

i

Course Notes for:

Learn Visual Basic 6.0

© Lou Tylee, 1998

KIDware

15600 NE 8th, Suite B1-314

Bellevue, WA 98008

(206) 721-2556

FAX (425) 746-4655

iv Learn Visual Basic 6.0

Notice

These notes were developed for the course, “Learn
Visual Basic 6.0” They are not intended to be a
complete reference to Visual Basic. Consult the
Microsoft Visual Basic Programmer’s Guide and
Microsoft Visual Basic Language Reference Manual
for detailed reference information.

The notes refer to several software and hardware
products by their trade names. These references are for
informational purposes only and all trademarks are the
property of their respective companies.

Lou Tylee

Course Instructor

Contents iii

Contents

1. Introduction to the Visual Basic Language and

Environment

Preview .. 1-1
Course Objectives .. 1-1

What is Visual Basic? .. 1-2
Visual Basic 6.0 versus Other Versions of Visual Basic 1-3
16 Bits versus 32 Bits .. 1-3

Structure of a Visual Basic Application .. 1-4
Steps in Developing Application .. 1-4

Drawing the User Interface and Setting Properties .. 1-5
Example 1-1: Stopwatch Application - Drawing Controls 1-9
Setting Properties of Objects at Design Time ... 1-10

Setting Properties at Run Time .. 1-11
How Names Are Used in Object Events .. 1-11

Example 1-2: Stopwatch Application - Setting Properties 1-12
Variables .. 1-14
Visual Basic Data Types .. 1-14

Variable Declaration .. 1-14
Example 1-3: Stopwatch Application - Attaching Code 1-18

Quick Primer on Saving Visual Basic Applications 1-20
Exercise 1: Calendar/Time Display ... 1-21

Learn Visual Basic 6.0

iv Learn Visual Basic 6.0

2. The Visual Basic Language

Review and Preview .. 2-1

A Brief History of Basic .. 2-1
Visual Basic Statements and Expressions .. 2-2

Visual Basic Operators .. 2-3
Visual Basic Functions ... 2-4
A Closer Look at the Rnd Function ... 2-5

Example 2-1: Savings Account .. 2-6
Visual Basic Symbolic Constants .. 2-10

Defining Your Own Constants... 2-10
Visual Basic Branching - If Statements ... 2-11
Key Trapping... 2-12

Example 2-2: Savings Account - Key Trapping .. 2-14
Select Case - Another Way to Branch ... 2-16

The GoTo Statement ... 2-17
Visual Basic Looping ... 2-17
Visual Basic Counting .. 2-19

Example 2-3: Savings Account - Decisions ... 2-20
Exercise 2-1: Computing a Mean and Standard Deviation 2-23

Exercise 2-2: Flash Card Addition Problems .. 2-28

3. Exploring the Visual Basic Toolbox

Review and Preview .. 3-1

The Message Box .. 3-1
Object Methods .. 3-3
The Form Object .. 3-4
Command Buttons ... 3-5
Label Boxes ... 3-5

Text Boxes .. 3-6
Example 3-1: Password Validation ... 3-8
Check Boxes .. 3-11

Option Buttons .. 3-11
Arrays .. 3-12

Control Arrays ... 3-13
Frames ... 3-14
Example 3-2: Pizza Order .. 3-15
List Boxes .. 3-20
Combo Boxes .. 3-21

Example 3-3: Flight Planner ... 3-23
Exercise 3: Customer Database Input Screen... 3-27

4. More Exploration of the Visual Basic Toolbox

Contents v

Review and Preview .. 4-1

Display Layers ... 4-1
Line Tool .. 4-2
Shape Tool .. 4-3
Horizontal and Vertical Scroll Bars .. 4-4
Example 4-1: Temperature Conversion ... 4-7

Picture Boxes ... 4-12
Image Boxes ... 4-14

Quick Example: Picture and Image Boxes ... 4-14
Drive List Box... 4-15
Directory List Box ... 4-15

File List Box .. 4-16
Synchronizing the Drive, Directory, and File List Boxes 4-17
Example 4-2: Image Viewer .. 4-18
Common Dialog Boxes .. 4-23
Open Common Dialog Box .. 4-24

Quick Example: The Open Dialog Box .. 4-25
Save As Common Dialog Box ... 4-27

Quick Example: The Save As Dialog Box.. 4-28
Exercise 4: Student Database Input Screen .. 4-29

5. Creating a Stand-Alone Visual Basic Application

Review and Preview .. 5-1
Designing an Application... 5-1
Using General Sub Procedures in Applications ... 5-2

Creating a Code Module .. 5-5
Using General Function Procedures in Applications 5-5

Quick Example: Temperature Conversion ... 5-7
Quick Example: Image Viewer (Optional) .. 5-8
Adding Menus to an Application .. 5-8

Example 5-1: Note Editor .. 5-12
Using Pop-Up Menus .. 5-16

Assigning Icons to Forms ... 5-17
Designing Your Own Icon with IconEdit ... 5-17
Creating Visual Basic Executable Files ... 5-19

Example 5-2: Note Editor - Building an Executable
and Attaching an Icon.. 5-21

Using the Visual Basic Package & Deployment Wizard 5-22
Example 5-3: Note Editor - Creating a Distribution Disk 5-25
Exercise 5: US Capitals Quiz .. 5-27

6. Error-Handling, Debugging and File Input/Output

Review and Preview .. 6-1

vi Learn Visual Basic 6.0

Error Types .. 6-1
Run-Time Error Trapping and Handling ... 6-2

General Error Handling Procedure ... 6-4
Example 6-1: Simple Error Trapping ... 6-7
Debugging Visual Basic Programs ... 6-9

Example 6-2: Debugging Example .. 6-10
Using the Debugging Tools... 6-11
Debugging Strategies .. 6-16
Sequential Files ... 6-17
Sequential File Output (Variables) ... 6-17
Quick Example: Writing Variables to Sequential Files 6-19
Sequential File Input (Variables) .. 6-20

Quick Example: Reading Variables from Sequential Files 6-21
Writing and Reading Text Using Sequential Files 6-22
Random Access Files .. 6-24

