',

range(rows_num)))

16 column_names = list(map(lambda i: f'm{i}',

range(cols_num)))

17

18 df = pd.DataFrame(x, index=genome_names,

columns=column_names)

19 df.index.name = 'genome name'

20

21 print(df.head())

22 print(datetime.datetime.now() - start)

23 df.to_excel('raw_data.xlsx')

24 print(datetime.datetime.now() - start)

Calculate Genome metrics
 1 import pandas as pd

 2 import numpy as np

 3 import datetime

 4 import sys

 5

 6 if len(sys.argv) < 2:

 7 exit("Need filename")

 8 filename = sys.argv[1]

 9

10

11 def calculate_averages(row):

12 v1 = row.iloc[0:3].mean()

13 v2 = row.iloc[3:6].mean()

14 return np.log2(v1/v2)

15

16 start = datetime.datetime.now()

17 df = pd.read_excel(filename, index_col='genome name')

18 print(df.head())

19 print(datetime.datetime.now() - start)

20

21 calculated_value = df.apply(calculate_averages, axis=1)

22 print(datetime.datetime.now() - start)

23

24 threshold = 0.2

25 filtered_df = df[calculated_value > threshold]

26 print(filtered_df.head())

27 print(datetime.datetime.now() - start)

Calculate Genome metrics - add columns
 1 import pandas as pd

 2 import numpy as np

 3 import datetime

 4 import sys

 5

 6 if len(sys.argv) < 2:

 7 exit("Need filename")

 8 filename = sys.argv[1]

 9

10

11 def calculate_averages(row):

12 v1 = row.iloc[0:3].mean()

13 v2 = row.iloc[3:6].mean()

14 return np.log2(v1/v2)

15

16 start = datetime.datetime.now()

17 df = pd.read_excel(filename, index_col='genome name')

18 print(df.head())

19 print(datetime.datetime.now() - start)

20

21 # create a new column of the calculated value

22 df['calculated_value'] = df.apply(calculate_averages,

axis=1)

23 print(datetime.datetime.now() - start)

24

25 threshold = 0.2

26 filtered_df = df[df['calculated_value'] > threshold]

27 print(filtered_df.head())

28 print(datetime.datetime.now() - start)

Calculate Genome metrics - vectorized
 1 import pandas as pd

 2 import numpy as np

 3 import datetime

 4 import sys

 5

 6 if len(sys.argv) < 2:

 7 exit("Need filename")

 8 filename = sys.argv[1]

 9

10 def calculate_averages(df):

11 v1 = df.iloc[:, 0:3].mean(axis=1) # axis=1 ->

calculate the mean row-wise

12 v2 = df.iloc[:, 3:6].mean(axis=1)

13 return np.log2(v1/v2)

14

15 start = datetime.datetime.now()

16 df = pd.read_excel(filename, index_col='genome name')

17 print(df.head())

18 print(datetime.datetime.now() - start)

19

20 calculated_value = calculate_averages(df)

21 print(datetime.datetime.now() - start)

22

23 threshold = 0.2

24 filtered_df = df[calculated_value > threshold]

25 print(filtered_df.head())

26 print(datetime.datetime.now() - start)

Calculate Genome metrics - vectorized
numpy
 1 import pandas as pd

 2 import numpy as np

 3 import datetime

 4 import sys

 5

 6 if len(sys.argv) < 2:

 7 exit("Need filename")

 8 filename = sys.argv[1]

 9

10 def calculate_averages(df_numpy):

11 v1 = df_numpy[:, 0:3].mean(axis=1)

12 v2 = df_numpy[:, 3:6].mean(axis=1)

13 return np.log2(v1/v2)

14

15 start = datetime.datetime.now()

16 df = pd.read_excel(filename, index_col='genome name')

17 print(df.head())

18 print(datetime.datetime.now() - start)

19

20 # the .values attribute changes from Pandas to numpy

array

21 # (no more iloc, no headers, no index)

22 calculated_value = calculate_averages(df.values)

23 print(datetime.datetime.now() - start)

24

25 threshold = 0.2

26 filtered_df = df[calculated_value > threshold]

27 print(filtered_df.head())

28 print(datetime.datetime.now() - start)

Genes using Jupyter
1 cd examples/pandas/

2 jupyter notebook genes.ipynb

Combine columns

1 fname,lname,age

2 Foo,Bar,100

3 Alma,Matter,78

4 Buzz,Lightyear,23

 1 import pandas as pd

 2

 3 filename = 'data.csv'

 4 df = pd.read_csv(filename)

 5 print(df)

 6

 7

 8 def combine(row):

 9 return row['lname'] + '_' + row['fname']

10

11

12 df['combined'] = df.apply(combine, axis=1)

13 print(df)

14

15

16 def new_column(row):

17 columns = ['lname', 'age', 'fname']

18 return '_'.join(map(lambda name: str(row[name]),

columns))

19

20 df['combined'] = df.apply(new_column, axis=1)

21 print(df)

 1 fname lname age

 2 0 Foo Bar 100

 3 1 Alma Matter 78

 4 2 Buzz Lightyear 23

 5 fname lname age combined

 6 0 Foo Bar 100 Bar_Foo

 7 1 Alma Matter 78 Matter_Alma

 8 2 Buzz Lightyear 23 Lightyear_Buzz

 9 fname lname age combined

10 0 Foo Bar 100 Bar_100_Foo

11 1 Alma Matter 78 Matter_78_Alma

12 2 Buzz Lightyear 23 Lightyear_23_Buzz

Pandas more
 1 df.iloc[:, 4:10].sum(axis=1)

 2

 3 # rearrange order of columns

 4 cols = list(df.columns)

 5 df = df[cols[0:4], cols[-1], cols[4:20]]

 6

 7 to_csv('file.csv', index=False)

 8 to_excel()

 9

10 read_csv(filename, delimiter='\t')

11 to_csv(filename, sep='\t')

12

13

14 # after filtering out some rows:

15 df = df.reset_index()

16 df.reset_index(drop=True, inplace=True)

17

18

19 fileter with

20 df.loc[~df['Name'].str.contains('substring')]

21

22 can also have regex=True parameter

23

24 # replace values

25 df[df['Name'] == 'old', 'Name'] = 'new'

Pandas Series
 1 import pandas

 2

 3 s = pandas.Series([1, 1, 2, 3, 5, 8])

 4 print(s)

 5

 6 # 0 1

 7 # 1 1

 8 # 2 2

 9 # 3 3

10 # 4 5

11 # 5 8

12 # dtype: int64

13

14 print(s.values) # [1 1 2 3 5 8]

15 print(s.index) # RangeIndex(start=0, stop=6, step=1)

16

17 print('----')

18 print(s.sum()) # 20

19 print(s.count()) # 6

20 print(s.mean()) # 3.33333333333

21 print(s.median()) # 2.5

22 print(s.std()) # 2.73252020426

23 print(s.cumsum())

24

25 # 0 1

26 # 1 2

27 # 2 4

28 # 3 7

29 # 4 12

30 # 5 20

31 # dtype: int64

Pandas Series with names
 1 import pandas

 2

 3 planets = ['Mercury', 'Venus', 'Earth', 'Mars']

 4 distances_raw = [0.4 , 0.7 , 1, 1.5]

 5 masses_raw = [0.055, 0.815, 1, 0.107]

 6

 7 distance = pandas.Series(distances_raw, index = planets)

 8 mass = pandas.Series(masses_raw, index = planets)

 9

10 print(distance)

11

12 # Mercury 0.40

13 # Venus 0.70

14 # Earth 1.00

15 # Mars 1.50

16 # dtype: float64

17

18

19 print(distance.index)

20 # Index(['Mercury', 'Venus', 'Earth', 'Mars'],

dtype='object')

21

22 print(distance[distance < 0.8])

23 # Mercury 0.4

24 # Venus 0.7

25 # dtype: float64

26

27

28 print('------')

29 print(distance/mass)

30 # Mercury 7.272727

31 # Venus 0.858896

32 # Earth 1.000000

33 # Mars 14.018692

34 # dtype: float64

Matplotlib

About Matplotlib

matplotlib

Matplotlib Line
 1 import matplotlib.pyplot as plt

 2

 3 plt.plot([1, 2, 3, 4],[23, 42, 10, 19])

 4 #fig, ax = plt.subplots()

 5 #ax.plot(

 6 # [1, 2, 3, 4],

 7 # [23, 42, 10, 19],

 8 #)

 9 plt.show()

10 #plt.savefig('line.png')

http://matplotlib.org/

Matplotlib Line with dates
 1 import datetime

 2 import matplotlib.pyplot as plt

 3

 4 fig, subplots = plt.subplots()

 5 subplots.plot(

 6 [datetime.date(2017, 1, 5), datetime.date(2017, 3,

5), datetime.date(2017, 5, 5)\

 7],

 8 [23, 17, 19],

 9 label='An example',

10)

11 subplots.legend(loc='upper center', shadow=True)

12 fig.autofmt_xdate()

13 plt.show()

14 #plt.savefig('line_with_dates.png')

Matplotlib Simple Pie
1 import matplotlib.pyplot as plt

2

3 plt.pie([23, 42, 10, 19])

4

5 plt.show()

6 #plt.savefig('simple_pie.png')

Matplotlib Simple Pie with params
 1 import matplotlib.pyplot as plt

 2

 3 plt.pie(

 4 x = [23, 42, 10, 19],

 5 #explode = [0, 0, 0.1, 0.3],

 6 #labels = ["failure", "success", "maybe", "what"],

 7 #colors = ["red", "green", "blue", "#A395C1"],

 8 #shadow = True,

 9 #radius = 2,

10)

11

12 plt.show()

pyplot pie

Matplotlib Pie

https://matplotlib.org/api/_as_gen/matplotlib.pyplot.pie.html#matplotlib.pyplot.pie

 1 import matplotlib.pyplot as plt

 2

 3

 4 # Make a square figure and axes

 5 plt.figure(1, figsize=(6, 6))

 6 #ax = plt.axes([0.1, 0.1, 0.8, 0.8])

 7

 8 labels = 'Frogs', 'Hogs', 'Dogs', 'Logs'

 9 fracs = [15, 30, 45, 10]

10

11 explode = (0, 0.05, 0, 0)

12 plt.pie(fracs,

13 explode=explode,

14 labels=labels,

15 autopct='%1.1f%%',

16 shadow=True)

17 plt.title('Raining Hogs and Dogs',

18 bbox={'facecolor': '0.8', 'pad': 5})

19

20 plt.show()

21 #plt.savefig('pie.png')

22 #plt.savefig('pie.pdf')

Matplotlib Pie 2
 1 import matplotlib.pyplot as plt

 2

 3 cases = {

 4 'success': 38,

 5 'failure': 7,

 6 'skipped': 3,

 7 'xfailed': 8,

 8 'xpassed': 4,

 9 }

10

11 explode = (0, 0.1, 0.1, 0.1, 0.1)

12 labels = cases.keys()

13 sizes = cases.values()

14

15 fig1, ax1 = plt.subplots()

16 ax1.pie(sizes, explode=explode, labels=labels,

autopct='%1.1f%%', shadow=True, start\

17 angle=90)

18 ax1.axis('equal')

19

20 plt.tight_layout()

21 plt.show()

Plot, scatter, histogram

plot - line
scatter - just the values
histogram (to group the values into bins)
plt.hist(data, bin=10)

Seaborn

Searborn use examples
seaborn

In Jupyter notebook type %matplotlib before writing the seaborn
code.

In plain Python import matplotlib, then assign the result of the
ploting function
to a variable, and call matplotlib.pyplot.show(r).

Seaborn tip
 1 """

 2 Source : https://seaborn.pydata.org/introduction.html

 3 """

 4

 5 import seaborn as sns

 6

 7 sns.set() # Apply the default default seaborn theme,

scaling, and color palette. Op\

 8 tional.

 9

10 tips = sns.load_dataset("tips") # Load example dataset

into Pandas DataFrame

11 #print(type(tips))

12

13 # print(tips)

14

15 plot = sns.relplot(

16 x = "total_bill",

17 y = "tip",

18 col = "time",

19 hue = "smoker",

https://seaborn.pydata.org/

20 style = "smoker",

21 size = "size",

22 data = tips)

23

24 # print(type(plot)) # seaborn.axisgrid.FacetGrid

25 plot.savefig("tips.png")

Seaborn Anscombes Quartet
 1 """

 2 Anscombe's quartet

 3 ==================

 4

 5 _thumb: .4, .4

 6

 7 Source:

https://seaborn.pydata.org/examples/anscombes_quartet.html

 8 """

 9 import seaborn as sns

10 import matplotlib

11 sns.set(style="ticks")

12

13 # Load the example dataset for Anscombe's quartet

14 df = sns.load_dataset("anscombe")

15

16 # Show the results of a linear regression within each

dataset

17 r = sns.lmplot(

18 x="x",

19 y="y",

20 col="dataset",

21 hue="dataset",

22 data=df,

23 col_wrap=2,

24 ci=None,

25 palette="muted",

26 height=4,

27 scatter_kws={"s": 50, "alpha": 1})

28

29 matplotlib.pyplot.show(r)

Jupyter notebooks

Jupyter on Windows
On Windows install Anaconda
and then you’ll be able to run Jupyter notebook from the start
menu.

Jupyter on Linux and OSX
Install

For Linux and OSX I recommend using virtualenv and installing
with pip.

1 virtualenv -p python3 ~/venv3

2 source ~/venv3/bin/activate

3 pip install jupyter

Run

1 cd examples/jupyter/

2 jupyter notebook

Your browser should open. If not, there is a link in the
terminal.

Jupyter add

https://www.anaconda.com/distribution/

Open an existing notebook (ipynb file). e.g
examples/jupyter/add.ipynb
Create new notebook.
File - Save As
…
Quit - shut down the notebook server.

1 def add(x, y):

2 return x+y

3

4 add(2,3)

Planets
 1 Planet name,Distance (AU),Mass

 2 Mercury,0.4,0.055

 3 Venus,0.7,0.815

 4 Earth,1,1

 5 Mars,1.5,0.107

 6 Ceres,2.77,0.00015

 7 Jupiter,5.2,318

 8 Saturn,9.5,95

 9 Uranus,19.6,14

10 Neptune,30,17

11 Pluto,39,0.00218

12 Charon,39,0.000254

Jupyter notebook Planets
 1 %config IPCompleter.greedy=True

 2 import pandas as pd

 3 import numpy as np

 4 import matplotlib.pyplot as plt

 5

 6

 7 planets = pd.read_csv('planets.csv')

 8 planets

 9

10 planets.__class__.__name__

11 planets.columns

12 planets.dtypes

13 planets.index

14 planets.values

15 planets.describe()

16

17 #planets.sort_values('Mass', ascending=False)

18 planets.sort_values('Planet name', ascending=False)

19

20 planets.Mass

21 planets['Planet name']

22 planets[2:5]

23 planets.loc[3:6, ['Mass', 'Planet name']]

24 planets.Mass > 1

25

26 planets[planets.Mass > 1]

27 planets['Planet name'].isin(['Earth', 'Mars'])

28 planets[planets['Planet name'].isin(['Earth', 'Mars'])]

29

30 planets[(planets.Mass > 1) & (planets.Mass < 100)]

31 # element-wise boolean and

32

33 center = 'Earth'

34 this = planets[planets['Planet name'] == center]

35 mass = this.iloc[0]['Mass']

36 dist = this.iloc[0]['Distance (AU)']

37

38 # gravitational force is F = G * (mass1*mass2) / D**2

39 G = 6

40 D = abs(dist - planets['Distance (AU)'])

41 D

42

43 forces = planets.copy()

44 forces

45

46 G * (planets.Mass * mass) / D**2

47 forces['F'] = G * (planets.Mass * mass) / D**2

48 forces.drop(columns = 'Mass', inplace=True)

49 forces.drop(columns = 'Distance (AU)', inplace=True)

50 forces

Jupyter StackOverflow

Download the latest dataset from the survey.
unzip the file. Feel free to remove the __MACOSX/ directory.

 1 %config IPCompleter.greedy=True

 2 import pandas as pd

 3 import numpy as np

 4 import matplotlib.pyplot as plt

 5 import seaborn as sns

 6

 7

 8 # The following might not work on your computer if it

does not have enough free memo\

 9 ry

10 df = pd.read_csv('survey_results_public.csv')

11 df

12

13 df.size # size in memory 7,555,055 it is too big if you

only have 8gb memory

14

15 df.count()

16

17 df.info()

18

19 df.describe() # only few columns were identified to have

numeric values

20

21 df.head(3)

https://insights.stackoverflow.com/survey

Jupyter StackOverflow - selected columns
1 df = pd.read_csv('survey_results_public.csv', usecols=

['Country', 'OpenSourcer', 'Co\

2 mpTotal'])

Jupyter processing chunks
1 for chunk in pd.read_csv('survey_results_public.csv',

chunksize=chunksize):

2 process(chunk)

Jupyter StackOverflow - selected rows
 1 # Load only data from a specific country.

 2

 3 country_name = 'Israel'

 4 df = None

 5 for chunk in pd.read_csv('survey_results_public.csv',

chunksize=10000):

 6 part = chunk[chunk['Country'] == country_name]

 7 if df is None:

 8 df = part.copy(deep = True)

 9 else:

10 df = df.append(part.copy(deep = True),

ignore_index = True)

11

12

13 df.count()

14 df.size

Jupyter StackOverflow - biggest countries
(in terms of number of responses)
 1 country_count = df['Country'].value_counts()

 2 country_count

 3

 4 type(country_count) # pandas.core.series.Series

 5 # country_count.__class__.__name__ # Series

 6

 7 # We can use it either as a dictionary or as a list

 8 country_count['United States'] # 20949

 9 # country_count[0] # 20949

10 # country_count['Israel']

11

12 # Take the top 20 countries

13 first20 = country_count.head(20)

14 first20

15 # type(first20) # Series

16

17 # first20 = country_count.iloc[0:20] # part of the Series

18 # first20

19 # type(first20) # Series

20

21 #first20 = country_count[0:20]

22 # first20

23 # type(first20) # Series

24

25 # Select rows of the "biggest" countries

26 first20.keys()

Jupyter StackOverflow - historgram
1 # Historgram of the top 20 countries

2 first20.hist(bins = 20)

3

4 # Plot using Seaborn

5 plot = sns.relplot(data = first20)

6 plot.set_xticklabels(rotation=90)

Jupyter StackOverflow - filter by country
1 df['Country'] == 'Israel'

2 df [df['Country'] == 'Israel']

3

4 df[df['Country'].isin(['India', 'Israel'])]

5 df[df['Country'].isin(first20.keys())]

Jupyter StackOverflow - OpenSourcer
1 df['OpenSourcer'].value_counts()

2

3 df['OpenSourcer'].unique()

Jupyter StackOverflow - cross tabulation
 1 # Crosstabulation

 2 first10 = country_count.head(10)

 3 subset = df[df['Country'].isin(first10.keys())]

 4 # subset.count()

 5

 6 # subset['OpenSourcer'].value_counts()

 7 grouped = subset.groupby('Country')

['OpenSourcer'].value_counts()

 8 # grouped.plot.bar(figsize=(15,15))

 9

10 pd.crosstab(subset['Country'], df['OpenSourcer'])

11

12 ct = pd.crosstab(subset['Country'],

df['OpenSourcer']).apply(lambda r: 100 * r/r.sum\

13 (), axis=1)

14 ct

15

16 ct.transpose().hist(figsize=(15, 15))

Jupyter StackOverflow - salaries
1 # Try to show the average salary by country

2 grp = df.groupby('Country').mean().round({'CompTotal' :

0})

3 #grp['CompTotal']

4 pd.set_option('display.float_format', lambda x:

'{:,}'.format(x))

5 grp.sort_values('CompTotal', ascending=False)

Jupyter StackOverflow - replace values

1 nd = df.replace({'OpenSourcer' : {

2 'Never' : 0,

3 'Less than once per year' : 1,

4 'Less than once a month but more than once per

year' : 2,

5 'Once a month or more often' : 3,

6 } })

7 nd

8 nd.describe()

9 nd.groupby('Country').mean().sort_values('OpenSourcer',

ascending=False)

Jupyter StackOverflow - selected rows
1 # Distribution of responses among countries.

2 # Relation of Open Source contribution to experience.

3 # Open Source contribution by country.

4 # Look at the pdf file and create similar reports for a

specific country

Jupyter notebook Intellisense (TAB
completition)
1 %config IPCompleter.greedy=True

Jupyter examples
1 examples/jupyter/planets.csv

2

3 examples/jupyter/planets.ipynb

4

5 examples/jupyter/numpy_matrix.ipynb

6

7 examples/jupyter/seaborn_tips.ipynb

IPy Widgets

Interact
Widget list

https://ipywidgets.readthedocs.io/en/latest/examples/Using%20Interact.html
https://ipywidgets.readthedocs.io/en/latest/examples/Widget%20List.html

Testing

Traditional Organizations

Months of planning
Many months of development
Many months of testing / qa
Release once every few months or once a year
(Waterfall)

Quality Assurance

Nightly build
Testing new features
Testing bug fixes
Maybe testing critical features again and again…
…or maybe not.
Regression testing?
Testing / qa has a huge boring repetative part.
It is also very slow and expensive.

Web age Organizations

Very frequent releases (20-30 / day!)
Very little time for manual testing
CI - Continuous Integration
CD - Continuous Delivery
CD - Continuous Deployment

TDD vs Testing as an Afterthought

TDD - Test Driven Development.

*

Testing as an afterthought:
Exiting product
Mostly works
Hard to test

Why test?
Business Value
Avoid regression
Better Software Design (TDD)
Your Sanity

Testing Modes
Functional testing
Unit testing
Integration testing
Acceptance testing (BDD Behavior-driven development?)
White box
Black box
Regression testing
Usability testing
Performance testing
Load testing
Security testing
…

Testing Applications

Web site
Web application
Web API / Microservice (JSON, XML)
Mobile Application
Desktop Application (GUI)
Command-line tool (CLI)
Batch process

Testing What to test?
How would you check that they work as expected?
What if they get invalid input?
Edge cases? (e.g. 0, -1, 131314134141)
A value that is too big or two small.
Invalid or no response from third-party system.

Testing in Python
Doctest
Unittest
Pytest
Nose
Nimoy
Hypothesis
Selenium
Tox

Testing Environment

Git (or other VCS)
Virtualenv
Docker
…

Testing Setup - Fixture

Web server
Databases
Other machines
Devices
External services

Testing Resources

AB Testing Alan and Brent talk about Modern Testing

http://www.angryweasel.com/ABTesting/

Testing with unittest

Use a module
We have a module called mymath that has two methods: add and
div.

1 import mymath

2 print(mymath.add(2, 3))

3 print(mymath.div(6, 2))

 1 import mymath

 2 import sys

 3

 4 if len(sys.argv) != 4:

 5 exit("Usage: {} [add|div] INT

INT".format(sys.argv[0]))

 6

 7 if sys.argv[1] == 'add':

 8 print(mymath.add(int(sys.argv[2]), int(sys.argv[3])))

 9 if sys.argv[1] == 'div':

10 print(mymath.div(int(sys.argv[2]), int(sys.argv[3])))

Test a module
 1 import unittest

 2 import mymath

 3

 4 class TestMath(unittest.TestCase):

 5

 6 def test_match(self):

 7 self.assertEqual(mymath.add(2, 3), 5)

 8 self.assertEqual(mymath.div(6, 3), 2)

 9 self.assertEqual(mymath.div(42, 1), 42)

10 self.assertEqual(mymath.add(-1, 1), 0)

11

12 if __name__ == '__main__':

13 unittest.main()

The tested module
 1 def add(x, y):

 2 """Adding two numbers

 3

 4 >>> add(2, 3)

 5 5

 6

 7 """

 8 return x + y

 9

10 def div(x, y):

11 """Dividing two numbers

12

13 >>> div(8, 2)

14 4

15 >>> div(8, 0)

16 Traceback (most recent call last):

17 ...

18 ZeroDivisionError: integer division or modulo by zero

19

20 """

21 return x / y

22

23

24 #print add(2, 3, 4)

Testing - skeleton
 1 import unittest

 2

 3 def add(x, y):

 4 return x+y

 5

 6 class Something(unittest.TestCase):

 7

 8 def setUp(self):

 9 pass

10 #print("setup")

11

12 def tearDown(self):

13 pass

14 #print("teardown")

15

16 def test_something(self):

17 self.assertEqual(add(2, 3), 5)

18 self.assertEqual(add(0, 3), 3)

19 self.assertEqual(add(0, 3), 2)

20

21

22 def test_other(self):

23 self.assertEqual(add(-3, 3), 0)

24 self.assertEqual(add(-3, 2), 7)

25 self.assertEqual(add(-3, 2), 0)

26

27

28 if __name__ == '__main__':

29 unittest.main()

Testing
 1 import unittest

 2

 3 class TestReg(unittest.TestCase):

 4

 5 def setUp(self):

 6 self.str_number = "123"

 7 self.str_not_number = "12x"

 8

 9 def test_match1(self):

10 self.assertEqual(1, 1)

11 self.assertRegexpMatches(self.str_number,

r'^\d+$')

12

13 def test_match2(self):

14 self.assertEqual(1, 1)

15 self.assertRegexpMatches(self.str_not_number,

r'^\d+$')

16

17 if __name__ == '__main__':

18 unittest.main()

19

Test examples

pylev unittest
weighted-levenshtein

https://github.com/toastdriven/pylev
https://github.com/infoscout/weighted-levenshtein.git

Testing with PyTest

Pytest features

Organize and run test per directory (test discovery)
Run tests by name matching
Run tests by mark (smoke, integration, db)
Run tests in parallel with the xdist plugin.
Create your own fixtures and distribute them.
Create your own plugins and distribute them.

Pytest setup
Python 2

1 virtualenv venv2

2 source venv2/bin/activate

3 pip install pytest

Python 3

1 virtualenv venv3 -p python3

2 source venv3/bin/activate

3 pip install pytest

Python 3 Debian/Ubuntu

1 apt-get install python3-pytest

Python 3 RedHat/Centos

1 yum install python3-pytest

Testing with Pytest
A module called mymath with two functions: add and div.

 1 def add(x, y):

 2 """Adding two numbers

 3

 4 >>> add(2, 3)

 5 5

 6

 7 """

 8 return x + y

 9

10 def div(x, y):

11 """Dividing two numbers

12

13 >>> div(8, 2)

14 4

15 >>> div(8, 0)

16 Traceback (most recent call last):

17 ...

18 ZeroDivisionError: integer division or modulo by zero

19

20 """

21 return x / y

Testing functions
1 import mymath

2

3 def test_math():

4 assert mymath.add(2, 3) == 5

5 assert mymath.div(6, 3) == 2

6 assert mymath.div(42, 1) == 42

7 assert mymath.add(-1, 1) == 0

Testing class and methods

1 import mymath

2

3 class TestMath():

4 def test_math(self):

5 assert mymath.add(2, 3) == 5

6 assert mymath.div(6, 3) == 2

7 assert mymath.div(42, 1) == 42

8 assert mymath.add(-1, 1) == 0

Pytest - execute
1 pytest test_mymath.py

1 ============================= test session starts

==============================

2 platform darwin -- Python 3.6.3, pytest-3.3.0, py-1.5.2,

pluggy-0.6.0

3 rootdir: /Users/gabor/work/training/python, inifile:

4 collected 1 item

5

6 examples/pytest/test_mymath.py .

[100%]

7

8 =========================== 1 passed in 0.01 seconds

===========================

Pytest - execute
1 pytest

2 python -m pytest

Pytest simple module to be tested
An anagram is a pair of words containing the exact same letters in
different order. For example:

listen silent

elvis lives

1 def is_anagram(a_word, b_word):

2 return sorted(a_word) == sorted(b_word)

Pytest simple tests - success
1 from mymod_1 import is_anagram

2

3 def test_anagram():

4 assert is_anagram("elvis", "lives")

5 assert is_anagram("silent", "listen")

6 assert not is_anagram("one", "two")

Pytest simple tests - success output
 1 $ pytest test_mymod_1.py

 2

 3 ===================== test session starts

======================

 4 platform darwin -- Python 3.5.2, pytest-3.0.7, py-1.4.33,

pluggy-0.4.0

 5 rootdir: /examples/python/pt, inifile:

 6 collected 1 items

 7

 8 test_mymod_1.py .

 9

10 =================== 1 passed in 0.03 seconds

===================

Pytest simple tests - failure
Failure reported by user: is_anagram(“anagram”, “nag a
ram”) is expected to return true.
We write a test case to reproduce the problem. It should fail
now.

 1 from mymod_1 import is_anagram

 2

 3 def test_anagram():

 4 assert is_anagram("elvis", "lives")

 5 assert is_anagram("silent", "listen")

 6 assert not is_anagram("one", "two")

 7

 8 def test_multiword_anagram():

 9 assert is_anagram("ana gram", "naga ram")

10 assert is_anagram("anagram", "nag a ram")

Pytest simple tests - failure output
 1 $ pytest test_mymod_2.py

 2

 3 ===================== test session starts

======================

 4 platform darwin -- Python 3.5.2, pytest-3.0.7, py-1.4.33,

pluggy-0.4.0

 5 rootdir: /examples/python/pt, inifile:

 6 collected 2 items

 7

 8 test_mymod_2.py .F

 9

10 =========================== FAILURES

===========================

11 ____________________ test_multiword_anagram

12

13 def test_multiword_anagram():

14 assert is_anagram("ana gram", "naga ram")

15 > assert is_anagram("anagram", "nag a ram")

16 E AssertionError: assert False

17 E + where False = is_anagram('anagram', 'nag a

ram')

18

19 test_mymod_2.py:10: AssertionError

20 ============== 1 failed, 1 passed in 0.09 seconds

==============

Exercise: test math functions

Test methods of the math module.
ceil
factorial
gcd

Exercise: test this app
Write tests for the swap and average functions of the app module.
Can you find a bug?

 1 def swap(txt):

 2 '''

 3 >>> half("abcd"))

 4 cdab

 5 '''

 6 return txt[int(len(txt)/2):] + txt[:int(len(txt)/2)]

 7

 8 def average(*numbers):

 9 '''

10 >>> average(2, 4, 6)

11 4

12 '''

13 s = 0

14 c = 0

15 for n in numbers:

16 s += n

17 c += 1

18 return s/c

Exercise: test the csv module

csv
Create a CSV file, read it and check if the results are as
expected!
Test creating a CSV file?
Test round trip?

https://docs.python.org/3/library/math.html
https://docs.python.org/3/library/csv.html

Solution: Pytest test math functions
 1 import math

 2

 3 def test_gcd():

 4 assert math.gcd(6, 9) == 3

 5 assert math.gcd(17, 9) == 1

 6

 7 def test_ceil():

 8 assert math.ceil(0) == 0

 9 assert math.ceil(0.1) == 1

10 assert math.ceil(-0.1) == 0

11

12 def test_factorial():

13 assert math.factorial(0) == 1

14 assert math.factorial(1) == 1

15 assert math.factorial(2) == 2

16 assert math.factorial(3) == 6

 1 import math

 2 import pytest

 3

 4 def test_math():

 5 with pytest.raises(Exception) as exinfo:

 6 math.factorial(-1)

 7 assert exinfo.type == ValueError

 8 assert str(exinfo.value) == 'factorial() not defined

for negative values'

 9

10

11 with pytest.raises(Exception) as exinfo:

12 math.factorial(1.2)

13 assert exinfo.type == ValueError

14 assert str(exinfo.value) == 'factorial() only accepts

integral values'

Solution: Pytest test this app
 1 import app

 2

 3 def test_swap():

 4 assert app.swap("abcd") == "cdab"

 5 assert app.swap("abc") == "bca"

 6 assert app.swap("abcde") == "cdeab"

 7 assert app.swap("a") == "a"

 8 assert app.swap("") == ""

 9

10 def test_average():

11 assert app.average(2, 4) == 3

12 assert app.average(2, 3) == 2.5

13 assert app.average(42) == 42

14 #assert app.average() == 0

Solution: test the csv module
1 Tudor;Vidor;10;Hapci

2 Szundi;Morgo;7;Szende

3 Kuka;"Hofeherke;

4 alma";100;Kiralyno

5 Boszorkany;Herceg;9;Meselo

 1 import csv

 2

 3

 4 def test_csv():

 5 filename =

'../../examples/csv/process_csv_file_newline.csv'

 6 with open(filename) as fh:

 7 rd = csv.reader(fh, delimiter=';')

 8 assert rd.__next__() == ['Tudor', 'Vidor', '10',

'Hapci']

 9 assert rd.__next__() == ['Szundi', 'Morgo', '7',

'Szende']

10 assert rd.__next__() == ['Kuka', 'Hofeherke;

\nalma', '100', 'Kiralyno']

11 assert rd.__next__() == ['Boszorkany', 'Herceg',

'9', 'Meselo']

PyTest bank deposit

 1 class NegativeDeposite(Exception):

 2 pass

 3

 4 class Bank:

 5 def __init__(self, start):

 6 self.balance = start

 7

 8 def deposit(self, money):

 9 if money < 0:

10 raise NegativeDeposite('Cannot deposit

negative sum')

11 self.balance += money

12 return

PyTest expected exceptions (bank deposit)
 1 import pytest

 2 from banks import Bank, NegativeDeposite

 3

 4

 5 def test_negative_deposit():

 6 b = Bank(10)

 7 with pytest.raises(Exception) as exinfo:

 8 b.deposit(-1)

 9 assert exinfo.type == NegativeDeposite

10 assert str(exinfo.value) == 'Cannot deposit negative

sum'

1 pytest test_bank.py

2

3 test_bank.py .

PyTest expected exceptions (bank deposit) -
no exception happens
Pytest properly reports that there was no exception where an
exception was expected.

 1 class NegativeDeposite(Exception):

 2 pass

 3

 4 class Bank:

 5 def __init__(self, start):

 6 self.balance = start

 7

 8 def deposit(self, money):

 9 #if money < 0:

10 # raise NegativeDeposite('Cannot deposit

negative sum')

11 self.balance += money

12 return

1 def test_negative_deposit():

2 b = Bank(10)

3 with pytest.raises(NegativeDeposite) as e:

4 > b.deposit(-1)

5 E Failed: DID NOT RAISE <class 'Exception'>

PyTest expected exceptions (bank deposit) -
different exception is raised
 1 class NegativeDeposite(Exception):

 2 pass

 3

 4 class Bank:

 5 def __init__(self, start):

 6 self.balance = start

 7

 8 def deposit(self, money):

 9 if money < 0:

10 raise ValueError('Cannot deposit negative

sum')

11 self.balance += money

12 return

1 def test_negative_deposit():

2 b = Bank(10)

3 with pytest.raises(Exception) as exinfo:

4 b.deposit(-1)

5 > assert exinfo.type == NegativeDeposite

6 E AssertionError: assert <class 'ValueError'> ==

NegativeDeposite

7 E + where <class 'ValueError'> = <ExceptionInfo

ValueError tblen=2>.type

PyTest expected exceptions
 1 import pytest

 2

 3 def divide(a, b):

 4 if b == 0:

 5 raise ValueError('Cannot divide by Zero')

 6 return a / b

 7

 8 def test_zero_division():

 9 with pytest.raises(ValueError) as e:

10 divide(1, 0)

11 assert str(e.value) == 'Cannot divide by Zero'

PyTest expected exceptions output
1 $ pytest test_exceptions.py

2

3 test_exceptions.py .

PyTest expected exceptions (text changed)
 1 import pytest

 2

 3 def divide(a, b):

 4 if b == 0:

 5 raise ValueError('Cannot divide by Null')

 6 return a / b

 7

 8 def test_zero_division():

 9 with pytest.raises(ValueError) as e:

10 divide(1, 0)

11 assert str(e.value) == 'Cannot divide by Zero'

PyTest expected exceptions (text changed)
output
 1 $ pytest test_exceptions_text_changed.py

 2

 3

 4 def test_zero_division():

 5 with pytest.raises(ValueError) as e:

 6 divide(1, 0)

 7 > assert str(e.value) == 'Cannot divide by Zero'

 8 E AssertionError: assert 'Cannot divide by Null' ==

'Cannot divide by Zero'

 9 E - Cannot divide by Null

10 E ? ^^^^

11 E + Cannot divide by Zero

12 E ? ^^^^

PyTest expected exceptions (other
exception)
 1 import pytest

 2

 3 def divide(a, b):

 4 # if b == 0:

 5 # raise ValueError('Cannot divide by Zero')

 6 return a / b

 7

 8 def test_zero_division():

 9 with pytest.raises(ValueError) as e:

10 divide(1, 0)

11 assert str(e.value) == 'Cannot divide by Zero'

PyTest expected exceptions (other
exception) output
 1 $ pytest test_exceptions_failing.py

 2

 3 def test_zero_division():

 4 with pytest.raises(ValueError) as e:

 5 > divide(1, 0)

 6

 7 test_exceptions_failing.py:10:

 8 _

_ _ _ _

 9

10 a = 1, b = 0

11

12 def divide(a, b):

13 # if b == 0:

14 # raise ValueError('Cannot divide by Zero')

15 > return a / b

16 E ZeroDivisionError: division by zero

PyTest expected exceptions (no exception)
 1 import pytest

 2

 3 def divide(a, b):

 4 if b == 0:

 5 return None

 6 return a / b

 7

 8 def test_zero_division():

 9 with pytest.raises(ValueError) as e:

10 divide(1, 0)

11 assert str(e.value) == 'Cannot divide by Zero'

PyTest expected exceptions (no exception)
output
1 def test_zero_division():

2 with pytest.raises(ValueError) as e:

3 > divide(1, 0)

4 E Failed: DID NOT RAISE <class 'ValueError'>

PyTest: Multiple Failures

 1 def test_one():

 2 assert True

 3 print('one')

 4

 5 def test_two():

 6 assert False

 7 print('two')

 8

 9 def test_three():

10 assert True

11 print('three')

12

13 def test_four():

14 assert False

15 print('four')

16

17 def test_five():

18 assert True

19 print('five')

PyTest: Multiple Failures output
1 test_failures.py .F.F.

1 $ pytest -v test_failures.py

2

3 test_failures.py::test_one PASSED

4 test_failures.py::test_two FAILED

5 test_failures.py::test_three PASSED

6 test_failures.py::test_four FAILED

7 test_failures.py::test_five PASSED

1 $ pytest -s test_failures.py

2

3 one

4 three

5 five

PyTest Selective running of test functions

1 pytest test_mymod_2.py::test_anagram

2

3 pytest test_mymod_2.py::test_multiword_anagram

PyTest: stop on first failure
1 pytest -x

2 pytest --maxfail 42

Pytest: expect a test to fail (xfail or TODO
tests)
Use the @pytest.mark.xfail decorator to mark the test.

 1 from mymod_1 import is_anagram

 2 import pytest

 3

 4 def test_anagram():

 5 assert is_anagram("abc", "acb")

 6 assert is_anagram("silent", "listen")

 7 assert not is_anagram("one", "two")

 8

 9 @pytest.mark.xfail(reason = "Bug #42")

10 def test_multiword_anagram():

11 assert is_anagram("ana gram", "naga ram")

12 assert is_anagram("anagram", "nag a ram")

Pytest: expect a test to fail (xfail or TODO
tests)
1 $ pytest test_mymod_3.py

 1 ======= test session starts =======

 2 platform darwin -- Python 3.5.2, pytest-3.0.7, py-1.4.33,

pluggy-0.4.0

 3 Using --random-order-bucket=module

 4 Using --random-order-seed=557111

 5

 6 rootdir:

/Users/gabor/work/training/python/examples/pytest, inifile:

 7 plugins: xdist-1.16.0, random-order-0.5.4

 8 collected 2 items

 9

10 test_mymod_3.py .x

11

12 ===== 1 passed, 1 xfailed in 0.08 seconds =====

PyTest: show xfailed tests with -rx
1 $ pytest -rx test_mymod_3.py

 1 ======= test session starts =======

 2 platform darwin -- Python 3.5.2, pytest-3.0.7, py-1.4.33,

pluggy-0.4.0

 3 Using --random-order-bucket=module

 4 Using --random-order-seed=557111

 5

 6 rootdir:

/Users/gabor/work/training/python/examples/pytest, inifile:

 7 plugins: xdist-1.16.0, random-order-0.5.4

 8 collected 2 items

 9

10 test_mymod_3.py .x

11

12 ===== short test summary info =====

13 XFAIL test_mymod_3.py::test_multiword_anagram

14 Bug #42

15

16 ===== 1 passed, 1 xfailed in 0.08 seconds =====

Pytest: skipping tests
 1 import sys

 2 import pytest

 3

 4 @pytest.mark.skipif(sys.platform != 'darwin', reason="Mac

tests")

 5 def test_mac():

 6 assert True

 7

 8 @pytest.mark.skipif(sys.platform != 'linux',

reason="Linux tests")

 9 def test_linux():

10 assert True

11

12 @pytest.mark.skipif(sys.platform != 'win32',

reason="Windows tests")

13 def test_windows():

14 assert True

15

16 @pytest.mark.skip(reason="To show we can skip tests

without any condition.")

17 def test_any():

18 assert True

1 pytest test_on_condition.py

1 collected 4 items

2

3 test_on_condition.py ss.s

4

5 ==== 1 passed, 3 skipped in 0.02 seconds ====

Pytest: show skipped tests woth -rs
1 $ pytest -rs test_on_condition.py

 1 collected 4 items

 2

 3 test_on_condition.py s.ss

 4

 5 ===== short test summary info =====

 6 SKIP [1] test_on_condition.py:15: To show we can skip

tests without any condition.

 7 SKIP [1] test_on_condition.py:7: Linux tests

 8 SKIP [1] test_on_condition.py:11: Windows tests

 9

10 ==== 1 passed, 3 skipped in 0.03 seconds ====

Pytest: show extra test summmary info with -
r

(f)ailed
(E)error
(s)skipped
(x)failed
(X)passed
(p)passed
(P)passed with output
(a)all except pP

1 pytest -h

Pytest: skipping tests output in verbose
mode
1 $ pytest -v test_on_condition.py

2

3 test_on_condition.py::test_mac PASSED

4 test_on_condition.py::test_any SKIPPED

5 test_on_condition.py::test_windows SKIPPED

6 test_on_condition.py::test_linux SKIPPED

7

8 ==== 1 passed, 3 skipped in 0.01 seconds ======

Pytest verbose mode
1 $ pytest -v test_mymod_1.py

2

3 test_mymod_1.py::test_anagram PASSED

1 $ pytest -v test_mymod_2.py

2

3 test_mymod_2.py::test_anagram PASSED

4 test_mymod_2.py::test_multiword_anagram FAILED

Pytest quiet mode
1 $ pytest -q test_mymod_1.py

2 .

3 1 passed in 0.01 seconds

 1 $ pytest -q test_mymod_2.py

 2

 3 .F

 4 =========================== FAILURES

===========================

 5 ____________________ test_multiword_anagram

 6

 7 def test_multiword_anagram():

 8 assert is_anagram("ana gram", "naga ram")

 9 > assert is_anagram("anagram", "nag a ram")

10 E AssertionError: assert False

11 E + where False = is_anagram('anagram', 'nag a

ram')

12

13 test_mymod_2.py:10: AssertionError

14 1 failed, 1 passed in 0.09 seconds

PyTest print STDOUT and STDERR using -s
1 import sys

2

3 def test_hello():

4 print("hello testing")

5 print("stderr during testing", file=sys.stderr)

6 assert True

1 $ pytest -s -q test_stdout_stderr.py

2 hello testing

3 stderr during testing

4 .