User-Defined Variables.. 6-25
Writing and Reading Random Access Files .. 6-26
Using the Open and Save Common Dialog Boxes...................................... 6-29
Example 6-3: Note Editor - Reading and Saving Text Files 6-31

Exercise 6-1: Information Tracking ... 6-35
Exercise 6-2: ‘Recent Files’ Menu Option ... 6-41

7. Graphics Techniques with Visual Basic

Review and Preview .. 7-1

Graphics Methods .. 7-1
Using Colors ... 7-8
Mouse Events .. 7-10
Example 7-1: Blackboard .. 7-13
Drag and Drop Events ... 7-18

Example 7-2: Letter Disposal .. 7-20
Timer Tool and Delays ... 7-23

Animation Techniques ... 7-24
Quick Example: Simple Animation .. 7-25
Quick Example: Animation with the Timer Tool .. 7-26

Random Numbers (Revisited) and Games .. 7-28
Randomly Sorting N Integers .. 7-29
Example 7-3: One-Buttoned Bandit ... 7-30
User-Defined Coordinates ... 7-35
Simple Function Plotting (Line Charts) ... 7-36

Simple Bar Charts.. 7-38

7. Graphics Techniques with Visual Basic (continued)

Example 7-4: Line Chart and Bar Chart Application 7-40

Contents vii

Exercise 7-1: Blackjack ... 7-43
Exercise 7-2: Information Tracking Plotting.. 7-54

8. Database Access and Management

Review and Preview .. 8-1
Database Structure and Terminology .. 8-1
ADO Data Control .. 8-6

Data Links .. 8-8
Assigning Tables ... 8-9

Bound Data Tools... 8-10
Example 8-1: Accessing the Books Database .. 8-12
Creating a Virtual Table.. 8-14

Quick Example: Forming a Virtual Table .. 8-14
Finding Specific Records .. 8-16

Example 8-2: ‘Rolodex’ Searching of the Books Database......................... 8-18
Data Manager .. 8-21
Example 8-3: Phone Directory - Creating the Database 8-22
Database Management ... 8-24
Example 8-4: Phone Directory - Managing the Database 8-26

Custom Data Aware Controls .. 8-31
Creating a Data Report .. 8-33

Example 8-5: Phone Directory - Building a Data Report 8-34
Exercise 8: Home Inventory Database ... 8-39

9. Dynamic Link Libraries and the Windows API

Review and Preview .. 9-1

Dynamic Link Libraries (DLL) .. 9-1
Accessing the Windows API With DLL .. 9-2

Timing with DLL Calls .. 9-4
Quick Example 1: Using GetTickCount to Build a Stopwatch 9-5
Quick Example 2: Using GetTickCount to Implement a Delay 9-6

Drawing Ellipses .. 9-7
Quick Example 3: Drawing Ellipses .. 9-7

Drawing Lines .. 9-8
Quick Example 4: Drawing Lines .. 9-9
Drawing Polygons .. 9-10

Quick Example 5: Drawing Polygons ... 9-11
Sounds with DLL Calls - Other Beeps ... 9-14

Quick Example 6: Adding Beeps to Message Box Displays 9-15

viii Learn Visual Basic 6.0

9. Dynamic Link Libraries and the Windows API (continued)

vi

ii

Learn Visual Basic 6.0

More Elaborate Sounds ... 9-16

Quick Example 7: Playing WAV Files ... 9-16
Playing Sounds Quickly... 9-17
Quick Example 8: Playing Sounds Quickly ... 9-18
Fun With Graphics ... 9-19
Quick Example 9: Bouncing Ball With Sound! .. 9-20

Flicker Free Animation... 9-22
Quick Example 10: Flicker Free Animation .. 9-23

Quick Example 11: Horizontally Scrolling Background 9-24
A Bit of Multimedia ... 9-26
Quick Example 12: Multimedia Sound and Video 9-26

Exercise 9: The Original Video Game - Pong! .. 9-27

10. Other Visual Basic Topics

Review and Preview .. 10-1

Custom Controls .. 10-1
Masked Edit Control .. 10-3
Chart Control .. 10-4
Multimedia Control ... 10-6
Rich Textbox Control ... 10-8
Slider Control ... 10-9
Tabbed Dialog Control .. 10-12

UpDown Control .. 10-13
Toolbar Control .. 10-14
Using the Windows Clipboard ... 10-17

Printing with Visual Basic... 10-18
Multiple Form Visual Basic Applications .. 10-21
Visual Basic Multiple Document Interface (MDI) .. 10-25
Creating a Help File ... 10-29
Class Summary ... 10-36

Exercise 10: The Ultimate Application ... 10-37

Appendix I: Visual Basic Symbolic Constants I-1

Appendix II: Common Dialog Box Constants..................................... II-1

1-1

1. Introduction to the Visual Basic Language and Environment

Preview

 In this first class, we will do a quick overview of how to build an application in
Visual Basic. You’ll learn a new vocabulary, a new approach to programming,
and ways to move around in the Visual Basic environment. You will leave having
written your first Visual Basic program.

Course Objectives

 Understand the benefits of using Microsoft Visual Basic 6.0 for Windows
as an application tool

 Understand the Visual Basic event-driven programming concepts,
terminology, and available tools

 Learn the fundamentals of designing, implementing, and distributing a
Visual Basic application

 Learn to use the Visual Basic toolbox
 Learn to modify object properties
 Learn object methods
 Use the menu design window
 Understand proper debugging and error-handling procedures

 Gain a basic understanding of database access and management using
databound controls

 Obtain an introduction to ActiveX controls and the Windows Application
Programming Interface (API)

Learn Visual Basic 6.0

1-2 Learn Visual Basic 6.0

What is Visual Basic?

 Visual Basic is a tool that allows you to develop Windows (Graphic User
Interface - GUI) applications. The applications have a familiar appearance to the

user.

 Visual Basic is event-driven, meaning code remains idle until called upon to

respond to some event (button pressing, menu selection, ...). Visual Basic is
governed by an event processor. Nothing happens until an event is detected.
Once an event is detected, the code corresponding to that event (event

procedure) is executed. Program control is then returned to the event processor.