5 1 passed in 0.01 seconds

PyTest failure reports

Reporting success is boring
Reporting failure can be interesting: assert + introspection

PyTest compare numbers
1 def double(n):

2 #return 2*n

3 return 2+n

4

5 def test_string_equal():

6 assert double(2) == 4

7 assert double(21) == 42

1 $ pytest test_number_equal.py

2

3 def test_string_equal():

4 assert double(2) == 4

5 > assert double(21) == 42

6 E assert 23 == 42

7 E + where 23 = double(21)

PyTest compare numbers relatively
1 def get_number():

2 return 23

3

4 def test_string_equal():

5 assert get_number() < 0

1 $ pytest test_number_less_than.py

1 def test_string_equal():

2 > assert get_number() < 0

3 E assert 23 < 0

4 E + where 23 = get_number()

PyTest compare strings
1 def get_string():

2 return "abc"

3

4 def test_string_equal():

5 assert get_string() == "abd"

1 $ pytest test_string_equal.py

1 def test_string_equal():

2 > assert get_string() == "abd"

3 E AssertionError: assert 'abc' == 'abd'

4 E - abc

5 E + abd

PyTest compare long strings
1 import string

2

3 def get_string(s):

4 return string.printable + s + string.printable

5

6 def test_long_strings():

7 assert get_string('a') == get_string('b')

1 $ pytest test_long_strings.py

 1 def test_long_strings():

 2 > assert get_string('a') == get_string('b')

 3 E AssertionError: assert

'0123456789ab...t\n\r\x0b\x0c' == '0123456789abc...t\\

 4 n\r\x0b\x0c'

 5 E Skipping 90 identical leading characters in

diff, use -v to show

 6 E Skipping 91 identical trailing characters in

diff, use -v to show

 7 E {|}~

 8 E

 9 E - a012345678

10 E ? ^

11 E + b012345678

12 E ? ^

PyTest is one string in another strings
Shows ~250 characters

1 import string

2

3 def get_string():

4 return string.printable * 30

5

6 def test_long_strings():

7 assert 'hello' in get_string()

 1 def test_long_strings():

 2 > assert 'hello' in get_string()

 3 E assert 'hello' in

'0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTU\

 4 VWXYZ!"#$%&\'()*+,-./:;<=>?@[\\]^_`{|}~

\t\n\r\x0b\x0c012345...x0b\x0c0123456789abcd\

 5

efghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!"#$%&\'()*

+,-./:;<=>?@[\\]^_`{|}~ \\

 6 t\n\r\x0b\x0c'

 7 E + where

'0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUV

WXYZ!"#\

 8 $%&\'()*+,-./:;<=>?@[\\]^_`{|}~

\t\n\r\x0b\x0c012345...x0b\x0c0123456789abcdefghijkl\

 9

mnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!"#$%&\'()*+,-./:;

<=>?@[\\]^_`{|}~ \t\n\r\x0\

10 b\x0c' = get_string()

PyTest test any expression
1 def test_expression_equal():

2 a = 3

3 assert a % 2 == 0

1 $ pytest test_expression_equal.py

2

3 def test_expression_equal():

4 a = 3

5 > assert a % 2 == 0

6 E assert (3 % 2) == 0

PyTest element in list
1 def get_list():

2 return ["monkey", "cat"]

3

4 def test_in_list():

5 assert "dog" in get_list()

1 $ pytest test_in_list.py

2

3 def test_in_list():

4 > assert "dog" in get_list()

5 E AssertionError: assert 'dog' in ['monkey', 'cat']

6 E + where ['monkey', 'cat'] = get_list()

PyTest compare lists
1 import string

2 import re

3

4 def get_list(s):

5 return list(string.printable + s + string.printable)

6

7 def test_long_lists():

8 assert get_list('a') == get_list('b')

1 $ pytest test_lists.py

2

3 def test_long_lists():

4 > assert get_list('a') == get_list('b')

5 E AssertionError: assert ['0', '1', '2...'4', '5',

...]

6 == ['0', '1', '2'...'4', '5', ...]

7 E At index 100 diff: 'a' != 'b'

8 E Use -v to get the full diff

PyTest compare short lists
 1 import string

 2 import re

 3

 4 def get_lista():

 5 return 'a', 'b', 'c'

 6 def get_listx():

 7 return 'x', 'b', 'y'

 8

 9 def test_short_lists():

10 assert get_lista() == get_listx()

1 $ pytest test_short_lists.py

1 def test_short_lists():

2 > assert get_lista() == get_listx()

3 E AssertionError: assert ('a', 'b', 'c') == ('x',

'b', 'y')

4 E At index 0 diff: 'a' != 'x'

5 E Use -v to get the full diff

PyTest compare short lists - verbose output
1 $ pytest -v test_short_lists.py

1 def test_short_lists():

2 > assert get_lista() == get_listx()

3 E AssertionError: assert ('a', 'b', 'c') == ('x',

'b', 'y')

4 E At index 0 diff: 'a' != 'x'

5 E Full diff:

6 E - ('a', 'b', 'c')

7 E ? ^ ^

8 E + ('x', 'b', 'y')

9 E ? ^ ^

PyTest compare dictionaries
 1 import string

 2 import re

 3

 4 def get_dictionary(k, v):

 5 d = dict([x, ord(x)] for x in string.printable)

 6 d[k] = v

 7 return d

 8

 9 def test_big_dictionary_different_value():

10 assert get_dictionary('a', 'def') ==

get_dictionary('a', 'abc')

11

12 def test_big_dictionary_differnt_keys():

13 assert get_dictionary('abc', 1) ==

get_dictionary('def', 2)

PyTest compare dictionaries output
 1 $ pytest test_dictionaries.py

 2

 3 ______________ test_big_dictionary_different_value

 4

 5 def test_big_dictionary_different_value():

 6 > assert get_dictionary('a', 'def') ==

get_dictionary('a', 'abc')

 7 E AssertionError: assert {'\t': 9, '\n...x0c': 12,

...}

 8 == {'\t': 9, '\n'...x0c': 12, ...}

 9 E Omitting 99 identical items, use -v to show

10 E Differing items:

11 E {'a': 'def'} != {'a': 'abc'}

12 E Use -v to get the full diff

13

14 _______________ test_big_dictionary_differnt_keys

15

16 def test_big_dictionary_differnt_keys():

17 > assert get_dictionary('abc', 1) ==

get_dictionary('def', 2)

18 E AssertionError: assert {'\t': 9, '\n...x0c': 12,

...}

19 == {'\t': 9, '\n'...x0c': 12, ...}

20 E Omitting 100 identical items, use -v to show

21 E Left contains more items:

22 E {'abc': 1}

23 E Right contains more items:

24 E {'def': 2}

25 E Use -v to get the full diff

PyTest Fixtures

In generally we call test fixture the environment in which a test
is expected to run.
Pytest uses the same word for a more generic concept. All the
techniques that make it easy to set up the environment and to
tear it down after the tests.

PyTest Fixture setup and teardown
 1 def setup_module():

 2 print("setup_module")

 3

https://en.wikipedia.org/wiki/Test_fixture

 4 def teardown_module():

 5 print("teardown_module")

 6

 7

 8 def setup_function():

 9 print(" setup_function")

10

11 def teardown_function():

12 print(" teardown_function")

13

14

15 def test_one():

16 print(" test_one")

17 assert True

18 print(" test_one after")

19

20 def test_two():

21 print(" test_two")

22 assert False

23 print(" test_two after")

24

25 def test_three():

26 print(" test_three")

27 assert True

28 print(" test_three after")

See next slide for the output.

PyTest Fixture setup and teardown output
1 test_fixture.py .F.

 1 $ pytest test_fixture.py -s

 2

 3 setup_module

 4

 5 setup_function

 6 test_one

 7 test_one after

 8 teardown_function

 9

10 setup_function

11 test_two

12 teardown_function

13

14 setup_function

15 test_three

16 test_three after

17 teardown_function

18

19 teardown_module

Note, the teardown_function is executed even after failed tests.

PyTest: Class setup and teardown
 1 class TestClass():

 2 def setup_class(self):

 3 print("setup_class called once for the class")

 4

 5 def teardown_class(self):

 6 print("teardown_class called once for the class")

 7

 8

 9 def setup_method(self):

10 print("setup_method called for every method")

11

12 def teardown_method(self):

13 print("teardown_method called for every method")

14

15

16 def test_one(self):

17 print("one")

18 assert True

19 print("one after")

20

21 def test_two(self):

22 print("two")

23 assert False

24 print("two after")

25

26 def test_three(self):

27 print("three")

28 assert True

29 print("three after")

PyTest: Class setup and teardown output
 1 $ pytest -s test_class.py

 2

 3 setup_class called once for the class

 4

 5 setup_method called for every method

 6 one

 7 one after

 8 teardown_method called for every method

 9

10 setup_method called for every method

11 two

12 teardown_method called for every method

13

14 setup_method called for every method

15 three

16 three after

17 teardown_method called for every method

18

19 teardown_class called once for the class

Pytest Dependency injection
1 def function(thingy):

2 pass

1. Find function.
2. Check parameters of the function.
3. Create the appropriate instances.
4. Call the function with the intsances.

Pytest fixture - tmpdir

 1 import os

 2

 3

 4 def test_something(tmpdir):

 5 print(tmpdir) #

/private/var/folders/ry/z60xxmw0000gn/T/pytest-of-

gabor/pyt\

 6 est-14/test_read0

 7

 8 d = tmpdir.mkdir("subdir")

 9 fh = d.join("config.ini")

10 fh.write("Some text")

11

12 filename = os.path.join(fh.dirname, fh.basename)

13

14 temp_dir = str(tmpdir)

15

16 # ...

Pytest capture STDOUT and STDERR with
capsys
Captures everything that is printed to STDOUT and STDERR so
we can compare that to the expected output and error.

 1 import sys

 2

 3 def greet(to_out, to_err=None):

 4 print(to_out)

 5 if to_err:

 6 print(to_err, file=sys.stderr)

 7

 8

 9 def test_myoutput(capsys):

10 greet("hello", "world")

11 out, err = capsys.readouterr()

12 assert out == "hello\n"

13 assert err == "world\n"

14

15 greet("next")

16 out, err = capsys.readouterr()

17 assert out == "next\n"

Pytest Fixture - home made fixtures
 1 import pytest

 2 import application

 3

 4

 5 @pytest.fixture()

 6 def getapp():

 7 print('getapp starts')

 8 app = application.App()

 9

10 yield app

11

12 app.shutdown()

13 print('getapp ends')

14

15 def test_add_user_foo(getapp):

16 getapp.add_user("Foo")

17 assert True

18

19 def test_add_user_bar(getapp):

20 getapp.add_user("Bar")

21 assert True

 1 class App:

 2 def __init__(self):

 3 self.pi = 3.14

 4 # .. set up database

 5 print("__init__ of App")

 6

 7

 8 def shutdown(self):

 9 print("shutdown of App cleaning up database")

10

11

12 def add_user(self, name):

13 print("Working on add_user({})".format(name))

 1 $ pytest -s -q fixtures.py

 2

 3 getapp starts

 4 __init__ of App

 5 Working on add_user(Bar)

 6 .shutdown of App cleaning up database

 7 getapp ends

 8

 9 getapp starts

10 __init__ of App

11 Working on add_user(Foo)

12 .shutdown of App cleaning up database

13 getapp ends

More fixtures
 1 import pytest

 2

 3 @pytest.fixture(autouse = True, scope="module")

 4 def fix_module():

 5 print("\nFix module setup")

 6 yield

 7 print("\nFix module teardown")

 8

 9

10 @pytest.fixture(autouse = True, scope="function")

11 def fix_function():

12 print("\nFix function setup")

13 yield

14 print("\nFix function teardown")

15

16

17 @pytest.fixture()

18 def blue():

19 print("\nFix blue setup")

20 yield

21 print("\nFix blue teardown")

22

23 @pytest.fixture()

24 def green():

25 print("\nFix green setup")

26 yield

27 print("\nFix green teardown")

28

29

30 def test_one(blue, green):

31 print("Test one")

32

33

34 def test_two(green, blue):

35 print("Test two")

 1 ========= test session starts =========

 2 platform linux -- Python 3.7.3, pytest-5.1.1, py-1.8.0,

pluggy-0.13.0 -- /home/gabor\

 3 /venv3/bin/python3

 4 cachedir: .pytest_cache

 5 rootdir: /home/gabor/work/slides/python/examples/pytest

 6 plugins: flake8-1.0.4

 7 collecting ... collected 2 items

 8

 9 more_fixtures.py::test_one

10 Fix module setup

11

12 Fix function setup

13

14 Fix blue setup

15

16 Fix green setup

17 Test one

18 PASSED

19 Fix green teardown

20

21 Fix blue teardown

22

23 Fix function teardown

24

25 more_fixtures.py::test_two

26 Fix function setup

27

28 Fix green setup

29

30 Fix blue setup

31 Test two

32 PASSED

33 Fix blue teardown

34

35 Fix green teardown

36

37 Fix function teardown

38

39 Fix module teardown

40

41

42 ======= 2 passed in 0.01s ====

We can’t add fixtures to test_functions as decorators (as I think
was the case in NoseTest), we need to use dependency
injection.

Pytest: Mocking - why?

Independent testing environment.
Faster tests (mock remote calls, mock whole database)
Fake some code/application/API that does not exist yet.
Test error conditions in a system not under our control.

Pytest: Mocking - what?

External dependency (e.g. an API)
STDIN/STDOUT/STDERR
Random values
Methods of a database

Pytest: One dimensional spacefight
 1 import random

 2

 3 def play():

 4 debug = False

 5 move = False

 6 while True:

 7 print("\nWelcome to another Number Guessing

game")

 8 hidden = random.randrange(1, 201)

 9 while True:

10 if debug:

11 print("Debug: ", hidden)

12

13 if move:

14 mv = random.randrange(-2, 3)

15 hidden = hidden + mv

16

17 user_input = input("Please enter your guess

[x|s|d|m|n]: ")

18 print(user_input)

19

20 if user_input == 'x':

21 print("Sad to see you leave early")

22 return

23

24 if user_input == 's':

25 print("The hidden value is ", hidden)

26 continue

27

28 if user_input == 'd':

29 debug = not debug

30 continue

31

32 if user_input == 'm':

33 move = not move

34 continue

35

36 if user_input == 'n':

37 print("Giving up, eh?")

38 break

39

40 guess = int(user_input)

41 if guess == hidden:

42 print("Hit!")

43 break

44

45 if guess < hidden:

46 print("Your guess is too low")

47 else:

48 print("Your guess is too high")

49

50

51 if __name__ == '__main__':

52 play()

Pytest: Mocking input and output
 1 import game

 2

 3 def test_immediate_exit():

 4 input_values = ['x']

 5 output = []

 6

 7 def mock_input(s):

 8 output.append(s)

 9 return input_values.pop(0)

10 game.input = mock_input

11 game.print = lambda s : output.append(s)

12

13 game.play()

14

15 assert output == [

16 '\nWelcome to another Number Guessing game',

17 'Please enter your guess [x|s|d|m|n]: ',

18 'x',

19 'Sad to see you leave early',

20]

Pytest: Mocking random
 1 import game

 2 import random

 3

 4 def test_immediate_exit():

 5 input_values = ['30', '50', '42', 'x']

 6 output = []

 7

 8 def mock_input(s):

 9 output.append(s)

10 return input_values.pop(0)

11 game.input = mock_input

12 game.print = lambda s : output.append(s)

13 random.randrange = lambda a, b : 42

14

15 game.play()

16

17 assert output == [

18 '\nWelcome to another Number Guessing game',

19 'Please enter your guess [x|s|d|m|n]: ',

20 '30',

21 'Your guess is too low',

22 'Please enter your guess [x|s|d|m|n]: ',

23 '50',

24 'Your guess is too high',

25 'Please enter your guess [x|s|d|m|n]: ',

26 '42',

27 'Hit!',

28 '\nWelcome to another Number Guessing game',

29 'Please enter your guess [x|s|d|m|n]: ',

30 'x',

31 'Sad to see you leave early',

32]

Pytest: Flask echo
 1 from flask import Flask, request

 2 eapp = Flask(__name__)

 3

 4 @eapp.route("/")

 5 def hello():

 6 return '''

 7 <form action="/echo" method="GET">

 8 <input name="text">

 9 <input type="submit" value="Echo">

10 </form>

11 '''

12

13 @eapp.route("/echo")

14 def echo():

15 answer = request.args.get('text')

16 if answer:

17 return "You said: " + answer

18 else:

19 return "Nothing to say?"

20

21

22 if __name__ == "__main__":

23 eapp.run()

Pytest: testing Flask echo
 1 import flask_echo

 2

 3 class TestEcho:

 4 def setup_method(self):

 5 self.app = flask_echo.eapp.test_client()

 6 print("setup")

 7

 8 def test_main(self):

 9 rv = self.app.get('/')

10 assert rv.status == '200 OK'

11 assert b'<form action="/echo" method="GET">' in

rv.data

12

13 def test_echo(self):

14 rv = self.app.get('/echo?text=Hello')

15 assert rv.status == '200 OK'

16 assert b'You said: Hello' in rv.data

17

18 def test_empty_echo(self):

19 rv = self.app.get('/echo')

20 assert rv.status == '200 OK'

21 assert b'Nothing to say?' in rv.data

PyTest: Run tests in parallel with xdist
1 $ pip install pytest-xdist

2 $ pytest -n NUM

PyTest: Order of tests
Pytest runs the test in the same order as they are found in the test
module:

1 def test_one():

2 assert True

3

4 def test_two():

5 assert True

6

7 def test_three():

8 assert True

1 test_order.py::test_one PASSED

2 test_order.py::test_two PASSED

3 test_order.py::test_three PASSED

PyTest: Randomize Order of tests
Install pytest-random-order

1 pip install pytest-random-order

And from now on all the test will run in a random order.

PyTest: Force default order
If for some reason we would like to make sure the order remains
the same,
we can add the following two lines of code.

1 import pytest

2 pytestmark = pytest.mark.random_order(disabled=True)

 1 import pytest

 2 pytestmark = pytest.mark.random_order(disabled=True)

 3

 4 def test_one():

 5 assert True

 6

 7 def test_two():

https://pypi.python.org/pypi/pytest-random-order

 8 assert True

 9

10 def test_three():

11 assert True

PyTest: no random order
1 pytest -p no:random-order -v

Anagram on the command line
1 from mymod_1 import is_anagram

2 import sys

3

4 if len(sys.argv) != 3:

5 exit("Usage {} STR STR".format(sys.argv[0]))

6

7 print(is_anagram(sys.argv[1], sys.argv[2]))

PyTest testing CLI
 1 import subprocess

 2

 3 def capture(command):

 4 proc = subprocess.Popen(command,

 5 stdout = subprocess.PIPE,

 6 stderr = subprocess.PIPE,

 7)

 8 out,err = proc.communicate()

 9 return out, err, proc.returncode

10

11

12 def test_anagram_no_param():

13 command = ["python3", "examples/pytest/anagram.py"]

14 out, err, exitcode = capture(command)

15 assert exitcode == 1

16 assert out == b''

17 assert err == b'Usage examples/pytest/anagram.py STR

STR\n'

18

19 def test_anagram():

20 command = ["python3", "examples/pytest/anagram.py",

"abc", "cba"]

21 out, err, exitcode = capture(command)

22 assert exitcode == 0

23 assert out == b'True\n'

24 assert err == b''

25

26 def test_no_anagram():

27 command = ["python3", "examples/pytest/anagram.py",

"abc", "def"]

28 out, err, exitcode = capture(command)

29 assert exitcode == 0

30 assert out == b'False\n'

31 assert err == b''

PyTest test discovery
Running py.test will find test files and in the files test functions.

test_*.py files
*_test.py files
test_* functions
…

 1 $ pytest

 2 =========================== test session starts

============================

 3 platform darwin -- Python 2.7.5 -- py-1.4.20 -- pytest-

2.5.2

 4 collected 3 items

 5

 6 test_fibo.py F

 7 test_fibonacci.py F

 8 test_fibonacci_ok.py .

 9

10 ================================= FAILURES

=================================

11 ________________________________ test_fibo

12

13 def test_fibo():

14 assert mymath.fibo(1) == [1]

15 assert mymath.fibo(2) == [1, 1]

16 > assert mymath.fibo(3) == [1, 1, 2]

17 E assert [1, 1, 5] == [1, 1, 2]

18 E At index 2 diff: 5 != 2

19

20 test_fibo.py:6: AssertionError

21 ______________________________ test_fibonacci

22

23 def test_fibonacci():

24 assert mymath.fibonacci(1) == 1

25 assert mymath.fibonacci(2) == 1

26 > assert mymath.fibonacci(3) == 2

27 E assert 5 == 2

28 E + where 5 = <function fibonacci at 0x107f90488>

(3)

29 E + where <function fibonacci at 0x107f90488> =

mymath.fibonacci

30

31 test_fibonacci.py:6: AssertionError

32 ==================== 2 failed, 1 passed in 0.04 seconds

====================

PyTest test discovery - ignore some tests
1 $ pytest

2

3

4 $ pytest --ignore venv3/

1 test_mymod_1.py .

2 test_mymod_2.py .F

test_*.py files
*_test.py files
TestClasses
test_* functions

…

PyTest select tests by name

–collect-only - only list the tests, don’t run them yet.
-k select by name

 1 def test_database_read():

 2 assert True

 3

 4 def test_database_write():

 5 assert True

 6

 7 def test_database_forget():

 8 assert True

 9

10 def test_ui_access():

11 assert True

12

13 def test_ui_forget():

14 assert True

1 pytest --collect-only -k database test_by_name.py

2 test_database_forget

3 test_database_read

4 test_database_write

1 pytest --collect-only -k ui test_by_name.py

2 test_ui_access

3 test_ui_forget

1 pytest --collect-only -k forget test_by_name.py

2 test_database_forget

3 test_ui_forget

1 pytest --collect-only -k "forget or read" test_by_name.py

2 test_database_read

3 test_database_forget

4 test_ui_forget

PyTest select tests by marker
Use the @pytest.mark.name decorator to tag the tests.

 1 import pytest

 2

 3 @pytest.mark.smoke

 4 def test_database_read():

 5 assert True

 6

 7 @pytest.mark.security

 8 @pytest.mark.smoke

 9 def test_database_write():

10 assert True

11

12 @pytest.mark.security

13 def test_database_forget():

14 assert True

15

16 @pytest.mark.smoke

17 def test_ui_access():

18 assert True

19

20 @pytest.mark.security

21 def test_ui_forget():

22 assert True

1 pytest --collect-only -m security test_by_marker.py

2 test_ui_forget

3 test_database_write

4 test_database_forget

1 pytest --collect-only -m smoke test_by_marker.py

2 test_database_read

3 test_ui_access

4 test_database_write

PyTest: Test Coverage
1 pip install pytest-cov

2

3 pytest --cov=my --cov-report html --cov-branch

4

5 Open htmlcov/index.html

Try werkzeug

1 pytest --cov=werkzeug --cov-report html --cov-branch

2 xdg-open htmlcov/index.html

Exercise: module
Pick one of the modules and write a test for it.

algo
editdistance Levenshtein distance implemented in C
python-Levenshtein implemented in C
pylev
pyxdameraulevenshtein
weighted-levenshtein
OpenPyXL

Exercise: Open Source
Visit the stats on PyDigger.com
List the packages that have GitHub no Travis-CI.
Pick one that sounds simple. Visit its GitHub page and check if
it has tests.
If it does not, wirte one.
Send Pull Request

https://github.com/JesperBry/algo
https://github.com/aflc/editdistance
https://github.com/ztane/python-Levenshtein/
https://github.com/toastdriven/pylev
https://github.com/gfairchild/pyxDamerauLevenshtein
https://github.com/infoscout/weighted-levenshtein
https://pydigger.com/stats
https://pydigger.com/search/has-github-no-travis-ci

Pytest resources

pytest.org
Python Testing with pytest by Brian Okken (The Pragmatic
Bookshelf)
Python Testing by Brian Okken
Talk Python to me by Michael Kennedy
Python Bytes podcast by Brian Okken and Michael Kennedy

Pytest and tempdir
 1 import re

 2

 3 def parse_file(filename):

 4 data = {}

 5 with open(filename) as fh:

 6 for row in fh:

 7 row = row.rstrip("\n")

 8 if re.search(r'=', row):

 9 k, v = re.split(r'\s*=\s*', row)

10 data[k] = v

11 else:

12 pass # error reporting?

13 return data

14

15 def save_file(filename, data):

16 with open(filename, 'w') as fh:

17 for k in data:

18 fh.write("{}={}\n".format(k, data[k]))

19

20 if __name__ == '__main__':

21 print(parse_file('a.cfg'))

1 name=Foo Bar

2 email = foo@bar.com

 1 import mycfg

 2 import os

http://pytest.org/
https://pragprog.com/book/bopytest/python-testing-with-pytest
http://pythontesting.net/
https://talkpython.fm/
https://pythonbytes.fm/

 3

 4 class TestMe:

 5 def test_parse(self):

 6 data = mycfg.parse_file('a.cfg')

 7 assert data, {

 8 'name' : 'Foo Bar',

 9 'email' : 'foo@bar.com',

10 }

11

12 def test_example(self, tmpdir):

13 original = {

14 'name' : 'My Name',

15 'email' : 'me@home.com',

16 'home' : '127.0.0.1',

17 }

18 filename = str(tmpdir.join('abc.cfg'))

19 assert not os.path.exists(filename)

20 mycfg.save_file(filename, original)

21 assert os.path.exists(filename)

22 new = mycfg.parse_file(filename)

23 assert new == original

PyTest compare short lists - output
 1 import configparser

 2 import os

 3

 4

 5 def test_read_ini(tmpdir):

 6 print(tmpdir) #

/private/var/folders/ry/z60xxmw0000gn/T/pytest-of-

gabor/pyt\

 7 est-14/test_read0

 8 d = tmpdir.mkdir("subdir")

 9 fh = d.join("config.ini")

10 fh.write("""

11 [application]

12 user = foo

13 password = secret

14 """)

15

16 print(fh.basename) # data.txt

17 print(fh.dirname) #

/private/var/folders/ry/z60xxmw0000gn/T/pytest-of-

gabor/pyt\

18 est-14/test_read0/subdir

19 filename = os.path.join(fh.dirname, fh.basename)

20

21 config = configparser.ConfigParser()

22 config.read(filename)

23

24 assert config.sections() == ['application']

25 assert config['application'], {

26 "user" : "foo",

27 "password" : "secret"

28 }

PyTest with parameter
1 import pytest

2

3 @pytest.mark.parametrize("name", ["Foo", "Bar"])

4 def test_cases(name):

5 print(f"name={name}")

6 assert len(name) == 3

 1 ======== test session starts ========

 2 platform linux -- Python 3.7.3, pytest-5.3.2, py-1.8.0,

pluggy-0.13.0

 3 rootdir: /home/gabor/work/slides/python-

programming/examples/pytest

 4 plugins: flake8-1.0.4

 5 collected 2 items

 6

 7 test_with_param.py name=Foo

 8 .name=Bar

 9 .

10

11 =========== 2 passed in 0.00s ========

PyTest with parameters

1 import pytest

2

3 @pytest.mark.parametrize("name,email", [

4 ("Foo", "foo@email.com"),

5 ("Bar", "bar@email.com"),

6])

7 def test_cases(name, email):

8 print(f"name={name} email={email}")

9 assert email.lower().startswith(name.lower())

 1 ========= test session starts =======

 2 platform linux -- Python 3.7.3, pytest-5.3.2, py-1.8.0,

pluggy-0.13.0

 3 rootdir: /home/gabor/work/slides/python-

programming/examples/pytest

 4 plugins: flake8-1.0.4

 5 collected 2 items

 6

 7 test_with_params.py name=Foo email=foo@email.com

 8 .name=Bar email=bar@email.com

 9 .

10

11 ========== 2 passed in 0.01s =======

Pytest reporting in JUnit XML format
1 pytest --junitxml report.xml

pytest-json-report

1 pip install pytest-json-report

2

3 pytest --json-report --json-report-file=report.json

Recommended to also add

1 --json-report-omit=log

https://pypi.org/project/pytest-json-report/

1 pytest -s --json-report --json-report-file=report.json --

log-cli-level=INFO

 1 import logging

 2

 3 def add(x, y):

 4 # logger = logging.getLogger("mytest")

 5 logging.basicConfig(level = logging.INFO)

 6 logging.info("Just some info log")

 7 return x * y

 8

 9 def test_one():

10 assert add(2, 2) == 4

No test selected

If you run pytest and it cannot find any tests, for example
because you used some
selector and not test matched it, then Pytest will exit with exit
code 5.

This is considered a failure by every tool, including Jenkins
and other CI systems.

On the other hand you won’t see any failed test reported. After
all if no tests are run, then none of them fails.
This can be confusing.

Advancted functions

Variable scopes

Local (inside a def)
Enclosing (in the enclosing def, aka. nonlocal)
Global (outside of all defs)

Name resolution order (LEGB)

1. Local
2. Enclosing
3. Global
4. Built-in

Scoping: global seen from fuction
1 a = 42

2 def f():

3 print(a)

4

5 f()

42

Assignment creates local scope
1 a = 42

2 def f():

3 a = 23

4 print(a)

5

6 print('ok')

7 print(a)

8 f()

9 print(a)

1 ok

2 42

3 23

4 42

Local scope gone wrong
1 a = 42

2 def f():

3 print(a)

4 a = 23

5

6 print('ok')

7 print(a)

8 f()

9 print(a)

1 ok

2 42

3 Traceback (most recent call last):

4 File "scoping_external_variable.py", line 8, in

<module>

5 f()

6 File "scoping_external_variable.py", line 3, in f

7 print(a)

8 UnboundLocalError: local variable 'a' referenced before

assignment

Accessing a global variable inside a function works, but if I change
it (make it refer to another piece of data),
then it is disallowed. If I only change the data inside (for mutable
variables), that works, but is a bad practice.

Changing global variable from a function
1 a = 42

2 def f():

3 global a

4 print(a)

5 a = 23

6

7 print(a) # 42

8 f() # 42

9 print(a) # 23

Does not need to be created outside

1 def f():

2 global a

3 a = 23

4

5 f()

6 print(a) # 23

Global variables mutable in functions
 1 a = [2]

 2

 3 def f():

 4 print(a) # [2]

 5 a.append(3)

 6 print(a) # [2, 3]

 7 a[0] = 4

 8

 9 f()

10 print(a) # [4, 3]

Scoping issues
1 text = ['aaaa', 'bb', 'ccc ccc']

2

3 length_1 = [len(s) for s in text]

4 print(length_1) # [4, 2, 7]

5

6

7 length_2 = [len(s) for x in text]

8 print(length_2) # [7, 7, 7]

List comprehensions don’t create their own scope!

sub in sub
Functions can be defined inside functions.

1 def f():

2 print("in f")

3 def g():

4 print("in g")

5 g()

6

7 f()

8 #g() # does not exist here

They are scoped locally

Scoping sub in sub (enclosing scope)
 1 def external_func():

 2 the_answer = 42

 3

 4 def func(args):

 5 print(args, "the_answer:", the_answer)

 6

 7 # the_answer = 'what was the question?'

 8 # enabling this would give:

 9 # UnboundLocalError: local variable 'the_answer'

10 # referenced before assignment

11

12 func("first")

13 func("second")

14

15 external_func()

1 first the_answer: 42

2 second the_answer: 42

Function objects
1 The difference between

2 x = foo

3 y = foo()

 1 c = 0

 2

 3 def foo():

 4 global c

 5 c += 1

 6 return c

 7

 8

 9 print(foo()) # 1

10 print(foo()) # 2

11 x = foo # assigning the function object

12 y = foo() # assigning the return value of the

function

13 print(foo()) # 4

14 print(x()) # 5

15 print(y) # 3

Functions are created at run time

def and class are run-time
Everything is runtime. Even compilation is runtime.

foo() will return a random value every time, but when
bar is defined it freezes the specific value that foo

returned when bar was created.

 1 import random

 2

 3 def foo():

 4 return random.random()

 5

 6

 7 print(foo())

 8 print(foo())

 9

10 def bar(a, b = foo()):

11 return [a, b]

12

13 print(bar(1))

14 print(bar(2))

1 0.0756804810689

2 0.350692064113

3 [1, 0.7401995987184571]

4 [2, 0.7401995987184571]

Mutable default
The default list assigned to b is created when the f functions is
defined.
After that, each call to f() (that does not get a “b” parameter) uses
this
common list.

1 def f(a, b = []):

2 b.append(a)

3 return b

4

5 print(f(1))

6 print(f(2))

7 print(f(3))

1 [1]

2 [1, 2]

3 [1, 2, 3]

Use None instead:

Use None as default parameter
1 def f(a, b = None):

2 if b == None:

3 b = []

4 b.append(a)

5 return b

6

7 print(f(1))

8 print(f(2))

9 print(f(3))

1 [1]

2 [2]

3 [3]

Inner function created every time the outer
function runs

Also defined during run-time, but in every call of bar() the
innter_func is redefined
again and again.

 1 import random

 2

 3 def foo():

 4 return random.random()

 5

 6 print(foo())

 7 print(foo())

 8

 9 def bar(a, b = foo()):

10

11 def inner_func(x, y = foo()):

12 return [x, y]

13

14 print('inner', inner_func(a))

15 return [a, b]

16

17 print(bar(1))

18 print(bar(2))

1 0.821210904648

2 0.925337844251

3 inner [1, 0.9243163421154859]

4 [1, 0.38535850141949013]

5 inner [2, 0.5665772632462458]

6 [2, 0.38535850141949013]

Static variable
There are no function-level static variables in Python, but you can
fake it quite easily

 1 def counter():

 2 if 'cnt' not in counter.__dict__:

 3 counter.cnt = 0

 4 counter.cnt += 1

 5 return counter.cnt

 6

 7 print(counter()) # 1

 8 print(counter()) # 2

 9 print(counter()) # 3

10

11 print(counter.cnt) # 3

12

13 counter.cnt = 6

14 print(counter()) # 7

Static variable in generated function
 1 def create():

 2 def func():

 3 func.cnt += 1

 4 return func.cnt

 5 func.cnt = 0

 6 return func

 7

 8 a = create()

 9 b = create()

10 print(a()) # 1

11 print(a()) # 2

12 print(b()) # 1

13 print(a()) # 3

14

15 b.cnt = 7

16 print(a.cnt) # 3

17 print(b.cnt) # 7

Inspect
The inspect module provides introspection to Python runtime.
inspect.stack returns the stack-trace. Element 0 is the deepes
(where we called inspect stack).
Each level has several values. A represantation of the frame,
filename, linenumber, subroutine-name.

 1 import inspect

 2 import sys

 3

 4 level = int(sys.argv[1])

 5

 6

 7 def f():

 8 print("in f before g")

 9 g()

10 print("in f after g")

11

12 def g():

13 print("in g")

http://docs.python.org/library/inspect.html

14 PrintFrame()

15

16

17 def PrintFrame():

18 st = inspect.stack()

19

20 frame = st[level][0]

21 info = inspect.getframeinfo(frame)

22 print('__file__: ', info.filename)

23 print('__line__: ', info.lineno)

24 print('__function__: ', info.function)

25

26 print('* file', st[level][1])

27 print('* line', st[level][2])

28 print('* sub', st[level][3])

29

30 f()

python caller.py 1

1 in f before g

2 in g

3 __file__: caller.py

4 __line__: 15

5 __function__: g

6 * file caller.py

7 * line 15

8 * sub g

9 in f after g

Variable number of function
arguments

Python function arguments - a reminder

Order of parameter
Arguments with default values are optional (and come at the
end of the definition)
Number of arguments is know at the time of function
definition. The only flexibility is provided by the optional
arguments.

 1 def f(a, b = 42):

 2 print(a)

 3 print(b)

 4

 5 f(23)

 6 # 23

 7 # 42

 8

 9 f(19, 11)

10 # 19

11 # 11

12

13 f(b=7, a=8)

14 # 8

15 # 7

16

17 # f() # (runtime) TypeError: f() takes at least

1 argument (0 given)

18 # f(1, 2, 3) # (runtime) TypeError: f() takes at most 2

arguments (3 given)

19 # f(b=10, 23) # SyntaxError: non-keyword arg after

keyword arg

20

21 # def g(a=23, b):

22 # pass

23 # SyntaxError: non-default argument follows default

argument

Functions with unknown number of
argumerns

sum(a, b, c, …)
reduce(function, a, b, c, …)
report (function, foo = 23, bar = 19, moo = 70, …)
report (function, a, b, c, …, foo = 23, bar = 19, moo = 70, …)

Variable length argument list with * and **
 1 def f(a, b=1, *args, **kwargs):

 2 print('a: ', a)

 3 print('b: ', b)

 4 print('args: ', args)

 5 print('kwargs:', kwargs)

 6 return a + b

 7

 8 f(2, 3, 4, 5, c=6, d=7)

 9 print()

10 f(2, c=5, d=6)

11 print()

12 f(10)

 1 a: 2

 2 b: 3

 3 args: (4, 5)

 4 kwargs: {'c': 6, 'd': 7}

 5

 6 a: 2

 7 b: 1

 8 args: ()

 9 kwargs: {'c': 5, 'd': 6}

10

11 a: 10

12 b: 1

13 args: ()

14 kwargs: {}

Passing arguments as they were received
(but incorrectly)
What if we need to pass the list of individual arguments (or pairs)
to another function?

 1 def f(*args, **kwargs):

 2 print('f args: ', args)

 3 print('f kwargs: ', kwargs)

 4 g(args, kwargs)

 5

 6 def g(*args, **kwargs):

 7 print('g args: ', args)

 8 print('g kwargs: ', kwargs)

 9

10 f(1, 2, a=3, b=4)

1 f args: (1, 2)

2 f kwargs: {'a': 3, 'b': 4}

3 g args: ((1, 2), {'a': 3, 'b': 4})

4 g kwargs: {}

g() received 2 individual parameters, the first was a tuple, the
second a dictionary

Unpacking args before passing them on
 1 def f(*args, **kwargs):

 2 print('f: ', args)

 3 print('f: ', kwargs)

 4 g(*args, **kwargs)

 5

 6 def g(*args, **kwargs):

 7 print('g: ', args)

 8 print('g: ', kwargs)

 9

10 f(1, 2, a=3, b=4)

1 f: (1, 2)

2 f: {'a': 3, 'b': 4}

3 g: (1, 2)

4 g: {'a': 3, 'b': 4}

Exercise: implement the my_sum function

my_sum should be able to accept any number of values and
return their sum.
my_sum() should return 0 or None. Decide yourself!
my_sum(2, 3) should return 5. etc.

Solution: implement the my_sum function
1 def my_sum(*numbers):

2 s = 0

3 for n in numbers:

4 s += n

5 return s

6

7 print(my_sum()) # 0

8 print(my_sum(2, 3)) # 5

9 print(my_sum(-1, 2, -1,)) # 0

Exercise: implement the reduce function
1 my_reduce(function, a, b, c, ...)

‘function’ is expected to be a function that receives two
arguments and returns a result.

If only the function is given, return None.
If only one value is given, return that value.
Take the first two values, run the function on them. Then take
the result and the next value and run the function on them. etc.
When no more values are left, return the last result.

1 # print(my_reduce()) # TypeError: my_reduce() takes at

least 1 argument (0 given)

2 print(my_reduce(lambda x,y: x+y)) # None

3 print(my_reduce(lambda x,y: x+y, 3)) # 3

4 print(my_reduce(lambda x,y: x+y, -1, 4, -2)) # 1

5

6 print(my_reduce(lambda x,y: x*y, -1, 4, -2)) # 8

Soluton: implement the reduce function
 1 def my_reduce(f, *args):

 2 if len(args) == 0:

 3 return None

 4 result = args[0]

 5 for i in range(1, len(args)):

 6 result = f(result, args[i])

 7 return result

 8

 9 # print(my_reduce()) # TypeError: my_reduce() takes at

least 1 argument (0 given)

10 print(my_reduce(lambda x,y: x+y)) # None

11 print(my_reduce(lambda x,y: x+y, 3)) # 3

12 print(my_reduce(lambda x,y: x+y, -1, 4, -2)) # 1

13

14 print(my_reduce(lambda x,y: x*y, -1, 4, -2)) # 8

Exercise: sort pairs
Create a function called sort_pairs, that would receive a sorting
method, e.g.
the word ‘keys’ or the word ‘values’ and will receive an arbitrary

number of key-value pairs
and will return a list of tuples.

1 sort_pairs('keys', foo = 23, bar = 47)

2 [('bar', 47), ('foo', 23)]

3

4 sort_pairs('values', foo = 23, bar = 47)

5 [('foo', 23), ('bar', 47)]

Solution: sort pairs
 1 def sort_pairs(how, **kwargs):

 2 if how == 'keys':

 3 sort_function = lambda s : s[0];

 4 elif how == 'values':

 5 sort_function = lambda s : s[1];

 6 else:

 7 raise Exception("Invalid sort function")

 8 return sorted(kwargs.items(), key=sort_function)

 9

10

11

12 k = sort_pairs('keys', foo = 23, bar = 47)

13 print(k)

14 v = sort_pairs('values', foo = 23, bar = 47)

15 print(v)

Python Packages

Why Create package

As a module gets larger and larger it will be more and more
difficult to maintain.

It might be eaier if we split it up into multiple files and put
those files inside
a directory. A ‘package’ is just that. A bunch of Python
modules that belong together
and are placed in a directory hierarchy. In order to tell Python
that you really
mean these files to be a package one must add a file called
init.py in
each directory of the project. In the most simple case the file
can be empty.

Code reuse
Separation of concerns
Easier distribution

Create package
1 mymath/

2 __init__.py

3 calc.py

4 ...

5 internal_use.py

1 def add(x, y):

2 return x+y

1 # empty

Internal usage
1 import calc

2 print(calc.add(7, 8)) # 15

3

4 from calc import add

5 print(add(3, 5)) # 8

1 cd examples/package

2 python 1/mymath/internal_use.py

use module in package - relative path
 1 import sys

 2 import os

 3

 4 path =

os.path.join(os.path.dirname(os.path.dirname(os.path.abspat

h(__file__))), '1')

 5 # print(path) # /home/gabor/work/slides/python-

programming/examples/package/1

 6 sys.path.insert(0, path)

 7

 8 import mymath.calc

 9 print(mymath.calc.add(2, 5))

10

11 from mymath.calc import add

12 print(add(2, 3))

1 7

2 5

use package (does not work)
1 import sys

2 import os

3

4 sys.path.insert(0, os.path.join(

5

os.path.dirname(os.path.dirname(os.path.abspath(__file__)))

,

6 '1'))

7

8 import mymath

9 print(mymath.calc.add(4, 7))

1 Traceback (most recent call last):

2 File "use_project/proj1_2.py", line 9, in <module>

3 print(mymath.calc.add(4, 7))

4 AttributeError: module 'mymath' has no attribute 'calc'

If we import the main package name, it does not have access to the
module inside.

package importing (and exporting) module
Put import (and thus re-export) in init.py

1 def add(x, y):

2 return x+y

1 import mymath.calc

use package (module) with import
Still works…

 1 import sys

 2 import os

 3

 4 path = os.path.join(

os.path.dirname(os.path.dirname(os.path.abspath(__file__)))

, '2\

 5 ')

 6 # print(path)

 7 sys.path.insert(0, path)

 8

 9 import mymath.calc

10 print(mymath.calc.add(2, 5)) # 7

11

12 from mymath.calc import add

13 print(add(2, 3)) # 5

use package with import
Now we can import the module from the package and use that.

 1 import sys

 2 import os

 3

 4 sys.path.insert(0, os.path.join(

 5

os.path.dirname(os.path.dirname(os.path.abspath(__file__)))

,

 6 '2'))

 7

 8 import mymath

 9 print(mymath.calc.add(4, 7)) # 11

10

11 from mymath import calc

12 print(calc.add(5, 9)) # 14

Creating an installable Python package
The directory layout of a package:

1 ├── mymath

2 │ ├── calc.py

3 │ └── __init__.py

4 └── setup.py

 1 from setuptools import setup

 2

 3

 4

 5

 6

 7 setup(name='mymath',

 8 version='0.1',

 9 description='The best math library',

10 url='http://github.com/szabgab/mymath',

11 author='Foo Bar',

12 author_email='foo@bar.com',

13 license='MIT',

14 packages=['mymath'],

15 zip_safe=False,

16)

Create tar.gz file
1 $ python setup.py sdist

mymath.egg-info/
dist/mymath-0.1.tar.gz

 1 running sdist

 2 running egg_info

 3 creating mymath.egg-info

 4 writing mymath.egg-info/PKG-INFO

 5 writing top-level names to mymath.egg-info/top_level.txt

 6 writing dependency_links to mymath.egg-

info/dependency_links.txt

 7 writing manifest file 'mymath.egg-info/SOURCES.txt'

 8 reading manifest file 'mymath.egg-info/SOURCES.txt'

 9 writing manifest file 'mymath.egg-info/SOURCES.txt'

10 warning: sdist: standard file not found: should have one

of README, README.txt

11

12 creating mymath-0.1

13 creating mymath-0.1/mymath

14 creating mymath-0.1/mymath.egg-info

15 making hard links in mymath-0.1...

16 hard linking setup.py -> mymath-0.1

17 hard linking mymath/__init__.py -> mymath-0.1/mymath

18 hard linking mymath.egg-info/PKG-INFO -> mymath-

0.1/mymath.egg-info

19 hard linking mymath.egg-info/SOURCES.txt -> mymath-

0.1/mymath.egg-info

20 hard linking mymath.egg-info/dependency_links.txt ->

mymath-0.1/mymath.egg-info

21 hard linking mymath.egg-info/not-zip-safe -> mymath-

0.1/mymath.egg-info

22 hard linking mymath.egg-info/top_level.txt -> mymath-

0.1/mymath.egg-info

23 Writing mymath-0.1/setup.cfg

24 creating dist

25 Creating tar archive

26 removing 'mymath-0.1' (and everything under it)

Install Package
1 $ pip install dist/mymath-0.1.tar.gz

1 $ easy_install --prefix ~/python/ dist/mymath-0.1.tar.gz

1 $ python setup.py install --prefix ~/python/

Upload to PyPi or distribute to your users.

Dependencies
1 requires=[

2 'lawyerup',

3],

To list them

1 $ python setup.py --requires

https://pypi.python.org/

In the setup.py file we only need to change the version number and
we
can release a new version of the package.

Add README file
 1 .

 2 ├── bin

 3 │ ├── runmymath.bat

 4 │ └── runmymath.py

 5 ├── MANIFEST.in

 6 ├── mymath

 7 │ └── test

 8 │ ├── __init__.py

 9 │ ├── test_all.py

10 │ └── test_calc.py

11 ├── README.rst

12 └── setup.py

1 mymath

2 ------

3

4 Super awesome Python module to compute the sum of

numbers.

5

6 To use:

7

8 import mymath

9 mymath.sum(1, 2, 3)

1 include README.rst

Add README file (setup.py)
In the setup.py add the following function:

1 def readme():

2 with open('README.rst') as f:

3 return f.read()

and in the setup() call include the following parameter:

1 long_description=readme(),

This will display the README file when called at

1 $ python setup.py --long-description

Include executables
 1 root/

 2 setup.py

 3 README.rst

 4 MANIFEST.in

 5 bin/

 6 runmymath.py

 7 runmymath.bat

 8 mymath/

 9 __init__.py

10 calc.py

1 import mymath

2

3 def main():

4 print("running")

5

6 main()

1 echo "hi"

setup.py will need to get

1 scripts=['bin/runmymath.py', 'bin/runmymath.bat'],

Add tests
 1 root/

 2 setup.py

 3 README.rst

 4 MANIFEST.in

 5 bin/

 6 runmymath.py

 7 runmymath.bat

 8 mymath/

 9 __init__.py

10 calc.py

11 test/

12 __init__.py

13 test_all.py

14 test_calc.py

1 #empty (needed for unittest discover)

1 python mymath/test/test_calc.py

2 python mymath/test/test_all.py

1 python -m unittest discover

Add tests calc
 1 from os.path import dirname,abspath

 2 import sys

 3

 4 sys.path.insert(0,

dirname(dirname(dirname(abspath(__file__)))))

 5 from mymath.calc import add

 6 import unittest

 7

 8 class AddTest(unittest.TestCase):

 9 def test_add(self):

10 self.assertEqual(add(2, 3), 5)

11 self.assertEqual(add(2, -2), 0)

12 #self.assertEqual(add(1, 1), 1)

13

14 if __name__ == '__main__':

15 unittest.main()

Add tests all
 1 from os.path import dirname,abspath

 2 import sys

 3

 4 sys.path.insert(0,

dirname(dirname(dirname(abspath(__file__)))))

 5 from mymath.calc import *

 6 import unittest

 7

 8 class AllTest(unittest.TestCase):

 9 def test_sum(self):

10 self.assertEqual(add(2, 3), 5)

11 #self.assertEqual(sum(1, 1), 2)

12 #self.assertEqual(div(6, 2), 3)

13

14 if __name__ == '__main__':

15 unittest.main()

setup.py
 1 from setuptools import setup

 2

 3 def readme():

 4 with open('README.rst') as f:

 5 return f.read()

 6

 7 setup(name='mymath',

 8 version='0.2',

 9 description='The best math library',

10 url='http://github.com/szabgab/mymath',

11 author='Foo Bar',

12 author_email='foo@bar.com',

13 license='MIT',

14 packages=['mymath'],

15 zip_safe=False,

16 requires=[

17 'lawyerup',

18],

19 long_description=readme(),

20 scripts=['bin/runmymath.py', 'bin/runmymath.bat'],

21)

Run tests and create package
1 python setup.py test

2 python setup.py sdist

Packaging applications (creating executable
binaries)

py2exe on Windows (discontinued)
Freeze on Linux
py2app on Mac
cx_Freeze cross-platform
PyInstaller cross-platform
Auto Py To Exe

Using PyInstaller
1 print("hello world")

1 pip install pyinstaller

2 pyinstaller myscript.py

3 pyinstaller --onefile hello_world.py

See the results in dist/

Other PyInstaller examples

http://www.py2exe.org/
https://wiki.python.org/moin/Freeze
https://py2app.readthedocs.io/en/latest/
http://cx-freeze.sourceforge.net/
http://www.pyinstaller.org/
https://nitratine.net/blog/post/auto-py-to-exe/

Use this to see where does the packaged version of our code look
for modules:

1 import sys

2

3 print(sys.path)

Use this to see how to pass command line parameters to the
packaged exe:

1 import sys

2

3 print(sys.argv)

Other
1 pyinstaller --onefile --windowed myscript.py

Py2app for Mac
1 pip install py2app

2 py2applet examples/basics/hello.py

Exercise: package

Go to Pypi, find some interesting module and install it in a
non-standard location (or in a virtualenv)
Check if it was installed (try to import it in a python script).
Take one of the previously created modules, and create a
package for it.
Install this new package in a non-standard location.
Check if it works from some other place in your file-system.

https://pypi.org/

Take the mymath package, add another method, add tests and
create the distubtable zip file.

Exercise: create executable

Go over some of the examples in the course and package that.
Package a script using some of your favorite modules.

Ctypes

ctypes - hello
 1 #include <stdio.h>

 2

 3 char * echo(char * what)

 4 {

 5 return what;

 6 }

 7

 8 int add_int(int a, int b)

 9 {

10 int sum = a+b;

11 return sum;

12 }

13

14 int add_int(int a, int b)

15 {

16 int sum = a+b;

17 return sum;

18 }

19

20

21 int main(void)

22 {

23 printf("hello\n");

24 printf("%d\n", add_int(2, 3));

25 printf("%s\n", echo("Foo"));

26 return 0;

27 }

1 gcc -o hello hello.c

2 gcc -o hello.so -shared -fPIC hello.c

 1 from ctypes import cdll

 2 from ctypes import c_char_p

 3

 4 hello_lib = cdll.LoadLibrary("hello.so")

 5

 6 print(hello_lib.add_int(4, 5)) # 9

 7

 8 print(hello_lib.echo('Hello World')) # 153977204

 9

10

11 hello_lib.echo.restype = c_char_p

12 print(hello_lib.echo('Hello World')) # Hello World

concat
 1 #include <stdio.h>

 2 #include <string.h>

 3 #include <stdlib.h>

 4

 5 int len(char * s)

 6 {

 7 return strlen(s);

 8 }

 9

10 char * concat(char * a, char * b)

11 {

12 char * res;

13 int leng = strlen(a) + strlen(b);

14 res = (char *)malloc(leng);

15 strcpy (res, a);

16 strcat (res, b);

17 return res;

18 }

19

20

21 int main(void)

22 {

23 printf("concat\n");

24 printf("%d\n", len("abc"));

25 printf("%d\n", len(""));

26 printf("%d\n", len("xxxxxxxxxx"));

27 printf("%s\n", concat("Foo1", "Bar"));

28 return 0;

29 }

 1 from ctypes import cdll

 2 from ctypes import c_char_p

 3

 4 more_lib = cdll.LoadLibrary("more.so")

 5

 6 print(more_lib.len("abcd")) # 4

 7 print(more_lib.len("")) # 0

 8 print(more_lib.len("x" * 123)) # 123

 9

10

11 more_lib.concat.restype = c_char_p

12 print(more_lib.concat("abc", "def"))

links

ctypes
Python Ctypes Tutorial

http://docs.python.org/library/ctypes.html
http://jjd-comp.che.wisc.edu/index.php/PythonCtypesTutorial

Advanced OOP

Class count instances
 1 class Person:

 2 count = 0

 3 def __init__(self, name):

 4 self.name = name

 5 #Person.count += 1

 6 #self.count += 1

 7 self.count = self.count + 1

 8

 9

10 print(Person.count)

11 joe = Person("Joe")

12 print(Person.count)

13 print(joe.count)

14

15 jane = Person("Jane")

16 print(Person.count)

17 print(jane.count)

1 0

2 0

3 1

4 0

5 1

Class Attributes

Class attributes can be created inside a class.
Assign to class attribute and fetch from it
Class attributes can be also created from the outside.

 1 class Person:

 2 name = 'Joseph'

 3

 4 print(Person.name) # Joseph

 5

 6 Person.name = 'Joe'

 7 print(Person.name) # Joe

 8

 9 Person.email = 'joe@foobar.com'

10 print(Person.email) # joe@foobar.com

Class Attributes in Instances
 1 class Person:

 2 name = 'Joe'

 3

 4 # Class Attributes are inherited by object instances when

accessing them.

 5 x = Person()

 6 print(x.name) # Joe

 7 y = Person()

 8 print(y.name) # Joe

 9

10 # Changes to class attribute are reflected in existing

instances as well

11 Person.name = 'Bar'

12 print(Person.name) # Bar

13 print(x.name) # Bar

14

15 # Setting the attribute via the instance will create an

instance attribute that

16 # shadows the class attribute

17 x.name = 'Joseph'

18 print(x.name) # Joseph

19 print(Person.name) # Bar

20 # Nor does it impact the instance attribute of other

instances:

21 print(y.name) # Bar

22

23 # Both instance and class have a dictionary containing

its members:

24 print(x.__dict__) # {'name': 'Joseph'}

25 print(y.__dict__) # {}

26 print(Person.__dict__) # {..., 'name': 'Bar'}

Attributes with method access

Use a method (show) to access it.

 1 class Person():

 2 name = 'Joe'

 3 print(f'Hello {name}')

 4

 5 def show(self):

 6 print(Person.name)

 7

 8 x = Person() # Hello Joe

 9 x.show() # Joe

10 print(x.name) # Joe

11 print(Person.name) # Joe

12

13 Person.name = 'Jane'

14 print(x.name) # Jane

15 print(Person.name) # Jane

16 x.show() # Jane

17

18 x.name = 'Hilda' # creating and setting the instance

attribute

19 print(x.name) # Hilda

20 print(Person.name) # Jane

21

22 x.show() # Jane

Instance Attribute
The attributes of the instance object can be set via ‘self’ from
within the class.

 1 class Person():

 2 name = 'Joseph'

 3

 4 def __init__(self, given_name):

 5 self.name = given_name

 6

 7 def show_class(self):

 8 return Person.name

 9

10 def show_instance(self):

11 return self.name

12

13 print(Person.name) # Joseph

14

15 Person.name = 'Classy'

16 print(Person.name) # Classy

17 # print(Person.show_class()) # TypeError: show_class()

missing 1 required positional\

18 argument: 'self'

19

20 x = Person('Joe')

21 print(x.name) # Joe

22 print(Person.name) # Classy

23 print(x.show_class()) # Classy

24 print(x.show_instance()) # Joe

25

26 Person.name = 'General'

27 print(x.name) # Joe

28 print(Person.name) # General

29 print(x.show_class()) # General

30 print(x.show_instance()) # Joe

31

32 x.name = 'Zorg' # changing the instance

attribute

33 print(x.name) # Zorg

34 print(Person.name) # General

35 print(x.show_class()) # General

36 print(x.show_instance()) # Zorg

Methods are class attributes
In this example we are going to replace the method in the class by a
newly created function.
(monkey patching)

 1 class Person():

 2 def __init__(self, name):

 3 self.name = name

 4

 5 def show(self):

 6 return self.name

 7

 8 y = Person('Jane')

 9 print(y.show()) # Jane

10

11 def new_show(some_instance):

12 print("Hello " + some_instance.name)

13 return some_instance

14

15 Person.show = new_show

16 y.show() # Hello Jane

Monkey patching
 1 class Person():

 2 def __init__(self, name):

 3 self.name = name

 4

 5 def show(self):

 6 return self.name

 7

 8 x = Person('Joe')

 9 print(x.show()) # Joe

10

11 def patch(class_name):

12 temp = class_name.show

13 def debug(*args, **kwargs):

14 print("in debug")

15 return temp(*args, **kwargs)

16 class_name.show = debug

17

18 patch(Person)

19

20 print(x.show())

21 # in debug

22 # Joe

Classes: instance method

Regular functions (methods) defined in a class are “instance
methods”. They can only be called on “instance objects” and
not on the “class object”
as see in the 3rd example.

The attributes created with “self.something = value” belong to
the individual instance object.

 1 class Date:

 2 def __init__(self, Year, Month, Day):

 3 self.year = Year

 4 self.month = Month

 5 self.day = Day

 6

 7 def __str__(self):

 8 return 'Date({}, {}, {})'.format(self.year,

self.month, self.day)

 9

10 def set_date(self, y, m, d):

11 self.year = y

12 self.month = m

13 self.day = d

 1 from mydate import Date

 2

 3 d = Date(2013, 11, 22)

 4 print(d)

 5

 6 # We can call it on the instance

 7 d.set_date(2014, 1, 27)

 8 print(d)

 9

10 # If we call it on the class, we need to pass an

instance.

11 # Not what you would normally do.

12 Date.set_date(d, 2000, 2, 1)

13 print(d)

14

15

16 # If we call it on the class, we get an error

17 Date.set_date(1999, 2, 1)

set_date is an instance method. We cannot properly call it on a
class.

1 Date(2013, 11, 22)

2 Date(2014, 1, 27)

3 Date(2000, 2, 1)

4 Traceback (most recent call last):

5 File "run.py", line 17, in <module>

6 Date.set_date(1999, 2, 1)

7 TypeError: set_date() missing 1 required positional

argument: 'd'

Class methods and class attributes
“total” is an attribute that belongs to the class. We can access it
using Date.total. We can create a @classmethod to access it,
but actually we can access it from the outside even without the
class method, just using the “class object”

 1 class Date:

 2 total = 0

 3

 4 def __init__(self, Year, Month, Day):

 5 self.year = Year

 6 self.month = Month

 7 self.day = Day

 8 Date.total += 1

 9

10 def __str__(self):

11 return 'Date({}, {}, {})'.format(self.year,

self.month, self.day)

12

13 def set_date(self, y, m, d):

14 self.year = y

15 self.month = m

16 self.day = d

17

18 @classmethod

19 def get_total(class_object):

20 print(class_object)

21 return class_object.total

 1 from mydate import Date

 2

 3 d1 = Date(2013, 11, 22)

 4 print(d1)

 5 print(Date.get_total())

 6 print(Date.total)

 7 print('')

 8

 9 d2 = Date(2014, 11, 22)

10 print(d2)

11 print(Date.get_total())

12 print(Date.total)

13 print('')

14

15 d1.total = 42

16 print(d1.total)

17 print(d2.total)

18 print(Date.get_total())

19 print(Date.total)

 1 Date(2013, 11, 22)

 2 <class 'mydate.Date'>

 3 1

 4 1

 5

 6 Date(2014, 11, 22)

 7 <class 'mydate.Date'>

 8 2

 9 2

10

11 42

12 2

13 <class 'mydate.Date'>

14 2

15 2

Classes: constructor

The “class” keyword creates a “class object”. The default
constructor of these classes are their own names.
The actual code is implemented in the __new__ method of the
object.
Calling the constructor will create an “instance object”.

Class methods - alternative constructor
Class methods are used as Factory methods, they are usually good
for alternative constructors. In order to be able to use a method as a
class-method
(Calling Date.method(…) one needs to mark the method with the
@classmethod decorator)

 1 class Date:

 2 def __init__(self, Year, Month, Day):

 3 self.year = Year

 4 self.month = Month

 5 self.day = Day

 6

 7 def __str__(self):

 8 return 'Date({}, {}, {})'.format(self.year,

self.month, self.day)

 9

10 def set_date(self, y, m, d):

11 self.year = y

12 self.month = m

13 self.day = d

14

15 @classmethod

16 def from_str(class_object, date_str):

17 '''Call as

18 d = Date.from_str('2013-12-30')

19 '''

20 print(class_object)

21 year, month, day = map(int, date_str.split('-'))

22 return class_object(year, month, day)

 1 from mydate import Date

 2

 3 d = Date(2013, 11, 22)

 4 print(d)

 5

 6 d.set_date(2014, 1, 27)

 7 print(d)

 8

 9 print('')

10 dd = Date.from_str('2013-10-20')

11 print(dd)

12

13 print('')

14 z = d.from_str('2012-10-20')

15 print(d)

16 print(z)

1 Date(2013, 11, 22)

2 Date(2014, 1, 27)

3

4 <class 'mydate.Date'>

5 Date(2013, 10, 20)

6

7 <class 'mydate.Date'>

8 Date(2014, 1, 27)

9 Date(2012, 10, 20)

Abstract Base Class

Create a class object that cannot be used to create an instance
object. (It must be subclassed)

The subclass must implement certain methods required by the
base-class.

 1 class NotImplementedError(Exception):

 2 pass

 3

 4 class Base():

 5 def foo(self):

 6 raise NotImplementedError()

 7

 8 def bar(self):

 9 raise NotImplementedError()

10

11 class Real(Base):

12 def foo(self):

13 print('foo in Real')

14 def bar(self):

15 print('bar in Real')

16 def other(self):

17 pass

18

19 class Fake(Base):

20 def foo(self):

21 print('foo in Fake')

22

23 r = Real()

24 r.foo()

25 r.bar()

26 f = Fake()

27 f.foo()

28 f.bar()

1 foo in Real

2 bar in Real

3 foo in Fake

4 Traceback (most recent call last):

5 File "no_abc.py", line 28, in <module>

6 f.bar() # NotImplementedError

7 File "no_abc.py", line 9, in bar

8 raise NotImplementedError()

9 __main__.NotImplementedError

Abstract Base Class with abc

abc

 1 from abc import ABC, abstractmethod

 2

 3 class Base(ABC):

 4 def __init__(self, name):

 5 self.name = name

 6

 7 @abstractmethod

 8 def foo(self):

 9 pass

10

11 @abstractmethod

12 def bar(self):

13 pass

ABC working example
 1 from with_abc3 import Base

 2

 3 class Real(Base):

 4 def foo(self):

 5 print('foo in Real')

 6

 7 def bar(self):

 8 print('bar in Real')

 9

10 def other(self):

11 pass

12

13 r = Real('Jane')

14 print(r.name) # Jane

1 Jane

ABC - cannot instantiate the base-class

https://docs.python.org/library/abc.html

1 from with_abc3 import Base

2

3 b = Base('Boss')

1 Traceback (most recent call last):

2 File "with_abc3_base.py", line 3, in <module>

3 b = Base('Boss')

4 TypeError: Can't instantiate abstract class Base with

abstract methods bar, foo

ABC - must implement methods
1 from with_abc3 import Base

2

3 class Fake(Base):

4 def foo(self):

5 print('foo in Fake')

6

7 f = Fake('Joe')

1 Traceback (most recent call last):

2 File "with_abc3_fake.py", line 7, in <module>

3 f = Fake('Joe')

4 TypeError: Can't instantiate abstract class Fake with

abstract methods bar

Use Python @propery to fix bad interface
(the bad interface)
When we created the class the first time we wanted to have a field
representing the age of
a person. (For simplicity of the example we onlys store the years.)

1 class Person():

2 def __init__(self, age):

3 self.age = age

4

5 p = Person(19)

6 print(p.age) # 19

7

8 p.age = p.age + 1

9 print(p.age) # 20

Only after releasing it to the public have we noticed the problem.
Age changes.

We would have been better off storing birthdate and if necessary
calculating the age.

How can we fix this?

Use Python @propery to fix bad interface
(first attempt)
This might have been a good solution, but now we cannot use this
as a “fix” as this
would change the public interface from p.age to p.age()

 1 from datetime import datetime

 2 class Person():

 3 def __init__(self, years):

 4 self.set_birthyear(years)

 5

 6 def get_birthyear(self):

 7 return datetime.now().year - self._birthyear

 8

 9 def set_birthyear(self, years):

10 self._birthyear = datetime.now().year - years

11

12 def age(self, years=None):

13 if (years):

14 self.set_birthyear(years)

15 else:

16 return self.get_birthyear()

17

18

19

20 p = Person(19)

21 print(p.age()) # 19

22

23 p.age(p.age() + 1)

24 print(p.age()) # 20

Use Python @propery to fix bad API
1 property(fget=None, fset=None, fdel=None, doc=None)

 1 from datetime import datetime

 2 class Person():

 3 def __init__(self, years):

 4 self.age = years

 5

 6 def get_birthyear(self):

 7 return datetime.now().year - self.birthyear

 8

 9 def set_birthyear(self, years):

10 self.birthyear = datetime.now().year - years

11

12 age = property(get_birthyear, set_birthyear)

13

14 p = Person(19)

15 print(p.age) # 19

16

17 p.age = p.age + 1

18 print(p.age) # 20

19

20 p.birthyear = 1992

21 print(p.age) # 28

22 # warning: this will be different if you run the

example in a year different from\

23 2020 :)

Use Python @propery decorator to fix bad
API

 1 from datetime import datetime

 2 class Person():

 3 def __init__(self, years):

 4 self.age = years

 5

 6 # creates "getter"

 7 @property

 8 def age(self):

 9 return datetime.now().year - self.birthyear

10

11 # creates "setter"

12 @age.setter

13 def age(self, years):

14 self.birthyear = datetime.now().year - years

15

16 p = Person(19)

17 print(p.age) # 19

18

19 p.age = p.age + 1

20 print(p.age) # 20

21

22

23 p.birthyear = 1992

24 print(p.age) # 28

25 # warning: this will be different if you run the

example in a year different from\

26 2020 :)

property article
property docs

Use Python @propery for value validation
 1 from datetime import datetime

 2 class Person():

 3 def __init__(self, years):

 4 self.age = years

 5

 6 @property

 7 def age(self):

 8 return datetime.now().year - self.birthyear

http://www.programiz.com/python-programming/property
https://docs.python.org/library/functions.html#property

 9

10 @age.setter

11 def age(self, years):

12 if years < 0:

13 raise ValueError("Age cannot be negative")

14 self.birthyear = datetime.now().year - years

 1 from person5 import Person

 2

 3 p = Person(19)

 4 print(p.age) # 19

 5

 6 p.age = p.age + 1

 7 print(p.age) # 20

 8

 9 p.birthyear = 1992

10 print(p.age) # 28

11 # warning: this will be different if you run the

example in a year different from\

12 2020 :)

1 from person5 import Person

2

3 print("Hello")

4

5 p = Person(-1)

 1 Hello

 2 Traceback (most recent call last):

 3 File "person5_bad_init.py", line 5, in <module>

 4 p = Person(-1)

 5 File "/home/gabor/work/slides/python-

programming/examples/classes/person/person5.p\

 6 y", line 4, in __init__

 7 self.age = years

 8 File "/home/gabor/work/slides/python-

programming/examples/classes/person/person5.p\

 9 y", line 13, in age

10 raise ValueError("Age cannot be negative")

11 ValueError: Age cannot be negative

1 Hello

2 10

3 Traceback (most recent call last):

4 File "person5_bad_setter.py", line 7, in <module>

5 p.age = -1

6 File "/home/gabor/work/slides/python-

programming/examples/classes/person/person5.p\

7 y", line 13, in age

8 raise ValueError("Age cannot be negative")

9 ValueError: Age cannot be negative

class and static methods
Static methods are used when no “class-object” and no “instance-
object” is required.
They are called on the class-object, but they don’t receive it as a
parameter.

They might be better off placed in a module, like the other_method.

 1 def other_method(val):

 2 print(f"other_method: {val}")

 3

 4 class Date(object):

 5 def __init__(self, Year, Month, Day):

 6 self.year = Year

 7 self.month = Month

 8 self.day = Day

 9

10 def __str__(self):

11 return 'Date({}, {}, {})'.format(self.year,

self.month, self.day)

12

13 @classmethod

14 def from_str(class_object, date_str):

15 '''Call as

16 d = Date.from_str('2013-12-30')

17 '''

18 print(f"from_str: {class_object}")

19 year, month, day = map(int, date_str.split('-'))

20

21 other_method(43)

22

23 if class_object.is_valid_date(year, month, day):

24 return class_object(year, month, day)

25 else:

26 raise Exception("Invalid date")

27

28 @staticmethod

29 def is_valid_date(year, month, day):

30 if 0 <= year <= 3000 and 1 <= month <= 12 and 1

<= day <= 31:

31 return True

32 else:

33 return False

 1 import mydate

 2

 3 dd = mydate.Date.from_str('2013-10-20')

 4 print(dd)

 5

 6 print('')

 7 print(mydate.Date.is_valid_date(2013, 10, 20))

 8 print(mydate.Date.is_valid_date(2013, 10, 32))

 9 print('')

10

11 x = mydate.Date.from_str('2013-10-32')

 1 from_str: <class 'mydate.Date'>

 2 other_method: 43

 3 Date(2013, 10, 20)

 4

 5 True

 6 False

 7

 8 from_str: <class 'mydate.Date'>

 9 other_method: 43

10 Traceback (most recent call last):

11 File "run.py", line 11, in <module>

12 x = mydate.Date.from_str('2013-10-32')

13 File "/home/gabor/work/slides/python-

programming/examples/classes/mydate4/mydate.p\

14 y", line 26, in from_str

15 raise Exception("Invalid date")

16 Exception: Invalid date

Destructor: del
 1 class Person:

 2 def __init__(self):

 3 print('__init__')

 4 def __del__(self):

 5 print('__del__')

 6

 7 def main():

 8 a = Person()

 9 print('in main - after')

10

11 main()

12 print('after main')

1 __init__

2 in main - after

3 __del__

4 after main

Destructor delayed
Becasue the object has a reference to itself. (Python uses both
reference count and garbage collection.)

 1 class Person:

 2 def __init__(self, name):

 3 self.name = name

 4 print(f'__init__ {name}')

 5

 6 def __del__(self):

 7 print(f'__del__ {self.name}')

 8

 9 def main():

10 a = Person('A')

11 b = Person('B')

12 a.partner = a

13 print('in main - after')

14

15 main()

16 print('after main')

1 __init__ A

2 __init__ B

3 in main - after

4 __del__ B

5 after main

6 __del__ A

Destructor delayed for both
Because the instances reference each other

 1 class Person:

 2 def __init__(self, name):

 3 self.name = name

 4 print(f'__init__ for {self.name}')

 5 def __del__(self):

 6 print(f'__del__ for {self.name}')

 7

 8 def main():

 9 a = Person('Joe')

10 b = Person('Jane')

11 a.partner = b

12 b.partner = a

13 print('in main - after')

14

15 main()

16 print('after main')

1 __init__ for Joe

2 __init__ for Jane

3 in main - after

4 after main

5 __del__ for Joe

6 __del__ for Jane

Opearator overloading
 1 import copy

 2

 3 class Rect:

 4 def __init__(self, w, h):

 5 self.width = w

 6 self.height = h

 7

 8 def __str__(self):

 9 return 'Rect[{}, {}]'.format(self.width,

self.height)

10

11 def __mul__(self, other):

12 o = int(other)

13 new = copy.deepcopy(self)

14 new.height *= o

15 return new

1 import shapes

2

3 r = shapes.Rect(10, 20)

4 print(r)

5 print(r * 3)

6 print(r)

7

8 print(4 * r)

1 Rect[10, 20]

2 Rect[10, 60]

3 Rect[10, 20]

4 Traceback (most recent call last):

5 File "rect.py", line 8, in <module>

6 print(4 * r)

7 TypeError: unsupported operand type(s) for *: 'int' and

'Rect'

In order to make the multiplication work in the other direction, one
needs to implement the rmul method.

Operator overloading methods
1 * __mul__, __rmul__

2 + __add__, __radd__

3 += __iadd__

4 < __lt__

5 <= __le__

6 ...

see all of them in datamodel

Exercise: rectangular
Take the Rect class in the shapes module. Implement rmul, but in
that case multiply the width of the rectangular.

Implement the addition of two rectangulars. I think this should be
defined only if one of the sides is the same,
but if you have an idea how to add two rectangualars of different
sides, then go ahead, implement that.

Also implement all the comparision operators when comparing two
rectangulars, compare the area of the two. (like less-than)
Do you need to implement all of them?

Exercise: SNMP numbers
SNMP numbers are strings consisting a series of integers
separated by dots: 1.5.2, 3.7.11.2
Create a class that can hold such an snmp number. Make sure
we can compare them with less-than (the comparision is pair-
wise for each number until we find two numbers that are

https://docs.python.org/reference/datamodel.html

different. If one SNMP number is the prefix is the other then
the shorter is “smaller”).
Add a class-method, that can tell us how many SNMP numbers
have been created.
Write a separate file to add unit-tests

Exercise: Implement a Gene inheritance
model combining DNA

A class representing a person. It has an attribute called “genes”
which is string of letters. Each character is a gene.
Implement the + operator on genes that will create a new
“Person” and for the gene will select one randomly from each
parent.

1 a = Person('ABC')

2 b = Person('DEF')

3

4 c = a + b

5 print(c.gene) # ABF

Exercise: imaginary numbers - complex
numbers
Create a class that will represent imaginary numbers (x, y*i)
and has methods to add and multiply two imaginary numbers.

1 The math:

2

3 z1 = (x1 + y1*i)

4 z2 = (x2 + y2*i)

5 z1+z2 = (x1 + x2 + (y1 + y2)*i)

6

7 z1*z2 = x1*y1 + x2*y2*i*i + x1*y2*i + x2*y1*i

Add operator overloading so we can really write code like:

1 z1 = Z(2, 3)

2 z2 = Z(4, 7)

3

4 zz = z1*z2

See cmath

 1 z = complex(2, 3)

 2 print(z)

 3 print(z.real)

 4 print(z.imag)

 5

 6 imag = (-1) ** 0.5

 7 print(imag)

 8

 9 i = complex(0, 1)

10 print(i)

11 print(i ** 2)

1 (2+3j)

2 2.0

3 3.0

4 (6.123233995736766e-17+1j)

5 1j

6 (-1+0j)

Solution: Rectangular
 1 import copy

 2 import shapes

 3

 4 class Rectangular(shapes.Rect):

 5

 6 def __rmul__(self, other):

 7 o = int(other)

 8 new = copy.deepcopy(self)

 9 new.width *= o

10 return new

https://docs.python.org/library/cmath.html

11

12 def area(self):

13 return self.width * self.height

14

15 def __eq__(self, other):

16 return self.area() == other.area()

17

18 def __add__(self, other):

19 new = copy.deepcopy(self)

20 if self.width == other.width:

21 new.height += other.height

22 elif self.height == other.height:

23 new.width += other.width

24 else:

25 raise Exception('None of the sides are

equal')

26 return new

 1 import shape2

 2 import unittest

 3

 4 class TestRect(unittest.TestCase):

 5

 6 def assertEqualSides(self, left, right):

 7 if isinstance(right, tuple):

 8 right = shape2.Rectangular(*right)

 9

10 if left.width != right.width:

11 raise AssertionError('widths are different')

12 if left.height != right.height:

13 raise AssertionError('heights are different')

14

15 def setUp(self):

16 self.a = shape2.Rectangular(4, 10)

17 self.b = shape2.Rectangular(2, 20)

18 self.c = shape2.Rectangular(1, 30)

19 self.d = shape2.Rectangular(4, 10)

20

21 def test_sanity(self):

22 self.assertEqualSides(self.a, self.a)

23 self.assertEqualSides(self.a, self.d)

24 try:

25 self.assertEqualSides(self.a, self.b)

26 except AssertionError as e:

27 self.assertEqual(e.args[0], 'widths are

different')

28

29 try:

30 self.assertEqualSides(self.a,

shape2.Rectangular(4, 20))

31 except AssertionError as e:

32 self.assertEqual(e.args[0], 'heights are

different')

33

34 self.assertEqualSides(self.a, (4, 10))

35

36 def test_str(self):

37 self.assertEqual(str(self.a), 'Rect[4, 10]')

38 self.assertEqual(str(self.b), 'Rect[2, 20]')

39 self.assertEqual(str(self.c), 'Rect[1, 30]')

40

41 def test_mul(self):

42 self.assertEqual(str(self.a * 3), 'Rect[4, 30]')

43 self.assertEqual(str(self.b * 7), 'Rect[2, 140]')

44

45 def test_rmul(self):

46 self.assertEqual(str(3 * self.a), 'Rect[12, 10]')

47 self.assertEqualSides(3 * self.a, (12, 10))

48

49 def test_area(self):

50 self.assertEqual(self.a.area(), 40)

51 self.assertEqual(self.b.area(), 40)

52 self.assertEqual(self.c.area(), 30)

53

54 def test_equal(self):

55 self.assertEqual(self.a, self.d)

56 self.assertEqual(self.a, self.b)

57

58 def test_add(self):

59 self.assertEqualSides(self.a +

shape2.Rectangular(4, 20), (4, 30))

60

61

62

63

64 if __name__ == '__main__':

65 unittest.main()

Solution: Implement a Gene inheritance
model combining DNA
 1 import random

 2

 3 class Person(object):

 4 def __init__(self, DNA):

 5 self.DNA = DNA

 6

 7 def gene(self):

 8 return list(self.DNA)

 9

10 def print_genes(self):

11 print(list(self.DNA))

12

13 def __add__(self, other):

14 DNA_father = self.gene()

15 DNA_mother = other.gene()

16 if len(DNA_father) != len(DNA_mother):

17 raise Exception("Incompatible couple")

18

19 DNA_childPosible_sequence = DNA_father +

DNA_mother

20 DNA_child = ""

21 for i in range(len(self.gene())):

22 DNA_child += random.choice([DNA_father[i],

DNA_mother[i]])

23

24 return Person(DNA_child)

25

26

27 a = Person("ABCD")

28 b = Person("1234")

29 c = a + b

30 print(c.DNA)

Instance counter
 1 class Bike:

 2 count = 0

 3 def __init__(self):

 4 Bike.count += 1

 5

 6 def __del__(self):

 7 Bike.count -= 1

 8

 9 def bike_trip():

10 print(Bike.count) # 0

11 a = Bike()

12 print(Bike.count) # 1

13 b = Bike()

14 print(Bike.count) # 2

15 c = Bike()

16 print(Bike.count) # 3

17 b = None

18 print(Bike.count) # 2

19

20

21 bike_trip()

22 print(Bike.count) # 0

2to3

Convertig from Python 2 to Python 3
from future import …

division
1 print 3/2 # 1

1 from __future__ import division

2

3 print 3/2 # 1.5

print in Python 2
1 fname = 'Foo'

2 lname = 'Bar'

3 print("Name: %s %s" % (fname, lname))

4 print("Name: {} {}".format(fname, lname))

5 print(fname, lname)

6 print fname, lname

1 Name: Foo Bar

2 Name: Foo Bar

3 ('Foo', 'Bar')

4 Foo Bar

print in Python 3
print now requires print()

1 from __future__ import print_function

2

3 fname = 'Foo'

4 lname = 'Bar'

5 print("Name: %s %s" % (fname, lname))

6 print("Name: {} {}".format(fname, lname))

7 print(fname, lname)

1 Name: Foo Bar

2 Name: Foo Bar

3 Foo Bar

input and raw_input
raw_input() was renamed to input()

In Python 2 raw_input() returned the raw string. input(), on the
other hand ran eval(raw_input())
which meant it tried to execute the input string as a piece of Python
code. This was dangerous and was not really used.

In Python 3 raw_input() is gone. input() behaves as the old
raw_input() returning the raw string. If you would like to get the
old,
and dangerous, behavior of input() you can call eval(input()).

Code that works on both 2 and 3
1 import platform

2

3 def my_input(text):

4 if platform.python_version_tuple()[0] == 3:

5 return input(text)

6 else:

7 return raw_input(text)

Compare different types
1 x = 3

2 y = '3'

3

4 # Python 2 Python 3

5 print(x > y) # False TypeError:

unorderable types: int() > str()

6 print(x < y) # True TypeError:

unorderable types: int() < str()

7 print(x == y) # False False

Octal numbers
Octal numbers in 2.x was 011 in 3.x is: 0o11

2to3 Resources
python3porting book
wiki
Dive into Python 3
The future module
The third-party future module
The six module
docs of 2to3

http://python3porting.com/
https://wiki.python.org/moin/PortingPythonToPy3k
http://www.diveintopython3.net/porting-code-to-python-3-with-2to3.html
http://docs.python.org/library/__future__.html
http://python-future.org/
http://pythonhosted.org/six/
http://docs.python.org/library/2to3.html

Design Patterns

What are Design Patterns?

Not all the Design Patterns discussed for Java or C++ are
interesting, relevant or even needed in Python.
Design Patterns are formal descriptions of how people do
things, and not how you should do things.
The formal description makes it easy to talk about them.

Some of the DPs exists to overcome problems in that specific
language.
Oher DPs are more general, solving classes of problem that are
generic.

Don’t replace built-in objects
1 import sys

2

3 print = 'hello'

4 sys.stdout.write(print)

5 sys.stdout.write('\n')

1 pip install flake8-builtins

2 flake8 --ignore= replace_print.py

3

4 replace_print.py:3:1: A001 "print" is a python builtin

and is being shadowed, consid\

5 er renaming the variable

Facade - simple interface to complex system

Facade, a structural design pattern. - Provide a simple interface
(maybe a single class with few methods) to some complex
system behind it.
This gives flexibility for the implementation of the complex
system while users gain simplicity in using
it in certain subsets of operations.

1 os.path.basename, os.path.dirname are faced for

os.path.split + indexing in the list

2 os.path.basename = os.path.split()[-1]

3 os.path.split = split with os.sep

4 os.path.join(names) = os.sep.join(names)

5 os.path.isdir(path) = stat.S_ISDIR(os.stat(path))

[](http://docs.python.org/library/os.path.html)
[](http://docs.python.org/library/os.html)
[](http://docs.python.org/library/stat.html)

Monkey Patching
1 import real_class

2 class faker(object): pass

3 fake = faker

4 real_class.time = fake

5 fake.sleep =

6 fake.time =

handy in emergencies
easily abused for NON-emergencies - gives dynamic
languages a bad name

subtle hidden “communication” via secret obscure pathways
(explicit is better)

 1 class Monkey:

 2

 3 def __init__(self, count):

 4 self.bananas = count

 5

 6 def is_hungry(self):

 7 hungry = True

 8 if hungry:

 9 self.eat()

10

11 def eat(self):

12 self.bananas -= 1

13

14

15 m = Monkey(10)

16 print(m.bananas) # 10

17 print(m.is_hungry()) # None

18 print(m.bananas) # 9

19

20 Monkey.eat = lambda self: True

21

22 om = Monkey(10)

23 print(om.bananas) # 10

24 print(om.is_hungry()) # None

25 print(om.bananas) # 10

Creation DPs “Just One”
we want just one instance to exist

Singleton - subclassing can never be really smooth
Use a module instead of a class (no inheritance, no special
methods)
make just one instance (self discipline, no enforcement), need
to decide to “when” (in which part if the code) to make it
monostate (borg)

Singleton
1 class Singleton(object):

2 def __new__(cls, *a, **kw):

3 if not hasattr(cls, '_inst'):

4 cls._inst = super(Singleton, cls).__new__(*a,

**kw)

5 return cls._inst

the problem

1 class Foo(Singleton): pass

2 class Bar(Foo): pass

3 f = Foo()

4 b = Bar()

5 # what class is b now? is that a Bar or a Foo

instance?

Monostate (Borg)
Monostate Pattern

 1 class Monostate(object):

 2 _shared_state = {}

 3 def __new__(cls, *a, **kw):

 4 obj = super(Monostate, cls).__new__(*a, **kw)

 5 obj.__dict__ = _shared_state

 6 return obj

 7

 8 class Foo(Monostate) pass

 9 class Bar(Foo) pass

10 f = Foo()

11 b = Bar()

Better than singleton, data overriding to the rescue:
But what if two calls to the constructor provide different initial
data?

http://c2.com/cgi/wiki?MonostatePattern

Dispatch table
 1 calls = []

 2 calls.append(lambda x: x+1)

 3 calls.append(lambda x: x*2)

 4

 5 others = [

 6 lambda x: x-1,

 7 lambda x: 0

 8]

 9

10 def do_something(call_list):

11 for c in call_list:

12 print(c(3))

13

14

15 do_something(calls)

16 do_something(others)

Parallel

Types of Problems

CPU intensive application - use more of the cores to reduce the
wallclock time.
IO intensive applications - don’t waste the CPU and wallclock
time while waiting for the IO process.
Interactive applications - make sure they are responsive during
long operations.

Types of solutions

Number of processes (forking on Unix or spawning)
Number of threads (Single threaded vs Multi-threaded)
Asynchronous, non-blocking or synchronous vs blocking (aka
“normal”) Cooperative Multitasking

How many parallels to use?
* First of all, I call them “parallels” as this applies to forks, threads,
spawns, and even to async code.

Overhead of creating new parallel.
Overhead of communication (sending job input to parallel,
receiving results).
Total number of items to process.
Time it takes to process an item.

Distribution of processing times. (e.g. one long and many short
jobs.)
Number of cores (CPUs).

Dividing jobs

N items to process
K in parallel

Divide the items in K groups of size int(N/K) and int(N/K)+1.
Create K parallels with one item each. When it is done, give it
another item.
Create K parallels with one item each. When done let it stop
and create a new parallel.

Performance Monitoring
Linux, OSX: htop
Windows: Performance Monitor

Threads

Python Threading docs

threading
Real Python
Wikibooks

Threaded counters
 1 import threading

 2 import sys

 3

 4 class ThreadedCount(threading.Thread):

 5 def run(self):

 6 for cnt in range(6):

 7 print(f"{cnt}

{threading.current_thread().name}")

 8 return

 9

10 a = ThreadedCount()

11 b = ThreadedCount()

12 c = ThreadedCount()

13

14 a.start()

15 b.start()

16 c.start()

17 print('main - Running {}

threads'.format(threading.active_count()))

18

19 a.join()

20 b.join()

21 c.join()

22 print("main - thread is done")

https://docs.python.org/library/threading.html
https://realpython.com/intro-to-python-threading/
https://en.wikibooks.org/wiki/Python_Programming/Threading

 1 0 Thread-1

 2 1 Thread-1

 3 0 Thread-2

 4 2 Thread-1

 5 1 Thread-2

 6 0 Thread-3

 7 3 Thread-1

 8 2 Thread-2

 9 main - Running 4 threads

10 3 Thread-2

11 1 Thread-3

12 4 Thread-2

13 2 Thread-3

14 5 Thread-2

15 3 Thread-3

16 4 Thread-1

17 4 Thread-3

18 5 Thread-1

19 5 Thread-3

20 main - thread is done

Simple threaded counters
 1 import threading

 2 import sys

 3

 4 class ThreadedCount(threading.Thread):

 5 def run(self):

 6 thread = threading.current_thread()

 7 print('{} - start'.format(thread.name))

 8 for c in range(10):

 9 print('{} - count {}'.format(thread.name, c))

10 print('{} - end'.format(thread.name))

11 return

12

13 a = ThreadedCount()

14 b = ThreadedCount()

15 c = ThreadedCount()

16 a.start()

17 b.start()

18 c.start()

19

20 print('main - running {}

threads'.format(threading.active_count()))

21

22 a.join()

23 b.join()

24 c.join()

25 print("main - thread is done")

 1 Thread-1 - start

 2 Thread-1 - count 0

 3 Thread-1 - count 1

 4 Thread-2 - start

 5 Thread-1 - count 2

 6 Thread-2 - count 0

 7 Thread-1 - count 3

 8 Thread-3 - start

 9 main - running 4 threads

10 Thread-2 - count 1

11 Thread-1 - count 4

12 Thread-2 - count 2

13 Thread-1 - count 5

14 Thread-2 - count 3

15 Thread-1 - count 6

16 Thread-2 - count 4

17 Thread-1 - count 7

18 Thread-2 - count 5

19 Thread-1 - count 8

20 Thread-2 - count 6

21 Thread-1 - count 9

22 Thread-2 - count 7

23 Thread-1 - end

24 Thread-2 - count 8

25 Thread-2 - count 9

26 Thread-2 - end

27 Thread-3 - count 0

28 Thread-3 - count 1

29 Thread-3 - count 2

30 Thread-3 - count 3

31 Thread-3 - count 4

32 Thread-3 - count 5

33 Thread-3 - count 6

34 Thread-3 - count 7

35 Thread-3 - count 8

36 Thread-3 - count 9

37 Thread-3 - end

38 main - thread is done

Simple threaded counters (parameterized)
The same as the previous one, but with parameters controlling the
numbers
of threads and the range of the counter.