Event?
Event processor

Event
Procedures

 Some Features of Visual Basic

 Full set of objects - you 'draw' the application

 Lots of icons and pictures for your us e
 Response to mouse and keyboard actions
 Clipboard and printer access
 Full array of mathematical, string handling, and graphics functions
 Can handle fixed and dynamic variable and control arrays
 Sequential and random access file support
 Useful debugger and error-handling facilities
 Powerful database access tools
 ActiveX support

 Package & Deployment Wizard makes distributing your applications simple

Basic

Code

Basic

Code

Basic

Code

Introduction to the Visual Basic Language and Environment 1-3

Visual Basic 6.0 versus Other Versions of Visual Basic

 The original Visual Basic for DOS and Visual Basic For Windows were
introduced in 1991.

 Visual Basic 3.0 (a vast improvement over previous versions) was released in
1993.

 Visual Basic 4.0 released in late 1995 (added 32 bit application support).

 Visual Basic 5.0 released in late 1996. New environment, supported creation of
ActiveX controls, deleted 16 bit application support.

 And, now Visual Basic 6.0 - some identified new features of Visual Basic 6.0:

 Faster compiler
 New ActiveX data control object
 Allows database integration with wide variety of applications
 New data report designer
 New Package & Deployment Wizard

 Additional internet capabilites

16 Bits versus 32 Bits

 Applications built using the Visual Basic 3.0 and the 16 bit version of
Visual Basic 4.0 will run under Windows 3.1, Windows for Workgroups,
Windows NT, or Windows 95

 Applications built using the 32 bit version of Visual Basic 4.0, Visual Basic
5.0 and Visual Basic 6.0 will only run with Windows 95 or Windows NT
(Version 3.5.1 or higher).

 In this class, we will use Visual Basic 6.0 under Windows 95, recognizing
such applications will not operate in 16 bit environments.

1-4 Learn Visual Basic 6.0

Structure of a Visual Basic Application

Project (.VBP, .MAK)

Application (Project) is made up of:

 Forms - Windows that you create for user interface

 Controls - Graphical features drawn on forms to allow user interaction

(text boxes, labels, scroll bars, command buttons, etc.) (Forms and
Controls are objects.)

 Properties - Every characteristic of a form or control is specified by a

property. Example properties include names, captions, size, color,
position, and contents. Visual Basic applies default properties. You can
change properties at design time or run time.

 Methods - Built-in procedure that can be invoked to impart some action to

a particular object.
 Event Procedures - Code related to some object. This is the code that is

executed when a certain event occurs.

 General Procedures - Code not related to objects. This code must be

invoked by the application.
 Modules - Collection of general procedures, variable declarations, and

constant definitions used by application.

Steps in Developing Application

 There are three primary steps involved in building a Visual Basic application:

1. Draw the user interface

2. Assign properties to controls

3. Attach code to controls

We’ll look at each step.

Form 1 (.FRM) Form 2 (.FRM) Form 3 (.FRM) Module 1 (.BAS)

Introduction to the Visual Basic Language and Environment 1-5

Drawing the User Interface and Setting Properties

 Visual Basic operates in three modes.

 Design mode - used to build application

 Run mode - used to run the application

 Break mode - application halted and debugger is available

We focus here on the design mode.

 Six windows appear when you start Visual Basic.

 The Main Window consists of the title bar, menu bar, and toolbar. The

title bar indicates the project name, the current Visual Basic operating
mode, and the current form. The menu bar has drop-down menus from
which you control the operation of the Visual Basic environment. The
toolbar has buttons that provide shortcuts to some of the menu options.
The main window also shows the location of the current form relative to
the upper left corner of the screen (measured in twips) and the width
and length of the current form.

Menu

editor

project

form

 Layout

 Browser

project

Properties

project

Explorer

1-6 Learn Visual Basic 6.0

 The Form Window is central to developing Visual Basic applications.

It is where you draw your application.

 The Toolbox is the selection menu for controls used in your

application.

Pointer

Label

Frame

Check Box

Combo Box

Horizontal Scroll Bar

Timer

Directory List Box

Shapes

Image Box

Object Linking Embedding

Picture Box

Text Box

Command Button

Option Button

List Box

Vertical Scroll Bar

Drive List Box

File List Box

Lines

Data Tool

Introduction to the Visual Basic Language and Environment 1-7

 The Properties Window is used to establish initial property values for
objects. The drop-down box at the top of the window lists all objects in
the current form. Two views are available: Alphabetic and
Categorized. Under this box are the available properties for the
currently selected object.

 The Form Layout Window shows where (upon program execution)

your form will be displayed relative to your monitor’s screen:

1-8 Learn Visual Basic 6.0

 The Project Window displays a list of all forms and modules making up

your application. You can also obtain a view of the Form or Code

windows (window containing the actual Basic coding) from the Project

window.

 As mentioned, the user interface is ‘drawn’ in the form window. There are two
ways to place controls on a form:

1. Double-click the tool in the toolbox and it is created with a default size on

the form. You can then move it or resize it.

2. Click the tool in the toolbox, then move the mouse pointer to the form

window. The cursor changes to a crosshair. Place the crosshair at the
upper left corner of where you want the control to be, press the left mouse
button and hold it down while dragging the cursor toward the lower right
corner. When you release the mouse button, the control is drawn.

 To move a control you have drawn, click the object in the form window and drag it

to the new location. Release the mouse button.

 To resize a control, click the object so that it is select and sizing handles appear.

Use these handles to resize the object.

Click here to

move object
Use sizing

handles to

resize object

Introduction to the Visual Basic Language and Environment 1-9

Example 1 -1

Stopwatch Application - Drawing Controls

1. Start a new project. The idea of this project is to start a timer, then stop the timer
and compute the elapsed time (in seconds).