 1 import threading

 2 import sys

 3

 4 num_threads, count_till = 3, 5

 5

 6 class ThreadedCount(threading.Thread):

 7 def run(self):

 8 thread = threading.current_thread()

 9 print(f'{thread.name} - start')

10 for cnt in range(count_till):

11 print(f'{thread.name} - count {cnt}')

12 print(f'{thread.name} - end')

13 return

14

15 threads = []

16 for ix in range(num_threads):

17 threads.append(ThreadedCount())

18

19 for th in threads:

20 th.start()

21

22 print('main - running {}

threads'.format(threading.active_count()))

23

24 for th in threads:

25 th.join()

26 print("main - thread is done")

 1 Thread-1 - start

 2 Thread-1 - count 0

 3 Thread-1 - count 1

 4 Thread-1 - count 2

 5 Thread-1 - count 3

 6 Thread-1 - count 4

 7 Thread-1 - end

 8 Thread-2 - start

 9 Thread-2 - count 0

10 Thread-2 - count 1

11 Thread-2 - count 2

12 Thread-2 - count 3

13 Thread-2 - count 4

14 Thread-2 - end

15 Thread-3 - start

16 Thread-3 - count 0

17 Thread-3 - count 1

18 Thread-3 - count 2

19 Thread-3 - count 3

20 Thread-3 - count 4

21 Thread-3 - end

22 main - running 1 threads

23 main - thread is done

Pass parameters to threads - Counter with
attributes
 1 import threading

 2 import sys

 3

 4 class ThreadedCount(threading.Thread):

 5 def __init__(self, name, start, stop):

 6 super().__init__()

 7 self.name = name

 8 self.counter = start

 9 self.limit = stop

10 print('__init__ of {} in {}'.format(self.name,

threading.current_thread()))

11

12 def run(self):

13 print('start run of {} in {}'.format(self.name,

threading.current_thread()))

14 while self.counter < self.limit:

15 print('count {} of {}'.format(self.name,

self.counter))

16 self.counter += 1

17 print('end run of {} in {}'

18 .format(self.name,

threading.current_thread()))

19 return

20

21 foo = ThreadedCount("Foo", 1, 11)

22 bar = ThreadedCount("Bar", 1, 11)

23 foo.start()

24 bar.start()

25 print('main - running {}

threads'.format(threading.active_count()))

26 foo.join()

27 bar.join()

28 print("main - thread is done")

 1 __init__ of Foo in <_MainThread(MainThread, started

139645405484864)>

 2 __init__ of Bar in <_MainThread(MainThread, started

139645405484864)>

 3 start run of Foo in <ThreadedCount(Foo, started

139645391374080)>

 4 count Foo of 1

 5 count Foo of 2

 6 start run of Bar in <ThreadedCount(Bar, started

139645382981376)>

 7 count Bar of 1

 8 main - running 3 threads

 9 count Foo of 3

10 count Bar of 2

11 count Foo of 4

12 count Bar of 3

13 count Foo of 5

14 count Bar of 4

15 count Foo of 6

16 count Bar of 5

17 count Foo of 7

18 count Bar of 6

19 count Foo of 8

20 count Bar of 7

21 count Foo of 9

22 count Bar of 8

23 count Foo of 10

24 count Bar of 9

25 end run of Foo in <ThreadedCount(Foo, started

139645391374080)>

26 count Bar of 10

27 end run of Bar in <ThreadedCount(Bar, started

139645382981376)>

28 main - thread is done

Create a central counter
 1 import threading

 2 import sys

 3 import time

 4

 5 cnt = 0

 6 num = 30

 7 limit = 100000

 8

 9 class ThreadedCount(threading.Thread):

10 def __init__(self):

11 threading.Thread.__init__(self)

12 self.counter = 0

13

14 def run(self):

15 global cnt

16 while self.counter < limit:

17 self.counter += 1

18 cnt += 1

19 return

20

21 start = time.time()

22 threads = [ThreadedCount() for n in range(num)]

23 [t.start() for t in threads]

24 [t.join() for t in threads]

25 end = time.time()

26

27 print("Expected: {}".format(num * limit))

28 print("Received: {}".format(cnt))

29 print("Elapsed: {}".format(end-start))

30

31 # Expected: 3000000

32 # Received: 2659032

33 # Elapsed: 0.437514066696167

Lock - acquire - release
 1 import threading

 2 import sys

 3 import time

 4

 5 cnt = 0

 6 num = 30

 7 limit = 100000

 8

 9 locker = threading.Lock()

10

11 class ThreadedCount(threading.Thread):

12 def __init__(self):

13 threading.Thread.__init__(self)

14 self.counter = 0

15 def run(self):

16 global cnt

17 while self.counter < limit:

18 self.counter += 1

19 locker.acquire()

20 cnt += 1

21 locker.release()

22 return

23

24 start = time.time()

25 threads = [ThreadedCount() for n in range(num)]

26 [t.start() for t in threads]

27 [t.join() for t in threads]

28 end = time.time()

29

30 print("Expected: {}".format(num * limit))

31 print("Received: {}".format(cnt))

32 print("Elapsed: {}".format(end-start))

33

34 # Expected: 3000000

35 # Received: 3000000

36 # Elapsed: 12.333643198013306

Counter - plain

 1 import sys

 2 import time

 3

 4 cnt = 0

 5 num = 30

 6 limit = 100000

 7

 8 class Count():

 9 def __init__(self):

10 self.counter = 0

11 def run(self):

12 global cnt

13 while self.counter < limit:

14 self.counter += 1

15 cnt += 1

16 return

17

18 start = time.time()

19 for _ in range(num):

20 c = Count()

21 c.run()

22 end = time.time()

23

24 print("Expected: {}".format(num * limit))

25 print("Received: {}".format(cnt))

26 print("Elapsed: {}".format(end-start))

27

28 # Expected: 3000000

29 # Received: 3000000

30 # Elapsed: 0.4130408763885498

GIL - Global Interpreter Lock

Solves the problem introduced by having reference count.
Not going away any time soon.

GIL wiki
GIL realpython

https://wiki.python.org/moin/GlobalInterpreterLock
https://realpython.com/python-gil/

Thread load
 1 import threading

 2 import sys

 3 import time

 4 import random

 5

 6

 7 results = []

 8 locker = threading.Lock()

 9

10 class ThreadedCount(threading.Thread):

11 def __init__(self, n):

12 threading.Thread.__init__(self)

13 self.n = n

14

15 def run(self):

16 count = 0

17 total = 0

18 while count < 40000000 / self.n:

19 rnd = random.random()

20 total += rnd

21 count += 1

22

23 locker.acquire()

24 results.append({'count': count, 'total': total})

25 locker.release()

26 return

27

28 def main():

29 if len(sys.argv) != 2:

30 exit("Usage: {} POOL_SIZE")

31 size = int(sys.argv[1])

32 start = time.time()

33 threads = [ThreadedCount(n=size) for i in

range(size)]

34 [t.start() for t in threads]

35 [t.join() for t in threads]

36 print("Results: {}".format(results))

37 totals = map(lambda r: r['total'], results)

38 print("Total: {}".format(sum(totals)))

39 end = time.time()

40 print(end - start)

41

42 if __name__ == '__main__':

43 main()

1 $ time python thread_load.py 1

2 Results: [{'count': 40000000, 'total':

19996878.531261113}]

3 Total: 19996878.531261113

4 6.478948354721069

5

6 real 0m6.539s

7 user 0m6.491s

8 sys 0m0.012s

 1 $ time python thread_load.py 4

 2 Results: [{'count': 10000000, 'total':

5000680.7382364655}, {'count': 10000000, 'tot\

 3 al': 5000496.15077697}, {'count': 10000000, 'total':

5000225.747780174}, {'count': 1\

 4 0000000, 'total': 4999503.803068357}]

 5 Total: 20000906.43986197

 6 6.180345296859741

 7

 8 real 0m6.241s

 9 user 0m6.283s

10 sys 0m0.029s

Exercise: thread files

Get a list of files (from the current directory or from all the
files in the “slides” repository.
Process each file:

1. get size of file
2. count how many times each character appear in the file.

The script should accept the number of threads to use.

Exercise: thread URL requests.

In the following script we fetch the URLs listed in a file:

 1 https://google.com/

 2 https://youtube.com/

 3 https://facebook.com/

 4 https://baidu.com/

 5 https://twitter.com/

 6 https://instagram.com/

 7 https://wikipedia.com/

 8 https://www.amazon.com/

 9 https://yahoo.com/

10 https://yandex.ru/

11 https://vk.com/

12 https://live.com/

13 https://naver.com/

14 https://yahoo.co.jp/

15 https://google.com.br/

16 https://netflix.com/

17 https://reddit.com/

18 https://ok.ru/

19 https://mail.ru/

20 https://ebay.com/

21 https://linkedin.com/

22 https://qq.com/

23 https://pinterest.com/

24 https://bing.com/

25 https://whatsapp.com/

26 https://office.com/

27 https://amazon.de/

28 https://aliexpress.com/

29 https://amazon.co.jp/

30 https://msn.com/

31 https://google.de/

32 https://paypal.com/

33 https://rakuten.co.jp/

34 https://amazon.co.uk/

35 https://daum.net/

36 https://google.co.jp/

37 https://taobao.com/

38 https://bilbili.com/

39 https://imdb.com/

40 https://booking.com/

41 https://roblox.com/

42 https://9apps.com/

43 https://globo.com/

44 https://duckduckgo.com/

45 https://www.nttdocomo.co.jp/

It takes about 1.5-2 sec / URL from home. (It depends on a lot of
factors including your network connection.)

 1 import time

 2 import requests

 3 import sys

 4 from bs4 import BeautifulSoup

 5

 6 def get_urls(limit):

 7 with open('urls.txt') as fh:

 8 urls = list(map(lambda line: line.rstrip("\n"),

fh))

 9 if len(urls) > limit:

10 urls = urls[:limit]

11

12 return urls

13

14 def get_title(url):

15 try:

16 resp = requests.get(url)

17 if resp.status_code != 200:

18 return None, f"Incorrect status_code

{resp.status_code} for {url}"

19 except Exception as err:

20 return None, f"Error: {err} for {url}"

21

22 soup = BeautifulSoup(resp.content, 'html.parser')

23 return soup.title.string, None

24

25 def main():

26 if len(sys.argv) < 2:

27 exit(f"Usage: {sys.argv[0]} LIMIT")

28 limit = int(sys.argv[1])

29 urls = get_urls(limit)

30 print(urls)

31 start = time.time()

32

33 titles = []

34 for url in urls:

35 #print(f"Processing {url}")

36 title, err = get_title(url)

37 if err:

38 print(err)

39 else:

40 print(title)

41 titles.append({

42 "url": url,

43 "title": title,

44 "err": err,

45 })

46 end = time.time()

47 print("Elapsed time: {} for {} pages.".format(end-

start, len(urls)))

48 print(titles)

49

50

51 if __name__ == '__main__':

52 main()

Create a version of the above script that can use K threads.

Exercise: thread queue
Write an application that handles a queue of jobs in N=5 threads.
Each job contains a number between 0-5.
Each thread takes the next element from the queue and sleeps for
the given amount
of second (as an imitation of actual work it should be doing). When
finished it checks
for another job. If there are no more jobs in the queue, the thread
can close itself.

1 import threading

2 import random

3 import sys

4

5 thread_count = 5

6

7 counter = 0

8 queue = map(lambda x: ('main', random.randrange(5)),

range(20))

9 print(queue)

If that’s done, change the code so that each thread will generate a
random
number between 0-5 (for sleep-time) and in 33% of the cases it will
add it to the central queue
as a new job.

Another extension to this exercise is to change the code to limit the
number of jobs each thread
can execute in its lifetime. When the thread has finished that many
jobs it will quit and the
main thread will create a new worker thread.

Solution: thread queue
 1 import threading

 2 import random

 3 import sys

 4 import time

 5

 6 thread_count = 5

 7

 8 counter = 0

 9 queue = list(map(lambda x: ('main', random.randrange(5)),

range(20)))

10 #print(queue)

11

12 locker = threading.Lock()

13

14 class ThreadedCount(threading.Thread):

15 def run(self):

16 global counter

17 my_counter = 0

18 thread = threading.current_thread()

19 print('{} - start thread'.format(thread.name))

20 while (True):

21 locker.acquire()

22 job = None

23 if len(queue) > 0:

24 counter += 1

25 my_counter += 1

26 job = queue[0]

27 queue[0:1] = []

28 locker.release()

29 if job == None:

30 print('{} - no more

jobs'.format(thread.name))

31 break

32

33 print('{} - working on job {} ({}) from {}

sleep for {}'

34 .format(thread.name, counter, my_counter,

job[0], job[1]))

35 time.sleep(job[1])

36

37 return

38

39 threads = []

40 for i in range(thread_count):

41 threads.append(ThreadedCount())

42 for t in threads:

43 t.start()

44 for t in threads:

45 t.join()

Solution: thread URL requests.
 1 import time

 2 import threading

 3 import requests

 4 import sys

 5 from bs4 import BeautifulSoup

 6

 7 from fetch_urls import get_urls, get_title

 8

 9 titles = []

10 locker = threading.Lock()

11

12 class GetURLs(threading.Thread):

13 def __init__(self, urls):

14 threading.Thread.__init__(self)

15 self.urls = urls

16

17 def run(self):

18 my_titles = []

19 for url in self.urls:

20 title, err = get_title(url)

21 my_titles.append({

22 'url': url,

23 'title': title,

24 'err': err,

25 })

26 locker.acquire()

27 titles.extend(my_titles)

28 locker.release()

29 return

30

31 def main():

32 if len(sys.argv) < 3:

33 exit(f"Usage: {sys.argv[0]} LIMIT THREADS")

34 limit = int(sys.argv[1])

35 threads_count = int(sys.argv[2])

36

37 urls = get_urls(limit)

38 print(urls)

39 start_time = time.time()

40 batch_size = int(limit/threads_count)

41 left_over = limit % threads_count

42 batches = []

43 end = 0

44 for ix in range(threads_count):

45 start = end

46 end = start + batch_size

47 if ix < left_over:

48 end += 1

49 batches.append(urls[start:end])

50

51 threads = [GetURLs(batches[ix]) for ix in

range(threads_count)]

52 [t.start() for t in threads]

53 [t.join() for t in threads]

54

55 end_time = time.time()

56 print("Elapsed time: {} for {}

pages.".format(end_time-start_time, len(urls)))

57 print(titles)

58

59

60 if __name__ == '__main__':

61 main()

Forking

Fork

fork

 1 import os

 2 import time

 3

 4 print('{} - start running'.format(os.getpid()))

 5

 6 pid = os.fork()

 7 if not pid:

 8 print('{} - in child. Parent is

{}'.format(os.getpid(), os.getppid()))

 9 time.sleep(1)

10 exit(3)

11

12 print('{} - in parent (child pid is

{})'.format(os.getpid(), pid))

13

14 child_pid, exit_code = os.wait()

15 print('{} - Child with pid {} exited. Exit code

{}'.format(os.getpid(), child_pid, e\

16 xit_code))

17 print('Real exit code {}'.format(int(exit_code/256))) #

The upper byte

18 print('Also known as {}'.format(exit_code >> 8)) # Right

shift 8 bits

1 10278 - start running

2 10279 - in child. Parent is 10278

3 10278 - start running

4 10278 - in parent (child pid is 10279)

5 10278 - Child with pid 10279 exited. Exit code 768

6 Real exit code 3

7 Also known as 3

https://docs.python.org/3/library/os.html#os.fork

Forking
 1 import os

 2 import time

 3

 4 name = "common"

 5

 6 def child():

 7 print("In Child of {}".format(name))

 8 print("In Child PID: {} PPID: {}".format(os.getpid(),

os.getppid()))

 9

10 time.sleep(5)

11 exit(3)

12

13 def parent(child_pid):

14 print("In Parent ({}) The child is: {}".format(name,

child_pid))

15 print("In Parent PID: {} PPID:

{}".format(os.getpid(), os.getppid()))

16 r = os.wait()

17 print(r)

18

19 pid = os.fork()

20 print(pid)

21 if pid == 0:

22 child()

23 else:

24 parent(pid)

1 0

2 In Child of common

3 In Child PID: 11212 PPID: 11211

4 11212

5 In Parent (common) The child is: 11212

6 In Parent PID: 11211 PPID: 4195

7 (11212, 768)

Fork skeleton

 1 import os

 2 import glob

 3

 4 files = glob.glob("*.py")

 5 # print(files)

 6 count = len(files)

 7 print(f"Number of items to process: {count}")

 8

 9 parallel = 4 # How many in parallel

10

11 batch = int(count/parallel)

12 leftover = count % parallel

13 print(f"batch size: {batch} leftover: {leftover}")

14

15 def parent(pid):

16 print(f"parent {pid}")

17

18 def child(files):

19 print(f"{os.getpid()} {files}")

20 exit()

21

22 end = 0

23 for ix in range(parallel):

24 start = end

25 end = start + batch

26 if ix < leftover:

27 end += 1

28 print(f"start={start} end={end}")

29

30 pid = os.fork()

31 if pid:

32 parent(pid)

33 else:

34 child(files[start:end])

35

36 print(f"In parent {os.getpid()}")

37 for ix in range(parallel):

38 r = os.wait()

39 print(r)

Fork with load

 1 import os

 2 import random

 3 import sys

 4

 5 if len(sys.argv) != 2:

 6 exit("Usage: {} N".format(sys.argv[0]))

 7 n = int(sys.argv[1])

 8 for p in range(0, n):

 9 pid = os.fork()

10 if not pid:

11 print('In Child')

12 i = 0

13 while i < 40000000/n:

14 x = random.random()

15 y = random.random()

16 z = x+y

17 i += 1

18 exit(3)

19 print('In Parent of', pid)

20

21 for p in range(0, n):

22 r = os.wait()

23 print(r)

Fork load results
1 $ time python fork_load.py 1

1 In Parent of 96355

2 In Child

3 (96355, 768)

4

5 real 0m26.391s

6 user 0m25.893s

7 sys 0m0.190s

1 $ time python fork_load.py 8

 1 In Parent of 96372

 2 In Parent of 96373

 3 In Parent of 96374

 4 In Child

 5 In Child

 6 In Parent of 96375

 7 In Child

 8 In Child

 9 In Parent of 96376

10 In Child

11 In Parent of 96377

12 In Child

13 In Child

14 In Parent of 96378

15 In Parent of 96379

16 In Child

17 (96374, 768)

18 (96372, 768)

19 (96375, 768)

20 (96373, 768)

21 (96376, 768)

22 (96377, 768)

23 (96378, 768)

24 (96379, 768)

25

26 real 0m12.754s

27 user 0m45.196s

28 sys 0m0.164s

Marshalling / Serialization
Marshalling (or serialization) is the operation when we take an
arbitrary
data structure and convert it into a string in a way that we can
convert
the string back to the same data structure.

Marshalling can be used to save data persistent between execution
of the same
script, to transfer data between processes, or even between
machines.

In some cases it can be used to communicate between two
processes written in
different programming languages.

The marshal module
provides such features but it is not recommended as it was built
for internal object serialization for python.

The pickle module was designed for this task.

The json module can be used too.

Fork with random
When the random module is loaded it automatically calls
random.seed() to initialize the
random generator. When we create a fork this is not called again
and thus all the processes
will return the same random numbers. We can fix this by calling
random.seed() manually.

 1 import os, time, random

 2

 3 print('{} - start running'.format(os.getpid()))

 4

 5 pid = os.fork()

 6 if not pid:

 7 #random.seed()

 8 print('{} - in child'.format(os.getpid()))

 9 print(random.random())

10 time.sleep(1)

11 exit(3)

12

13 print('{} - in parent (child pid is

{})'.format(os.getpid(), pid))

14 print(random.random())

15

http://docs.python.org/library/marshal.html
http://docs.python.org/library/pickle.html
https://docs.python.org/library/json.html

16 done = os.wait()

17 print('{} - Child exited {}'.format(os.getpid(), done))

Exercise: fork return data
Create a script that will go over a list of numbers and does some
computation on each number.

 1 import sys

 2 import time

 3 from mymodule import calc

 4

 5 def main(n):

 6 results = {}

 7 print(f"do 1-{n}")

 8 for ix in range(1, n):

 9 results[ix] = calc(ix)

10 return results

11

12 if __name__ == '__main__':

13 if len(sys.argv) < 2:

14 exit(f"Usage: {sys.argv[0]} NUMBER")

15

16 start = time.time()

17 results = main(1+int(sys.argv[1]))

18 end = time.time()

19 total = sum(results.values())

20 print(f"Total: {total}")

21 print("Elapsed time: {}".format(end-start))

Allow the child process to return data to the parent process. Before
exiting from the child process, serialize the data-structure you want
to send back and save
in a file that corresponds to the parent process and the child
process. (eg. created from the PID of the paraent process and the
PID of the child process)
In the parent process, when one of the children exits, check if there

is a file corresponding to this child process, read the file and de-
serialize it.

Solution: fork return data
 1 import sys

 2 import os

 3 import json

 4 import time

 5 from mymodule import calc

 6

 7 def child(start, end):

 8 results = {}

 9 for ix in range(start, end):

10 results[ix] = calc(ix)

11 filename = str(os.getpid()) + '.json'

12 with open(filename, 'w') as fh:

13 json.dump(results, fh)

14 exit()

15

16 def main(total_number, parallels):

17 results = {}

18

19 processes = []

20 a_range = int(total_number / parallels)

21 for cnt in range(parallels):

22 start = 1 + cnt * a_range

23 end = start + a_range

24 if cnt == parallels - 1:

25 end = total_number + 1

26 print(f"do: {start}-{end}")

27 pid = os.fork()

28 if pid:

29 processes.append(pid) # parent

30 else:

31 child(start, end)

32 for _ in range(len(processes)):

33 pid, exit_code = os.wait()

34 #print(pid, exit_code)

35 filename = str(pid) + '.json'

36 with open(filename) as fh:

37 res = json.load(fh)

38 print(f"{pid}: {res}")

39 results.update(res)

40 os.unlink(filename)

41 return results

42

43 if __name__ == '__main__':

44 if len(sys.argv) < 3:

45 exit(f"Usage: {sys.argv[0]} NUMBER PARALLEL")

46

47 start = time.time()

48 results = main(int(sys.argv[1]), int(sys.argv[2]))

49 print(f"results: {results}")

50 end = time.time()

51 total = sum(results.values())

52 print(f"Total: {total}")

53 print("Elapsed time: {}".format(end-start))

Asyncronus programming with
AsyncIO

Sync chores
We have a number of household chores to do. Each takes a couple
of seconds for a machine to do
while we have time to do something else. We also have one task,
cleaning potatoes, that requires
our full attention. It is a CPU-intensive process.

We also have two processes depending each other. We can turn on
the dryer only after the
washing machine has finished.

 1 import time

 2

 3 def boil_water(sec):

 4 print(f"Start boiling water for {sec} seconds")

 5 time.sleep(sec)

 6 print(f"End boiling water for {sec} seconds")

 7

 8 def washing_machine(sec):

 9 print("Start washing machine")

10 time.sleep(sec)

11 print("End washing machine")

12

13 def dryer(sec):

14 print("Start dryer")

15 time.sleep(sec)

16 print("End dryer")

17

18 def dishwasher(sec):

19 print("Start dishwasher")

20 time.sleep(sec)

21 print("End dishwasher")

22

23 def clean_potatoes(pieces):

24 print("Start cleaning potatoes")

25 for ix in range(pieces):

26 print(f"Cleaning potato {ix}")

27 time.sleep(0.5)

28 print("End cleaning potatoes")

29

30 def main():

31 dishwasher(3)

32 washing_machine(3)

33 dryer(3)

34 boil_water(4)

35 clean_potatoes(14)

36

37 start = time.time()

38 main()

39 end = time.time()

40 print(f"Elapsed {end-start}")

 1 Start dishwasher

 2 End dishwasher

 3 Start washing machine

 4 End washing machine

 5 Start dryer

 6 End dryer

 7 Start boiling water for 4 seconds

 8 End boiling water for 4 seconds

 9 Start cleaning potatoes

10 Cleaning potato 0

11 Cleaning potato 1

12 Cleaning potato 2

13 Cleaning potato 3

14 Cleaning potato 4

15 Cleaning potato 5

16 Cleaning potato 6

17 Cleaning potato 7

18 Cleaning potato 8

19 Cleaning potato 9

20 Cleaning potato 10

21 Cleaning potato 11

22 Cleaning potato 12

23 Cleaning potato 13

24 End cleaning potatoes

25 Elapsed 20.017353534698486

Async chores
 1 import time

 2 import asyncio

 3

 4 async def boil_water(sec):

 5 print(f"Start boiling water for {sec} seconds")

 6 await asyncio.sleep(sec)

 7 print(f"End boiling water for {sec} seconds")

 8

 9 async def washing_machine(sec):

10 print(f"Start washing machine for {sec} seconds")

11 await asyncio.sleep(sec)

12 print(f"End washing machine for {sec} seconds")

13 await dryer(3)

14

15 async def dryer(sec):

16 print(f"Start dryer for {sec} seconds")

17 await asyncio.sleep(sec)

18 print(f"End dryer for {sec} seconds")

19

20 async def dishwasher(sec):

21 print(f"Start dishwasher for {sec} seconds")

22 await asyncio.sleep(sec)

23 print(f"End dishwasher for {sec} seconds")

24

25 async def clean_potatoes(pieces):

26 print(f"Start cleaning potatoes for {pieces} pieces")

27 for ix in range(pieces):

28 print(f"Cleaning potato {ix}")

29 time.sleep(0.5)

30 #await asyncio.sleep(0.0001)

31 print(f"End cleaning potatoes for {pieces} pieces")

32

33 async def main():

34 await asyncio.gather(dishwasher(3),

washing_machine(3), boil_water(4), clean_pot\

35 atoes(14))

36

37 start = time.time()

38 asyncio.run(main())

39 end = time.time()

40 print(f"Elapsed {end-start}")

From the output you can see that we noticed that the washing
machine has finished only after we
have finished all the potatoes. That’s becasue our potato cleaning
process was a long-running
CPU-intensive process. This means the dryer only starts working
after the potatoes are clean.

 1 Start dishwasher for 3 seconds

 2 Start washing machine for 3 seconds

 3 Start boiling water for 4 seconds

 4 Start cleaning potatoes for 14 pieces

 5 Cleaning potato 0

 6 Cleaning potato 1

 7 Cleaning potato 2

 8 Cleaning potato 3

 9 Cleaning potato 4

10 Cleaning potato 5

11 Cleaning potato 6

12 Cleaning potato 7

13 Cleaning potato 8

14 Cleaning potato 9

15 Cleaning potato 10

16 Cleaning potato 11

17 Cleaning potato 12

18 Cleaning potato 13

19 End cleaning potatoes for 14 pieces

20 End dishwasher for 3 seconds

21 End washing machine for 3 seconds

22 Start dryer for 3 seconds

23 End boiling water for 4 seconds

24 End dryer for 3 seconds

25 Elapsed 10.01340126991272

If after cleaning each potato we look up for a fraction of a second,
if we let the main loop run,

then we can notice that the washing machine has ended and we can
turn on the dryer before continuing
with the next potato. This will allow the dryer to work while we are
still cleaning the potatoes.

 1 Start dishwasher for 3 seconds

 2 Start washing machine for 3 seconds

 3 Start boiling water for 4 seconds

 4 Start cleaning potatoes for 14 pieces

 5 Cleaning potato 0

 6 Cleaning potato 1

 7 Cleaning potato 2

 8 Cleaning potato 3

 9 Cleaning potato 4

10 Cleaning potato 5

11 End dishwasher for 3 seconds

12 End washing machine for 3 seconds

13 Start dryer for 3 seconds

14 Cleaning potato 6

15 Cleaning potato 7

16 End boiling water for 4 seconds

17 Cleaning potato 8

18 Cleaning potato 9

19 Cleaning potato 10

20 Cleaning potato 11

21 End dryer for 3 seconds

22 Cleaning potato 12

23 Cleaning potato 13

24 End cleaning potatoes for 14 pieces

25 Elapsed 7.02296781539917

Explanation
Single thread
Single process
The feeling of parallelism
Coroutines

* async/await

* event loop

* Cooperative Multitasking

Asynchronous
non-blocking or synchronous vs blocking (aka “normal”)

Coroutines
* Functions that can be suspended mid-way and allow other
functions to run (a generator)

async def is a native coroutine or asynchronous generator
async with

async for

More about asyncio

AsyncIO in Real Python
asyncio
aiohttp

Async files
 1 import aiohttp

 2 import asyncio

 3

 4 async def fetch(session, url):

 5 async with session.get(url) as response:

 6 return await response.text()

 7

 8 async def main():

 9 async with aiohttp.ClientSession() as session:

10 html = await fetch(session, 'http://python.org')

11 print(html)

12 print("OK")

https://realpython.com/async-io-python/
https://docs.python.org/library/asyncio.html
https://docs.aiohttp.org/

13

14 asyncio.run(main())

1 import aiofiles

Asynchronus programming with
Twisted

About Twisted

Twisted

Echo
 1 from twisted.internet import protocol,reactor

 2

 3 port = 8000

 4

 5 class Echo(protocol.Protocol):

 6 def dataReceived(self, data):

 7 text = data.decode('utf8')

 8 print(f"Received: {text}")

 9 self.transport.write("You said:

{}".format(text).encode('utf8'))

10

11 class EchoFactory(protocol.Factory):

12 def buildProtocol(self, addr):

13 return Echo()

14

15 print(f"Listening on port {port}")

16 reactor.listenTCP(port, EchoFactory())

17 reactor.run()

 1 from twisted.internet import reactor,protocol

 2 import sys

 3

 4 if len(sys.argv) < 2:

 5 exit("Usage: {sys.argv[0]} TEXT")

 6

 7 message = sys.argv[1]

https://twistedmatrix.com/

 8 port = 8000

 9

10 class EchoClient(protocol.Protocol):

11 def connectionMade(self):

12 self.transport.write(message.encode('utf8'))

13

14 def dataReceived(self, data):

15 print(f"Server said: {data}")

16 self.transport.loseConnection()

17

18 class EchoFactory(protocol.ClientFactory):

19 def buildProtocol(self, addr):

20 return EchoClient()

21

22 def clientConnectionFailed(self, connector, reason):

23 print("connection failed")

24 reactor.stop()

25

26 def clientConnectionLost(self, connector, reason):

27 print("connection lost")

28 reactor.stop()

29

30 reactor.connectTCP("localhost", port, EchoFactory())

31 reactor.run()

Echo with log
 1 from twisted.internet import protocol,reactor

 2

 3 port = 8000

 4

 5 class Echo(protocol.Protocol):

 6 def dataReceived(self, data):

 7 print("Received: {}".format(data))

 8 self.transport.write(data)

 9

10 class EchoFactory(protocol.Factory):

11 def buildProtocol(self, addr):

12 print(f"Contection established with {addr}")

13 return Echo()

14

15 print(f"Started to listen on port {port}")

16 reactor.listenTCP(port, EchoFactory())

17 reactor.run()

Simple web client
The code behind this example was deprecated. Need to be fixed.

getPage() returns a “deferred”
addCallbacks(on_success, on_failure)
addBoth(on_both) adds callbock to both success and failure
callback chain

 1 from twisted.internet import reactor

 2 from twisted.web.client import getPage

 3 import sys

 4

 5 def printPage(result):

 6 print("Page")

 7 print('Size of the returned page is

{}'.format(len(result)))

 8

 9 def printError(error):

10 print("Error")

11 print(f"Error: {error}")

12 #sys.stderr.write(error)

13

14 def stop(result):

15 print('stop')

16 reactor.stop()

17

18 if (len(sys.argv) != 2):

19 sys.stderr.write("Usage: python " + sys.argv[0] + "

<URL>\n")

20 exit(1)

21

22 d = getPage(sys.argv[1])

23 d.addCallbacks(printPage, printError)

24 d.addBoth(stop)

25

26 reactor.run()

27

28 # getPage(sys.argv[1], method='POST', postdata="My test

data").

Web client
 1 from twisted.internet import reactor

 2 from twisted.web.client import getPage

 3 import sys

 4 import re

 5 import time

 6

 7 queue = [

 8 'http://docs.python.org/3/',

 9 'http://docs.python.org/3/whatsnew/3.3.html',

10 'http://docs.python.org/3/tutorial/index.html',

11 'http://docs.python.org/3/library/index.html',

12 'http://docs.python.org/3/reference/index.html'

13 'http://docs.python.org/3/howto/index.html',

14 'http://docs.python.org/3/howto/pyporting.html',

15 'http://docs.python.org/3/howto/cporting.html',

16 'http://docs.python.org/3/howto/curses.html',

17 'http://docs.python.org/3/howto/descriptor.html',

18 'http://docs.python.org/3/howto/functional.html',

19 'http://docs.python.org/3/howto/logging.html',

20 'http://docs.python.org/3/howto/logging-cookbook.html',

21 'http://docs.python.org/3/howto/regex.html',

22 'http://docs.python.org/3/howto/sockets.html',

23 'http://docs.python.org/3/howto/sorting.html',

24 'http://docs.python.org/3/howto/unicode.html',

25 'http://docs.python.org/3/howto/urllib2.html',

26 'http://docs.python.org/3/howto/webservers.html',

27 'http://docs.python.org/3/howto/argparse.html',

28 'http://docs.python.org/3/howto/ipaddress.html',

29]

30

31 max_parallel = 3

32 current_parallel = 0

33 if len(sys.argv) == 2:

34 max_parallel = int(sys.argv[1])

35

36 def printPage(result):

37 print("page size: ", len(result))

38 global current_parallel

39 current_parallel -= 1

40 print("current_parallel: ", current_parallel)

41 #urls = re.findall(r'href="([^"]+)"', result)

42 #for u in urls:

43 # queue.append(u)

44 #queue.extend(urls)

45 process_queue()

46

47 def printError(error):

48 print("Error: ", error)

49 global current_parallel

50 current_parallel -= 1

51 process_queue()

52

53

54 def stop(result):

55 reactor.stop()

56

57 def process_queue():

58 global current_parallel, max_parallel,queue

59 print("process_queue cs: {} max:

{}".format(current_parallel, max_parallel))

60 while True:

61 if current_parallel >= max_parallel:

62 print("No empty slot")

63 return

64 if len(queue) == 0:

65 print("queue is empty")

66 if current_parallel == 0:

67 reactor.stop()

68 return

69 url = queue[0] + '?' + str(time.time())

70 queue[0:1] = []

71 current_parallel += 1

72 d = getPage(url)

73 d.addCallbacks(printPage, printError)

74

75 process_queue()

76 reactor.run()

77 print("----done ---")

Multiprocess

Multiprocess CPU count

multiprocessing

1 import multiprocessing as mp

2 print(mp.cpu_count())

Multiprocess Process
1 import multiprocessing as mp

2 print(mp.cpu_count())

Multiprocess N files: Pool
Analyze N files in parallel.

 1 from multiprocessing import Pool

 2 import os

 3 import sys

 4 import re

 5

 6 def analyze(filename):

 7 print("Process {:>5} analyzing

{}".format(os.getpid(), filename))

 8 digits = 0

 9 spaces = 0

10 total = 0

11 with open(filename) as fh:

12 for line in fh:

13 for char in line:

14 total += 1

15 if re.search(r'^\d$', char):

16 digits += 1

https://docs.python.org/library/multiprocessing.html

17 if char == ' ':

18 spaces += 1

19 return {

20 'filename': filename,

21 'total': total,

22 'digits': digits,

23 'spaces': spaces,

24 }

25

26 def main():

27 if len(sys.argv) < 3:

28 exit("Usage: {} POOL_SIZE FILEs")

29 size = int(sys.argv[1])

30 files = sys.argv[2:]

31

32 with Pool(size) as p:

33 results = p.map(analyze, files)

34 for res in results:

35 print(res)

36

37 if __name__ == '__main__':

38 main()

 1 $ python multiprocess_files.py 3 multiprocess_*

 2

 3 Process 22688 analyzing multiprocess_files.py

 4 Process 22689 analyzing multiprocess_load.py

 5 Process 22690 analyzing multiprocess_pool_async.py

 6 Process 22688 analyzing multiprocess_pool.py

 7 {'filename': 'multiprocess_files.py', 'total': 833,

'digits': 10, 'spaces': 275}

 8 {'filename': 'multiprocess_load.py', 'total': 694,

'digits': 14, 'spaces': 163}

 9 {'filename': 'multiprocess_pool_async.py', 'total': 695,

'digits': 8, 'spaces': 161}

10 {'filename': 'multiprocess_pool.py', 'total': 397,

'digits': 3, 'spaces': 80}

We asked it to use 3 processes, so looking at the process ID
you can see one of them worked twice.

The returned results can be any Python datastructure. A
dictionary is usually a good idea.

Multiprocess load
 1 import random

 2 import multiprocessing

 3 import time

 4 import sys

 5 # Works only in Python 3

 6

 7 def calc(n):

 8 count = 0

 9 total = 0

10 while count < 40000000 / n:

11 rnd = random.random()

12 total += rnd

13 count += 1

14 return {'count': count, 'total': total}

15

16 def main():

17 if len(sys.argv) != 2:

18 exit("Usage: {} POOL_SIZE")

19

20 start = time.time()

21 size = int(sys.argv[1])

22 with multiprocessing.Pool(size) as pool:

23 results = pool.map(calc, [size] * size)

24 print("Results: {}".format(results))

25 totals = map(lambda r: r['total'], results)

26 print("Total: {}".format(sum(totals)))

27 end = time.time()

28 print(end - start)

29

30 if __name__ == '__main__':

31 main()

Multiprocess: Pool

Pool(3) creates 3 child-processes and let’s them compute the
values. map
returns the results in the same order as the input came in.

 1 from multiprocessing import Pool

 2 import os

 3 import sys

 4

 5 def f(x):

 6 print("Input {} in process {}".format(x,

os.getpid()))

 7 #print(x)

 8 return x*x

 9

10 def main():

11 if len(sys.argv) != 3:

12 exit("Usage: {} NUMBERS POOL_SIZE")

13 numbers = int(sys.argv[1])

14 size = int(sys.argv[2])

15

16 with Pool(size) as p:

17 results = p.map(f, range(numbers))

18 print(results)

19

20 if __name__ == '__main__':

21 main()

1 python multiprocess_pool.py 11 3

2 python multiprocess_pool.py 100 5

Multiprocess load async
 1 from multiprocessing import Pool

 2 import os

 3

 4

 5 def f(x):

 6 print("Input {} in process {}".format(x,

os.getpid()))

 7 return x*x

 8

 9 def prt(z):

10 print(z)

11

12 def main():

13 with Pool(5) as p:

14 results = p.imap(f, range(11)) #

<multiprocessing.pool.IMapIterator object

15 print(results)

16 print('--')

17 for r in results:

18 print(r)

19

20 #results = p.map_async(f, range(11)) #

<multiprocessing.pool.MapResult obje\

21 ct>, not iterable

22

23 #results = []

24 #p.map_async(f, range(11)) #

<multiprocessing.pool.MapResult object>, not i\

25 terable

26 #print(results)

27 #for r in results:

28 # print(r)

29

30

31 if __name__ == '__main__':

32 main()

Multiprocess and logging
Tested on Windows

 1 from multiprocessing import Pool

 2 import os

 3 import logging

 4 import logging.handlers

 5

 6 count = 0

 7 def f(x):

 8 global count

 9 count += 1

10 #print("Input {} in process {}".format(x,

os.getpid()))

11 logger = logging.getLogger("app")

12 logger.info("f({}) count {} in PID {}".format(x,

count, os.getpid()))

13 return x*x

14

15

16 def prt(z):

17 print(z)

18

19 def setup_logger():

20 level = logging.DEBUG

21 logger = logging.getLogger("app")

22 logger.setLevel(level)

23 log_file = 'try.log'

24 formatter = logging.Formatter('%(asctime)s - %

(levelname)-8s - %(filename)-20s:%(\

25 lineno)-5d - %(funcName)-22s - %(message)s')

26 ch = logging.FileHandler(log_file)

27 #ch =

logging.handlers.TimedRotatingFileHandler(log_file,

when='D', backupCount=2)

28 ch.setLevel(level)

29 ch.setFormatter(formatter)

30 logger.addHandler(ch)

31 logger.info("Setup logger in PID

{}".format(os.getpid()))

32

33 def main():

34 logger = logging.getLogger('app')

35 logger.info("main")

36

37 with Pool(5) as p:

38 results = p.imap(f, range(110)) #

<multiprocessing.pool.IMapIterator object

39 print(results)

40 print('--')

41 for r in results:

42 print(r)

43

44 setup_logger()

45 if __name__ == '__main__':

46 main()

Exercise: Process N files in parallel
Create N=100 files 1.txt - N.txt
In each file put L random strings of up to X characters

Write a script that will read all the files for each file and count how
many times each digit appears. Then provide a combined report.
First write the script in a single process way.
Then convert it to be able to work with multiprocess.

Exercise: Process N Excel files in parallel

Create N Excel files with random 10 random numbers in the
first row of each file.
Write a process that reads the N Excel files and sums up the
numbers in each one of them and then sums up the numbers of
all the files.

Exercise: Fetch URLs in parallel
top-websites
Given a file with a list of URLs, collect the title of each site.

 1 https://google.com/

 2 https://youtube.com/

 3 https://facebook.com/

 4 https://baidu.com/

 5 https://twitter.com/

 6 https://instagram.com/

 7 https://wikipedia.com/

 8 https://www.amazon.com/

 9 https://yahoo.com/

10 https://yandex.ru/

11 https://vk.com/

12 https://live.com/

13 https://naver.com/

https://www.similarweb.com/top-websites

14 https://yahoo.co.jp/

15 https://google.com.br/

16 https://netflix.com/

17 https://reddit.com/

18 https://ok.ru/

19 https://mail.ru/

20 https://ebay.com/

21 https://linkedin.com/

22 https://qq.com/

23 https://pinterest.com/

24 https://bing.com/

25 https://whatsapp.com/

26 https://office.com/

27 https://amazon.de/

28 https://aliexpress.com/

29 https://amazon.co.jp/

30 https://msn.com/

31 https://google.de/

32 https://paypal.com/

33 https://rakuten.co.jp/

34 https://amazon.co.uk/

35 https://daum.net/

36 https://google.co.jp/

37 https://taobao.com/

38 https://bilbili.com/

39 https://imdb.com/

40 https://booking.com/

41 https://roblox.com/

42 https://9apps.com/

43 https://globo.com/

44 https://duckduckgo.com/

45 https://www.nttdocomo.co.jp/

 1 import time

 2 import requests

 3 import sys

 4 from bs4 import BeautifulSoup

 5

 6 def get_urls(limit):

 7 with open('urls.txt') as fh:

 8 urls = list(map(lambda line: line.rstrip("\n"),

fh))

 9 if len(urls) > limit:

10 urls = urls[:limit]

11

12 return urls

13

14 def get_title(url):

15 try:

16 resp = requests.get(url)

17 if resp.status_code != 200:

18 return None, f"Incorrect status_code

{resp.status_code} for {url}"

19 except Exception as err:

20 return None, f"Error: {err} for {url}"

21

22 soup = BeautifulSoup(resp.content, 'html.parser')

23 return soup.title.string, None

24

25 def main():

26 if len(sys.argv) < 2:

27 exit(f"Usage: {sys.argv[0]} LIMIT")

28 limit = int(sys.argv[1])

29 urls = get_urls(limit)

30 print(urls)

31 start = time.time()

32

33 titles = []

34 for url in urls:

35 #print(f"Processing {url}")

36 title, err = get_title(url)

37 if err:

38 print(err)

39 else:

40 print(title)

41 titles.append({

42 "url": url,

43 "title": title,

44 "err": err,

45 })

46 end = time.time()

47 print("Elapsed time: {} for {} pages.".format(end-

start, len(urls)))

48 print(titles)

49

50

51 if __name__ == '__main__':

52 main()

Exercise: Fetch URLs from one site.
Download the sitemap or the other sitemap file
and fetch the first N URLs from there. Collecting the titles.

 1 import time

 2 import requests

 3 import xml.etree.ElementTree as ET

 4 from bs4 import BeautifulSoup

 5

 6 def get_urls(content):

 7 urls = []

 8 root = ET.fromstring(content)

 9 for child in root:

10 for ch in child:

11 if ch.tag.endswith('loc'):

12 urls.append(ch.text)

13 #print(len(urls)) # 2653

14 MAX = 20

15 if len(urls) > MAX:

16 urls = urls[:MAX]

17

18 return urls

19

20 def main():

21 start = time.time()

22 url = 'https://code-maven.com/slides/sitemap.xml'

23 resp = requests.get(url)

24 if resp.status_code != 200:

25 exit(f"Incorrect status_code {resp.status_code}")

26

27 urls = get_urls(resp.content)

28

29 titles = []

30 for url in urls:

31 resp = requests.get(url)

32 if resp.status_code != 200:

33 print(f"Incorrect status_code

{resp.status_code} for {url}")

34 continue

35

36 soup = BeautifulSoup(resp.content, 'html.parser')

37 print(soup.title.string)

38 titles.append(soup.title.string)

https://code-maven.com/sitemap.xml
file:///tmp/calibre_5.44.0_tmp_a8o6h222/o964wf5u_pdf_out/OEBPS/the%20https://code-maven.com/slides/sitemap.xml

39 end = time.time()

40 print("Elapsed time: {} for {} pages.".format(end-

start, len(urls)))

41 print(titles)

42

43

44 if __name__ == '__main__':

45 main()

Solution: Fetch URLs in parallel

First create function and use regular map.
Deal with encoding.
Replace continue by return, include None in results.
It has some 2 sec overhead, but then 20 items reduced from 18
sec to 7 sec using pool of 5.

 1 import time

 2 import requests

 3 import xml.etree.ElementTree as ET

 4 from bs4 import BeautifulSoup

 5 from multiprocessing import Pool

 6 import os

 7

 8

 9 def get_urls(content):

10 urls = []

11 root = ET.fromstring(content)

12 for child in root:

13 for ch in child:

14 if ch.tag.endswith('loc'):

15 urls.append(ch.text)

16

17 #print(len(urls)) # 2653

18 MAX = 20

19 if len(urls) > MAX:

20 urls = urls[:MAX]

21

22 return urls

23

24 def get_title(url):

25 resp = requests.get(url)

26 if resp.status_code != 200:

27 print(f"Incorrect status_code {resp.status_code}

for {url}")

28 return

29

30 soup = BeautifulSoup(resp.content, 'html.parser')

31 print(soup.title.string)

32 return soup.title.string.encode('utf-8')

33

34

35 def main():

36 start = time.time()

37 url = 'https://code-maven.com/slides/sitemap.xml'

38 resp = requests.get(url)

39 if resp.status_code != 200:

40 exit(f"Incorrect status_code {resp.status_code}")

41

42 urls = get_urls(resp.content)

43

44 titles = []

45 # for url in urls:

46 # titles.append(get_title(url))

47 # titles = list(map(get_title, urls))

48 with Pool(5) as pool:

49 results = pool.map(get_title, urls)

50 for r in results:

51 titles.append(r)

52 end = time.time()

53 print("Elapsed time: {} for {} pages.".format(end-

start, len(urls)))

54 print(list(titles))

55 print("DONE")

56

57

58 if __name__ == '__main__':

59 main()

Multitasking

What is Multitasking?

Multitasking
A wrapper around threading and os.fork by Ran Aroussi

1 pip install multitasking

Multitasking example
 1 import multitasking

 2 import time

 3 import random

 4

 5 multitasking.set_max_threads(2)

 6

 7 @multitasking.task

 8 def work(ix, sec):

 9 print(f"Start {ix} sleeping for {sec}s")

10 time.sleep(sec)

11 print(f"Finish {ix}")

12

13 if __name__ == "__main__":

14 tasks = (6, 0.7, 0.8, 0.3, 0.4, 3, 0.1)

15 for ix, sec in enumerate(tasks):

16 work(ix+1, sec)

17

18 print("do some work after all the jobs are done")

 1 Start 1 sleeping for 6s

 2 Start 2 sleeping for 0.7s

 3 do some work after all the jobs are done

 4 Finish 2

 5 Start 3 sleeping for 0.8s

https://pypi.org/project/multitasking/

 6 Finish 3

 7 Start 4 sleeping for 0.3s

 8 Finish 4

 9 Start 5 sleeping for 0.4s

10 Finish 5

11 Start 6 sleeping for 3s

12 Finish 6

13 Start 7 sleeping for 0.1s

14 Finish 7

15 Finish 1

Multitasking example with wait
 1 import multitasking

 2 import time

 3 import random

 4

 5 multitasking.set_max_threads(2)

 6

 7 @multitasking.task

 8 def work(ix, sec):

 9 print(f"Start {ix} sleeping for {sec}s")

10 time.sleep(sec)

11 print(f"Finish {ix}")

12

13 if __name__ == "__main__":

14 tasks = (6, 0.7, 0.8, 0.3, 0.4, 3, 0.1)

15 for ix, sec in enumerate(tasks):

16 work(ix+1, sec)

17 multitasking.wait_for_tasks()

18

19 print("do some work after all the jobs are done")

 1 Start 1 sleeping for 6s

 2 Start 2 sleeping for 0.7s

 3 Finish 2

 4 Start 3 sleeping for 0.8s

 5 Finish 3

 6 Start 4 sleeping for 0.3s

 7 Finish 4

 8 Start 5 sleeping for 0.4s

 9 Finish 5

10 Start 6 sleeping for 3s

11 Finish 6

12 Start 7 sleeping for 0.1s

13 Finish 7

14 Finish 1

15 do some work after all the jobs are done

Multitaksing - second loop waits for first one
 1 import multitasking

 2 import time

 3 import random

 4

 5 @multitasking.task

 6 def first(count):

 7 sleep = random.randint(1,10)/2

 8 if count == 10:

 9 sleep = 10

10 print("Start First {} (sleeping for

{}s)".format(count, sleep))

11 time.sleep(sleep)

12 print("finish First {} (after for {}s)".format(count,

sleep))

13

14 @multitasking.task

15 def second(count):

16 sleep = random.randint(1,10)/2

17 print("Start Second {} (sleeping for

{}s)".format(count, sleep))

18 time.sleep(sleep)

19 print("finish Second {} (after for

{}s)".format(count, sleep))

20

21 if __name__ == "__main__":

22 for i in range(0, 10):

23 first(i+1)

24 multitasking.wait_for_tasks()

25 print('first done')

26

27 for i in range(0, 10):

28 second(i+1)

29

30 multitasking.wait_for_tasks()

31 print('second done')

Multitasking counter
 1 import multitasking

 2 import time

 3

 4

 5 multitasking.set_max_threads(10)

 6 counter = 0

 7

 8

 9 @multitasking.task

10 def count(n):

11 global counter

12 for _ in range(n):

13 counter += 1

14

15

16 if __name__ == "__main__":

17 start = time.time()

18 k = 10

19 n = 1000000

20 for _ in range(k):

21 count(n)

22 multitasking.wait_for_tasks()

23 end = time.time()

24 expected = k * n

25 print(f'done actual: {counter} expected: {expected}.

Missing: {expected-counter}\

26 ')

27 print(f'Elapsed time {end-start}')

1 done actual: 3198547 expected: 10000000. Missing: 6801453

2 Elapsed time 0.5210244655609131

Multitasking counter with thread locking

 1 import multitasking

 2 import time

 3 import threading

 4

 5

 6 multitasking.set_max_threads(10)

 7 counter = 0

 8

 9

10 locker = threading.Lock()

11

12

13 @multitasking.task

14 def count(n):

15 global counter

16 for _ in range(n):

17 locker.acquire()

18 counter += 1

19 locker.release()

20

21

22 if __name__ == "__main__":

23 start = time.time()

24 k = 10

25 n = 1000000

26 for _ in range(k):

27 count(n)

28 multitasking.wait_for_tasks()

29 end = time.time()

30 expected = k * n

31 print(f'done actual: {counter} expected: {expected}.

Missing: {expected-counter}\

32 ')

33 print(f'Elapsed time {end-start}')

1 done actual: 10000000 expected: 10000000. Missing: 0

2 Elapsed time 37.231414556503296

Improving Performance - Optimizing
code

Problems

Speed
Memory usage
I/O (disk, network, database)

Optimization strategy
The 3 rules of optimization

Don’t do it!
Don’t do it!
Don’t do it yet!

Premature optimization is the root of all evil ~ Donald Knuth

Locate the source of the problem
I/O is expensive! Database access, file access, GUI update
If memory is full swapping starts - speed decreases

Optimizing tactics
Choose the Right Data Structure (Dictionary?, Set?, List?)

Sorting: Decorate Sort Undecorate (DSU) aka. Schwartzian
Transform.
String Concatenation: avoid extensive concatenation.
Loops: for, list comprehension: use generators and iterators.
Delay expanding range, map, filter, etc. iterables.
Caching results, memoizing.

Read more performance tips

DSU: Decorate Sort Undecorate
In Perl it is called Schwartzian transform

 1 animals = ['chicken', 'cow', 'snail', 'elephant']

 2 print(sorted(animals))

 3 print(sorted(animals, key=len))

 4

 5 decorated = [(len(w), w) for w in animals]

 6 print(decorated)

 7

 8 decorated.sort()

 9 result = [d[1] for d in decorated]

10 print(result)

11

12 # at once

13 print([d[1] for d in sorted([(len(w), w) for w in

animals])])

1 ['chicken', 'cow', 'elephant', 'snail']

2 ['cow', 'snail', 'chicken', 'elephant']

3 [(7, 'chicken'), (3, 'cow'), (5, 'snail'), (8,

'elephant')]

4 ['cow', 'snail', 'chicken', 'elephant']

5 ['cow', 'snail', 'chicken', 'elephant']

Profile code
Always profile before starting to optimize!

https://en.wikipedia.org/wiki/Schwartzian_transform
https://wiki.python.org/moin/PythonSpeed/PerformanceTips

profile

Slow example

This code does some stuff which was deemed to be “too slow”
by some client.
The actual content is not that interesting.

 1 import random

 2

 3 def f():

 4 n = 0

 5 for i in range(30):

 6 n += random.random()

 7 return n

 8

 9 def g():

10 return random.random() * 30

11

12

13 def main(n):

14 text = get_str(n)

15

16 #print(str)

17 text_sorted = sort(text)

18 return text_sorted

19

20 def sort(s):

21 chars = list(s)

22 for i in reversed(range(len(chars))):

23 a = f()

24 b = g()

25 for j in range(i, len(chars)-1):

26 swap(chars, j)

27

28 return ''.join(chars)

29

30 def get_str(n):

31 text = ''

http://docs.python.org/library/profile.html

32 for i in range(1, n):

33 text += chr(65 + random.randrange(0, 26))

34 return text

35

36 def swap(lst, loc):

37 if lst[loc] > lst[loc + 1]:

38 lst[loc], lst[loc + 1] = lst[loc + 1], lst[loc]

39

40 if __name__ == '__main__':

41 print(main(1000))

profile slow code
1 import slow

2 import profile

3

4 profile.run('slow.main(1000)')

 1 537471 function calls in 3.078 seconds

 2

 3 Ordered by: standard name

 4

 5 ncalls tottime percall cumtime percall

filename:lineno(function)

 6 999 0.003 0.000 0.003 0.000 :0(chr)

 7 1 0.000 0.000 0.000 0.000 :0(join)

 8 1000 0.003 0.000 0.003 0.000 :0(len)

 9 31968 0.083 0.000 0.083 0.000 :0(random)

10 1999 0.009 0.000 0.009 0.000 :0(range)

11 1 0.001 0.001 0.001 0.001

:0(setprofile)

12 1 0.000 0.000 3.076 3.076

<string>:1(<module>)

13 0 0.000 0.000

profile:0(profiler)

14 1 0.000 0.000 3.078 3.078

profile:0(slow.main(1000))

15 999 0.009 0.000 0.012 0.000

random.py:173(randrange)

16 999 0.005 0.000 0.008 0.000

slow.py:10(g)

17 1 0.000 0.000 3.076 3.076

slow.py:14(main)

18 1 1.410 1.410 3.053 3.053

slow.py:21(sort)

19 1 0.008 0.008 0.023 0.023

slow.py:31(get_str)

20 498501 1.456 0.000 1.456 0.000

slow.py:37(swap)

21 999 0.090 0.000 0.171 0.000

slow.py:4(f)

cProfile slow code
1 import slow

2 import cProfile

3

4 cProfile.run('slow.main(1000)')

 1 537470 function calls in 0.325 seconds

 2

 3 Ordered by: standard name

 4

 5 ncalls tottime percall cumtime percall

filename:lineno(function)

 6 1 0.000 0.000 0.325 0.325

<string>:1(<module>)

 7 999 0.002 0.000 0.002 0.000

random.py:173(randrange)

 8 999 0.000 0.000 0.000 0.000 slow.py:10(g)

 9 1 0.000 0.000 0.325 0.325

slow.py:14(main)

10 1 0.119 0.119 0.322 0.322

slow.py:21(sort)

11 1 0.001 0.001 0.003 0.003

slow.py:31(get_str)

12 498501 0.189 0.000 0.189 0.000

slow.py:37(swap)

13 999 0.008 0.000 0.010 0.000 slow.py:4(f)

14 999 0.000 0.000 0.000 0.000 {chr}

15 1000 0.000 0.000 0.000 0.000 {len}

16 1 0.000 0.000 0.000 0.000 {method

'disable' of '_lsprof.Profiler' o\

17 bjects}

18 1 0.000 0.000 0.000 0.000 {method 'join'

of 'str' objects}

19 31968 0.003 0.000 0.003 0.000 {method

'random' of '_random.Random' obje\

20 cts}

21 1999 0.003 0.000 0.003 0.000 {range}

Benchmarking

benchmark

 1 import timeit

 2 from functools import reduce

 3 import random

 4

 5 chars = []

 6 for i in range(200):

 7 chars.append(chr(65 + random.randrange(0, 26)))

 8

 9 print(timeit.timeit('string = "".join(chars)',

10 setup="from __main__ import chars", number=10000))

11

12 print(timeit.timeit('reduce(lambda x, y: x+y, chars)',

13 setup="from __main__ import chars, reduce",

number=10000))

1 0.01576369699614588

2 0.15464225399773568

Benchmarking subs
 1 import timeit

 2

 3 def one_by_one():

 4 import random

 5 text = ""

 6 for i in range(200):

 7 text += chr(65 + random.randrange(0, 26))

 8 return text

 9

http://docs.python.org/3/library/timeit.html

10 def at_once():

11 import random

12 chars = []

13 for i in range(200):

14 chars.append(chr(65 + random.randrange(0, 26)))

15 text = ''.join(chars)

16 return text

17

18 print(timeit.timeit('one_by_one()',

19 setup="from __main__ import one_by_one",

number=10000))

20

21 print(timeit.timeit('at_once()',

22 setup="from __main__ import at_once", number=10000))

1 1.5248507579963189

2 1.5566942970035598

Levenshtein distance

editdistance Levenshtein distance implemented in C
python-Levenshtein implemented in C
pylev
pyxdameraulevenshtein
weighted-levenshtein

Generate words
 1 import sys

 2 import random

 3 import string

 4

 5 # TODO: set min, max word length

 6 # TODO: set filename

 7 # TODO: set character types

 8 # TODO: allow spaces?

 9

10 def main():

11 filename = "words.txt"

https://github.com/aflc/editdistance
https://github.com/ztane/python-Levenshtein/
https://github.com/toastdriven/pylev
https://github.com/gfairchild/pyxDamerauLevenshtein
https://github.com/infoscout/weighted-levenshtein

12 min_len = 6

13 max_len = 6

14

15 if len(sys.argv) != 2:

16 exit(f"Usage: {sys.argv[0]} WORD_COUNT")

17 count = int(sys.argv[1])

18 with open(filename, 'w') as fh:

19 for _ in range(count):

20 word = ''

21 length = random.randrange(min_len, max_len+1)

22 for _ in range(length):

23 word +=

random.choice(string.ascii_lowercase)

24 fh.write(word + "\n")

25

26 main()

Levenshtein - pylev
 1 import sys

 2 import pylev

 3

 4 def main():

 5 if len(sys.argv) != 2:

 6 exit(f"Usage: {sys.argv[0]} filename")

 7 filename = sys.argv[1]

 8 outfile = 'out.txt'

 9

10 rows = []

11 with open(filename) as fh:

12 for row in fh:

13 rows.append(row.rstrip("\n"))

14 with open(outfile, 'w') as fh:

15 for a in rows:

16 for b in rows:

17 dist = pylev.levenshtein(a, b)

18 fh.write(f"{a},{b},{dist}\n")

19

20 main()

Levenshtein - edittidtance

 1 import sys

 2 import editdistance

 3

 4 def main():

 5 if len(sys.argv) != 2:

 6 exit(f"Usage: {sys.argv[0]} filename")

 7 filename = sys.argv[1]

 8 outfile = 'out.txt'

 9

10 rows = []

11 with open(filename) as fh:

12 for row in fh:

13 rows.append(row.rstrip("\n"))

14 with open(outfile, 'w') as fh:

15 for a in rows:

16 for b in rows:

17 dist = editdistance.eval(a, b)

18 fh.write(f"{a},{b},{dist}\n")

19

20 main()

Editdistance benchmark

editdistance

A Tool to Generate text files
 1 import sys

 2 import string

 3 import random

 4 import argparse

 5 import os

 6

 7 # Generate n file of size S with random letters

 8

 9 def get_args():

10 parser = argparse.ArgumentParser()

11 parser.add_argument('--dir',

help="Directory where to create the fil\

12 es", default=".")

13 parser.add_argument('--files', type=int, help="Number

https://github.com/aflc/editdistance

of files to create", defau\

14 lt=1)

15 parser.add_argument('--size', type=int, help="Size

of files", defau\

16 lt=10)

17 args = parser.parse_args()

18 return args

19

20 def main():

21 args = get_args()

22 chars = list(string.ascii_lowercase) + [' '] * 5 +

['\n']

23

24 for ix in range(args.files):

25 all_chars = []

26 for _ in range(args.size):

27 all_chars.extend(random.sample(chars, 1))

28 #print(len(all_chars))

29

30 #print(all_chars)

31 filename = os.path.join(args.dir, str(ix) +

'.txt')

32 with open(filename, 'w') as fh:

33 fh.write(''.join(all_chars))

34

35

36 def old_main():

37 if len(sys.argv) < 2:

38 exit(f"Usage: {sys.argv[0]} NUMBER_OF_ROWS")

39

40 row_count = int(sys.argv[1])

41 min_width = 30

42 max_width = 50

43 filename = 'data.log'

44

45 chars = list(string.ascii_lowercase) + [' '] * 5

46 all_chars = chars * max_width

47

48 with open(filename, 'w') as fh:

49 for i in range(row_count):

50 width = random.randrange(min_width,

max_width+1)

51 row = ''.join(random.sample(all_chars,

width))

52 fh.write(row + "\n")

53

54 main()

Count characters
 1 # changes chars and counter

 2 def add_char(chars, counter, ch, cnt=1):

 3 for ix in range(len(chars)):

 4 if chars[ix] == ch:

 5 counter[ix] += cnt

 6 break

 7 else:

 8 chars.append(ch)

 9 counter.append(cnt)

10

11

12 def count_in_file(filename):

13 #print(filename)

14 chars = []

15 counter = []

16 with open(filename) as fh:

17 for row in fh:

18 for ch in row:

19 #print(ch)

20 if ch == ' ':

21 continue

22 if ch == '\n':

23 continue

24 add_char(chars, counter, ch)

25

26 #print(chars)

27 #print(counter)

28 return chars, counter

29

30 def merge(chars1, counter1, chars2, counter2):

31 chars = []

32 counter = []

33 for ix in range(len(chars1)):

34 add_char(chars, counter, chars1[ix],

cnt=counter1[ix])

35 for ix in range(len(chars2)):

36 add_char(chars, counter, chars2[ix],

cnt=counter2[ix])

37 return chars, counter

38

39

40 def print_results(chars, counter):

41 print("Results")

42 for ix in range(len(chars)):

43 print("{} {}".format(chars[ix], counter[ix]))

44

45 def count_in(filenames):

46 total_chars = []

47 total_counter = []

48 for filename in filenames:

49 chars, counter = count_in_file(filename)

50 total_chars, total_counter = merge(total_chars,

total_counter, chars, counte\

51 r)

52

53 return total_chars, total_counter

54

55

56 if __name__ == '__main__':

57 import sys

58 chars, counter = count_in(sys.argv[1:])

59 print_results(chars, counter)

1 import count_characters as count

2 import cProfile

3 import sys

4

5 cProfile.run('chars, counter =

count.count_in(sys.argv[1:])')

Memory leak
 1 import random

 2

 3 def alloc():

 4 a = {

 5 'data': str(random.random()) + "a" * 10000000,

 6 }

 7 b = {

 8 'data': str(random.random()) + "b" * 10000000,

 9 }

10 a['other'] = b

11 b['other'] = a

 1 import sys

 2 from mymem import alloc

 3

 4 if len(sys.argv) < 2:

 5 exit(f"Usage: {sys.argv[0]} N")

 6

 7 count = int(sys.argv[1])

 8

 9 for _ in range(count):

10 alloc()

11 input("End the script")

Garbage collection

gc

 1 import sys

 2 from mymem import alloc

 3 import gc

 4

 5 if len(sys.argv) < 2:

 6 exit(f"Usage: {sys.argv[0]} N")

 7

 8 count = int(sys.argv[1])

 9

10 for _ in range(count):

11 alloc()

12 input("Run gc")

13

14 gc.collect()

15 input("End the script")

Weak reference

weakref

https://docs.python.org/library/gc.html
https://docs.python.org/3/library/weakref.html

 1 import random

 2 import weakref

 3

 4 def alloc():

 5 a = {

 6 'data': str(random.random()) + "a" * 10000000,

 7 }

 8 b = {

 9 'data': str(random.random()) + "b" * 10000000,

10 }

11 #a['other'] = weakref.WeakKeyDictionary(b)

12 z = weakref.ref(b)

13 #a['other'] =

14 #weakref.ref(a['other'])

15 #b['other'] = a

16 #weakref.ref(b['other'])

 1 import sys

 2 from weakmymem import alloc

 3

 4 if len(sys.argv) < 2:

 5 exit(f"Usage: {sys.argv[0]} N")

 6

 7 count = int(sys.argv[1])

 8

 9 for _ in range(count):

10 alloc()

11 input("End the script")

Exercise: benchmark list-comprehension,
map, for

Create several functions that accept a list of numbers from 1 to
1000 and calculate their square:
A function with a for-loop.
A function that uses map.
A function that uses list-comprehension.

Feel free to have any other calucaltion and measure that.
Send me the code and the results!

Exercise: Benchmark Levenshtein

Take the implementation of the Levenshtein distance
calculations and check which one is faster.

Exercise: sort files
Write a script that given a path to a directory will print the files
sorted by date.
If you don’t have one large folder, then use os.walk to get the path
to the files of a whole directory tree.

Write a simple solution.
Profile.
Use DSU.

Exercise: compare split words:
We have three ways of splitting a string into words. Using split,
using re.split and by going over it character-by-charcter.
Which one is the fastest?

 1 import sys

 2 import re

 3

 4 def split_to_words_by_regex(text):

 5 return re.split(' ', text)

 6

 7 def split_to_words_by_split(text):

 8 return text.split()

 9

10 def split_to_words_by_chars(text):

11 words = []

https://code-maven.com/slides/python-programming/sort-decorate-sort-undecorate

12 word = ''

13 for ch in text:

14 if ch == ' ':

15 words.append(word)

16 word = ''

17 else:

18 word += ch

19 if word:

20 words.append(word)

21 return words

22

23

24 if __name__ == '__main__':

25 if len(sys.argv) < 2:

26 exit(f"Usage: {sys.argv[0]} FILENAME")

27

28 filename = sys.argv[1]

29 with open(filename) as fh:

30 text = fh.read()

31 res1 = split_to_words_by_split(text)

32 res2 = split_to_words_by_chars(text)

33 res3 = split_to_words_by_regex(text)

34 #print(res1)

35 #print(res2)

36 assert res1 == res2

37 assert res1 == res3

Exercise: count words
Given a file count how many times each word appears.
Have two implementations. One using two list and one using a
dictionary.
Profile the code and benchmark the two solutions.

See examples/lists/count_words_two_lists.py and
examples/dictionary/count_words.py

GUI with Python/Tk

Sample Tk app
 1 import tkinter as tk

 2 from tkinter import ttk, messagebox, filedialog

 3 import os

 4

 5

 6 def scary_action():

 7 messagebox.showerror(title="Scary",

message="Deleting hard disk. Please wait...")

 8

 9

 10 def run_code():

 11 text = ""

 12 text += "Name: {}\n".format(name.get())

 13 text += "Password: {}\n".format(password.get())

 14 text += "Animal: {}\n".format(animal.get())

 15 text += "Country: {}\n".format(country.get())

 16 text += "Colors: "

 17 for ix in range(len(colors)):

 18 if colors[ix].get():

 19 text += color_names[ix] + " "

 20 text += "\n"

 21

 22 selected = list_box.curselection() # returns a

tuple

 23 text += "Animals: "

 24 text += ', '.join([list_box.get(idx) for idx in

selected])

 25 text += "\n"

 26

 27 text += "Filename:

{}\n".format(os.path.basename(filename_entry.get()))

 28

 29 resp = messagebox.askquestion(title="Running with",

message=f"Shall I start runn\

 30 ing with the following values?\n\n{text}")

 31 if resp == 'yes':

 32 output_window['state'] = 'normal' # allow

editing of the Text widget

 33 output_window.insert('end', f"{text}\n--------

\n")

 34 output_window['state'] = 'disabled' # disable

editing

 35 output_window.see('end') # scroll to the end as

we make progress

 36 app.update()

 37

 38

 39 def close_app():

 40 app.destroy()

 41

 42

 43 app = tk.Tk()

 44 app.title('Simple App')

 45

 46 menubar = tk.Menu(app)

 47 app.config(menu=menubar)

 48

 49 menu1 = tk.Menu(menubar, tearoff=0)

 50 menubar.add_cascade(label="File", underline=0,

menu=menu1)

 51 menu1.add_separator()

 52 menu1.add_command(label="Exit", underline=1,

command=close_app)

 53

 54 top_frame = tk.Frame(app)

 55 top_frame.pack(side="top")

 56 pw_frame = tk.Frame(app)

 57 pw_frame.pack(side="top")

 58

 59 # Simple Label widget:

 60 name_title = tk.Label(top_frame, text=" Name:",

width=10, anchor="w")

 61 name_title.pack({"side": "left"})

 62

 63 # Simple Entry widget:

 64 name = tk.Entry(top_frame)

 65 name.pack({"side": "left"})

 66 # name.insert(0, "Your name")

 67

 68 # Simple Label widget:

 69 password_title = tk.Label(pw_frame, text=" Password:",

width=10, anchor="w")

 70 password_title.pack({"side": "left"})

 71

 72 # In order to hide the text as it is typed (e.g. for

Passwords)

 73 # set the "show" parameter:

 74 password = tk.Entry(pw_frame)

 75 password["show"] = "*"

 76 password.pack({"side": "left"})

 77

 78 radios = tk.Frame(app)

 79 radios.pack()

 80 animal = tk.StringVar()

 81 animal.set("Red")

 82 my_radio = []

 83 animals = ["Cow", "Mouse", "Dog", "Car", "Snake"]

 84 for animal_name in animals:

 85 radio = tk.Radiobutton(radios, text=animal_name,

variable=animal, value=animal_n\

 86 ame)

 87 radio.pack({"side": "left"})

 88 my_radio.append(radio)

 89

 90

 91 checkboxes = tk.Frame(app)

 92 checkboxes.pack()

 93 colors = []

 94 my_checkbox = []

 95 color_names = ["Red", "Blue", "Green"]

 96 for color_name in color_names:

 97 color_var = tk.BooleanVar()

 98 colors.append(color_var)

 99 checkbox = tk.Checkbutton(checkboxes,

text=color_name, variable=color_var)

100 checkbox.pack({"side": "left"})

101 my_checkbox.append(checkbox)

102

103 countries = ["Japan", "Korea", "Vietnam", "China"]

104

105 def country_change(event):

106 pass

107 #selection = country.current()

108 #print(selection)

109 #print(countries[selection])

110

111 def country_clicked():

112 pass

113 #print(country.get())

114

115 country = ttk.Combobox(app, values=countries)

116 country.pack()

117 country.bind("<<ComboboxSelected>>", country_change)

118

119

120

121

122 list_box = tk.Listbox(app, selectmode=tk.MULTIPLE,

height=4)

123 animal_names = ['Snake', 'Mouse', 'Elephant', 'Dog',

'Cat', 'Zebra', 'Camel', 'Spide\

124 r']

125 for val in animal_names:

126 list_box.insert(tk.END, val)

127 list_box.pack()

128

129 def open_filename_selector():

130 file_path = filedialog.askopenfilename(filetypes=

(("Any file", "*"),))

131 filename_entry.delete(0, tk.END)

132 filename_entry.insert(0, file_path)

133

134

135 filename_frame = tk.Frame(app)

136 filename_frame.pack()

137 filename_label = tk.Label(filename_frame,

text="Filename:", width=10)

138 filename_label.pack({"side": "left"})

139 filename_entry = tk.Entry(filename_frame, width=60)

140 filename_entry.pack({"side": "left"})

141 filename_button = tk.Button(filename_frame, text="Select

file", command=open_filenam\

142 e_selector)

143 filename_button.pack({"side": "left"})

144

145 output_frame = tk.Frame(app)

146 output_frame.pack()

147 output_window = tk.Text(output_frame, state='disabled')

148 output_window.pack()

149

150

151 buttons = tk.Frame(app)

152 buttons.pack()

153

154 scary_button = tk.Button(buttons, text="Don't click

here!", fg="red", command=scary_\

155 action)

156 scary_button.pack({"side": "left"})

157

158 action_button = tk.Button(buttons, text="Run",

command=run_code)

159 action_button.pack()

160

161 app.mainloop()

162

163 # TODO: key binding?

164 # TODO: Option Menu

165 # TODO: Scale

166 # TODO: Progressbar (after the deleting hard disk pop-

up)

167 # TODO: Frame (with border?)

GUI Toolkits

When creating an application there are several ways to interact
with the user. You can accept command line parameters.
You can interact on the Standard Output / Standard Input
runnin in a Unix Shell or in the Command Prompt of
Windows.

Many people, especially those who are using MS Windows,
will frown upon both of those. They expect a Graphical User
Interface (GUI)
or maybe a web interface via their browser. In this chapter we
are going to look at the possibility to create a desktop GUI.

There are plenty of ways to create a GUI in Python. The major
ones were listed here, but there are many more. See the

additional links.

In this chapter we are going to use the Tk Toolkit.

Tk
GTK
Qt
wxWidgets

GUI FAQ
GUI Programming

Installation

Tk in Python is actually a wrapper arount the implementation
in Tcl.

Tcl/Tk usually comes installed with Python. All we need is
basically the Tkinter Python module.
In some Python installations (e.g. Anaconda), Tkinter is
already installed. In other cases you might
need to install it yourself. For examples on Ubuntu you can use
apt to install it.

1 sudo apt-get install python3-tk

Python Tk Documentation

https://docs.python.org/library/tk.html
http://www.pygtk.org/
https://wiki.python.org/moin/PyQt
http://wxpython.org/
https://docs.python.org/3/faq/gui.html
https://wiki.python.org/moin/GuiProgramming

The documentation of Tk in Python does not cover all the
aspects of Tk. If you are creating a complex GUI
application you might need to dig in the documentation written
for Tcl/Tk.

Tk
The Tk Command of Tcl 8.6
Python GUI Geeks for Geeks

In the Unix world where Tk came from the various parts of a
GUI application are called widgets. In the MS Windows world
they are usually called controls. There are several commonly
used Widgets. For example, Label, Button, Entry, Radiobutton,
Checkbox.
First we are going to see small examples with each one of
these Widgets. Then we’ll see how to combine them.

Python Tk Button

Button

1 import tkinter as tk

2

3 app = tk.Tk()

4 app.title('Single Button')

5

6 button = tk.Button(app, text='Close', width=25,

command=app.destroy)

7 button.pack()

8

9 app.mainloop()

https://docs.python.org/library/tk.html
https://www.tcl.tk/man/tcl8.6/TkCmd/contents.htm
https://www.tcl.tk/man/tcl8.6/
https://www.geeksforgeeks.org/python-gui-tkinter/
https://effbot.org/tkinterbook/button.htm

Python Tk Button with action
 1 import tkinter as tk

 2

 3 def run_action():

 4 print("clicked")

 5

 6 app = tk.Tk()

 7 app.title('Single Button')

 8

 9 action_button = tk.Button(app, text='Action', width=25,

command=run_action)

10 action_button.pack()

11 #action_button.pack(side="left")

12

13 exit_button = tk.Button(app, text='Close', width=25,

command=app.destroy)

14 exit_button.pack()

15

16 app.mainloop()

Python Tk Label

Label

1 import tkinter as tk

2

3 app = tk.Tk()

4 #app.title('Simple Label')

5

6 label = tk.Label(app, text='Some fixed text')

7 label.pack()

8

9 app.mainloop()

Python Tk Label - font size and color

https://effbot.org/tkinterbook/label.htm

 1 import tkinter as tk

 2

 3 app = tk.Tk()

 4 app.title('Label with font')

 5

 6 label = tk.Label(app, text='Some text with larger

letters')

 7 label.pack()

 8 label.config(font=("Courier", 44))

 9 label.config(fg="#0000FF")

10 label.config(bg="yellow")

11

12 app.mainloop()

Python Tk Keybinding
 1 import tkinter as tk

 2

 3 app = tk.Tk()

 4 app.title('Key binding')

 5

 6 label = tk.Label(app, text='Use the keyboard: (a, Ctr-b,

Alt-c, F1, Alt-F4)')

 7 label.config(font=("Courier", 44))

 8 label.pack()

 9

10 def pressed_a(event):

11 print("pressed a")

12

13 def pressed_control_b(event):

14 print("pressed Ctr-b")

15

16 def pressed_alt_c(event):

17 print("pressed Alt-c")

18

19 def pressed_f1(event):

20 print("pressed F1")

21

22 app.bind("<a>", pressed_a)

23 app.bind("<Control-b>", pressed_control_b)

24 app.bind("<Alt-c>", pressed_alt_c)

25 app.bind("<F1>", pressed_f1)

26

27

28 app.mainloop()

Python Tk Entry (one-line text entry)

Entry

 1 import tkinter as tk

 2

 3 app = tk.Tk()

 4 app.title('Text Entry')

 5

 6 entry = tk.Entry(app)

 7 entry.pack()

 8

 9 def clicked():

10 print(entry.get())

11

12 button = tk.Button(app, text='Show', width=25,

command=clicked)

13 button.pack()

14

15 exit_button = tk.Button(app, text='Close', width=25,

command=app.destroy)

16 exit_button.pack()

17

18 app.mainloop()

Python Tk Entry for passwords and other
secrets (hidden text)
 1 import tkinter as tk

 2

 3 app = tk.Tk()

 4 app.title('Text Entry')

 5

 6 entry = tk.Entry(app)

 7 entry['show'] = '*'

 8 entry.pack()

 9

https://effbot.org/tkinterbook/entry.htm

10 def clicked():

11 print(entry.get())

12

13 button = tk.Button(app, text='Show', width=25,

command=clicked)

14 button.pack()

15

16 exit_button = tk.Button(app, text='Close', width=25,

command=app.destroy)

17 exit_button.pack()

18

19 app.mainloop()

Python Tk Checkbox
 1 import tkinter as tk

 2

 3 app = tk.Tk()

 4 app.title('Checkbox')

 5

 6 var1 = tk.BooleanVar()

 7 cb1 = tk.Checkbutton(app, text='male', variable=var1)

 8 cb1.pack()

 9

10 var2 = tk.BooleanVar()

11 cb2 = tk.Checkbutton(app, text='female', variable=var2)

12 cb2.pack()

13

14 def clicked():

15 print(var1.get())

16 print(var2.get())

17

18 button = tk.Button(app, text='Show', width=25,

command=clicked)

19 button.pack()

20

21 exit_button = tk.Button(app, text='Close', width=25,

command=app.destroy)

22 exit_button.pack()

23

24 app.mainloop()

Variables

Python Tk Radiobutton
 1 import tkinter as tk

 2

 3 def run_action():

 4 print("clicked")

 5 print(count.get())

 6

 7 app = tk.Tk()

 8 app.title('Radio button')

 9

10 count = tk.IntVar()

11 #count.set(2)

12

13 my_radios = []

14 values = [(1, "One"), (2, "Two"), (3, "Three")]

15 for ix in range(len(values)):

16 my_radios.append(tk.Radiobutton(app, text=values[ix]

[1], variable=count, value=v\

17 alues[ix][0]))

18 my_radios[ix].pack()

19

20 action_button = tk.Button(app, text='Action', width=25,

command=run_action)

21 action_button.pack()

22

23 exit_button = tk.Button(app, text='Close', width=25,

command=app.destroy)

24 exit_button.pack()

25

26 app.mainloop()

Python Tk Listbox
 1 import tkinter as tk

 2

 3 app = tk.Tk()

 4 app.title('List box')

 5

 6

https://docs.python.org/3.9/library/tkinter.html#coupling-widget-variables

 7 def clicked():

 8 print("clicked")

 9 selected = box.curselection() # returns a tuple

10 if selected:

11 first = selected[0]

12 color = box.get(first)

13 print(color)

14

15 box = tk.Listbox(app)

16 values = ['Red', 'Green', 'Blue', 'Purple']

17 for val in values:

18 box.insert(tk.END, val)

19 box.pack()

20

21 button = tk.Button(app, text='Show', width=25,

command=clicked)

22 button.pack()

23

24 exit_button = tk.Button(app, text='Close', width=25,

command=app.destroy)

25 exit_button.pack()

26

27 app.mainloop()

Python Tk Listbox Multiple
 1 import tkinter as tk

 2

 3 app = tk.Tk()

 4 app.title('List box')

 5

 6

 7 def clicked():

 8 print("clicked")

 9 selected = box.curselection() # returns a tuple

10 for idx in selected:

11 print(box.get(idx))

12

13 box = tk.Listbox(app, selectmode=tk.MULTIPLE, height=4)

14 values = ['Red', 'Green', 'Blue', 'Purple', 'Yellow',

'Orange', 'Black', 'White']

15 for val in values:

16 box.insert(tk.END, val)

17 box.pack()

18

19 button = tk.Button(app, text='Show', width=25,

command=clicked)

20 button.pack()

21

22 exit_button = tk.Button(app, text='Close', width=25,

command=app.destroy)

23 exit_button.pack()

24

25 app.mainloop()

Python Tk Menubar

Menubar
Menu

underline sets the hot-key.
tearoff= (the default) allows floating menu by clicking on the
dashed line.
enable/disable menu items.
Set actions via command on the menu items.

 1 import tkinter as tk

 2

 3 app = tk.Tk()

 4 app.title('Menu')

 5

 6 def run_new():

 7 print("new")

 8

 9 def run_exit():

10 print("exit")

11 app.destroy()

12

13 def enable_languages():

14 menu2.entryconfig("Klingon", state="normal")

15 def disable_languages():

16 menu2.entryconfig("Klingon", state="disabled")

17

http://effbot.org/zone/tkinter-menubar.htm
http://effbot.org/tkinterbook/menu.htm

18 def set_language(lang):

19 print(lang)

20

21

22 menubar = tk.Menu(app)

23

24 menu1 = tk.Menu(menubar, tearoff=0)

25 menu1.add_command(label="New", command=run_new)

26 menu1.add_command(label="Enable language",

command=enable_languages)

27 menu1.add_command(label="Disable language",

command=disable_languages)

28 menu1.add_separator()

29 menu1.add_command(label="Exit", underline=1,

command=run_exit)

30

31 menubar.add_cascade(label="File", underline=0,

menu=menu1)

32

33 menu2 = tk.Menu(menubar, tearoff=1)

34 menu2.add_command(label="English")

35 menu2.add_command(label="Hebrew")

36 menu2.add_command(label="Spanish")

37 menu2.add_command(label="Klingon", state="disabled",

command=lambda : set_language('\

38 Klingon'))

39 menu2.add_command(label="Hungarian")

40

41 menubar.add_cascade(label="Language", menu=menu2)

42

43 app.config(menu=menubar)

44

45 app.mainloop()

Python Tk Text
1 import tkinter as tk

2

3 app = tk.Tk()

4 app.title('Text Editor')

5

6 text = tk.Text(app)

7 text.pack({"side": "bottom"})

8

9 app.mainloop()

text.delete(1.0, tk.END)

text.insert('end', content)

content = text.get(1.0, tk.END)

tk text

Python Tk Dialogs
Dialogs
Filedialogs
Message boxes

Python Tk Filedialog
file dialogs
dialog

askopenfilename - returns path to file
asksaveasfilename - returns path to file
askopenfile - returns filehandle opened for reading
asksaveasfile - retutns filehandle opened for writing

Allow the listing of file-extension filters.

 1 import tkinter as tk

 2 from tkinter import filedialog

 3

 4 input_file_path = None

 5 output_file_path = None

 6

 7 def run_process():

 8 print("Parameters:")

http://effbot.org/tkinterbook/text.htm
https://docs.python.org/library/dialog.html
http://effbot.org/tkinterbook/tkinter-file-dialogs.htm
https://docs.python.org/library/dialog.html

 9 print(f"in: {input_file_path}")

10 print(f"out: {output_file_path}")

11

12 def close_app():

13 print("Bye")

14 app.destroy()

15

16 def select_input_file():

17 global input_file_path

18 input_file_path =

filedialog.askopenfilename(filetypes=(("Excel files",

"*.xlsx"\

19), ("CSV files", "*.csv"), ("Any file", "*")))

20 print(input_file_path)

21

22 def select_output_file():

23 global output_file_path

24 output_file_path =

filedialog.asksaveasfilename(filetypes=(("Excel files",

"*.xl\

25 sx"), ("CSV files", "*.csv"), ("Any file", "*")))

26 print(output_file_path)

27

28 app = tk.Tk()

29 app.title('Convert file')

30

31 input_button = tk.Button(app, text='Select input file',

command=select_input_file)

32 input_button.pack()

33

34 output_button = tk.Button(app, text='Select output file',

command=select_output_file)

35 output_button.pack()

36

37 process_button = tk.Button(app, text='Process', width=25,

command=run_process)

38 process_button.pack()

39

40 exit_button = tk.Button(app, text='Close', width=25,

command=close_app)

41 exit_button.pack()

42

43 app.mainloop()

Python Tk messagebox
 1 import tkinter as tk

 2 from tkinter import messagebox

 3

 4 app = tk.Tk()

 5 app.title('Menu')

 6

 7 def run_show_info():

 8 messagebox.showinfo(title = "Title", message = "Show

info text")

 9

10 def run_show_warning():

11 messagebox.showwarning(title = "Title", message =

"Show warning text")

12

13 def run_show_error():

14 messagebox.showerror(title = "Title", message = "Show

error text")

15

16 def run_ask_question():

17 resp = messagebox.askquestion(title = "Title",

message = "Can I ask you a questi\

18 on?")

19 print(resp) # "yes" / "no" (default "no")

20

21 def run_ask_okcancel():

22 resp = messagebox.askokcancel(title = "Title",

message = "Shall I do it?")

23 print(resp) # True / False (default = False)

24

25 def run_ask_retrycancel():

26 resp = messagebox.askretrycancel(title = "Title",

message = "Shall retry it?")

27 print(resp) # True / False (default = False)

28

29 def run_ask_yesno():

30 resp = messagebox.askyesno(title = "Title", message =

"Yes or No?")