2. Place three command buttons and six labels on the form. Move and size the

controls and form so it looks something like this:

1-10 Learn Visual Basic 6.0

Setting Properties of Objects at Design Time

 Each form and control has properties assigned to it by default when you start up

a new project. There are two ways to display the properties of an object. The first
way is to click on the object (form or control) in the form window. Then, click on
the Properties Window or the Properties Window button in the tool bar. The
second way is to first click on the Properties Window. Then, select the object
from the Object box in the Properties Window. Shown is the Properties Window

for the stopwatch application:

The drop-down box at the top of the Properties
Window is the Object box. It displays the name

of each object in the application as well as its
type. This display shows the Form object. The
Properties list is directly below this box. In this

list, you can scroll through the list of properties
for the selected object. You may select a
property by clicking on it. Properties can be
changed by typing a new value or choosing from
a list of predefined settings (available as a drop
down list). Properties can be viewed in two
ways: Alphabetic and Categorized.

A very important property for each object is its
name. The name is used by Visual Basic to

refer to a particular object in code.

 A convention has been established for naming Visual Basic objects. This
convention is to use a three letter prefix (depending on the object) followed by a
name you assign. A few of the prefixes are (we’ll see more as we progress in the
class):

Object Prefix Example
Form frm frmWatch

Command Button cmd, btn cmdExit, btnStart
Label lbl lblStart, lblEnd

Text Box
Menu mnu
Check box

txt

chk

txtTime, txtName
mnuExit, mnuSave

chkChoice

Introduction to the Visual Basic Language and Environment 1-11

 Object names can be up to 40 characters long, must start with a letter, must
contain only letters, numbers, and the underscore (_) character. Names are used
in setting properties at run time and also in establishing procedure names for
object events.

Setting Properties at Run Time

 You can also set or modify properties while your application is running. To do this,
you must write some code. The code format is:

ObjectName.Property = NewValue

Such a format is referred to as dot notation. For example, to change the
BackColor property of a form name frmStart, we'd type:

frmStart.BackColor = BLUE

How Names are Used in Object Events

 The names you assign to objects are used by Visual Basic to set up a framework

of event-driven procedures for you to add code to. The format for each of these

subroutines (all object procedures in Visual Basic are subroutines) is:

Sub ObjectName_Event (Optional Arguments)

.

.

End Sub

 Visual Basic provides the Sub line with its arguments (if any) and the End Sub

statement. You provide any nee ded code.

1-12 Learn Visual Basic 6.0

Example 1 -2

Stopwatch Application - Setting Properties

1. Set properties of the form, three buttons, and six labels:

Form1:

BorderStyle 1-Fixed Single

Caption Stopwatch Application
Name frmStopWatch

Command1:

Caption &Start Timing

Name cmdStart

Command2:

Caption &End Timing
Name cmdEnd

Command3:

Caption E&xit

Name cmdExit

Label1:

Caption Start Time

Label2:

Caption End Time

Label3:

Caption Elapsed Time

Label4:

BorderStyle 1-Fixed Single
Caption [Blank]
Name lblStart

Label5:

BorderStyle 1-Fixed Single
Caption [Blank]
Name lblEnd

Introduction to the Visual Basic Language and Environment 1-13

Label6:

BorderStyle 1-Fixed Single

Caption [Blank]
Name lblElapsed

In the Caption properties of the three command buttons, notice the

ampersand (&). The ampersand precedes a button's access key. That is, in

addition to clicking on a button to invoke its event, you can also press its
access key (no need for a mouse). The access key is pressed in conjunction
with the Alt key. Hence, to invoke 'Begin Timing', you can either click the

button or press Alt+B. Note in the button captions on the form, the access

keys appear with an underscore (_).

2. Your form should now look something like this:

1-14 Learn Visual Basic 6.0

Variables

 We’re now ready to attach code to our application. As objects are added to the
form, Visual Basic automatically builds a framework of all event procedures. We
simply add code to the event procedures we want our application to respond to.
But before we do this, we need to discuss variables.

 Variables are used by Visual Basic to hold information needed by your

application. Rules used in naming variables:

 No more than 40 characters
 They may include letters, numbers, and underscore (_)
 The first character must be a letter

 You cannot use a reserved word (word needed by Visual Basic)

Visual Basic Data Types

Data Type Suffix

Boolean None

Integer %
Long (Integer) &

Single (Floating) !
Double (Floating) #
Currency @

Date None
Object None

String $
Variant None

Variable Declaration

 There are three ways for a variable to be typed (declared):

1. Default
2. Implicit

3. Explicit

 If variables are not implicitly or explicitly typed, they are assigned the variant type

by default. The variant data type is a special type used by Visual Basic that can

contain numeric, string, or date data.

Introduction to the Visual Basic Language and Environment 1-15

 To implicitly type a variable, use the corresponding suffix shown above in the

data type table. For example,

TextValue$ = "This is a string"

creates a string variable, while

Amount% = 300

creates an integer variable.

 There are ma ny advantages to explicitly typing variables. Primarily, we insure all

computations are properly done, mistyped variable names are easily spotted, and
Visual Basic will take care of insuring consistency in upper and lower case letters

used in variable names. Because of these advantages, and because it is good
programming practice, we will explicitly type all variables.

 To explicitly type a variable, you must first determine its scope. There are four

levels of scope:

 Procedure level
 Procedure level, static
 Form and module level
 Global level

 Within a procedure, variables are declared using the Dim statement:

Dim MyInt as Integer
Dim MyDouble as Double
Dim MyString, YourString as String

Procedure level variables declared in this manner do not retain their value once a

procedure terminates.

 To make a procedure level variable retain its value upon exiting the procedure,

replace the Dim keyword with Static:

Static MyInt as Integer
Static MyDouble as Double

1-16 Learn Visual Basic 6.0

 Form (module) level variables retain their value and are available to all

procedures within that form (module). Form (module) level variables are declared
in the declarations part of the general object in the form's (module's) code

window. The Dim keyword is used:

Dim MyInt as Integer
Dim MyDate as Date

 Global level variables retain their value and are available to all procedures within

an application. Module level variables are declared in the declarations part of

the general object of a module's code window. (It is advisable to keep all global

variables in one module.) Use the Global keyword:

Global MyInt as Integer
Global MyDate as Date

 What happens if you declare a variable with the same name in two or more
places? More local variables shadow (are accessed in preference to) less local

variables. For example, if a variable MyInt is defined as Global in a module and
declared local in a routine MyRoutine, while in MyRoutine, the local value of MyInt

is accessed. Outside MyRoutine, the global value of MyInt is accessed.