31 print(resp) # True / False (default = False)

32

33 def run_ask_yesnocancel():

34 resp = messagebox.askyesnocancel(title = "Title",

message = "Yes, No, or Cancel?\

35 ")

36 print(resp) # True / False / None (default = None)

37

38 def run_exit():

39 app.destroy()

40

41

42 menubar = tk.Menu(app)

43

44 menu1 = tk.Menu(menubar, tearoff=0)

45 menu1.add_command(label="Info", underline=0,

command=run_show_info)

46 menu1.add_command(label="Warning", underline=0,

command=run_show_warning)

47 menu1.add_command(label="Error", underline=0,

command=run_show_error)

48 menu1.add_separator()

49 menu1.add_command(label="Exit", underline=1,

command=run_exit)

50

51 menubar.add_cascade(label="Show", underline=0,

menu=menu1)

52

53 menu2 = tk.Menu(menubar, tearoff=0)

54 menu2.add_command(label="Question",

underline=0, command=run_ask_question)

55 menu2.add_command(label="OK Cancel",

underline=0, command=run_ask_okcancel)

56 menu2.add_command(label="Retry Cancel",

underline=0, command=run_ask_retrycanc\

57 el)

58 menu2.add_command(label="Yes or No",

underline=0, command=run_ask_yesno)

59 menu2.add_command(label="Yes, No, or Cancel",

underline=5, command=run_ask_yesnocanc\

60 el)

61

62 menubar.add_cascade(label="Ask", underline=0, menu=menu2)

63

64 app.config(menu=menubar)

65

66 app.mainloop()

Tk messagebox

https://docs.python.org/library/tkinter.messagebox.html

Python Tk Combobox
 1 import tkinter as tk

 2 from tkinter import ttk

 3

 4 countries = ["Japan", "Korea", "Vietnam", "China"]

 5

 6 app = tk.Tk()

 7 app.title('Combo box')

 8

 9

10 def change(event):

11 # VirtualEvent

12 print("change")

13 selection = country.current()

14 print(selection)

15 print(countries[selection])

16

17 def clicked():

18 print("clicked")

19 print(country.get())

20

21 country = ttk.Combobox(app, values=countries)

22 country.pack()

23 country.bind("<<ComboboxSelected>>", change)

24

25 button = tk.Button(app, text='Run', width=25,

command=clicked)

26 button.pack()

27

28

29 app.mainloop()

Python Tk OptionMenu
 1 import tkinter as tk

 2

 3 def run_action():

 4 color = color_var.get()

 5 print(color)

 6

 7 size = size_var.get()

 8 print(size)

 9

10 app = tk.Tk()

11 app.title('Option Menu')

12

13 color_var = tk.StringVar(app)

14 color_selector = tk.OptionMenu(app, color_var, "Red",

"Green", "Blue")

15 color_selector.pack()

16

17 sizes = ("Small", "Medium", "Large")

18 size_var = tk.StringVar(app)

19 size_selector = tk.OptionMenu(app, size_var, *sizes)

20 size_selector.pack()

21

22 action_button = tk.Button(app, text='Action', width=25,

command=run_action)

23 action_button.pack()

24

25 app.mainloop()

Python Tk Scale
 1 import tkinter as tk

 2

 3 def run_action():

 4 h = scale_h.get()

 5 print(h)

 6

 7 v = scale_v.get()

 8 print(v)

 9

10 app = tk.Tk()

11 app.title('Scale')

12

13 scale_h = tk.Scale(app, from_=0, to=42,

orient=tk.HORIZONTAL)

14 scale_h.pack()

15

16 scale_v = tk.Scale(app, from_=1, to=100,

orient=tk.VERTICAL)

17 scale_v.pack()

18 scale_v.set(23)

19

20 action_button = tk.Button(app, text='Action', width=25,

command=run_action)

21 action_button.pack()

22

23 app.mainloop()

Python Tk Progressbar
 1 import tkinter as tk

 2 from tkinter import ttk

 3

 4 app = tk.Tk()

 5 app.title('Single Button')

 6

 7 progressbar = ttk.Progressbar(app)

 8 progressbar.pack()

 9

10 def stop():

11 progressbar.stop()

12

13 def start():

14 app.after(10000, stop)

15 progressbar.start(100)

16

17

18 button = tk.Button(app, text='Start', width=25,

command=start)

19 button.pack()

20

21 exit_button = tk.Button(app, text='Close', width=25,

command=app.destroy)

22 exit_button.pack()

23

24 app.mainloop()

Python Tk Frame
 1 import tkinter as tk

 2

 3 def close():

 4 app.destroy()

 5

 6 def clicked(val):

 7 entry.insert(tk.END, val)

 8

 9 app = tk.Tk()

10 app.title('Frame')

11

12 entry = tk.Entry(app)

13 entry.pack()

14

15 frames = {}

16 frames[1] = tk.Frame(app)

17 frames[1].pack(side="top")

18 frames[2] = tk.Frame(app)

19 frames[2].pack(side="top")

20 frames[3] = tk.Frame(app)

21 frames[3].pack(side="top")

22

23 btn = {}

24

25 btn["a"] = tk.Button(frames[1], text="a", width=25,

command=lambda : clicked("a"))

26 btn["a"].pack(side="left")

27

28 btn["b"] = tk.Button(frames[1], text="b", width=25,

command=lambda : clicked("b"))

29 btn["b"].pack(side="left")

30

31 btn["c"] = tk.Button(frames[2], text="c", width=25,

command=lambda : clicked("c"))

32 btn["c"].pack(side="left")

33

34 btn["d"] = tk.Button(frames[2], text="d", width=25,

command=lambda : clicked("d"))

35 btn["d"].pack(side="left")

36

37 close_btn = tk.Button(frames[3], text='Close', width=25,

command=close)

38 close_btn.pack(side="right", expand=0)

39

40 app.mainloop()

width

side: left, right, top, bottom

Not so Simple Tk app with class
 1 from tkinter import Tk, Frame, BOTH

 2

 3

 4 class Example(Frame):

 5 def __init__(self, parent):

 6 Frame.__init__(self, parent, background="white")

 7 self.parent = parent

 8 self.initUI()

 9

10 def initUI(self):

11 self.parent.title("Simple")

12 self.pack(fill=BOTH, expand=1)

13

14

15 def main():

16 root = Tk()

17 root.geometry("250x150+300+300")

18 app = Example(parent=root)

19

20 # move the window to the front (needed on Mac only?)

21 root.lift()

22 root.call('wm', 'attributes', '.', '-topmost', True)

23 root.after_idle(root.call, 'wm', 'attributes', '.',

'-topmost', False)

24

25 root.mainloop()

26

27 main()

Tk: Hello World
 1 import tkinter as tk

 2

 3 class Example(tk.Frame):

 4 def __init__(self, parent=None):

 5 super().__init__(parent)

 6 self.pack()

 7 self.createWidgets()

 8

 9 def createWidgets(self):

10 # Simple Label widget:

11 self.name_title = tk.Label(self, text="Hello

World!")

12 self.name_title.pack({"side": "left"})

13

14 def main():

15 root = tk.Tk()

16 app = Example(parent=root)

17 app.mainloop()

18

19 main()

Tk: Quit button
 1 import tkinter as tk

 2

 3 class Example(tk.Frame):

 4 def __init__(self, parent=None):

 5 super().__init__(parent)

 6 self.pack()

 7 self.createWidgets()

 8

 9 def createWidgets(self):

10 self.QUIT = tk.Button(self)

11 self.QUIT["text"] = "QUIT"

12 self.QUIT["fg"] = "red"

13 self.QUIT["command"] = self.quit

14 self.QUIT.pack({"side": "left"})

15

16 def main():

17 root = tk.Tk()

18 app = Example(parent=root)

19

20 app.mainloop()

21

22 main()

Tk: File selector

 1 import tkinter as tk

 2 from tkinter import filedialog

 3

 4 class Example(tk.Frame):

 5 def __init__(self, parent=None):

 6 super().__init__(parent)

 7 self.pack()

 8 self.createWidgets()

 9

10 def get_file(self):

11 file_path = filedialog.askopenfilename()

12 print(file_path)

13 self.filename.delete(0, tk.END)

14 self.filename.insert(0, file_path)

15

16 def run_process(self):

17 print("Running a process on file

{}".format(self.filename.get()))

18

19 def createWidgets(self):

20 self.QUIT = tk.Button(self)

21 self.QUIT["text"] = "QUIT"

22 self.QUIT["fg"] = "red"

23 self.QUIT["command"] = self.quit

24 self.QUIT.pack({"side": "right"})

25

26 # Simple Label widget:

27 self.filename_title = tk.Label(self,

text="Fileame:")

28 self.filename_title.pack({"side": "left"})

29

30 # Simple Entry widget:

31 self.filename = tk.Entry(self, width=120)

32 self.filename.pack({"side": "left"})

33 self.filename.delete(0, tk.END)

34

35 self.selector = tk.Button(self)

36 self.selector["text"] = "Select",

37 self.selector["command"] = self.get_file

38 self.selector.pack({"side": "left"})

39

40 self.process = tk.Button(self)

41 self.process["text"] = "Process",

42 self.process["command"] = self.run_process

43 self.process.pack({"side": "left"})

44

45

46 def main():

47 root = tk.Tk()

48 app = Example(parent=root)

49

50 root.lift()

51 root.call('wm', 'attributes', '.', '-topmost', True)

52 root.after_idle(root.call, 'wm', 'attributes', '.',

'-topmost', False)

53

54 app.mainloop()

55

56 main()

Tk: Checkbox
 1 import tkinter as tk

 2

 3 class Example(tk.Frame):

 4 def __init__(self, parent=None):

 5 super().__init__(parent)

 6 self.pack()

 7 self.createWidgets()

 8

 9 def show_values(self):

10 print("show values")

11 for v in self.vars:

12 print(v.get())

13

14 def createWidgets(self):

15 self.QUIT = tk.Button(self)

16 self.QUIT["text"] = "QUIT"

17 self.QUIT["fg"] = "red"

18 self.QUIT["command"] = self.quit

19 self.QUIT.pack({"side": "left"})

20

21

22 self.vars = []

23 self.cbs = []

24 self.vars.append(tk.IntVar())

25 cb = tk.Checkbutton(text="Blue",

variable=self.vars[-1])

26 cb.pack({"side": "left"})

27 self.cbs.append(cb)

28

29 self.vars.append(tk.IntVar())

30 cb = tk.Checkbutton(text="Yellow",

variable=self.vars[-1])

31 cb.pack({"side": "left"})

32 self.cbs.append(cb)

33

34 self.show = tk.Button(self)

35 self.show["text"] = "Show",

36 self.show["command"] = self.show_values

37 self.show.pack({"side": "left"})

38

39 def main():

40 root = tk.Tk()

41 app = Example(parent=root)

42

43 root.lift()

44 root.call('wm', 'attributes', '.', '-topmost', True)

45 root.after_idle(root.call, 'wm', 'attributes', '.',

'-topmost', False)

46

47 app.mainloop()

48

49 main()

Tk: Runner
 1 import tkinter as tk

 2 import time

 3

 4 # TODO: async or threading to run long-running other

processes

 5

 6

 7 class RunnerApp(tk.Frame):

 8 def __init__(self, parent=None):

 9 super().__init__(parent)

10 self.pack()

11

12 # Capture event when someone closes the window

with the X on the top-right c\

13 orner of the window

14 parent.protocol("WM_DELETE_WINDOW",

self.close_app)

15

16 self.QUIT = tk.Button(self)

17 self.QUIT["text"] = "QUIT"

18 self.QUIT["fg"] = "red"

19 self.QUIT["command"] = self.close_app

20 self.QUIT.pack({"side": "left"})

21

22 self.start_button = tk.Button(self)

23 self.start_button["text"] = "Start"

24 self.start_button["command"] = self.start

25 self.start_button.pack({"side": "left"})

26

27 self.stop_button = tk.Button(self)

28 self.stop_button["text"] = "Stop"

29 self.stop_button["command"] = self.stop

30 self.stop_button.pack({"side": "left"})

31

32 self.text = tk.Text(self, state='disabled')

33 self.text.pack({"side": "bottom"})

34

35 self.stop_process = False

36

37 def close_app(self):

38 print("close")

39 self.stop_process = True

40 self.quit()

41

42 def stop(self):

43 print("stop")

44 self.stop_process = True

45 self.add_line('stop')

46

47 def start(self):

48 self.stop_process = False

49 for i in range(100):

50 if self.stop_process:

51 break

52 self.add_line(str(i))

53 time.sleep(0.1)

54

55 def add_line(self, line):

56 self.text['state'] = 'normal' # allow editing of

the Text widget

57 self.text.insert('end', line + "\n")

58 self.text['state'] = 'disabled' # disable

editing

59 self.text.see('end') # scroll to the end as we

make progress

60 self.update() # update the content and allow

other events (e.g. from stop a\

61 nd quit buttons) to take place

62

63

64 def main():

65 tk_root = tk.Tk()

66 app = RunnerApp(parent=tk_root)

67

68 tk_root.lift()

69 tk_root.call('wm', 'attributes', '.', '-topmost',

True)

70 tk_root.after_idle(tk_root.call, 'wm', 'attributes',

'.', '-topmost', False)

71

72 app.mainloop()

73

74

75 main()

Tk: Runner with threads
 1 import tkinter as tk

 2 import time

 3 import threading

 4 import queue

 5 import ctypes

 6

 7 class MyStopButton(Exception):

 8 pass

 9

 10 class ThreadedJob(threading.Thread):

 11 def __init__(self, que):

 12 self.que = que

 13 threading.Thread.__init__(self)

 14 def run(self):

 15 thread = threading.current_thread()

 16 print("Start thread {}".format(thread.name))

 17 try:

 18 for i in range(10):

 19 print(i)

 20 self.que.put(str(i))

 21 time.sleep(1)

 22 except Exception as err:

 23 print(f"Exception in {thread.name}: {err}

{err.__class__.__name__}")

 24

 25

 26

 27 def raise_exception(self):

 28 thread = threading.current_thread()

 29 print(f"Raise exception in {thread.name}")

 30 thread_id = self.native_id

 31 res =

ctypes.pythonapi.PyThreadState_SetAsyncExc(thread_id,

ctypes.py_object\

 32 (MyStopButton))

 33 if res > 1:

 34

ctypes.pythonapi.PyThreadState_SetAsyncExc(thread_id, 0)

 35 print('Exception raise failure')

 36 print("DONE")

 37

 38 class RunnerApp(tk.Frame):

 39 def __init__(self, parent=None):

 40 super().__init__(parent)

 41 self.pack()

 42

 43 # Capture event when someone closes the window

with the X on the top-right c\

 44 orner of the window

 45 parent.protocol("WM_DELETE_WINDOW",

self.close_app)

 46

 47 self.QUIT = tk.Button(self)

 48 self.QUIT["text"] = "QUIT"

 49 self.QUIT["fg"] = "red"

 50 self.QUIT["command"] = self.close_app

 51 self.QUIT.pack({"side": "left"})

 52

 53 self.start_button = tk.Button(self)

 54 self.start_button["text"] = "Start"

 55 self.start_button["command"] = self.start

 56 self.start_button.pack({"side": "left"})

 57

 58 self.stop_button = tk.Button(self)

 59 self.stop_button["text"] = "Stop"

 60 self.stop_button["command"] = self.stop

 61 self.stop_button.pack({"side": "left"})

 62

 63 self.text = tk.Text(self, state='disabled')

 64 self.text.pack({"side": "bottom"})

 65

 66 self.stop_process = False

 67

 68 def close_app(self):

 69 print("close")

 70 self.stop_process = True

 71 self.quit()

 72

 73 def stop(self):

 74 print("stop")

 75 print(self.job.name)

 76 self.job.raise_exception()

 77 #self.stop_process = True

 78 self.add_line('stop')

 79

 80

 81 def start(self):

 82 self.stop_process = False

 83 self.start_button['state'] = 'disabled'

 84 self.que = queue.Queue()

 85 self.job = ThreadedJob(self.que)

 86 self.job.start()

 87 self.master.after(100, self.process_queue)

 88

 89 def process_queue(self):

 90 print("process " + str(time.time()))

 91 if not self.job.is_alive():

 92 self.job.join()

 93 self.job = None

 94 self.stop_process = True

 95 self.start_button['state'] = 'normal'

 96 print("finished")

 97 return

 98

 99 try:

100 msg = self.que.get(0)

101 self.add_line(msg)

102 except queue.Empty:

103 pass

104 finally:

105 if not self.stop_process:

106 self.master.after(100,

self.process_queue)

107

108 def add_line(self, line):

109 self.text['state'] = 'normal' # allow editing

of the Text widget

110 self.text.insert('end', line + "\n")

111 self.text['state'] = 'disabled' # disable

editing

112 self.text.see('end') # scroll to the end as we

make progress

113 self.update() # update the content and allow

other events (e.g. from stop a\

114 nd quit buttons) to take place

115

116

117 def main():

118 tk_root = tk.Tk()

119 app = RunnerApp(parent=tk_root)

120

121 tk_root.lift()

122 tk_root.call('wm', 'attributes', '.', '-topmost',

True)

123 tk_root.after_idle(tk_root.call, 'wm', 'attributes',

'.', '-topmost', False)

124

125 app.mainloop()

126

127

128 main()

Getting started with Tk
 1 import tkinter as tk

 2

 3 class Example(tk.Frame):

 4 def __init__(self, parent=None):

 5 super().__init__(parent)

 6 self.pack()

 7 self.createWidgets()

 8

 9 def say_hi(self):

10 print("hi there, everyone! ")

11 print("Name: {}".format(self.name.get()))

12 print("Password: {}".format(self.password.get()))

13 print("count: {}".format(self.count.get()))

14 self.password.delete(0, 'end')

15

16

17 def createWidgets(self):

18 self.QUIT = tk.Button(self)

19 self.QUIT["text"] = "QUIT"

20 self.QUIT["fg"] = "red"

21 self.QUIT["command"] = self.quit

22 self.QUIT.pack({"side": "left"})

23

24 # Simple Label widget:

25 self.name_title = tk.Label(self, text="Name:")

26 self.name_title.pack({"side": "left"})

27

28 # Simple Entry widget:

29 self.name = tk.Entry(self)

30 self.name.pack({"side": "left"})

31 self.name.insert(0, "Your name")

32

33 # Simple Label widget:

34 self.password_title = tk.Label(self,

text="Password:")

35 self.password_title.pack({"side": "left"})

36

37 self.count = tk.IntVar()

38 self.count.set(2)

39 self.my_radio = []

40 radio = [(1, "One"), (2, "Two"), (3, "Three")]

41 for ix in range(len(radio)):

42 self.my_radio.append(tk.Radiobutton(self,

text=radio[ix][1], variable=se\

43 lf.count, value=radio[ix][0]))

44 self.my_radio[ix].pack({"side": "bottom"})

45

46 # In order to hide the text as it is typed (e.g.

for Passwords)

47 # set the "show" parameter:

48 self.password = tk.Entry(self)

49 self.password["show"] = "*"

50 self.password.pack({"side": "left"})

51

52 self.hi_there = tk.Button(self)

53 self.hi_there["text"] = "Hello",

54 self.hi_there["command"] = self.say_hi

55

56 self.hi_there.pack({"side": "left"})

57

58 def main():

59 root = tk.Tk()

60 app = Example(parent=root)

61

62 root.lift()

63 root.call('wm', 'attributes', '.', '-topmost', True)

64 root.after_idle(root.call, 'wm', 'attributes', '.',

'-topmost', False)

65

66 app.mainloop()

67

68 main()

Exercise: Tk - Calculator one line
Write a Tk application that behaves like a one-line calculator.
It has an entry box where one can enter an expression like “2 + 3”
and a button.
When the button is pressed the expression is calculated.

There is another button called “Quit” that will close the application.

Exercise: Tk Shopping list
Create a Tk application that allows you to create a shopping list.

Exercise: Tk TODO list

https://code-maven.com/shopping-list

Create a Tk application to handle your TODO items.
A Menu to be able to exit the application
A List of current tasks.
A way to add a new task. For a start each task has a title and a
status. The status can be “todo” or “done”. (default is “todo”)
A way to edit a task. (Primarily to change its title).
A way to mark an item as “done” or mark it as “todo”.
A way to move items up and down in the list.
The application should automatically save the items in their
most up-to-date state in a “database”. The database can be a
JSON file or and SQLite database or anything else you feel fit.

Exercise: Tk Notepad

Create a Notepad like text editor.
It needs to have a menu called File with item:
New/Open/Save/Save As/Exit
It needs to have an area where it can show the content of a file.
Let you edit it.

Create a menu called About that displays an about box
containing the names of the authors of the app.
Menu item to Search for text.

Exercise: Tk Copy files
An application that allows you to type in, or select an existing file
and another filename
for which the file does not exists.
Then copy the old file to the new name.

Exercise: Tk

Application that accepts a “title” - line of text, a file selected, a
new filename (that probably does not exist) and then runs.

Solution: Tk - Calculator one line
 1 import tkinter as tk

 2

 3 app = tk.Tk()

 4 app.title('Calculator')

 5

 6 entry = tk.Entry(app)

 7 entry.pack()

 8

 9 def calc():

10 print("clicked")

11 inp = entry.get()

12 print(inp)

13 out = eval(inp)

14 entry.delete(0, tk.END)

15 entry.insert(0, out)

16

17 def close():

18 app.destroy()

19

20 calc_btn = tk.Button(app, text='Calculate', width=25,

command=calc)

21 calc_btn.pack()

22

23

24 close_btn = tk.Button(app, text='Close', width=25,

command=close)

25 close_btn.pack()

26

27 app.mainloop()

 1 import tkinter as tk

 2

 3 # This solutions is not ready yet

 4

 5 app = tk.Tk()

 6 app.title('Calculator')

 7

 8 entry = tk.Entry(app)

 9 entry.pack()

10

11 def calc():

12 print("clicked")

13 inp = entry.get()

14 print(inp)

15 out = eval(inp)

16 entry.delete(0, tk.END)

17 entry.insert(0, out)

18

19 def close():

20 app.destroy()

21 exit()

22

23 def enter(num):

24 entry.insert(tk.END, num)

25

26 def add_button(num, frame):

27 btn = tk.Button(frame, text=num, width=25,

command=lambda : enter(num))

28 btn.pack(side="left")

29 buttons[num] = btn

30

31 numbers_frame = tk.Frame(app)

32 numbers_frame.pack()

33 numbers_row = {}

34 numbers_row[1] = tk.Frame(numbers_frame)

35 numbers_row[1].pack(side="top")

36 numbers_row[2] = tk.Frame(numbers_frame)

37 numbers_row[2].pack(side="top")

38 numbers_row[3] = tk.Frame(numbers_frame)

39 numbers_row[3].pack(side="top")

40 ops_row = tk.Frame(numbers_frame)

41 ops_row.pack(side="top")

42

43 buttons = {}

44

45 add_button(1, numbers_row[1])

46 add_button(2, numbers_row[1])

47 add_button(3, numbers_row[1])

48 add_button(4, numbers_row[2])

49 add_button(5, numbers_row[2])

50 add_button(6, numbers_row[2])

51 add_button(7, numbers_row[3])

52 add_button(8, numbers_row[3])

53 add_button(9, numbers_row[3])

54

55

56 for op in ['+', '-', '*', '/']:

57 add_button(op, ops_row)

58

59

60 calc_btn = tk.Button(app, text='Calculate', width=25,

command=calc)

61 calc_btn.pack()

62

63

64 close_btn = tk.Button(app, text='Close', width=25,

command=close)

65 close_btn.pack()

66

67 app.mainloop()

Solution: Tk
 1 import tkinter as tk

 2 from tkinter import filedialog

 3

 4 def run_process():

 5 print("---- Start processing ----")

 6 title = title_entry.get()

 7 print(title)

 8 filename = input_file.get()

 9 print(filename)

10

11 app.destroy()

12

13 def select_input_file():

14 file_path = filedialog.askopenfilename()

15 filedialog.asksaveasfile()

16 print(file_path)

17 input_file.set(file_path)

18

19 app = tk.Tk()

20 app.title('Convert file')

21

22 input_file = tk.StringVar()

23

24 title_label = tk.Label(app, text='Title')

25 title_label.pack()

26 title_entry = tk.Entry(app)

27 title_entry.pack()

28

29 input_button = tk.Button(app, text='Input file',

command=select_input_file)

30 input_button.pack()

31 input_label = tk.Label(app, textvariable=input_file)

32 input_label.pack()

33

34

35 button = tk.Button(app, text='Process', width=25,

command=run_process)

36 button.pack()

37

38 app.mainloop()

Solution: Tk Notepad
 1 import tkinter as tk

 2 from tkinter import filedialog, simpledialog, messagebox

 3 import os

 4

 5 file_path = None

 6

 7 app = tk.Tk()

 8 app.title('Menu')

 9

10 def run_new():

11 global file_path

12 file_path = None

13 text.delete(1.0, tk.END)

14

15 def run_open():

16 global file_path

17 file_path = filedialog.askopenfilename(filetypes=

(("Any file", "*"),))

18 if file_path and os.path.isfile(file_path):

19 with open(file_path) as fh:

20 content = fh.read()

21 text.delete(1.0, tk.END)

22 text.insert('end', content)

23

24 def run_save():

25 global file_path

26 if file_path is None:

27 file_path =

filedialog.asksaveasfilename(filetypes=(("Any file",

"*"),))

28 if not file_path:

29 file_path = None

30 return

31 #print(f"'{file_path}'")

32 content = text.get(1.0, tk.END)

33 with open(file_path, 'w') as fh:

34 fh.write(content)

35

36 def run_exit():

37 print("exit")

38 app.destroy()

39

40 def run_about():

41 #print(dir(simpledialog))

42 #answer = simpledialog.Dialog(app, "The title")

43 messagebox.showinfo(title = "About", message = "This

simple text editor was crea\

44 ted as a solution for the exercise.\n\nCopyright: Gabor

Szabo")

45

46 menubar = tk.Menu(app)

47

48 menu1 = tk.Menu(menubar, tearoff=0)

49 menu1.add_command(label="New", underline=0,

command=run_new)

50 menu1.add_command(label="Open", underline=0,

command=run_open)

51 menu1.add_command(label="Save", underline=0,

command=run_save)

52 menu1.add_separator()

53 menu1.add_command(label="Exit", underline=1,

command=run_exit)

54 menubar.add_cascade(label="File", underline=0,

menu=menu1)

55

56 menubar.add_command(label="About", underline=0,

command=run_about)

57

58 app.config(menu=menubar)

59

60 text = tk.Text(app)

61 text.pack({"side": "bottom"})

62

63 app.mainloop()

64

65 # TODO: Show the name of the file somewhere? Maybe at the

bottom in a status bar?

66 # TODO: Indicate if the file has been changed since the

last save?

67 # TODO: Ask before exiting or before replacing the

content if the file has not been \

68 saved yet.

69 # TODO: Undo/Redo?

70 # TODO: Search?

71 # TODO: Search and Replace?

Simple file dialog
1 from tkinter import filedialog

2

3 input_file_path = filedialog.askopenfilename(filetypes=

(("Excel files", "*.xlsx"), (\

4 "CSV files", "*.csv"), ("Any file", "*")))

5 print(input_file_path)

6

7 input("Press ENTER to end the script...")

Python Pitfalls

Reuse of existing module name
1 import random

2

3 print(random.random())

1 $ python examples/pitfalls/random.py

1 Traceback (most recent call last):

2 File "examples/pitfalls/random.py", line 1, in <module>

3 import random

4 File ".../examples/pitfalls/random.py", line 3, in

<module>

5 print(random.random())

6 TypeError: 'module' object is not callable

Write an example to use random number and call your
example number.py
Same with any other module name.
Lack of multi-level namespaces
Solution: user longer names. Maybe with project specific
names.

Use the same name more than once
 1 class Corp(object):

 2 people = []

 3 def add(self, name, salary):

 4 Corp.people.append({ 'name': name, 'salary' :

salary})

 5

 6 def total(self):

 7 self.total = 0

 8 for n in Corp.people:

 9 self.total += n['salary']

10 return self.total

11

12 c = Corp()

13 c.add("Foo", 19)

14 print(c.total())

15

16 c.add("Bar", 23)

17 print(c.total())

1 $ python examples/pitfalls/corp.py

1 19

2 Traceback (most recent call last):

3 File "examples/pitfalls/corp.py", line 19, in <module>

4 print(c.total())

5 TypeError: 'int' object is not callable

Compare string and number
1 x = 2

2 y = "2"

3

4 print(x > y)

5 print(x < y)

Python 2 - compares them based on the type of values (wat?)

1 $ python examples/pitfalls/compare.py

1 False

2 True

Python 3 - throws exception as expected.

1 $ python3 examples/pitfalls/compare.py

1 Traceback (most recent call last):

2 File "examples/pitfalls/compare.py", line 4, in

<module>

3 print(x > y)

4 TypeError: unorderable types: int() > str()

Compare different types
1 x = 2

2 y = "2"

3

4 print(x == y)

5

6 with open(__file__) as fh:

7 print(fh == x)

In both Python 2 and Pyhton 3 these return False

 1 import sys

 2

 3 hidden = 42 # would be random

 4

 5 if sys.version_info.major < 3:

 6 guess = raw_input('Your guess: ')

 7 else:

 8 guess = input('Your guess: ')

 9

10 if hidden == guess:

11 print("Match!")

Will never match. Even if user types in 42. - Hard to debug and
understand as there is no error.

Sort mixed data
1 from __future__ import print_function

2

3 mixed = [10, '1 foo', 42, '4 bar']

4 print(mixed) # [100, 'foo', 42, 'bar']

5 mixed.sort()

6 print(mixed) # [42, 100, 'bar', 'foo']

In Python 2 it “works” is some strange way.

1 $ python examples/pitfalls/sort.py

1 [10, '1 foo', 42, '4 bar']

2 [10, 42, '1 foo', '4 bar']

In Python 3 in correctly throws an exception.

1 air:python gabor$ python3 examples/pitfalls/sort.py

1 [10, '1 foo', 42, '4 bar']

2 Traceback (most recent call last):

3 File "examples/pitfalls/sort.py", line 5, in <module>

4 mixed.sort()

5 TypeError: unorderable types: str() < int()

Linters

Static Code Analyzis - Linters

PEP8
Flake8
Pylint

PEP8
1 pip install pep8

pep8
pep8

F811 - redefinition of unused
1 import subprocess

2 import datetime

3 import sys

4 from datetime import datetime

1 $ flake8 importer.py

2 importer.py:4:1: F811 redefinition of unused 'datetime'

from line 2

Warn when Redefining functions
1 sum = 42

2

3 def len(thing):

https://pep8.readthedocs.io/en/release-1.7.x/intro.html
https://pypi.org/project/pytest-pep8/

4 print(f"Use {thing}.__len__() instead!")

5

6 len("abc")

 1 ************* Module redef

 2 redef.py:1:0: C0111: Missing module docstring (missing-

docstring)

 3 redef.py:2:0: W0622: Redefining built-in 'sum'

(redefined-builtin)

 4 redef.py:4:0: W0622: Redefining built-in 'len'

(redefined-builtin)

 5 redef.py:2:0: C0103: Constant name "sum" doesn't conform

to UPPER_CASE naming style \

 6 (invalid-name)

 7 redef.py:4:0: C0111: Missing function docstring (missing-

docstring)

 8

 9 ---

10 Your code has been rated at -2.50/10 (previous run:

-2.50/10, +0.00)

Python .NET

IronPython
Python running on the DLR
that is on top of the CLR of Microsoft.

[https://ironpython.net/
GitHub
Only supports Python 2

Iron Python 3
Not ready for production

Use .NET libraries from Python
pythonnet
pythonnet source code

1 pip install pythonnet

The latest Visual Studio is supposed to include Nuget, but if you
don’t have it, you can download it from Nuget downloads

Make sure nuget.exe is somewhere in your PATH:

For example I’ve created C:\Bin, put the nuget.exe in this directory
and added C:\Bin to the PATH.

https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/standard/clr
https://github.com/IronLanguages/ironpython2
https://github.com/IronLanguages/ironpython3
http://pythonnet.github.io/
https://github.com/pythonnet/pythonnet
https://www.nuget.org/
https://www.nuget.org/downloads

Then install the compilers using nuget install
Microsoft.Net.Compilers as suggested on Roslyn
This created the Microsoft.Net.Compilers.3.4.0 directory in my
home directory

Make sure csc.exe is somewhere in your PATH or use the full path
to it:

“UsersGabor SzaboMicrosoft.Net.Compilers.3.4.0\tools\csc.exe”
/t:library MyMath.cs

Python and .NET console
1 import clr

2 from System import Console

3

4 Console.WriteLine("Hello My World!")

1 python net_console.py

Python and .NET examples
 1 namespace MyMath

 2 {

 3 public static class MyMathClass

 4 {

 5 public static int addInts(int a, int b)

 6 {

 7 return a+b;

 8 }

 9

10 public static double addDouble(double a, double

b)

11 {

12 return a+b;

13 }

14

https://github.com/dotnet/roslyn

15 public static string addString(string a, string

b)

16 {

17 return a+" "+b;

18 }

19

20 public static bool andBool(bool a, bool b)

21 {

22 return a && b;

23 }

24

25 public static string str_by_index(string[] a, int

b)

26 {

27 return a[b];

28 }

29 public static int int_by_index(int[] a, int b)

30 {

31 return a[b];

32 }

33

34 }

35 }

 1 import clr

 2 dll = clr.FindAssembly('MyMath') # returns path to dll

 3 assembly = clr.AddReference('MyMath')

 4 #print(type(assembly)) # <class

'System.Reflection.RuntimeAssembly'>

 5 #print(dir(assembly))

 6 from MyMath import MyMathClass

 7 from MyMath import MyMathClass as My

 8

 9

10 assert My.addInts(2, 3) == 5

11 assert My.addInts(2.7, 7.8) == 9

12 assert My.addDouble(11.2, 23.3) == 34.5

13 assert My.addString("hello", "world") == "hello world"

14

15 assert My.andBool(1, 1) is True

16 assert My.andBool(1, 0) is False

17 assert My.andBool(True, True) is True

18 assert My.andBool(False, True) is False

19

20 assert My.str_by_index(["apple", "banana", "peach"], 0)

== "apple"

21 assert My.str_by_index(["apple", "banana", "peach"], 1)

== "banana"

22 assert My.int_by_index([17, 19, 42], 1) == 19

23 # Mixed list cannot be passed

24

25 # tuple can be passed

26 assert My.int_by_index((17, 21, 42), 2) == 42

27

28 # TODO: string, char, float

29 # TODO strings, lists, dicts,

30 # TODO complex data structures in C#

31 # TODO Async

1 csc /t:library MyMath.cs

2 python myapp.py

C:WindowsMicrosoft.NETFramework\v4.0.30319\
C:Program Files\dotnet\

Exercise Python and .NET

Take a .NET class that you would like to use, try that.

Python and Java

Jython

Jython
See separate chapter

Calling Java from Python

Pyjnius/Jnius - GitHub
JCC
javabridge
Jpype - GitHub
Py4j

https://www.jython.org/
https://pyjnius.readthedocs.io/en/stable/
https://github.com/kivy/pyjnius
https://pypi.org/project/JCC/
https://pypi.org/project/javabridge/
https://jpype.readthedocs.io/en/latest/
https://github.com/jpype-project/jpype
https://www.py4j.org/

Jython - Python running on the JVM

Jython Installation

Jython
java -jar jython-installer-2.7.0.jar
~/jython2.7.0/

Jython Installation
1 java -jar ~/jython2.7.0/jython.jar

2

3 java -jar ~/jython2.7.0/jython.jar some.py

Jython load Java class
 1 cd examples/mymath/

 2 java -jar ~/jython2.7.0/jython.jar

 3 Jython 2.7.0 (default:9987c746f838, Apr 29 2015,

02:25:11)

 4 [Java HotSpot(TM) 64-Bit Server VM (Oracle Corporation)]

on java1.8.0_60

 5 Type "help", "copyright", "credits" or "license" for more

information.

 6 >>> import Calculator

 7 >>> Calculator.add(2, 3)

 8 5

 9 >>> Calculator.add(10, 3)

10 10

11 >>>

Jython load Java class in code

http://www.jython.org/

1 public class Calculator {

2 public static Integer add(Integer a, Integer b) {

3 if (a == 10) {

4 return 10;

5 }

6 return a+b;

7 }

8

9 }

1 # use only with Jython

2

3 import Calculator

4 print(Calculator.add(4, 8))

5 print(Calculator.add(10, 8))

1 cd examples/jython/mymath/

2 java -jar ~/jython2.7.0/jython.jar calc.py

Jython test Java class
 1 import unittest

 2 import Calculator

 3

 4 class TestAdd(unittest.TestCase):

 5

 6 def test_add(self):

 7 self.assertEqual(Calculator.add(4, 8), 12)

 8 self.assertEqual(Calculator.add(10, 8), 18)

 9 self.assertEqual(Calculator.add(-1, 1), 0)

10

11 if __name__ == '__main__':

12 unittest.main()

13

1 java -jar ~/jython2.7.0/jython.jar calc.py

2 java -jar ~/jython2.7.0/jython.jar -m unittest discover

PIL - Pillow

Install Pillow

Pillow
Pillow on PyPI
GitHub

1 pip install pillow

Create First Image
1 from PIL import Image

2

3 img = Image.new('RGB', size=(100, 60), color='#eb8634')

4 img.save('first.png')

5 img.show() # Using ImageMagic on Linux

Color can be one of the well-known names e.g. “red”
Color can be RGB in decimal or hex. (RGB=Red Green Blue)

Write Text on Image
 1 from PIL import Image, ImageDraw

 2

 3 img = Image.new('RGB', size=(100, 60), color='#eb8634')

 4

 5 draw = ImageDraw.Draw(img)

 6 draw.text(

 7 text="Some text",

 8 xy=(10, 20),

 9)

10

https://pillow.readthedocs.io/
https://pypi.org/project/Pillow/
https://github.com/python-pillow/Pillow

11 img.save('first.png')

12 img.show()

Select font for Text on Image
 1 from PIL import Image, ImageDraw, ImageFont

 2

 3 img = Image.new(mode='RGB', size=(300, 60),

color='#eb8634')

 4 font =

ImageFont.truetype('Pillow/Tests/fonts/FreeMono.ttf', 20)

 5 #font =

ImageFont.truetype(f'c:\Windows\Fonts\Candara.ttf', 30)

 6 #font =

ImageFont.truetype(f'c:\Windows\Fonts\Candarab.ttf', 30)

 7 #font = ImageFont.truetype(f'c:\Windows\Fonts\david.ttf',

30)

 8

 9

10 draw = ImageDraw.Draw(img)

11 draw.text(

12 text="Some text",

13 xy=(10, 20),

14 font=font,

15)

16

17 img.save('first.png')

18 img.show()

Font directories
1 Linux: /usr/share/fonts/

2 Max OS: /Library/Fonts/

3 Windows: C:\Windows\fonts

Get size of an Image
 1 from PIL import Image

 2 import sys

 3 if len(sys.argv) !=2:

 4 exit(f"Usage: {sys.argv[0]} FILENAME")

 5

 6 in_file = sys.argv[1]

 7

 8 img = Image.open(in_file)

 9 print(img.size) # a tuple

10 print(img.size[0]) # width

11 print(img.size[1]) # height

Get size of text
1 font = ImageFont.truetype(

2 'path/to/font.ttf', size

3)

4 size = font.getsize(text)

Resize an existing Image
 1 from PIL import Image

 2

 3 in_file = 'in.png'

 4 out_file = 'new.png'

 5

 6 img = Image.open(in_file)

 7

 8 size = (img.size[0] / 2, img.size[1] / 2)

 9 img.thumbnail(size)

10

11 img.save(out_file)

Crop an existing Image
 1 from PIL import Image

 2

 3 in_file = 'in.png'

 4 out_file = 'out.png'

 5

 6 img = Image.open(in_file)

 7 width, height = img.size

 8 width, height = img.size

 9

10 # crop

11 # 10 pixels from the left

12 # 20 pixels from the top

13 # 30 pixels from the right

14 # 40 pixels from the bottom

15

16 cropped = img.crop((10, 20, width - 30, height - 40))

17 cropped.save(out_file)

18 cropped.show()

Combine two images

Load one image from file
Create a plain background
Put the loaded image on the background
Save the combined image

Rotated text
 1 from PIL import Image, ImageDraw, ImageFont, ImageOps

 2

 3 img = Image.new(mode='RGB', size=(400, 200),

color='#eb8634')

 4

 5 font =

ImageFont.truetype('Pillow/Tests/fonts/FreeSansBold.ttf',

30)

 6

 7 text_layer = Image.new('L', (330, 50))

 8 draw = ImageDraw.Draw(text_layer)

 9 draw.text((30, 0), "Text slightly rotated", font=font,

fill=255)

10

11 rotated_text_layer = text_layer.rotate(10.0, expand=1)

12 img.paste(ImageOps.colorize(rotated_text_layer, (0,0,0),

(10, 10,10)), (42,60), ro\

13 tated_text_layer)

14 img.show()

Rotated text in top-right corner
TODO: fix this

 1 from PIL import Image, ImageDraw, ImageFont, ImageOps

 2

 3 width = 400

 4 height = 200

 5 start = 100

 6 end = 50

 7

 8 img = Image.new(mode='RGB', size=(width, height),

color='#FAFAFA')

 9

10 stripe_color = "#eb8634"

11 draw = ImageDraw.Draw(img)

12 draw.polygon([(width-start, 0), (width-end, 0), (width,

end), (width, start)], fill\

13 =stripe_color)

14

15

16 font =

ImageFont.truetype('Pillow/Tests/fonts/FreeSansBold.ttf',

30)

17 text_layer = Image.new('RGB', size=(100, 100),

color=stripe_color)

18

19 draw = ImageDraw.Draw(text_layer)

20 text = "Free"

21 size = draw.textsize(text=text, font=font)

22 # print(size)

23 draw.text(xy=(20, 0), text=text, font=font, fill=1)

24 #

25 rotated_text_layer = text_layer.rotate(-45.0, expand=0)

26 rotated_text_layer.show()

27 #img.paste(ImageOps.colorize(rotated_text_layer,

(0,0,0), (10, 10,10)), (42,60), r\

28 otated_text_layer)

29 #img.paste(im = rotated_text_layer, box=(300, 0))

30 #img.paste(im = text_layer, box=(300, 0))

31 #img.show()

Embed image (put one image on another
one)
 1 from PIL import Image

 2

 3 in_file = 'python.png'

 4

 5 width = 600

 6 height = 300

 7 background = Image.new(mode='RGB', size=(width, height),

color='#AAFAFA')

 8

 9 img = Image.open(in_file)

10 (emb_width, emb_height) = img.size

11 print(emb_width)

12 print(emb_height)

13

14 # slightly off the lower right corner of the background

image

15 # using the image as the mask makes its background

transparent

16 background.paste(im = img, box=(width-emb_width-10,

height-emb_height-10), mask=img)

17

18 background.show()

Draw a triangle
1 from PIL import Image, ImageDraw

2

3 img = Image.new(mode='RGB', size=(800, 450),

color='#eb8634')

4

5 draw = ImageDraw.Draw(img)

6 draw.polygon([(800, 275), (800, 450), (300, 450)])

7

8 img.save('first.png')

9 img.show()

Draw a triangle and write text in it

 1 from PIL import Image, ImageDraw, ImageFont

 2

 3 img = Image.new(mode='RGB', size=(800, 450),

color='#eb8634')

 4

 5 draw = ImageDraw.Draw(img)

 6 draw.polygon([(800, 275), (800, 450), (300, 450)], fill

= (255, 255, 255))

 7

 8 font =

ImageFont.truetype('Pillow/Tests/fonts/FreeSansBold.ttf',

30)

 9

10 draw.text((500, 400), 'Hello from Python', (0, 0, 0),

font=font)

11

12

13 img.save('first.png')

14 img.show()

Draw a triangle and write rotated text in it
 1 from PIL import Image, ImageDraw, ImageFont, ImageOps

 2

 3 img = Image.new(mode='RGB', size=(400, 200),

color='#eb8634')

 4

 5 # #draw = ImageDraw.Draw(img)

 6 # #draw.polygon([(800, 275), (800, 450), (300, 450)],

fill = (255, 255, 255))

 7 #

 8 #

 9 #font = ImageFont.load_default()

10 font =

ImageFont.truetype('Pillow/Tests/fonts/FreeSansBold.ttf',

30)

11 # txt = Image.new('L', (500, 500))

12 # d = ImageDraw.Draw(txt)

13 # d.text((300, 400), 'Hello from Python', font=font,

color="white")

14 # w=txt.rotate(17.5, expand=1)

15 #

16 # #img.paste(txt)

17 # img.paste(ImageOps.colorize(w, (0,0,0), (255,255,84)),

(242,60), w)

18 # # img.save('first.png')

19 # img.show()

20 #

21

22 text_layer = Image.new('L', (300, 50))

23 draw = ImageDraw.Draw(text_layer)

24 draw.text((30, 0), "Text slightly rotated", font=font,

fill=255)

25

26 rotated_text_layer = text_layer.rotate(10.0, expand=1)

27 img.paste(ImageOps.colorize(rotated_text_layer, (0,0,0),

(10, 10,10)), (42,60), ro\

28 tated_text_layer)

29 img.show()

Draw a rectangular
1 from PIL import Image, ImageDraw

2

3 img = Image.new(mode='RGB', size=(800, 450),

color='#eb8634')

4

5 draw = ImageDraw.Draw(img)

6 draw.polygon([(400, 200), (400, 300), (200, 300), (200,

200)])

7

8 img.save('first.png')

9 img.show()

Draw a rectangle
1 from PIL import Image, ImageDraw

2

3 img = Image.new('RGB', size=(100, 100))

4

5 draw = ImageDraw.Draw(img)

6 draw.rectangle((10, 10, 90, 90), fill="yellow",

outline="red")

7 img.show()

Draw circle
1 from PIL import Image, ImageDraw

2

3 img = Image.new('RGB', (200, 200))

4

5 draw = ImageDraw.Draw(img)

6 draw.ellipse((50, 50, 150, 150), fill="#F00F4F")

7 img.show()

Draw heart
 1 from PIL import Image, ImageDraw

 2

 3 def heart(size, fill):

 4 width, height = size

 5 img = Image.new('RGB', size, (0, 0, 0, 0))

 6 draw = ImageDraw.Draw(img)

 7 polygon = [

 8 (width / 10, height / 3),

 9 (width / 10, 81 * height / 120),

10 (width / 2, height),

11 (width - width / 10, 81 * height / 120),

12 (width - width / 10, height / 3),

13]

14 draw.polygon(polygon, fill=fill)

15 #img.show()

16

17 draw.ellipse((0, 0, width / 2, 3 * height / 4),

fill=fill)

18 draw.ellipse((width / 2, 0, width, 3 * height / 4),

fill=fill)

19 return img

20

21 img = heart((50, 40), "red")

22 img.show()

Some samples, including this one, originally by Nadia Alramli

Rectangle with rounded corners

http://nadiana.com/

 1 from PIL import Image, ImageDraw

 2

 3

 4 def round_corner(radius, fill):

 5 """Draw a round corner"""

 6 corner = Image.new('RGB', (radius, radius), (0, 0, 0,

0))

 7 draw = ImageDraw.Draw(corner)

 8 draw.pieslice((0, 0, radius * 2, radius * 2), 180,

270, fill=fill)

 9 return corner

10

11

12 def round_rectangle(size, radius, fill):

13 """Draw a rounded rectangle"""

14 width, height = size

15 rectangle = Image.new('RGB', size, fill)

16 corner = round_corner(radius, fill)

17 rectangle.paste(corner, (0, 0))

18 rectangle.paste(corner.rotate(90), (0, height -

radius)) # Rotate the corner an\

19 d paste it

20 rectangle.paste(corner.rotate(180), (width - radius,

height - radius))

21 rectangle.paste(corner.rotate(270), (width - radius,

0))

22 return rectangle

23

24

25 img = round_rectangle((50, 50), 10, "yellow")

26

27 img.show()

Some samples, including this one, originally by Nadia Alramli

TODO
http://web.archive.org/web/20130115175340/http://nadiana.com/pil
-tutorial-basic-advanced-drawing

Make the background color change from top to bottom

http://nadiana.com/

Add straight lines to existing images
Blur image
Add rectangular to area on existing image
Draw other simple images

FAQ

How not to name example scirpts?
Don’t - by mistake - call one of your files the same as a module
you will be loading.
For example random.py is a bad idea if you will import random.
Your code will try to locate random.py to load, but will find itself
and not the one that comes with Python.