Introduction to the Visual Basic Language and Environment 1-17

Global X as Integer

Form1 Form2

Dim Z as Single

Sub Routine3()
Dim C as String

.

.
End Sub

 Example of Variable Scope:

Module1

Dim Y as Integer

Sub Routine1()
Dim A as Double

.

.
End Sub

Sub Routine2()
Static B as Double
.

.
End Sub

Procedure Routine1 has access to X, Y, and A (loses value upon

termination)
Procedure Routine2 has access to X, Y, and B (retains value)
Procedure Routine3 has access to X, Z, and C (loses value)

1-18 Learn Visual Basic 6.0

Example 1 -3

Stopwatch Application - Attaching Code

All that’s left to do is attach code to the application. We write code for every event a
response is needed for. In this application, there are three such events: clicking on
each of the command buttons.

1. Double-click anywhere on the form to open the code window. Or, select ‘View

Code’ from the project window.

2. Click the down arrow in the Object box and select the object named (general).

The Procedure box will show (declarations). Here, you declare three form level

variables:

Option Explicit

Dim St artTime As Variant

Dim EndTime As Variant

Dim ElapsedTime As Variant

The Option Explicit statement forces us to declare all variables. The other lines

establish StartTime, EndTime, and ElapsedTime as variables global within the

form.

3. Select the cmdStart object in the Object box. If the procedure that appears is not

the Click procedure, choose Click from the procedure box. Type the following

code which begins the timing procedure. Note the Sub and End Sub statements

are provided for you:

Sub cmdStart_Click ()

‘Establish and print starting time

StartTime = Now

lblStart.Caption = Format(StartTime, "hh:mm:ss")

lblEnd.Caption = ""

lblElapsed.Caption = ""

End Sub

In this procedure, once the Start Timing button is clicked, we read the current

time and print it in a label box. We also blank out the other label boxes. In the
code above (and in all code in these notes), any line beginning with a single quote
(‘) is a comment. You decide whether you want to type these lines or not. They

are not needed for proper application operation.

Introduction to the Visual Basic Language and Environment 1-19

4. Now, code the cmdEnd button.

Sub cmdEnd_Click ()

‘Find the ending time, compute the elapsed time

‘Put both values in label boxes

EndTime = Now

ElapsedTime = EndTime - StartTime

lblEnd.Caption = Format(EndTime, "hh:mm:ss")

lblElapsed.Caption = Format(ElapsedTime, "hh:mm:ss")

End Sub

Here, when the End Timing button is clicked, we read the current time (End

Time), compute the elapsed time, and put both values in their corresponding label

boxes.

5. And, finally the cmdExit button.

Sub cmdExit_Click ()

End

End Sub

This routine simply ends the application once the Exit button is clicked.

6. Did you notice that as you typed in the code, Visual Basic does automatic syntax

checking on what you type (if you made any mistakes, that is)?

7. Run your application by clicking the Run button on the toolbar, or by pressing

<f5>. Pretty easy, wasn’t it?

8. Save your application - see the Primer on the next page. Use the Save Project

As option under the File menu. Make sure you save both the form and the project

files.

1-20 Learn Visual Basic 6.0

9. If you have the time, some other things you may try with the Stopwatch Application:

A. Try changing the form color and the fonts used in the label boxes and

command buttons.

B. Notice you can press the ‘End Timing’ button before the ‘Start Timing’

button. This shouldn’t be so. Change the application so you can’t do
this. And make it such that you can’t press the ‘Start Timing’ until ‘End
Timing’ has been pressed. Hint: Look at the command button
Enabled property.

C. Can you think of how you can continuously display the ‘End Time’ and

‘Elapsed Time’? This is a little tricky because of the event-driven
nature of Visual Basic. Look at the Timer tool. Ask me for help on this

one.

Quick Primer on Saving Visual Basic Applications:

When saving Visual Basic applications, you need to be concerned with saving both
the forms (.FRM) and modules (.BAS) and the project file (.VBP). In either case,
make sure you are saving in the desired directory. The current directory is always
displayed in the Save window. Use standard Windows techniques to change the
current directory.

There are four Save commands available under the File menu in Visual Basic:

Save [Form Name] Save the currently selected form or module with the current

name. The selected file is identified in the Project

window.
Save [Form Name] As Like Save File, however you have the option to change the

file name
Save Project Saves all forms and modules in the current project using

their current names and also saves the project file.
Save Project As Like Save Project, however you have the option to change

file names. When you choose this option, if you have not
saved your forms or modules, you will also be prompted to

save those files. I always use this for new projects.

Introduction to the Visual Basic Language and Environment 1-21

Exercise 1

Calendar/Time Display

Design a window that displays the current month, day, and year. Also, display the
current time, updating it every second (look into the Timer control). Make the window

look something like a calendar page. Play with object properties to make it pretty.

My Solution:

Form:

lblDay

lblTime

timDisplay

lblMonth

lblNumber

lblYear

Properties:

Form frmCalendar:

Caption = My Calendar
BorderStyle = 1 - Fixed Single

Timer timDisplay:

Interval = 1000

Label lblDay:

Caption = Sunday
FontName = Times New Roman
FontBold = True

FontSize = 24

1-22 Learn Visual Basic 6.0

Label lblTime:

Caption = 00:00:00 PM
FontName = Times New Roman
FontBold = True
FontSize = 24

Label lblYear:

Alignment = 2 - Center
Caption = 1998
FontName = Times New Roman

FontBold = True
FontSize = 24

Label lblNumber:

Alignment = 2 - Center
Caption = 31
FontName = Arial
FontBold = True
FontSize = 72

Label lblMonth:

Alignment = 2 - Center

Caption = March

FontName = Times New Roman
FontBold = True
FontSize = 24

Code:

General Declarations:

Option Explicit

timDisplay Timer Event:

Private Sub timDisplay_Timer()

Dim Today As Variant

Today = Now

lblDay.Caption = Format(Today, "dddd")

lblMonth.Caption = Format(Today, "mmmm")

lblYear.Caption = Format(Today, "yyyy")

lblnumber.Caption = Format(Today, "d")

lblTime.Caption = Format(Today, "h:mm:ss ampm")

Introduction to the Visual Basic Language and Environment 1-23

End Sub

2-1

2. The Visual Basic Language

Review and Preview

 Last week, we found there were three primary steps involved in developing an

application using Visual Basic:

1. Draw the user interface
2. Assign properties to controls

3. Attach code to events

This week, we are primarily concerned with Step 3, attaching code. We will
become more familiar with moving around in the Code window and learn some of
the elements of the Basic language.