Python will also create a random.pyc file - a compiled file - and it
will take time till you recall this
and delete that too.
Till then the whole thing will seem to be broken.

Platform independent code
In general Python is platform independent, but still needs some
care to make sure
you don’t step on some aspects of Operating System or the file
system that works differently
on other OS-es.

Filenames are case sensitive on some OS-es (e.g. Windows).
They used to be restricted to 8.3. Make sure you are within the
restriction of every OS you might want to use.
Directory path: (slash or backslash or something else?) use the
os.path methods.
os.path.expanduser(‘~’) works on both Linux and Windows,
but the root of a Linux/Unix file system starts with a slash (/)

and on Windows it is c:\ and d:\ etc.
On Linux/Unix you have user ‘root’ and on Windows
‘Administrator’
File permissions are different on Linux and Windows.
Stay away from OS specific calls, but as a last resort use
os.name or sys.platform to figure out which os is this. os.name
is ‘posix’ on Linux and ‘nt’ on Windows.
For GUI use wxWindows that has a native look on Windows
and Gnome look on Linux.
Pay attention to any 32/64 bit issues. Big/Little Endian issues.
Some modules might be OS specific. Check the
documentation.
Pay attention to the use of os.system and subsystem modules.

How to profile a python code to find causes
of slowness?
Use one of these modules:

cProfile is in C. It is faster and preferable.
profile

pdb = Python Debugger
Include the following code in your script at any point, and run the
script as you’d do normally.
It will stop at the given point and enter the debugger.

1 import pdb; pdb.set_trace()

pdb

http://docs.python.org/library/pdb.html

Avoid Redefining functions
Can I tell python to stop compilation when someone is redefining a
function?
Or at least give me a warning?

Use pylint for that

Appendix

print_function
1 from __future__ import print_function

2

3 print(23)

Dividers (no break or continue)
We will see how break and continue work, but first let’s see a loop
to find all the dividers on a number n.

1 i = 2

2 n = 3*5*7

3 while i < n:

4 if (n / i) * i == n:

5 print('{:2} divides {}'.format(i, n))

6 i = i + 1

1 3 divides 105

2 5 divides 105

3 7 divides 105

4 15 divides 105

5 21 divides 105

6 35 divides 105

Lambdas
 1 a = lambda x: True

 2 b = lambda x: False

 3 c = lambda x: x

 4 #c = lambda x: return

 5 #c = lambda x: pass

 6 d = lambda x: c(x)+c(x)

 7

 8 print(a(1))

 9 print(b(1))

10 print(c(42))

11 print(d(21))

Abstract Class
 1 import abc

 2

 3 class Port():

 4 __metaclass__ = abc.ABCMeta

 5

 6 @abc.abstractmethod

 7 def num(self):

 8 pass

 9

10 class HTTPPort(Port):

11 def num(self):

12 return 80

13

14 class FTPPort(Port):

15 def num(self):

16 return 21

17

18 class ZorgPort(Port):

19 def nonum(self):

20 return 'zorg'

21

22 f = FTPPort()

23 print(f.num())

24 h = HTTPPort()

25 print(h.num())

26 z = ZorgPort()

27 # Traceback (most recent call last):

28 # File "abstract.py", line 26, in <module>

29 # z = ZorgPort()

30 # TypeError: Can't instantiate abstract class ZorgPort

with abstract methods num

31

32

33 print(z.num())

Remove file
os.remove or
os.unlink

Modules: more
sys.modules to list loaded modules
imp.reload to reload module (Just reload before 3.3)

1 import __builtin__

2

3 def xx(name):

4 print("hello")

5 __builtin__.__import__ = xx;

6

7 print('body')

8 def f():

9 print("in f")

 1 import sys

 2

 3 print('mod' in sys.modules) # False

 4

 5 import mod

 6 print('mod' in sys.modules) # True

 7 print(sys.modules['mod'])

 8 # <module 'mod' from

'/stuff/python/examples/modules/mod.py'>

 9

10 print(sys.modules["sys"]) # <module 'sys' (built-in)>

import hooks

Python resources
Central Python site

https://docs.python.org/library/os.html#os.remove
https://docs.python.org/library/os.html#os.unlink
https://python.org/

Python documentation
Learning Python the Hard way
Python Weekly
PyCoder’s Weekly

Progress bar
1 # http://stackoverflow.com/questions/3173320/text-

progress-bar-in-the-console

2 import time, sys

3

4 for i in range(10):

5 sys.stdout.write('\r' + '=' * i)

6 sys.stdout.flush()

7 time.sleep(1)

from future
1 from __future__ import print_function

2 from __future__ import division

or

1 from __future__ import print_function, division

See also future

We cannot import everything that is in future, because we
don’t know what will be in future in the future….
and we don’t want to blindly change the behaviour of Python.

https://docs.python.org/
http://learnpythonthehardway.org/
http://pythonweekly.com/
http://pycoders.com/
http://docs.python.org/library/__future__.html

Variable scope

There are two scopes: outside of all functions and inside of a
function.
The first assignment to a variable defines it.
Variables that were declared outside all functions can be seen
inside, but cannot be changed.
One can connect the outside name to an inside name using the
‘global’ keyword.
if and for blocks don’t provide scoping.

 1 a = 23

 2

 3 def main():

 4 global b

 5 b = 17

 6 c = 42

 7 print('a:', a) # a: 23

 8 print('b:', b) # b: 17

 9 print('c:', c) # c: 42

10

11 if True:

12 print('a:', a) # a: 23

13 print('b:', b) # b: 17

14 b = 99

15 print('b:', b) # b: 99

16 print('c:', c) # c: 42

17

18 print('a:', a) # a: 23

19 print('b:', b) # b: 99

20 print('c:', c) # c: 42

21

22

23 main()

24

25 print('a:', a) # a: 23

26 print('b:', b) # b: 99

27 print('c:', c) # c:

28 # Traceback (most recent call last):

29 # File "examples\basics\scope.py", line 27, in <module>

30 # print 'c:', c # c:

31 # NameError: name 'c' is not defined

global scope

scope
 1 # x is global

 2

 3 x = 1

 4 print(x, "- before sub")

 5

 6 def f():

 7 #print(x, "- inside before declaration") #

UnboundLocalError

 8 x = 2

 9 print(x, "- inside sub")

10

11 print(x, "- after sub declaration")

12

13 f()

14

15 print(x, "- after calling sub")

16

17 # 1 - before sub

18 # 1 - after sub declaration

19 # 2 - inside sub

20 # 1 - after calling sub

 1 # x is global

 2

 3 def f():

 4 #print(x, "- inside before declaration") #

UnboundLocalError

 5 x = 2

 6 print(x, "- inside sub")

 7

 8 x = 1

 9 print(x, "- before calling sub")

10

11 print(x, "- after sub declaration")

12

13 f()

14

15 print(x, "- after calling sub")

16

17 # 1 - before calling sub

18 # 1 - after sub declaration

19 # 2 - inside sub

20 # 1 - after calling sub

If we declare a variable outside of all the subroutines,
it does not matter if we do it before the sub declaration,
or after it. In neither case has the global variable any presence
inside the sub.

 1 def f():

 2 x = 2

 3 print(x, "- inside sub")

 4

 5 # print(x, " - after sub declaration") # NameError

 6

 7 f()

 8

 9 # print(x, " - after calling sub") # NameError

10

11 # 2 - inside sub

A name declared inside a subroutine is not visible outside.

 1 def f():

 2 global x

 3 # print(x) # NameError

 4 x = 2

 5 print(x, "- inside sub")

 6

 7 # print(x, " - after sub declaration") # NameError

 8

 9 f()

10

11 print(x, "- after calling sub")

12

13 # 2 - inside sub

14 # 2 - after calling sub

Unless it was marked using the global word.

type
 1 x = 2

 2 y = '2'

 3 z = [2, '2']

 4 d = {}

 5

 6 def f():

 7 pass

 8 l = lambda q: q

 9

10 class Cold():

11 pass

12 cold = Cold()

13

14 class Cnew(object):

15 pass

16 cnew = Cnew()

17

18 # r = xrange(10) # Python 3 does not have xrange

19

20 print(type(x)) # <type 'int'>

21 print(type(y)) # <type 'str'>

22 print(type(z)) # <type 'list'>

23 print(type(d)) # <type 'dict'>

24 print(type(f)) # <type 'function'>

25 print(type(l)) # <type 'function'>

26 print(type(Cold)) # <type 'classobj'>

27 print(type(cold)) # <type 'instance'>

28 print(type(Cnew)) # <type 'type'>

29 print(type(cnew)) # <class '__main__.Cnew'>

30 #print(type(r)) # <type 'xrange'>

31

32 print(type(x).__name__) # int

33 print(type(y).__name__) # str

34 print(type(z).__name__) # list

Look deeper in a list
1 x = ['abcd', 'efgh']

2 print(x) # ['abcd', 'efgh']

3

4 print(x[0:1]) # ['abcd']

5 print(x[0]) # 'abcd'

6

7 print(x[0][0]) # a

8 print(x[0][1]) # b

9 print(x[0][0:2]) # ab

Exercise: iterators - count

Reimplement the count functions of itertools using iterator
class.

(We have this as one of the example)

Simple function (before generators)
TODO: probably not that interesting

1 def number():

2 return 42

3

4 print(number()) # 42

5 print(number()) # 42

6 print(number()) # 42

1 def number():

2 return 42

3 return 19

4 return 23

5

6 print(number()) # 42

7 print(number()) # 42

8 print(number()) # 42

Other slides

Other slides
Some slides that used to be part of the material and they might
return to be there, but for now they were parked here.

Atom for Python

Some details about the Atom editor. You can freely skip this
part. Personally I don’t use it now.

Atom

Autocomplete

apm install autocomplete-python

Autocomplete

easy_install jedi
apm install autocomplete-plus-python-jedi

Linter

easy_install flake8
easy_install flake8-docstrings
apm install linter

https://atom.io/

apm install linter-flake8

source

IDLE - Integrated DeveLopment Environment
Python shell
Better editing
Limited debugger
c:\Python27\Lib\idlelib\idle.bat

C:\Users\Gabor\AppData\Local\Programs\Python\Python3

5\Lib\idlelib\idle.bat

sh-bang - executable on Linux/Apple
1 #!/usr/bin/env python

2

3 print("Hello World")

The first line staring with # is needed if you want to have a file
that can be executed without explicitly typing in python as
well.
Make your file executable: chmod u+x hello_ex.py
Run like: ./hello_ex.py
In order to run it as hello_ex.py in needs to be located in one
of the directories listed in the PATH environment variable.

Strings as Comments

marks single line comments.

http://www.marinamele.com/install-and-configure-atom-editor-for-python

There are no real multi-line comments in Python, but we can
use triple-quots to
create multi-line strings and if they are not part of another
statement, they will be
disregarded by the Python interpreter. Effectively creating
multi-line comments.

 1 print("hello")

 2

 3 'A string which is disregarded'

 4

 5 print(42)

 6

 7 '''

 8 Using three single-quotes on both ends (a triple-quoted

string)

 9 can be used as a multi-line comment.

10 '''

11

12 print("world")

pydoc
If you really want it, you can also read some of the documentation
on the command line, but unless you are locked up some place
without Internet connection,
I don’t recommend this.

Type pydoc. On Windows, you might need to create the following
file and put it in a directory in your PATH. (see echo %PATH%)

1 @python c:\Python27\Lib\pydoc.py %*

How can I check if a string can be converted
to a number?
There is no is_int, we just need to try to convert and catch the
exception, if there is one.

 1 def is_float(val):

 2 try:

 3 num = float(val)

 4 except ValueError:

 5 return False

 6 return True

 7

 8 def is_int(val):

 9 try:

10 num = int(val)

11 except ValueError:

12 return False

13 return True

14

15 print(is_float("23")) # True

16 print(is_float("23.2")) # True

17 print(is_float("23x")) # False

18 print('-----') # -----

19 print(is_int("23")) # True

20 print(is_int("23.2")) # False

21 print(is_int("23x")) # False

Spyder Intro
iPython console (bottom right)
Spyder-Py2 / Preferences / Console / Advanced Settings
Save the file (Ctrl-S / Command-S)
Run/Run (F5)
F9 - execute selected text (e.g. we can eecute a function
definition after we’ve changed it)
TAB for autocomple names of already existing variables.

1 print("abc")

2 "abc". shows the available methods.

3 "abc".center Command-I will explain what is "center"

Interactive Debugging
 1 def f(a, b):

 2 c = a + b

 3 d = a * b

 4 return c+d

 5

 6 def run():

 7 print(f(2, 3))

 8

 9 import code

10 code.interact(local=locals())

11

12 print(f(19, 23))

13

14 run()

Parameter passing
1 def hello(name):

2 msg = name + '!!!!'

3 print('Hello ' + msg)

4

5 hello('Foo')

6 hello('Bar')

1 Hello Foo!!!!

Command line arguments and main
 1 import sys

 2

 3 def hello(name):

 4 msg = name + '!!!!'

 5 print('Hello ' + msg)

 6

 7 def main():

 8 hello(sys.argv[1])

 9

10 main()

Run as python argv.py Foo

Later we’ll see the argparse module that can handle command line
arguments in a better way.

Infinite loop
1 i = 0

2 while True:

3 i += 1

4 print(i)

5

6 print("done")

break
1 i = 0

2 while True:

3 print(i)

4 i += 1

5 if i >= 7:

6 break

7

8 print("done")

1 0

2 1

3 2

4 3

5 4

6 5

7 6

8 done

continue
 1 i = 0

 2 while True:

 3 i += 1

 4

 5 if i > 3 and i < 8:

 6 continue

 7

 8 if i > 10:

 9 break

10 print(i)

1 1

2 2

3 3

4 8

5 9

6 10

While with many conditions
 1 while (not found_error) and (not found_warning) and (not

found_exit):

 2 do_the_real_stuff()

 3

 4 while True:

 5 line = get_next_line()

 6

 7 if found_error:

 8 break

 9

10 if found_warning:

11 break

12

13 if found_exit:

14 break

15

16 do_the_real_stuff()

while loop with many conditions
 1 while True:

 2 line = get_next_line()

 3

 4 if last_line:

 5 break

 6

 7 if line is empty:

 8 continue

 9

10 if line_has_a_hash: # at the beginning:

11 continue

12

13 if line_has_two_slashes: // at the beginning:

14 continue

15

16 do_the_real_stuff()

Format with conversion (stringifiation with
str or repr)
Adding !s or !r in the place-holder we tell it to cal the str or repr
method of the object, respectively.

repr (repr) Its goal is to be unambiguous
str (str) Its goal is to be readable
The default implementation of both are useless
Suggestion
Difference between str and repr

 1 class Point:

 2 def __init__(self, a, b):

 3 self.x = a

 4 self.y = b

http://stackoverflow.com/questions/1436703/difference-between-str-and-repr-in-python

 5

 6 p = Point(2, 3)

 7 print(p) # <__main__.Point object at

0x10369d750>

 8 print("{}".format(p)) # <__main__.Point object at

0x10369d750>

 9 print("{!s}".format(p)) # <__main__.Point object at

0x10369d750>

10 print("{!r}".format(p)) # <__main__.Point object at

0x10369d750>

 1 class Point:

 2 def __init__(self, a, b):

 3 self.x = a

 4 self.y = b

 5 def __format__(self, spec):

 6 #print(spec) // empty string

 7 return("{{'x':{}, 'y':{}}}".format(self.x,

self.y))

 8 def __str__(self):

 9 return("({},{})".format(self.x, self.y))

10 def __repr__(self):

11 return("Point({}, {})".format(self.x, self.y))

12

13 p = Point(2, 3)

14 print(p) # (2,3)

15 print("{}".format(p)) # {'x':2, 'y':3}

16 print("{!s}".format(p)) # (2,3)

17 print("{!r}".format(p)) # Point(2, 3)

Name of the current function in Python
 1 import inspect

 2

 3 def first():

 4 print(inspect.currentframe().f_code.co_name)

 5 print(inspect.stack()[0][3])

 6 second()

 7

 8

 9 def second():

10 print(inspect.currentframe().f_code.co_name)

11 print(inspect.stack()[0][3])

12

13 def main():

14 first()

15

16 main()

Name of the caller function in Python
 1 import inspect

 2

 3 def first():

 4 print("in first")

 5 print("Called by", inspect.stack()[1][3])

 6 second()

 7

 8 def second():

 9 print("in second")

10 print("Called by", inspect.stack()[1][3])

11

12 def main():

13 first()

14

15 main()

Stack trace in Python using inspect
 1 import inspect

 2

 3 def first():

 4 second()

 5

 6

 7 def second():

 8 for info in inspect.stack():

 9 #print(info)

10 #FrameInfo(

11 # frame=<frame at 0x1c18b18, file

'stack_trace.py', line 9, code second>,

12 # filename='stack_trace.py',

13 # lineno=8,

14 # function='second',

15 # code_context=[' for level in

inspect.stack():\n'],

16 # index=0)

17

18 #print(info.frame)

19 print(info.filename)

20 print(info.lineno)

21 print(info.function)

22 print(info.code_context)

23 print('')

24

25 def main():

26 first()

27

28

29 if __name__ == '__main__':

30 main()

 1 stack_trace.py

 2 8

 3 second

 4 [' for info in inspect.stack():\n']

 5

 6 stack_trace.py

 7 4

 8 first

 9 [' second()\n']

10

11 stack_trace.py

12 26

13 main

14 [' first()\n']

15

16 stack_trace.py

17 30

18 <module>

19 [' main()\n']

Module Fibonacci

 1 def fibonacci_number(n):

 2 if n==1:

 3 return 1

 4 if n==2:

 5 return 1

 6 if n==3:

 7 return 5

 8

 9 return 'unimplemented'

10

11 def fibonacci_list(n):

12 if n == 1:

13 return [1]

14 if n == 2:

15 return [1, 1]

16 if n == 3:

17 return [1, 1, 5]

18 raise Exception('unimplemented')

PyTest - assertion
1 import mymath

2

3 def test_fibonacci():

4 assert mymath.fibonacci(1) == 1

1 $ py.test test_fibonacci_ok.py

2 ============================= test session starts

==============================

3 platform darwin -- Python 2.7.5 -- py-1.4.20 -- pytest-

2.5.2

4 collected 1 items

5

6 test_fibonacci_ok.py .

7

8 =========================== 1 passed in 0.01 seconds

===========================

PyTest - failure

1 import mymath

2

3 def test_fibonacci():

4 assert mymath.fibonacci(1) == 1

5 assert mymath.fibonacci(2) == 1

6 assert mymath.fibonacci(3) == 2

 1 $ py.test test_fibonacci.py

 2 ============================== test session starts

==============================

 3 platform darwin -- Python 2.7.5 -- py-1.4.20 -- pytest-

2.5.2

 4 collected 1 items

 5

 6 test_fibonacci.py F

 7

 8 =================================== FAILURES

====================================

 9 ________________________________ test_fibonacci

10

11 def test_fibonacci():

12 assert mymath.fibonacci(1) == 1

13 assert mymath.fibonacci(2) == 1

14 > assert mymath.fibonacci(3) == 2

15 E assert 5 == 2

16 E + where 5 = <function fibonacci at 0x10a024500>

(3)

17 E + where <function fibonacci at 0x10a024500> =

mymath.fibonacci

18

19 test_fibonacci.py:6: AssertionError

20 =========================== 1 failed in 0.02 seconds

============================

PyTest - list
 1 import fibo

 2

 3 def test_fibonacci_number():

 4 assert fibo.fibonacci_number(1) == 1

 5 assert fibo.fibonacci_number(2) == 1

 6 assert fibo.fibonacci_number(3) == 2

 7 assert fibo.fibonacci_number(4) == 2

 8

 9 def test_fibo():

10 assert fibo.fibonacci_list(1) == [1]

11 assert fibo.fibonacci_list(2) == [1, 1]

12 assert fibo.fibonacci_list(3) == [1, 1, 2]

 1 $ py.test test_fibo.py

 2 ========================== test session starts

===========================

 3 platform darwin -- Python 2.7.5 -- py-1.4.20 -- pytest-

2.5.2

 4 collected 1 items

 5

 6 test_fibo.py F

 7

 8 ================================ FAILURES

================================

 9 _______________________________ test_fibo

10

11 def test_fibo():

12 assert mymath.fibo(1) == [1]

13 assert mymath.fibo(2) == [1, 1]

14 > assert mymath.fibo(3) == [1, 1, 2]

15 E assert [1, 1, 5] == [1, 1, 2]

16 E At index 2 diff: 5 != 2

17

18 test_fibo.py:6: AssertionError

19 ======================== 1 failed in 0.01 seconds

========================

SAX with coroutine
 1 import xml.sax

 2

 3 file = 'examples/xml/data.xml'

 4

 5 class EventHandler(xml.sax.ContentHandler):

 6 def __init__(self,target):

 7 self.target = target

 8 def startElement(self,name,attrs):

 9 self.target.send(('start',(name,attrs._attrs)))

10 def characters(self,text):

11 self.target.send(('text',text))

12 def endElement(self,name):

13 self.target.send(('end',name))

14

15 def printer():

16 def start(*args,**kwargs):

17 cr = func(*args,**kwargs)

18 cr.next()

19 return cr

20 return start

21

22 # example use

23 if __name__ == '__main__':

24 @coroutine

25 def printer():

26 while True:

27 event = (yield)

28 print(event)

29

30 xml.sax.parse(file, EventHandler(printer()))

copied from Stack Overflow
based on coroutines

 1 import xml.sax

 2

 3 file = 'examples/xml/data.xml'

 4

 5 class EventHandler(xml.sax.ContentHandler):

 6 def __init__(self,target):

 7 self.target = target

 8 def startElement(self,name,attrs):

 9 self.target.send(('start',(name,attrs._attrs)))

10 def characters(self,text):

11 self.target.send(('text',text))

12 def endElement(self,name):

13 self.target.send(('end',name))

14

15 def coroutine(func):

16 def start(*args,**kwargs):

http://stackoverflow.com/questions/8873643/how-to-return-data-from-a-python-sax-parser
http://www.dabeaz.com/coroutines/

17 cr = func(*args,**kwargs)

18 cr.next()

19 return cr

20 return start

21

22 # example use

23 if __name__ == '__main__':

24 @coroutine

25 def printer():

26 while True:

27 event = (yield)

28 print(event)

29

30 xml.sax.parse(file, EventHandler(printer()))

Getting the class name of an object
How to find out which class an object (instance) belongs to?

 1 import re

 2

 3 a = 2

 4 b = "3"

 5 c = 2.3

 6

 7 m = re.search(r'\d', str(c))

 8

 9 print(a.__class__) # <type 'int'>

10 print(b.__class__) # <type 'str'>

11 print(c.__class__) # <type 'float'>

12

13 print(type(a)) # <type 'int'>

14 print(type(b)) # <type 'str'>

15 print(type(c)) # <type 'float'>

16

17

18 print(a.__class__.__name__) # int

19 print(b.__class__.__name__) # str

20 print(c.__class__.__name__) # float

21

22 print(re.__class__.__name__) # module

23 print(m.__class__.__name__) # SRE_Match or Match

Inheritance - super

We can also call super() passing a different class name

 1 class Point():

 2 def __init__(self, x, y):

 3 print('__init__ of point')

 4 self.x = x

 5 self.y = y

 6

 7 class Circle(Point):

 8 def __init__(self, x, y, r):

 9 print('__init__ of circle')

10 super().__init__(x, y)

11 self.r = r

12

13 class Ball(Circle):

14 def __init__(self, x, y, r, z):

15 print('__init__ of ball')

16 #super(Circle, self).__init__(x, y) # r

17 Point.__init__(self, x, y) # r

18 self.z = z

19

20

21 b = Ball(2, 3, 10, 7)

22 print(b)

23

24 # __init__ of ball

25 # __init__ of point

26 # <__main__.Ball object at 0x10a26f190>

Inheritance - super - other class

We cannot pass any class name to super()

 1 class Point:

 2 def __init__(self, x, y):

 3 print('__init__ of point')

 4 self.x = x

 5 self.y = y

 6

 7 class Circle(Point):

 8 def __init__(self, x, y, r):

 9 print('__init__ of circle')

10 super(Circle, self).__init__(x, y)

11 self.r = r

12

13 class Ball(Circle):

14 def __init__(self, x, y, r, z):

15 print('__init__ of ball')

16 super(Zero, self).__init__(x, y)

17 self.z = z

18

19 class Zero:

20 def __init__(self, x, y):

21 print('really?')

22 pass

23

24

25 b = Ball(2, 3, 10, 7)

26 print(b)

27

28 # __init__ of circle

29 # Traceback (most recent call last):

30 # File "bad_shapes.py", line 25, in <module>

31 # b = Ball(2, 3, 10, 7)

32 # File "bad_shapes.py", line 16, in __init__

33 # super(Zero, self).__init__(x, y)

34 # TypeError: super(type, obj): obj must be an instance or

subtype of type

iterator - pairwise
 1 def pairwise(iterable):

 2 "s -> (s0,s1), (s2,s3), (s4, s5), ..."

 3 i = 0

 4 while i+1 < len(iterable):

 5 t = (iterable[i], iterable[i+1])

 6 i += 2

 7 yield t

 8

 9 l = [1, 2, 3, 4, 5, 6]

10 for x, y in pairwise(l):

11 print(f"{x} + {y} = {x + y}")

iterator - grouped
 1 def grouped(iterable, n):

 2 """s -> (s0,s1,s2,...sn-1),

 3 (sn,sn+1,sn+2,...s2n-1),

 4 (s2n,s2n+1,s2n+2,...s3n-1), ..."""

 5

 6 i = 0

 7 while i+n-1 < len(iterable):

 8 t = tuple(iterable[i:i+n])

 9 i += n

10 yield t

11

12 l = [1, 2, 3, 4, 5, 6, 7, 8, 9]

13 for x, y, z in grouped(l, 3):

14 print("{} + {} + {} = {}".format(x, y, z, x + y + z))

1 1 + 2 + 3 = 6

2 4 + 5 + 6 = 15

3 7 + 8 + 9 = 24

itertools - groupby
Group elements

 1 from itertools import groupby

 2

 3 def groupby_even_odd(items):

 4 f = lambda x: 'even' if x % 2 == 0 else 'odd'

 5 gb = groupby(items, f)

 6 print(gb)

 7 for k, items in gb:

 8 print('{}: {}'.format(k, ','.join(map(str,

items))))

 9

10 groupby_even_odd([1, 3, 4, 5, 6, 8, 9, 11])

Circular references
circular references are cleaned up the by the garbage collector
but maybe not all the memory is given back to the OS, and it can
take some time to clean them up.

 1 import time

 2

 3

 4 def create_pair():

 5 a = {'name' : 'Foo'}

 6 b = {'name' : 'Bar'}

 7 a['pair'] = b

 8 b['pair'] = a

 9 #print(a)

10

11

12 for i in range(1, 30000000):

13 create_pair()

14

15 print("let's sleep now a bit")

16 time.sleep(20)

but weakref might expedite the cleanup. See also the gc module
and if I can show it
http://stackoverflow.com/questions/2428301/should-i-worry-about-
circular-references-in-python

Context managers: with (file) experiments
1 with open('out.txt', 'w') as h:

2 h.write("hello\n")

3

4 h = open('out.txt')

5 print(h.read())

1 f = open('out.txt', 'w')

2 f.write("hello\n")

3 f.close()

4

5 # for line in open("myfile.txt"):

6 # print line,

7 # the file is closed only when script ends

itertools - izip
Python 3 does not need this any more as the built-in zip is already
an iterator.

Combine two unbounded lists

 1 from itertools import izip, count

 2

 3 for t in izip(count(start=1, step=1), count(start=10,

step=-1)):

 4 print("{:3} + {:3} = {}".format(t[0], t[1],

t[0]+t[1]))

 5 if t[0] > 20:

 6 break

 7 # 1 + 10 = 11

 8 # 2 + 9 = 11

 9 # 3 + 8 = 11

10 # 4 + 7 = 11

11 # ...

12 # 20 + -9 = 11

13 # 21 + -10 = 11

mixing iterators
Combine three unbounded lists

 1 from itertools import izip, count

 2 from my_iterators import fibo, alter

 3

 4 mixer = izip(count(), fibo(), alter())

 5

 6 for mix in mixer:

 7 print("{:3} {:3} {:3}".format(*mix))

 8 if mix[0] >= 8: break

 9

10 # 0 1 1

11 # 1 1 -2

12 # 2 2 3

13 # 3 3 -4

14 # 4 5 5

15 # 5 8 -6

16 # 6 13 7

17 # 7 21 -8

18 # 8 34 9

mixing iterators
 1 def fibo():

 2 a, b = 1, 1

 3 while True:

 4 yield a

 5 a, b = b, a+b

 6

 7 def alter():

 8 n = 1

 9 while True:

10 yield n

11 if n < 0:

12 n -= 1

13 else:

14 n += 1

15 n *= -1

itertools - pairwise
 1 from itertools import izip

 2

 3 def pairwise(iterable):

 4 "s -> (s0,s1), (s2,s3), (s4, s5), ..."

 5 a = iter(iterable)

 6 return izip(a, a)

 7

 8 l = [1, 2, 3, 4, 5, 6, 7]

 9 for x, y in pairwise(l):

10 print("{} + {} = {}".format(x, y, x + y))

11

12 # 1 + 2 = 3

13 # 3 + 4 = 7

14 # 5 + 6 = 11

Every 2 element from a list. We are using the exact same iterator
object in both places of the izip() call,
so very time izip() wants to return a tuple, it will fetch two
elements from the same iterator.

Iterating over every two elements in a list

itertools - grouped
Every N element from a list

 1 from itertools import izip

 2

 3 def grouped(iterable, n):

 4 '''s -> (s0,s1,s2,...sn-1),

 5 (sn,sn+1,sn+2,...s2n-1),

 6 (s2n,s2n+1,s2n+2,...s3n-1), ...'''

 7 a = iter(iterable)

 8 iterators = [a] * n

 9 return izip(*iterators)

10

11 l = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

12 for x, y, z in grouped(l, 3):

13 print("{} + {} + {} = {}".format(x, y, z, x + y + z))

14

15 # 1 + 2 + 3 = 6

http://stackoverflow.com/questions/5389507/iterating-over-every-two-elements-in-a-list

16 # 4 + 5 + 6 = 15

17 # 7 + 8 + 9 = 24

range vs xrange in Python
 1 from __future__ import print_function

 2 import sys

 3

 4 r = range(1000)

 5 x = xrange(1000)

 6

 7 for v in r: # 0..999

 8 pass

 9 for v in x: # 0..999

10 pass

11

12 print(sys.getsizeof(r)) # 8072

13 print(sys.getsizeof(x)) # 40

In Python 2 range creates a list of values range(from, to, step)
and xrnage creates and iterator.
In Python 3 range creates the iterator and if really necesary then
list(range()) can create the list.

range vs. xrange in Python

profile (with hotshot) slow code
It was experimental and dropped from Python 3

[](https://docs.python.org/2/library/hotshot.html)

 1 import slow

 2 import os

 3 import hotshot, hotshot.stats

 4

 5 prof = hotshot.Profile("slow.prof")

 6 prof.runcall(slow.main, 1000)

http://code-maven.com/range-vs-xrange-in-python

 7 prof.close()

 8 stats = hotshot.stats.load("slow.prof")

 9 stats.strip_dirs()

10 stats.sort_stats('time', 'calls')

11 stats.print_stats(20)

12

13 os.remove("slow.prof")

 1 501501 function calls in 0.337 seconds

 2

 3 Ordered by: internal time, call count

 4

 5 ncalls tottime percall cumtime percall

filename:lineno(function)

 6 498501 0.192 0.000 0.192 0.000

slow.py:37(swap)

 7 1 0.136 0.136 0.335 0.335

slow.py:21(sort)

 8 999 0.006 0.000 0.006 0.000

slow.py:4(f)

 9 999 0.002 0.000 0.002 0.000

random.py:173(randrange)

10 1 0.001 0.001 0.003 0.003

slow.py:31(get_str)

11 999 0.000 0.000 0.000 0.000

slow.py:10(g)

12 1 0.000 0.000 0.337 0.337

slow.py:14(main)

13 0 0.000 0.000

profile:0(profiler)

Abstract Base Class without abc
Only works in Python 2?

 1 import inspect

 2

 3 class Base():

 4 def __init__(self, *args, **kwargs):

 5 if self.__class__.__name__ == 'Base':

 6 raise Exception('You are required to subclass

the {} class'

 7 .format('Base'))

 8

 9 methods = set([x[0] for x in

10 inspect.getmembers(self.__class__,

predicate=inspect.ismethod)])

11 required = set(['foo', 'bar'])

12 if not required.issubset(methods):

13 missing = required - methods

14 raise Exception("Requried method '{}' is not

implemented in '{}'"

15 .format(', '.join(missing),

self.__class__.__name__))

16

17

18 class Real(Base):

19 def foo(self):

20 print('foo in Real')

21 def bar(self):

22 print('bar in Real')

23 def other(self):

24 pass

25

26 class Fake(Base):

27 # user can hide the __init__ method of the parent class:

28 # def __init__(self):

29 # pass

30 def foo(self):

31 print('foo in Fake')

32

33 r = Real()

34 #b = Base() # You are required to subclass the Base

class

35 #f = Fake() # Requried method 'bar' is not implemented

in class 'Fake'

Abstract Base Class with abc Python 2 ?
 1 from abc import ABCMeta, abstractmethod

 2

 3 #class Base(metaclass = ABCMet):

 4 class Base():

 5 __metaclass__ = ABCMeta

 6

 7 @abstractmethod

 8 def foo(self):

 9 pass

10

11 @abstractmethod

12 def bar(self):

13 pass

14

15

16 class Real(Base):

17 def foo(self):

18 print('foo in Real')

19 def bar(self):

20 print('bar in Real')

21 def other(self):

22 pass

23

24 class Fake(Base):

25 def foo(self):

26 print('foo in Fake')

27

28 r = Real()

29 f = Fake()

30 # TypeError: Can't instantiate abstract class Fake

with abstract methods bar

Abstract Base Classes in Python
abc

Abstract Base Class with metaclass
 1 import inspect

 2 class MyABC(type):

 3 def __init__(class_object, *args):

 4 #print('Meta.__init__')

 5 #print(class_object)

 6 #print(args)

 7 # ('Base',

 8 # (<type 'object'>,),

 9 # {

10 # '__required_methods__': ['foo', 'bar'],

11 # '__module__': '__main__',

https://dbader.org/blog/abstract-base-classes-in-python
https://docs.python.org/library/abc.html

12 # '__metaclass__': <class '__main__.MyABC'>

13 # })

14 # attr = dict(args)

15 if not '__metaclass__' in args[2]:

16 return

17

18 if not '__required_methods__' in args[2]:

19 raise Exception("No __required_methods__")

20 name = args[0]

21 required_methods = set(args[2]

['__required_methods__'])

22 def my_init(self, *args, **kwargs):

23 if self.__class__.__name__ == name:

24 raise Exception("You are required to

subclass the '{}' class"

25 .format(name))

26

27 #print("my_init")

28 methods = set([x[0] for x in

29 inspect.getmembers(self.__class__,

predicate=inspect.ismethod)])

30 if not required_methods.issubset(methods):

31 missing = required_methods - methods

32 raise Exception("Requried method '{}' is

not implemented in '{}'"

33 .format(', '.join(missing),

self.__class__.__name__))

34

35 class_object.__init__ = my_init

36

37

38 class Base(object):

39 __metaclass__ = MyABC

40 __required_methods__ = ['foo', 'bar']

41

42 # b = Base() # Exception: You are required to subclass

the 'Base' class

43

44 class Real(Base):

45 def foo():

46 pass

47 def bar():

48 pass

49

50 r = Real()

51

52 class Fake(Base):

53 def foo():

54 pass

55

56 #f = Fake() # Exception: Requried method 'bar' is not

implemented in class 'Fake'

57

58 class UnFake(Fake):

59 def bar():

60 pass

61

62 uf = UnFake()

Create class with metaclass
 1 class M(type):

 2 pass

 3

 4 class A(object):

 5 pass

 6

 7 class B(object):

 8 __metaclass__ = M

 9

10 a = A()

11 print(type(a))

12 b = B()

13 print(type(b))

14

15

16

17 class Meta(type):

18 def __init__(self, *args, **kwargs):

19 print('Meta.__init__')

20 print(self) # <class '__main__.C'>

21 print(args) # ('C', (<type 'object'>,),

22 # {'__module__': '__main__',

23 # '__metaclass__': <class

'__main__.Meta'>})

24 print(kwargs) # {}

25

26 class C(object):

27 __metaclass__ = Meta

28

29 c = C()

30 print(type(c))

31

32 class MyABC(type):

33 def __init__(self, *args):

34 print('Meta.__init__')

35 print(args) # ('C', (<type 'object'>,),

36 # {'__module__': '__main__',

37 # '__metaclass__': <class

'__main__.Meta'>})

38

39 class Base(object):

40 __metaclass__ = MyABC

 1 # http://stackoverflow.com/questions/100003/what-is-a-

metaclass-in-python

 2

 3 # Create a new-style class

 4 class A(object):

 5 pass

 6 print(type(A)) # <type 'type'>

 7 a = A()

 8 print(type(a)) # <class '__main__.A'>

 9

10 B = type('B', (), {})

11 print(type(B)) # <type 'type'>

12 b = B()

13 print(type(b)) # <class '__main__.B'>

14

15 # old style

16 class C():

17 pass

18 print(type(C)) # <type 'classobj'>

19 c = C()

20 print(type(c)) # <type 'instance'>

21

22 # Have attributes in the class

23 class AA(object):

24 name = 'Foo'

25 print(AA.name) # Foo

26 aa = AA()

27 print(aa.name) # Foo

28

29

30 BB = type('BB', (), {'name' : 'Bar'})

31 print(BB.name) # Bar

32 bb = BB()

33 print(bb.name) # Bar

34

35

36 # Intherit from a class

37 class AAA(AA):

38 pass

39 print(AAA.name) # Foo

40 aaa = AAA()

41 print(aaa.name) # Foo

42

43 BBB = type('BBB', (BB,), {})

44 print(BB.name) # Bar

45 bbb = BBB()

46 print(bbb.name) # Bar

47

48

49 def f(self):

50 print(self.name)

51

52 class AAAA(object):

53 name = 'AAAA-Foo'

54 def show(self):

55 print(self.name)

56

57 aaaa = AAAA()

58 aaaa.show() # AAAA-Foo

59

60 BBBB = type('BBBB', (), { 'name': 'BBBB-Bar', 'show' :

f})

61 bbbb = BBBB()

62 bbbb.show() # BBBB-Bar

what is a metaclass

Python Descriptors

http://stackoverflow.com/questions/100003/what-is-a-metaclass-in-python

A more manual way to implement the property() functionality we
have just seen.
Use cases:

Implement type-checking and/or value checking for attribute
setters ()

Descriptors
Descriptor HowTo Guide

alter iterator
Is this interesting at all ?