A Brief History of Basic

 Language developed in early 1960's at Dartmouth College:

B (eginner's)

A (All-Purpose)

S (Symbolic)

I (Instruction)

C (Code)

 Answer to complicated programming languages (FORTRAN, Algol, Cobol ...).
First timeshare language.

 In the mid-1970's, two college students write first Basic for a microcomputer
(Altair) - cost $350 on cassette tape. You may have heard of them: Bill Gates
and Paul Allen!

 Every Basic since then essentially based on that early version. Examples include:
GW-Basic, QBasic, QuickBasic.

 Visual Basic was introduced in 1991.

Learn Visual Basic 6.0

2-2 Learn Visual Basic 6.0

Visual Basic Statements and Expressions

 The simplest statement is the assignment statement. It consists of a variable
name, followed by the assignment operator (=), followed by some sort of
expression.

Examples:

StartTime = Now
Explorer.Caption = "Captain Spaulding"

BitCount = ByteCount * 8
Energy = Mass * LIGHTSPEED ^ 2
NetWorth = Assets - Liabilities

The assignment statement stores information.

 Statements normally take up a single line with no terminator. Statements can be
stacked by using a colon (:) to separate them. Example:

StartTime = Now : EndTime = StartTime + 10

(Be careful stacking statements, especially with If/End If structures. You may not

get the response you desire.)

 If a statement is very long, it may be continued to the next line using the
continuation character, an underscore (_). Example:

Months = Log(Final * IntRate / Deposit + 1) _
/ Log(1 + IntRate)

 Comment statements begin with the keyword Rem or a single quote ('). For

example:

Rem This is a remark
' This is also a remark

x = 2 * y ' another way to write a remark or comment

You, as a programmer, should decide how much to comment your code.
Consider such factors as reuse, your audience, and the legacy of your code.

The Visual Basic Language 2-3

Visual Basic Operators

 The simplest operators carry out arithmetic operations. These operators in their

order of precedence are:

Operator Operation

^ Exponentiation
* / Multiplication and division

\ Integer division (truncates)
Mod Modulus

+ - Addition and subutraction

 Parentheses around expressions can change precedence.

 To concatentate two strings, use the & symbol or the + symbol:

lblTime.Caption = "The current time is" & Format(Now, “hh:mm”)
txtSample.Text = "Hook this “ + “to this”

 There are six comparison operators in Visual Basic:

Operator Comparison

> Greater than

< Less than
>= Greater than or equal to

<= Less than or equal to
= Equal to

<> Not equal to

 The result of a comparison operation is a Boolean value (True or False).

2-4 Learn Visual Basic 6.0

 We will use three logical operators

Operator Operation

Not Logical not
And Logical and

Or Logical or

 The Not operator simply negates an operand.

 The And operator returns a True if both operands are True. Else, it returns a

False.

 The Or operator returns a True if either of its operands is True, else it returns a
False.

 Logical operators follow arithmetic operators in precedence.

Visual Basic Functions

 Visual Basic offers a rich assortment of built-in functions. The on-line help utility
will give you information on any or all of these functions and their use. Some
examples are:

Function Value Returned

Abs Absolute value of a number
Asc ASCII or ANSI code of a character
Chr Character corresponding to a given ASCII or ANSI code

Cos Cosine of an angle
Date Current date as a text string
Format Date or number converted to a text string
Left Selected left side of a text string
Len Number of characters in a text string

Mid Selected portion of a text string
Now Current time and date

Right Selected right end of a text string
Rnd Random number
Sin Sine of an angle

Sqr Square root of a number
Str Number converted to a text string

Time Current time as a text string
Timer Number of seconds elapsed since midnight
Val Numeric value of a given text string

The Visual Basic Language 2-5

A Closer Look at the Rnd Function

 In writing games and learning software, we use the Rnd function to introduce
randomness. This insures different results each time you try a program. The

Visual Basic function Rnd returns a single precision, random number between 0
and 1 (actually greater than or equal to 0 and less than 1). To produce random

integers (I) between Imin and Imax, use the formula:

I = Int((Imax - Imin + 1) * Rnd) + Imin

 The random number generator in Visual Basic must be seeded. A Seed value
initializes the generator. The Randomize statement is used to do this:

Randomize Seed

If you use the same Seed each time you run your application, the same sequence

of random numbers will be generated. To insure you get different numbers every
time you use your application (preferred for games), use the Timer function to

seed the generator:

Randomize Timer

Place this statement in the Form_Load event procedure.

 Examples:

To roll a six-sided die, the number of spots would be computed using:

NumberSpots = Int(6 * Rnd) + 1

To randomly choose a number between 100 and 200, use:

Number = Int(101 * Rnd) + 100

2-6 Learn Visual Basic 6.0

Example 2 -1

Savings Account

1. Start a new project. The idea of this project is to determine how much you save
by making monthly deposits into a savings account. For those interested, the
mathematical formula used is:

F = D [(1 + I)M - 1] / I

where

F - Final amount

D - Monthly deposit amount
I - Monthly interest rate

M - Number of months

2. Place 4 label boxes, 4 text boxes, and 2 command buttons on the form. It should

look something like this:

The Visual Basic Language 2-7

3. Set the properties of the form and each object.

Form1:

BorderStyle 1-Fixed Single
Caption Savings Account

Name frmSavings

Label1:

Caption Monthly Deposit

Label2:

Caption Yearly Interest

Label3:

Caption Number of Months

Label4:

Caption Final Balance

Text1:

Text [Blank]
Name txtDeposit

Text2:

Text [Blank]

Name txtInterest

Text3:

Text [Blank]
Name txtMonths

Text4:

Text [Blank]

Name txtFinal

Command1:

Caption &Calculate
Name cmdCalculate

Command2:

Caption E&xit
Name cmdExit

2-8 Learn Visual Basic 6.0

Now, your form should look like this:

4. Declare four variables in the general declarations area of your form. This

makes them available to all the form procedures:

Option Explicit

Dim Deposit As Single

Dim Interest As Single

Dim Months As Single

Dim Final As Single

The Option Explicit statement forces us to declare all variables.

5. Attach code to the cmdCalculate command button Click event.

Private Sub cmdCalculate_Click ()

Dim IntRate As Single

‘Read values from text boxes

Deposit = Val(txtDeposit.Text)

Interest = Val(txtInterest.Text)

IntRate = Interest / 1200

Months = Val(txtMonths.Text)

‘Compute final value and put in text box

Final = Deposit * ((1 + IntRate) ^ Months - 1) / IntRate

txtFinal.Text = Format(Final, "#####0.00")

End Sub

The Visual Basic Language 2-9

This code reads the three input values (monthly deposit, interest rate, number of

months) from the text boxes, computes the final balance using the provided
formula, and puts that result in a text box.

6. Attach code to the cmdExit command button Click event.

Private Sub cmdExit_Click ()

End

End Sub

7. Play with the program. Make sure it works properly. Save the project.

2-10 Learn Visual Basic 6.0

Visual Basic Symbolic Constants

 Many times in Visual Basic, functions and objects require data arguments that
affect their operation and return values you want to read and interpret. These
arguments and values are constant numerical data and difficult to interpret based
on just the numerical value. To make these constants more understandable,
Visual Basic assigns names to the most widely used values - these are called
symbolic constants. Appendix I lists many of these constants.

 As an example, to set the background color of a form named frmExample to

blue, we could type:

frmExample.BackColor = 0xFF0000

or, we could use the symbolic constant for the blue color (vbBlue):

frmExample.BackColor = vbBlue

 It is strongly suggested that the symbolic constants be used instead of the numeric
values, when possible. You should agree that vbBlue means more than the value

0xFF0000 when selecting the background color in the above example. You do

not need to do anything to define the symbolic constants - they are built into Visual

Basic.

Defining Your Own Constants

 You can also define your own constants for use in Visual Basic. The format for
defining a constant named PI with a value 3.14159 is:

Const PI = 3.14159

 User-defined constants should be written in all upper case letters to distinguish

them from variables. The scope of constants is established the same way a
variables’ scope is. That is, if defined within a procedure, they are local to the

procedure. If defined in the general declarations of a form, they are global to the
form. To make constants global to an application, use the format:

Global Const PI = 3.14159

within the general declarations area of a module.

The Visual Basic Language 2-11

Visual Basic Branching - If Statements

 Branching statements are used to cause certain actions within a program if a

certain condition is met.

 The simplest is the If/Then statement:

If Balance - Check < 0 Then Print "You are overdrawn"

Here, if and only if Balance - Check is less than zero, the statement “You are

overdrawn” is printed.

 You can also have If/Then/End If blocks to allow multiple statements:

If Balance - Check < 0 Then

Print "You are overdrawn"
Print "Authorities have been notified"

End If

In this case, if Balance - Check is less than zero, two lines of information are

printed.

 Or, If/Then/Else/End If blocks:

If Balance - Check < 0 Then

Print "You are overdrawn"

Print "Authorities have been notified"

Else
Balance = Balance - Check

End If

Here, the same two lines are printed if you are overdrawn (Balance - Check < 0),
but, if you are not overdrawn (Else), your new Balance is computed.

2-12 Learn Visual Basic 6.0

 Or, we can add the ElseIf statement:

If Balance - Check < 0 Then
Print "You are overdrawn"
Print "Authorities have been notified"

ElseIf Balance - Check = 0 Then

Print "Whew! You barely made it"

Balance = 0
Else
Balance = Balance - Check

End If

Now, one more condition is added. If your Balance equals the Check amount
(ElseIf Balance - Check = 0), a different message appears.

 In using branching statements, make sure you consider all viable possibilities in
the If/Else/End If structure. Also, be aware that each If and ElseIf in a block is
tested sequentially. The first time an If test is met, the code associated with that
condition is executed and the If block is exited. If a later condition is also True, it
will never be considered.

Key Trapping

 Note in the previous example, there is nothing to prevent the user from typing in
meaningless characters (for example, letters) into the text boxes expecting
numerical data. Whenever getting input from a user, we want to limit the available

keys they can press. The process of interecepting unacceptable keystrokes is
key trapping.

 Key trapping is done in the KeyPress procedure of an object. Such a procedure
has the form (for a text box named txtText):

Sub txtText_KeyPress (KeyAscii as Integer)

.

.

.
End Sub

What happens in this procedure is that every time a key is pressed in the
corresponding text box, the ASCII code for the pressed key is passed to this
procedure in the argument list (i.e. KeyAscii). If KeyAscii is an acceptable value,

we would do nothing. However, if KeyAscii is not acceptable, we would set
KeyAscii equal to zero and exit the procedure. Doing this has the same result of
not pressing a key at all. ASCII values for all keys are available via the on-line

The Visual Basic Language 2-13

help in Visual Basic. And some keys are also defined by symbolic constants.
Where possible, we will use symbolic constants; else, we will use the ASCII
values.

 As an example, say we have a text box (named txtExample) and we only want to

be able to enter upper case letters (ASCII codes 65 through 90, or,

correspondingly, symbolic constants vbKeyA through vbKeyZ). The key press

procedure would look like (the Beep causes an audible tone if an incorrect key is

pressed):

Sub txtExample_KeyPress(KeyAscii as Integer)
If KeyAscii >= vbKeyA And KeyAscii <= vbKeyZ Then

Exit Sub

Else
KeyAscii = 0
Beep

End If

End Sub

 In key trapping, it's advisable to always allow the backspace key (ASCII code 8;

symbolic constant vbKeyBack) to pass through the key press event. Else, you

will not be able to edit the text box properly.