 1 from my_iterators import alter

 2

 3 for a in alter():

 4 print(a)

 5 if a >= 6:

 6 break

 7

 8 # 1

 9 # -2

10 # 3

11 # -4

12 # 5

13 # -6

14 # 7

Create a counter queue
 1 import threading

 2 import Queue

 3

 4 class ThreadedCount(threading.Thread):

 5 def __init__(self, name, start, stop):

 6 threading.Thread.__init__(self)

 7 self.name = name

http://intermediatepythonista.com/classes-and-objects-ii-descriptors
https://docs.python.org/howto/descriptor.html

 8 self.counter = start

 9 self.limit = stop

10 def run(self):

11 while self.counter < self.limit:

12 self.counter += 1

13 print(self.name, self.counter)

14

15 print(self.name , "finished")

16 return

17

18 queue = Queue()

19 foo = ThreadedCount("Foo", 1, 10)

20 bar = ThreadedCount("Bar", 1, 10)

21 foo.start()

22 bar.start()

23 print("main - running")

24

25 foo.join()

26 bar.join()

27 print("main - thread is done")

A Queue of tasks
 1 from queue import Queue

 2 from threading import Thread

 3

 4 def source():

 5 """Returning the list of tasks"""

 6 return range(1, 10)

 7

 8 def do_work(item):

 9 print("Working on item " + str(item) + "\n", end="")

10 # print("Working on item ", str(item))

11 # would show the output intermingled as the separate

items of the print statement

12 # (even the trailing newline) might be printed only after

context switch

13

14

15 def worker():

16 while True:

17 item = q.get()

18 do_work(item)

19 q.task_done()

20

21 def main():

22 for i in range(num_worker_threads):

23 t = Thread(target=worker)

24 t.daemon = True

25 t.start()

26

27 for item in source():

28 q.put(item)

29

30 q.join() # block until all tasks are done

31

32 num_worker_threads = 3

33 q = Queue()

34 main()

Filtered Fibonacci with ifilter
1 from series import fibonacci

2 from itertools import ifilter

3

4 even = ifilter(lambda f: f % 2 == 0, fibonacci())

5 for e in even:

6 print(e)

7 if e > 200:

8 break

Python from .NET
TODO and add to dotnet

TODO: example with async call in .NET getting back to python

	First steps
	What is Python?
	What is needed to write a program?
	The source (code) of Python
	Python 2 vs. Python 3
	Installation
	Installation on Linux
	Installation on Apple Mac OSX
	Installation on MS Windows
	Editors, IDEs
	Documentation
	Program types
	Python on the command line
	First script - hello world
	Examples
	Comments
	Variables
	Exercise: Hello world
	What is programming?
	What are the programming languages
	A written human language
	A programming language
	Words and punctuation matter!
	Literals, Value Types in Python
	Floating point limitation
	Value Types in Numpy
	Rectangular (numerical operations)
	Multiply string
	Add numbers
	Add strings
	Exercise: Calculations
	Solution: Calculations

	Second steps
	Modules
	A main function
	The main function - called
	Indentation
	Conditional main
	Input - Output I/O
	print in Python 2
	print in Python 3
	print in Python 2 as if it was Python 3
	Exception: SyntaxError: Missing parentheses in call
	Prompting for user input in Python 2
	Prompting for user input in Python 3
	Python2 input or raw_input?
	Prompting both Python 2 and Python 3
	Add numbers entered by the user (oups)
	Add numbers entered by the user (fixed)
	How can I check if a string can be converted to a number?
	Converting string to int
	Converting float to int
	Conditionals: if
	Conditionals: if - else
	Conditionals: if - else (other example)
	Conditionals: else if
	Conditionals: elif
	Ternary operator
	Case or Switch in Python
	Exercise: Rectangular
	Exercise: Calculator
	Exercise: Standard Input
	Solution: Area of rectangular
	Solution: Calculator
	Command line arguments
	Command line arguments - len
	Command line arguments - exit
	Exercise: Rectangular (argv)
	Exercise: Calculator (argv)
	Solution: Area of rectangular (argv)
	Solution: Calculator eval
	Solution: Calculator (argv)
	Compilation vs. Interpretation
	Is Python compiled or interpreted?
	Flake8 checking

	Numbers
	Numbers
	Operators for Numbers
	Integer division and the future
	Pseudo Random Number
	Fixed random numbers
	Rolling dice - randrange
	Random choice
	built-in method
	Exception: TypeError: ‘module’ object is not callable
	Fixing the previous code
	Exception: AttributeError: module ‘random’ has no attribute
	Exercise: Number guessing game - level 0
	Exercise: Fruit salad
	Solution: Number guessing game - level 0
	Solution: Fruit salad

	Boolean
	if statement again
	True and False
	Boolean
	True and False values in Python
	Comparision operators
	Do NOT Compare different types
	Boolean operators
	Boolean truth tables
	Short circuit
	Short circuit fixed
	Incorrect use of conditions
	Exercise: compare numbers
	Exercise: compare strings
	Solution: compare numbers
	Solution: compare strings

	Strings
	Single quoted and double quoted strings
	Long lines
	Triple quoted strings (multiline)
	String length (len)
	String repetition and concatenation
	A character in a string
	String slice (instead of substr)
	Change a string
	How to change a string
	String copy
	String functions and methods (len, upper, lower)
	index in string
	index in string with range
	rindex in string with range
	find in string
	Find all in the string
	in string
	index if in string
	Encodings: ASCII, Windows-1255, Unicode
	raw strings
	ord
	ord in a file
	chr - number to character
	Exercise: one string in another string
	Exercise: to ASCII CLI
	Exercise: from ASCII CLI
	Solution: one string in another string
	Solution: compare strings
	Solution: to ASCII CLI
	Solution: from ASCII CLI

	Loops
	Loops: for-in and while
	for-in loop on strings
	for-in loop on list
	for-in loop on range
	Iterable, iterator
	for in loop with early end using break
	for in loop skipping parts using continue
	for in loop with break and continue
	while loop
	Infinite while loop
	While with complex expression
	While with break
	While True
	Duplicate input call
	Eliminate duplicate input call
	do while loop
	while with many continue calls
	Break out from multi-level loops
	Exit vs return vs break and continue
	Exercise: Print all the locations in a string
	Exercise: Number guessing game
	Exercise: MasterMind
	Exercise: Count unique characters
	Solution: Print all the locations in a string
	Solution 1 for Number Guessing
	Solution for Number Guessing (debug)
	Solution for Number Guessing (move)
	Solution for Number Guessing (multi-game)
	Solution: MasterMind
	Solution: Count unique characters
	MasterMind to debug

	PyCharm
	PyCharm Intro
	PyCharm Project
	PyCharm Files
	PyCharm - run code
	PyCharm Python console at the bottom left
	Refactoring example (with and without pycharm)

	Formatted printing
	format - sprintf
	Examples using format - indexing
	Examples using format with names
	Format columns
	Examples using format - alignment
	Format - string
	Format characters and types
	Format floating point number
	f-strings (formatted string literals)
	printf using old %-syntax
	Format braces, bracket, and parentheses
	Examples using format with attributes of objects
	raw f-strings

	Lists
	Anything can be a lists
	Any layout
	Lists
	List slice with steps
	Change a List
	Change with steps
	List assignment and list copy
	join
	join list of numbers
	split
	for loop on lists
	in list
	Where is the element in the list
	Index improved
	[].insert
	[].append
	[].remove
	Remove element by index [].pop
	Remove first element of list
	Remove several elements of list by index
	Use list as a queue
	Queue using deque from collections
	Fixed size queue
	List as a stack
	stack with deque
	Exercies: Queue
	Exercise: Stack
	Solution: Queue with list
	Solution: Queue with deque
	Solution: Reverse Polish calculator (stack) with lists
	Solution: Reverse Polish calculator (stack) with deque
	Debugging Queue
	sort
	sort numbers
	sort mixed
	key sort
	Sort tuples
	sort with sorted
	sort vs. sorted
	key sort with sorted
	Sorting characters of a string
	range
	Looping over index
	Enumerate lists
	List operators
	List of lists
	List assignment
	List documentation
	tuple
	Exercise: color selector menu
	Exercise: count digits
	Exercise: Create list
	Exercise: Count words
	Exercise: Check if number is prime
	Exercise: DNA sequencing
	Solution: menu
	Solution: count digits
	Solution: Create list
	Solution: Count words
	Solution: Check if number is prime
	Solution: DNA sequencing
	Solution: DNA sequencing with filter
	Solution: DNA sequencing with filter and lambda
	[].extend
	append vs. extend
	split and extend

	Files
	Open and read file
	Filename on the command line
	Filehandle with and without
	Filehandle with return
	Read file remove newlines
	Read all the lines into a list
	Read all the characters into a string (slurp)
	Not existing file
	Open file exception handling
	Open many files - exception handling
	Writing to file
	Append to file
	Binary mode
	Does file exist? Is it a file?
	Exercise: count numbers
	Exercise: strip newlines
	Exercise: color selector
	Exercise: ROT13
	Exercise: Combine lists
	Solution: count numbers
	Solution: strip newlines
	Solution: color selector
	Solution: Combine lists
	Read text file
	Open and read file
	Direct access of a line in a file
	Example

	Dictionary (hash)
	What is a dictionary
	When to use dictionaries
	Dictionary
	keys
	Loop over keys
	Loop using items
	values
	Not existing key
	Get key
	Does the key exist?
	Does the value exist?
	Delete key
	List of dictionaries
	Shared dictionary
	immutable collection: tuple as dictionary key
	immutable numbers: numbers as dictionary key
	Sort dictionary by value
	Sort dictionary keys by value
	Insertion Order is kept
	Change order of keys in dictionary - OrderedDict
	Set order of keys in dictionary - OrderedDict
	Exercise: count characters
	Exercise: count words
	Exercise: count words from a file
	Exercise: Apache log
	Exercise: Combine lists again
	Exercise: counting DNA bases
	Exercise: Count Amino Acids
	Exercise: List of dictionaries
	Exercise: Dictinoary of dictionaries
	Solution: count characters
	Solution: count characters with default dict
	Solution: count words
	Solution: count words in file
	Solution: Apache log
	Solution: Combine lists again
	Solution: counting DNA bases
	Solution: Count Amino Acids
	Loop over dictionary keys
	Do not change dictionary in loop
	Default Dict

	Sets
	sets
	set operations
	set intersection
	set subset
	set symmetric difference
	set union
	set relative complement
	set examples
	defining an empty set
	Adding an element to a set (add)
	Merging one set into another set (update)

	Functions (subroutines)
	Defining simple function
	Defining a function
	Parameters can be named
	Mixing positional and named parameters
	Default values
	Several defaults, using names
	Arbitrary number of arguments *
	Fixed parmeters before the others
	Arbitrary key-value pairs in parameters **
	Extra key-value pairs in parameters
	Every parameter option
	Duplicate declaration of functions (multiple signatures)
	Recursive factorial
	Recursive Fibonacci
	Non-recursive Fibonacci
	Unbound recursion
	Variable assignment and change - Immutable
	Variable assignment and change - Mutable
	Parameter passing of functions
	Passing references
	Function documentation
	Sum ARGV
	Copy-paste code
	Copy-paste code fixed
	Copy-paste code further improvement
	Palindrome
	Exercise: statistics
	Exercise: recursive
	Exercise: Tower of Hanoi
	Exercise: Merge and Bubble sort
	Solution: statistics
	Solution: recursive
	Solution: Tower of Hanoi
	Solution: Merge and Bubble sort

	Modules
	Before modules
	Create modules
	path to load modules from - The module search path
	sys.path - the module search path
	Flat project directory structure
	Absolute path
	Relative path
	Python modules are compiled
	How “import” and “from” work?
	Runtime loading of modules
	Conditional loading of modules
	Duplicate importing of functions
	Script or library
	Script or library - import
	Script or library - from import
	assert to verify values
	mycalc as a self testing module
	doctest
	Scope of import
	Export import
	Export import with all
	import module
	Execute at import time
	Import multiple times
	Exercise: Number guessing
	Exercies: Scripts and modules
	Exercise: Module my_sum
	Exercise: Convert your script to module
	Exercise: Add doctests to your own code
	Solution: Module my_sum

	Regular Expressions
	What are Regular Expressions (aka. Regexes)?
	What are Regular Expressions good for?
	Examples
	Where can I use it ?
	grep
	Regexes first match
	Match numbers
	Capture
	Capture more
	Capture even more
	findall
	findall with capture
	findall with capture more than one
	Any Character
	Match dot
	Character classes
	Common characer classes
	Negated character class
	Optional character
	Regex 0 or more quantifier
	Quantifiers
	Quantifiers limit
	Quantifiers on character classes
	Greedy quantifiers
	Minimal quantifiers
	Anchors
	Anchors on both end
	Match ISBN numbers
	Matching a section
	Matching a section - minimal
	Matching a section negated character class
	DOTALL S (single line)
	MULTILINE M
	Two regex with logical or
	Alternatives
	Grouping and Alternatives
	Internal variables
	More internal variables
	Regex DNA
	Regex IGNORECASE
	Regex VERBOSE X
	Substitution
	findall capture
	Fixing dates
	Duplicate numbers
	Remove spaces
	Replace string in assembly code
	Full example of previous
	Split with regex
	Exercises: Regexes part 1
	Exercise: Regexes part 2
	Exercise: Sort SNMP numbers
	Exercise: parse hours log file and give report
	Exercise: Parse ini file
	Exercise: Replace Python
	Exercise: Extract phone numbers
	Solution: Sort SNMP numbers
	Solution: parse hours log file and give report
	Solution: Processing INI file manually
	Solution: Processing config file
	Solution: Extract phone numbers
	Regular Expressions Cheat sheet
	Fix bad JSON
	Fix very bad JSON
	Raw string or escape
	Remove spaces regex
	Regex Unicode
	Anchors Other example

	Python standard modules
	Some Standard modules
	sys
	Writing to standard error (stderr)
	Current directory (getcwd, pwd, chdir)
	OS dir (mkdir, makedirs, remove, rmdir)
	python which OS are we running on (os, platform)
	Get process ID
	OS path
	Traverse directory tree - list directories recursively
	os.path.join
	Directory listing
	expanduser - handle tilde ~
	Listing specific files using glob
	External command with system
	subprocess
	subprocess in the background
	Accessing the system environment variables from Python
	Set env and run command
	shutil
	time
	sleep in Python
	timer
	Current date and time datetime now
	Converting string to datetime
	datetime arithmeticis
	Rounding datetime object to nearest second
	Signals and Python
	Sending Signal
	Catching Signal
	Catching Ctrl-C on Unix
	Catching Ctrl-C on Unix confirm
	Alarm signal and timeouts
	deep copy list
	deep copy dictionary
	Exercise: Catching Ctrl-C on Unix 2nd time
	Exercise: Signals
	Ctrl-z

	JSON
	JSON - JavaScript Object Notation
	dumps
	loads
	dump
	load
	Round trip
	Pretty print JSON
	Sort keys in JSON
	Set order of keys in JSON - OrderedDict
	Exercise: Counter in JSON
	Exercise: Phone book
	Exercise: Processes
	Solution: Counter in JSON
	Solution: Phone book

	Command line arguments with argparse
	Modules to handle the command line
	argparse
	Basic usage of argparse
	Positional argument
	Many positional argument
	Convert to integers
	Convert to integer
	Named arguments
	Boolean Flags
	Short names
	Exercise: Command line parameters
	Exercise: argparse positional and named

	Exception handling
	Hierarchy of calls
	Handling errors as return values
	Handling errors as exceptions
	A simple exception
	Working on a list
	Catch ZeroDivisionError exception
	Module to open files and calculate something
	File for exception handling example
	Open files - exception
	Handle divide by zero exception
	Handle files - exception
	Catch all the exceptions and show their type
	List exception types
	Exceptions
	How to raise an exception
	Stack trace
	Exercies: Exception int conversion
	Exercies: Raise Exception
	Solution: Exception int conversion (specific)
	Solution: Exception int conversion (all other)
	Solution: Raise Exception

	Classes - OOP - Object Oriented Programming
	Why Object Oriented Programming?
	Generic Object Oriented Programming terms
	OOP in Python
	OOP in Python (numbers, strings, lists)
	OOP in Python (argparse)
	Create a class
	Import module containing class
	Import class from module
	Initialize a class - constructor, attributes
	Attributes are not special
	Create Point class
	Initialize a class - constructor, attributes
	Methods
	Stringify class
	Inheritance
	Inheritance - another level
	Modes of method inheritance
	Modes of method inheritance - implicit
	Modes of method inheritance - override
	Modes of method inheritance - extend
	Modes of method inheritance - delegate - provide
	Composition - Line
	Some comments
	Class in function
	Serialization of instances with pickle
	Quick Class definition and usage
	Exercise: Add move_rad to based on radians
	Exercise: Improve previous examples
	Exercise: Polygon
	Exercise: Number
	Exercise: Library
	Exercise: Bookexchange
	Exercise: Represent turtle graphics
	Solution - Polygon

	PyPi - Python Package Index
	What is PyPi?
	Easy Install
	pip
	Upgrade pip
	PYTHONPATH
	Virtualenv
	Virtualenv for Python 3

	SQLite Database Access
	SQLite
	Connecting to SQLite database
	Create TABLE in SQLite
	INSERT data into SQLite database
	SELECT data from SQLite database
	A counter

	MySQL
	Install MySQL support
	Create database user (manually)
	Create database (manually)
	Create table (manually)
	Connect to MySQL
	Connect to MySQL and Handle exception
	Select data
	Select more data
	Select all data fetchall
	Select some data fetchmany
	Select some data WHERE clause
	Select into dictionaries
	Insert data
	Update data
	Delete data
	Exercise MySQL
	Exercise: MySQL Connection
	Solution: MySQL Connection

	PostgreSQL
	PostgreSQL install
	Python and Postgresql
	PostgreSQL connect
	INSERT
	INSERT (from command line)
	SELECT
	DELETE

	SQLAlchemy
	SQLAlchemy hierarchy
	SQLAlchemy engine
	SQLAlchemy autocommit
	SQLAlchemy engine CREATE TABLE
	SQLAlchemy engine INSERT
	SQLAlchemy engine SELECT
	SQLAlchemy engine SELECT all
	SQLAlchemy engine SELECT fetchall
	SQLAlchemy engine SELECT aggregate
	SQLAlchemy engine SELECT IN
	SQLAlchemy engine SELECT IN with placeholders
	SQLAlchemy engine connection
	SQLAlchemy engine transaction
	SQLAlchemy engine using context managers
	Exercise: Create table
	SQLAlchemy Metada
	SQLAlchemy types
	SQLAlchemy ORM - Object Relational Mapping
	SQLAlchemy ORM create
	SQLAlchemy ORM schema
	SQLAlchemy ORM reflection
	SQLAlchemy ORM INSERT after automap
	SQLAlchemy ORM INSERT
	SQLAlchemy ORM SELECT
	SQLAlchemy ORM SELECT cross tables
	SQLAlchemy ORM SELECT and INSERT
	SQLAlchemy ORM UPDATE
	SQLAlchemy ORM logging
	Solution: Create table
	Exercise: Inspector
	SQLAlchemy CREATE and DROP
	SQLAlchemy Notes
	SQLAlchemy Meta SQLite CREATE
	SQLAlchemy Meta Reflection
	SQLAlchemy Meta INSERT
	SQLAlchemy Meta SELECT

	NoSQL
	Types of NoSQL databases

	MongoDB
	MongoDB CRUD
	Install MongoDB support
	Python MongoDB insert
	MongoDB CLI
	Python MongoDB find
	Python MongoDB find refine
	Python MongoDB update
	Python MongoDB remove (delete)

	Redis
	Redis CLI
	Redis list keys
	Redis set get
	Redis incr
	Redis incrby
	Redis setex

	Web client
	urllib the web client
	urllib2 the web client
	httpbin.org
	requests get
	Download image using requests
	Download image as a stream using requests
	Download zip file
	Extract zip file
	Interactive Requests
	requests get JSON
	requests get JSON UserAgent
	requests get JSON UserAgent
	requests get header
	requests change header
	requests post
	Tweet
	API config file
	bit.ly
	Exercise: Combine web server and client

	Python Web server
	Hello world web
	Dump web environment info
	Web echo
	Web form
	Resources

	Python Flask
	Python Flask intro
	Python Flask installation
	Flask: Hello World
	Flask hello world + test
	Flask generated page - time
	Flask: Echo GET
	Flask: Echo POST
	Flask: templates
	Flask: templates
	Flask: templates with parameters
	Flask: runner
	Exercise: Flask calculator
	Static files
	Flask Logging
	Flask: Counter
	Color selector without session
	Session management
	Flask custom 404 page
	Flask Error page
	Flask URL routing
	Flask Path params
	Flask Path params (int)
	Flask Path params add (int)
	Flask Path params add (path)
	Jinja loop, conditional, include
	Exercise: Flask persistent
	Exercise: Flask persistent
	Flask Exercises
	Flask login
	Flask JSON API
	Flask and AJAX
	Flask and AJAX
	passlib
	Flask Testing
	Flask Deploy app
	Flask Simple Authentication + test
	Flask REST API
	Flask REST API - Echo
	Flask REST API - parameters in path
	Flask REST API - parameter parsing
	Flask REST API - parameter parsing - required

	Networking
	Secure shell
	ssh
	ssh from Windows
	Parallel ssh
	telnet
	prompt for password
	Python nmap
	ftp

	Interactive shell
	The Python interactive shell
	REPL - Read Evaluate Print Loop
	Using Modules
	Getting help
	Exercise: Interactive shell

	Testing Demo
	How do you test your code?
	What is testing?
	What is testing really?
	Testing demo - AUT - Application Under Test
	Testing demo - use the module
	Testing demo: doctets
	Testing demo: Unittest success
	Testing demo: Unittest failure
	Testing demo: pytest using classes
	Testing demo: pytest without classes
	Testing demo: pytest run doctests
	Testing demo: pytest run unittest
	Exercise: Testing demo
	Solution: Testing demo

	Types in Python
	mypy
	Types of variables
	Types of function parameters
	Types used properly
	TODO: mypy

	Testing Intro
	The software testing equasion
	The software testing equasion (fixed)
	The pieces of your software?
	Manual testing
	What to tests?
	Continuous Integration

	Functional programming
	Functional programming
	Iterators (Iterables)
	range
	range with list
	range vs. list size
	for loop with transformation
	map
	map delaying function call
	map on many values
	map with list
	double with lambda
	What is lambda in Python?
	lambda returning tuple
	map returning tuples
	lambda with two parameters
	map for more than one iterable
	map on uneven lists
	replace None (for Python 2)
	map on uneven lists - fixed (for Python 2)
	map mixed iterators
	map fetch value from dict
	Exercise: string to length
	Exercise: row to length
	Exercise: compare rows
	Solution: string to length
	Solution: row to length
	Solution: compare rows
	filter
	filter with lambda
	filter - map example
	filter - map in one expression
	Get indexes of values
	reduce
	reduce with default
	zip
	Creating dictionary from two lists using zip
	all, any
	Compare elements of list with scalar
	List comprehension - double
	List comprehension - simple expression
	List generator
	List comprehension
	Dict comprehension
	Lookup table with lambda
	Read lines without newlines
	Read key-value pairs
	Create index-to-value mapping in a dictionary based on a list of values
	Exercise: min, max, factorial
	Exercise: Prime numbers
	Exercise: Many validator functions
	Exercise: Calculator using lookup table
	Exercise: parse file
	Solution: min, max, factorial
	Solution: Prime numbers
	Solution: Many validator functions
	Solution: Calculator using lookup table
	map with condtion
	map with lambda
	map with lambda with condition
	List comprehension - complex

	Iterators - with and without Itertools
	Advantages of iterators and generators
	The Fibonacci research institute
	Fibonacci plain
	Fibonacci copy-paste
	Iterators Glossary
	What are iterators and iterables?
	A file-handle is an iterator
	range is iterable but it is not an iterator
	Iterator: a counter
	Using iterator
	Iterator without temporary variable
	The type of the iterator
	Using iterator with next
	Mixing for and next
	Iterable which is not an iterator
	Iterator returning multiple values
	Range-like iterator
	Unbound or infinite iterator
	Unbound iterator Fibonacci
	Operations on Unbound iterator
	itertools
	itertools - count
	itertools - cycle
	Exercise: iterators - reimplement the range function
	Exercise: iterators - cycle
	Exercise: iterators - alter
	Exercise: iterators - limit Fibonacci
	Exercise: iterators - Fibonacci less memory
	Exercise: read char
	Exercise: read section
	Exercise: collect packets
	Exercise: compare files
	Solution: iterators - limit Fibonacci
	Solution: iterators - Fibonacci less memory
	Solution: read section
	Solution: compare files
	Solution: collect packets

	Generators and Generator Expressions
	Generators Glossary
	Iterators vs Generators
	List comprehension and Generator Expression
	List comprehension vs Generator Expression - less memory
	List comprehension vs Generator Expression - lazy evaluation
	Generator: function with yield - call next
	Generators - call next
	Generator with yield
	Generators - fixed counter
	Generators - counter
	Generators - counter with parameter
	Generators - my_range
	Fibonacci - generator
	Infinite series
	Integers
	Integers + 3
	Integers + Integers
	Filtered Fibonacci
	The series.py
	generator - unbound count (with yield)
	iterator - cycle
	Exercise: Alternator
	Exercise: Prime number generator
	Exercise: generator
	Exercise: Tower of Hanoi
	Exercise: Binary file reader
	Exercise: File reader with records

	Logging
	Simple logging
	Simple logging - set level
	Simple logging to a file
	Simple logging format
	Simple logging change date format
	getLogger
	Time-based logrotation
	Size-based logrotation

	Closures
	Counter local - not working
	Counter with global
	Create incrementors
	Create internal function
	Create function by a function
	Create function with parameters
	Counter closure
	Make incrementor with def (closure)
	Make incrementor with lambda
	Exercise: closure bank
	Solution: closure bank
	Solution: counter with parameter

	Decorators
	Function assignment
	Function inside other function
	Decorator
	Use cases for decorators in Python
	A recursive Fibonacci
	trace fibo
	tron decorator
	Decorate with direct call
	Decorate with parameter
	Decorator accepting parameter
	Decorate function with any signature
	Decorate function with any signature - implementation
	Exercise: Logger decorator
	Exercise: memoize decorator
	Solution: Logger decorator
	Solution: Logger decorator (testing)
	Solution memoize decorator

	Context managers (with statement)
	Why use context managers?
	Context Manager examples
	cd in a function
	open in function
	open in for loop
	open in function using with
	Plain context manager
	Param context manager
	Context manager that returns a value
	Use my tempdir - return
	Use my tempdir - exception
	cwd context manager
	tempdir context manager
	Context manager with class
	Context managers with class
	Context manager: with for file
	With - context managers
	Exercise: Context manager
	Exercise: Tempdir on Windows
	Solution: Context manager

	Advanced lists
	Change list while looping: endless list
	Change list while looping
	Copy list before iteration
	for with flag
	for else
	enumerate
	do while
	list slice is copy

	Advanced Exception handling
	Exceptions else
	Exceptions finally
	Exit and finally
	Catching exceptions
	Home made exception
	Home made exception with attributes
	Home made exception hierarcy
	Home made exception hierarcy - 1
	Home made exception hierarcy - 2
	Home made exception hierarcy - 3
	Exercise: spacefight with exceptions
	Exercies: Raise My Exception
	Solution: spacefight with exceptions
	Solution: Raise My Exception
	Exception finally return

	Warnings
	Warnings

	CSV
	Reading CSV the naive way
	CSV with quotes and newlines
	Reading a CSV file
	CSV dialects
	CSV to dictionary
	Exercise: CSV
	Solution: CSV

	Excel
	Spreadsheets
	Python Excel
	Create an Excel file from scratch
	Worksheets in Excel
	Add expressions to Excel
	Format field
	Number series and chart
	Read Excel file
	Update Excel file
	Exercise: Excel

	XML
	XML Data
	Expat - Callbacks
	XML DOM - Document Object Model
	XML SAX - Simple API for XML
	SAX collect
	XML elementtree

	SciPy - for Scientific Computing in Python
	Data Science tools in Python
	Data Analysis resources

	Python and Biology
	Biopython
	Biopython background
	Bio python sequences
	Download data
	Read FASTA, GenBank files
	Search nucleotids
	Download nucleotids
	Exercise: Nucleotid
	Biology background

	Chemistry
	Chemistry links
	Bond length
	Covalent radius
	Python energy landscape explorer
	Other chemistry links

	numpy
	What is NumPy
	Numpy - vector
	NumPy 2D arrays
	Numpy - set type
	NumPy arrays: ones and zeros
	Numpy: eye
	NumPy array random
	NumPy Random integers
	NumPy array type change by division (int to float)
	Numpy: Array methods: transpose
	Numpy: reference, not copy
	Numpy: copy array
	Numpy: Elementwise Operations on Arrays
	Numpy: multiply, matmul, dot for vectors
	Numpy: multiply, matmul, dot for vector and matrix
	Numpy: multiply, matmul, dot for matrices
	Numpy: casting - converting from strings to integer.
	Numpy: indexing 1d array
	Numpy: slice is a reference
	Numpy: slice - copy
	Numpy: abs value on a Numpy array
	Numpy: Logical not on a Numpy array
	Numpy: Vectorize a function
	Numpy: Vectorize len
	Numpy: Vectorize lambda
	Numpy: Filtering array
	Numpy: Filter matrix values
	Numpy: Filter matrix rows
	Numpy: Stat
	Numpy: Serialization
	Numpy: Load from Matlab file
	Numpy: Save as Matlab file
	Numpy: Horizontal stack vectors (hstack)
	Numpy: Append or vertically stack vectors and matrices (vstack)
	Numpy uint8
	Numpy int8

	Pandas
	Pandas
	Planets
	Pandas Planets - Dataframes
	Pandas Stocks
	Pandas Stocks
	Merge Dataframes
	Analyze Alerts
	Analyze IFMetrics
	Create Excel file for experiment with random data
	Calculate Genome metrics
	Calculate Genome metrics - add columns
	Calculate Genome metrics - vectorized
	Calculate Genome metrics - vectorized numpy
	Genes using Jupyter
	Combine columns
	Pandas more
	Pandas Series
	Pandas Series with names

	Matplotlib
	About Matplotlib
	Matplotlib Line
	Matplotlib Line with dates
	Matplotlib Simple Pie
	Matplotlib Simple Pie with params
	Matplotlib Pie
	Matplotlib Pie 2
	Plot, scatter, histogram

	Seaborn
	Searborn use examples
	Seaborn tip
	Seaborn Anscombes Quartet

	Jupyter notebooks
	Jupyter on Windows
	Jupyter on Linux and OSX
	Jupyter add
	Planets
	Jupyter notebook Planets
	Jupyter StackOverflow
	Jupyter StackOverflow - selected columns
	Jupyter processing chunks
	Jupyter StackOverflow - selected rows
	Jupyter StackOverflow - biggest countries (in terms of number of responses)
	Jupyter StackOverflow - historgram
	Jupyter StackOverflow - filter by country
	Jupyter StackOverflow - OpenSourcer
	Jupyter StackOverflow - cross tabulation
	Jupyter StackOverflow - salaries
	Jupyter StackOverflow - replace values
	Jupyter StackOverflow - selected rows
	Jupyter notebook Intellisense (TAB completition)
	Jupyter examples
	IPy Widgets

	Testing
	Traditional Organizations
	Quality Assurance
	Web age Organizations
	TDD vs Testing as an Afterthought
	Why test?
	Testing Modes
	Testing Applications
	Testing What to test?
	Testing in Python
	Testing Environment
	Testing Setup - Fixture
	Testing Resources

	Testing with unittest
	Use a module
	Test a module
	The tested module
	Testing - skeleton
	Testing
	Test examples

	Testing with PyTest
	Pytest features
	Pytest setup
	Testing with Pytest
	Testing functions
	Testing class and methods
	Pytest - execute
	Pytest - execute
	Pytest simple module to be tested
	Pytest simple tests - success
	Pytest simple tests - success output
	Pytest simple tests - failure
	Pytest simple tests - failure output
	Exercise: test math functions
	Exercise: test this app
	Exercise: test the csv module
	Solution: Pytest test math functions
	Solution: Pytest test this app
	Solution: test the csv module
	PyTest bank deposit
	PyTest expected exceptions (bank deposit)
	PyTest expected exceptions (bank deposit) - no exception happens
	PyTest expected exceptions (bank deposit) - different exception is raised
	PyTest expected exceptions
	PyTest expected exceptions output
	PyTest expected exceptions (text changed)
	PyTest expected exceptions (text changed) output
	PyTest expected exceptions (other exception)
	PyTest expected exceptions (other exception) output
	PyTest expected exceptions (no exception)
	PyTest expected exceptions (no exception) output
	PyTest: Multiple Failures
	PyTest: Multiple Failures output
	PyTest Selective running of test functions
	PyTest: stop on first failure
	Pytest: expect a test to fail (xfail or TODO tests)
	Pytest: expect a test to fail (xfail or TODO tests)
	PyTest: show xfailed tests with -rx
	Pytest: skipping tests
	Pytest: show skipped tests woth -rs
	Pytest: show extra test summmary info with -r
	Pytest: skipping tests output in verbose mode
	Pytest verbose mode
	Pytest quiet mode
	PyTest print STDOUT and STDERR using -s
	PyTest failure reports
	PyTest compare numbers
	PyTest compare numbers relatively
	PyTest compare strings
	PyTest compare long strings
	PyTest is one string in another strings
	PyTest test any expression
	PyTest element in list
	PyTest compare lists
	PyTest compare short lists
	PyTest compare short lists - verbose output
	PyTest compare dictionaries
	PyTest compare dictionaries output
	PyTest Fixtures
	PyTest Fixture setup and teardown
	PyTest Fixture setup and teardown output
	PyTest: Class setup and teardown
	PyTest: Class setup and teardown output
	Pytest Dependency injection
	Pytest fixture - tmpdir
	Pytest capture STDOUT and STDERR with capsys
	Pytest Fixture - home made fixtures
	More fixtures
	Pytest: Mocking - why?
	Pytest: Mocking - what?
	Pytest: One dimensional spacefight
	Pytest: Mocking input and output
	Pytest: Mocking random
	Pytest: Flask echo
	Pytest: testing Flask echo
	PyTest: Run tests in parallel with xdist
	PyTest: Order of tests
	PyTest: Randomize Order of tests
	PyTest: Force default order
	PyTest: no random order
	Anagram on the command line
	PyTest testing CLI
	PyTest test discovery
	PyTest test discovery - ignore some tests
	PyTest select tests by name
	PyTest select tests by marker
	PyTest: Test Coverage
	Exercise: module
	Exercise: Open Source
	Pytest resources
	Pytest and tempdir
	PyTest compare short lists - output
	PyTest with parameter
	PyTest with parameters
	Pytest reporting in JUnit XML format
	No test selected

	Advancted functions
	Variable scopes
	Name resolution order (LEGB)
	Scoping: global seen from fuction
	Assignment creates local scope
	Local scope gone wrong
	Changing global variable from a function
	Global variables mutable in functions
	Scoping issues
	sub in sub
	Scoping sub in sub (enclosing scope)
	Function objects
	Functions are created at run time
	Mutable default
	Use None as default parameter
	Inner function created every time the outer function runs
	Static variable
	Static variable in generated function
	Inspect

	Variable number of function arguments
	Python function arguments - a reminder
	Functions with unknown number of argumerns
	Variable length argument list with * and **
	Passing arguments as they were received (but incorrectly)
	Unpacking args before passing them on
	Exercise: implement the my_sum function
	Solution: implement the my_sum function
	Exercise: implement the reduce function
	Soluton: implement the reduce function
	Exercise: sort pairs
	Solution: sort pairs

	Python Packages
	Why Create package
	Create package
	Internal usage
	use module in package - relative path
	use package (does not work)
	package importing (and exporting) module
	use package (module) with import
	use package with import
	Creating an installable Python package
	Create tar.gz file
	Install Package
	Dependencies
	Add README file
	Add README file (setup.py)
	Include executables
	Add tests
	Add tests calc
	Add tests all
	setup.py
	Run tests and create package
	Packaging applications (creating executable binaries)
	Using PyInstaller
	Other PyInstaller examples
	Other
	Py2app for Mac
	Exercise: package
	Exercise: create executable

	Ctypes
	ctypes - hello
	concat
	links

	Advanced OOP
	Class count instances
	Class Attributes
	Class Attributes in Instances
	Attributes with method access
	Instance Attribute
	Methods are class attributes
	Monkey patching
	Classes: instance method
	Class methods and class attributes
	Classes: constructor
	Class methods - alternative constructor
	Abstract Base Class
	Abstract Base Class with abc
	ABC working example
	ABC - cannot instantiate the base-class
	ABC - must implement methods
	Use Python @propery to fix bad interface (the bad interface)
	Use Python @propery to fix bad interface (first attempt)
	Use Python @propery to fix bad API
	Use Python @propery decorator to fix bad API
	Use Python @propery for value validation
	class and static methods
	Destructor: del
	Destructor delayed
	Destructor delayed for both
	Opearator overloading
	Operator overloading methods
	Exercise: rectangular
	Exercise: SNMP numbers
	Exercise: Implement a Gene inheritance model combining DNA
	Exercise: imaginary numbers - complex numbers
	Solution: Rectangular
	Solution: Implement a Gene inheritance model combining DNA
	Instance counter

	2to3
	Convertig from Python 2 to Python 3
	division
	print in Python 2
	print in Python 3
	input and raw_input
	Code that works on both 2 and 3
	Compare different types
	Octal numbers
	2to3 Resources

	Design Patterns
	What are Design Patterns?
	Don’t replace built-in objects
	Facade - simple interface to complex system
	Monkey Patching
	Creation DPs “Just One”
	Singleton
	Monostate (Borg)
	Dispatch table

	Parallel
	Types of Problems
	Types of solutions
	How many parallels to use?
	Dividing jobs
	Performance Monitoring

	Threads
	Python Threading docs
	Threaded counters
	Simple threaded counters
	Simple threaded counters (parameterized)
	Pass parameters to threads - Counter with attributes
	Create a central counter
	Lock - acquire - release
	Counter - plain
	GIL - Global Interpreter Lock
	Thread load
	Exercise: thread files
	Exercise: thread URL requests.
	Exercise: thread queue
	Solution: thread queue
	Solution: thread URL requests.

	Forking
	Fork
	Forking
	Fork skeleton
	Fork with load
	Fork load results
	Marshalling / Serialization
	Fork with random
	Exercise: fork return data
	Solution: fork return data

	Asyncronus programming with AsyncIO
	Sync chores
	Async chores
	Explanation
	Coroutines
	More about asyncio
	Async files

	Asynchronus programming with Twisted
	About Twisted
	Echo
	Echo with log
	Simple web client
	Web client

	Multiprocess
	Multiprocess CPU count
	Multiprocess Process
	Multiprocess N files: Pool
	Multiprocess load
	Multiprocess: Pool
	Multiprocess load async
	Multiprocess and logging
	Exercise: Process N files in parallel
	Exercise: Process N Excel files in parallel
	Exercise: Fetch URLs in parallel
	Exercise: Fetch URLs from one site.
	Solution: Fetch URLs in parallel

	Multitasking
	What is Multitasking?
	Multitasking example
	Multitasking example with wait
	Multitaksing - second loop waits for first one
	Multitasking counter
	Multitasking counter with thread locking

	Improving Performance - Optimizing code
	Problems
	Optimization strategy
	Locate the source of the problem
	Optimizing tactics
	DSU: Decorate Sort Undecorate
	Profile code
	Slow example
	profile slow code
	cProfile slow code
	Benchmarking
	Benchmarking subs
	Levenshtein distance
	Generate words
	Levenshtein - pylev
	Levenshtein - edittidtance
	Editdistance benchmark
	A Tool to Generate text files
	Count characters
	Memory leak
	Garbage collection
	Weak reference
	Exercise: benchmark list-comprehension, map, for
	Exercise: Benchmark Levenshtein
	Exercise: sort files
	Exercise: compare split words:
	Exercise: count words

	GUI with Python/Tk
	Sample Tk app
	GUI Toolkits
	Installation
	Python Tk Documentation
	Python Tk Button
	Python Tk Button with action
	Python Tk Label
	Python Tk Label - font size and color
	Python Tk Keybinding
	Python Tk Entry (one-line text entry)
	Python Tk Entry for passwords and other secrets (hidden text)
	Python Tk Checkbox
	Python Tk Radiobutton
	Python Tk Listbox
	Python Tk Listbox Multiple
	Python Tk Menubar
	Python Tk Text
	Python Tk Dialogs
	Python Tk Filedialog
	Python Tk messagebox
	Python Tk Combobox
	Python Tk OptionMenu
	Python Tk Scale
	Python Tk Progressbar
	Python Tk Frame
	Not so Simple Tk app with class
	Tk: Hello World
	Tk: Quit button
	Tk: File selector
	Tk: Checkbox
	Tk: Runner
	Tk: Runner with threads
	Getting started with Tk
	Exercise: Tk - Calculator one line
	Exercise: Tk Shopping list
	Exercise: Tk TODO list
	Exercise: Tk Notepad
	Exercise: Tk Copy files
	Exercise: Tk
	Solution: Tk - Calculator one line
	Solution: Tk
	Solution: Tk Notepad
	Simple file dialog

	Python Pitfalls
	Reuse of existing module name
	Use the same name more than once
	Compare string and number
	Compare different types
	Sort mixed data

	Linters
	Static Code Analyzis - Linters
	PEP8
	F811 - redefinition of unused
	Warn when Redefining functions

	Python .NET
	IronPython
	Use .NET libraries from Python
	Python and .NET console
	Python and .NET examples
	Exercise Python and .NET

	Python and Java
	Jython
	Calling Java from Python

	Jython - Python running on the JVM
	Jython Installation
	Jython Installation
	Jython load Java class
	Jython load Java class in code
	Jython test Java class

	PIL - Pillow
	Install Pillow
	Create First Image
	Write Text on Image
	Select font for Text on Image
	Font directories
	Get size of an Image
	Get size of text
	Resize an existing Image
	Crop an existing Image
	Combine two images
	Rotated text
	Rotated text in top-right corner
	Embed image (put one image on another one)
	Draw a triangle
	Draw a triangle and write text in it
	Draw a triangle and write rotated text in it
	Draw a rectangular
	Draw a rectangle
	Draw circle
	Draw heart
	Rectangle with rounded corners
	TODO

	FAQ
	How not to name example scirpts?
	Platform independent code
	How to profile a python code to find causes of slowness?
	pdb = Python Debugger
	Avoid Redefining functions

	Appendix
	print_function
	Dividers (no break or continue)
	Lambdas
	Abstract Class
	Remove file
	Modules: more
	import hooks
	Python resources
	Progress bar
	from future
	Variable scope
	scope
	type
	Look deeper in a list
	Exercise: iterators - count
	Simple function (before generators)

	Other slides
	Other slides
	Atom for Python
	IDLE - Integrated DeveLopment Environment
	sh-bang - executable on Linux/Apple
	Strings as Comments
	pydoc
	How can I check if a string can be converted to a number?
	Spyder Intro
	Interactive Debugging
	Parameter passing
	Command line arguments and main
	Infinite loop
	break
	continue
	While with many conditions
	while loop with many conditions
	Format with conversion (stringifiation with str or repr)
	Name of the current function in Python
	Name of the caller function in Python
	Stack trace in Python using inspect
	Module Fibonacci
	PyTest - assertion
	PyTest - failure
	PyTest - list
	SAX with coroutine
	Getting the class name of an object
	Inheritance - super
	Inheritance - super - other class
	iterator - pairwise
	iterator - grouped
	itertools - groupby
	Circular references
	Context managers: with (file) experiments
	itertools - izip
	mixing iterators
	mixing iterators
	itertools - pairwise
	itertools - grouped
	range vs xrange in Python
	profile (with hotshot) slow code
	Abstract Base Class without abc
	Abstract Base Class with abc Python 2 ?
	Abstract Base Class with metaclass
	Create class with metaclass
	Python Descriptors
	alter iterator
	Create a counter queue
	A Queue of tasks
	Filtered Fibonacci with ifilter
	Python from .NET

	Python Machine Learning - A Crash Course for Beginners to Understand Machine learning.pdf
	Introduction
	Chapter 1: The Basics of Machine Learning
	The Benefits of Machine Learning
	Supervised Machine Learning
	Unsupervised Machine Learning
	Reinforcement Machine Learning

	Chapter 2: Learning the Data sets of Python
	Structured Data Sets
	Unstructured Data Sets
	How to Manage the Missing Data
	Splitting Your Data
	Training and Testing Your Data

	Chapter 3: Supervised Learning with Regressions
	The Linear Regression
	The Cost Function
	Using Weight Training with Gradient Descent
	Polynomial Regression

	Chapter 4: Regularization
	Different Types of Fitting with Predicted Prices
	How to Detect Overfitting
	How Can I Fix Overfitting?

	Chapter 5: Supervised Learning with Classification
	Logistic Regression
	Multiclass Classification

	Chapter 6: Non-linear Classification Models
	K-Nearest Neighbor
	Decision Trees and Random Forests
	Working with Support Vector Machines
	The Neural Networks

	Chapter 7: Validation and Optimization Techniques
	Cross-Validation Techniques
	Hyperparameter Optimization
	Grid and Random Search

	Chapter 8: Unsupervised Machine Learning with Clustering
	K-Means Clustering
	Hierarchal Clustering
	DBSCAN

	Chapter 9: Reduction of Dimensionality
	The Principal Component Analysis
	Linear Discriminant Analysis
	Comparing PCA and LDA

	Conclusion