2-14 Learn Visual Basic 6.0

Example 2 -2

Savings Account - Key Trapping

1. Note the acceptable ASCII codes are 48 through 57 (numbers), 46 (the decimal

point), and 8 (the backspace key). In the code, we use symbolic constants for the
numbers and backspace key. Such a constant does not exist for the decimal
point, so we will define one with the following line in the general declarations

area:

Const vbKeyDecPt = 46

2. Add the following code to the three procedures: txtDeposit_KeyPress,

txtInterest_KeyPress, and txtMonths_KeyPress.

Private Sub txtDeposit_KeyPress (KeyAscii As Integer)

‘Only allow number keys, decimal point, or backspace

If (KeyAscii >= vbKey0 And KeyAscii <= vbKey9) Or

KeyAscii = vbKeyDecPt Or KeyAscii = vbKeyBack Then

Exit Sub

Else

KeyAscii = 0

Beep

End If

End Sub

Private Sub txtInterest_KeyPress (KeyAscii As Integer)

‘Only allow number keys, decimal point, or backspace

If (KeyAscii >= vbKey0 And KeyAscii <= vbKey9) Or

KeyAscii = vbKeyDecPt Or KeyAscii = vbKeyBack Then

Exit Sub

Else

KeyAscii = 0

Beep

End If

End Sub

The Visual Basic Language 2-15

Private Sub txtMonths_KeyPress (KeyAscii As Integer)

‘Only allow number keys, decimal point, or backspace

If (KeyAscii >= vbKey0 And KeyAscii <= vbKey9) Or

KeyAscii = vbKeyDecPt Or KeyAscii = vbKeyBack Then

Exit Sub

Else

KeyAscii = 0

Beep

End If

End Sub

(In the If statements above, note the word processor causes a line break
where there really shouldn’t be one. That is, there is no line break between the
words Or KeyAscii and = vbKeyDecPt. One appears due to page margins.

In all code in these notes, always look for such things.)

3. Rerun the application and test the key trapping performance.

2-16 Learn Visual Basic 6.0

Select Case - Another Way to Branch

 In addition to If/Then/Else type statements, the Select Case format can be used

when there are multiple selection possibilities.

 Say we've written this code using the If statement:

If Age = 5 Then

Category = "Five Year Old"
ElseIf Age >= 13 and Age <= 19 Then

Category = "Teenager"

ElseIf (Age >= 20 and Age <= 35) Or Age = 50 Or (Age >= 60 and Age <= 65)

Then

Category = "Special Adult"
ElseIf Age > 65 Then
Category = "Senior Citizen"
Else
Category = "Everyone Else"

End If

The corresponding code with Select Case would be:

Select Case Age
Case 5
Category = "Five Year Old"

Case 13 To 19

Category = "Teenager"

Case 20 To 35, 50, 60 To 65
Category = "Special Adult"

Case Is > 65
Category = "Senior Citizen"

Case Else
Category = "Everyone Else"

End Select

Notice there are several formats for the Case statement. Consult on-line help for
discussions of these formats.

The Visual Basic Language 2-17

The GoTo Statement

 Another branching statement, and perhaps the most hated statement in
programming, is the GoTo statement. However, we will need this to do Run-Time

error trapping. The format is GoTo Label, where Label is a labeled line.

Labeled lines are formed by typing the Label followed by a colon.

 GoTo Example:

Line10:

.

.
GoTo Line10

When the code reaches the GoTo statement, program control transfers to the line

labeled Line10.

Visual Basic Looping

 Looping is done with the Do/Loop format. Loops are used for operations are to
be repeated some number of times. The loop repeats until some specified
condition at the beginning or end of the loop is met.

 Do While/Loop Example:

Counter = 1
Do While Counter <= 1000
Debug.Print Counter

Counter = Counter + 1
Loop

This loop repeats as long as (While) the variable Counter is less than or equal to

1000. Note a Do While/Loop structure will not execute even once if the While
condition is violated (False) the first time through. Also note the Debug.Print

statement. What this does is print the value Counter in the Visual Basic Debug

window. We'll learn more about this window later in the course.

2-18 Learn Visual Basic 6.0

 Do Until/Loop Example:

Counter = 1
Do Until Counter > 1000
Debug.Print Counter
Counter = Counter + 1
Loop

This loop repeats Until the Counter variable exceeds 1000. Note a Do Until/Loop

structure will not be entered if the Until condition is already True on the first

encounter.

 Do/Loop While Example:

Sum = 1

Do
Debug.Print Sum

Sum = Sum + 3
Loop While Sum <= 50

This loop repeats While the Variable Sum is less than or equal to 50. Note, since

the While check is at the end of the loop, a Do/Loop While structure is always

executed at least once.

 Do/Loop Until Example:

Sum = 1

Do
Debug.Print Sum

Sum = Sum + 3
Loop Until Sum > 50

This loop repeats Until Sum is greater than 50. And, like the previous example , a
Do/Loop Until structure always executes at least once.

 Make sure you can always get out of a loop! Infinite loops are never nice. If you

get into one, try Ctrl+Break. That sometimes works - other times the only way out

is rebooting your machine!

 The statement Exit Do will get you out of a loop and transfer program control to

the statement following the Loop statement.

The Visual Basic Language 2-19

Visual Basic Counting

 Counting is accomplished using the For/Next loop.

Example

For I = 1 to 50 Step 2
A = I * 2

Debug.Print A
Next I

In this example, the variable I initializes at 1 and, with each iteration of the
For/Next loop, is incremented by 2 (Step). This looping continues until I becomes
greater than or equal to its final value (50). If Step is not included, the default value
is 1. Negative values of Step are allowed.

 You may exit a For/Next loop using an Exit For statement. This will transfer
program control to the statement following the Next statement.

2-20 Learn Visual Basic 6.0

Example 2 -3

Savings Account - Decisions

1. Here, we modify the Savings Account project to allow entering any three values
and computing the fourth. First, add a third command button that will clear all of
the text boxes. Assign the following properties:

Command3:

Caption Clear &Boxes
Name cmdClear

The form should look something like this when you’re done:

2. Code the cmdClear button Click event:

Private Sub cmdClear_Click ()

‘Blank out the text boxes

txtDeposit.Text = ""

txtInterest.Text = ""

txtMonths.Text = ""

txtFinal.Text = ""

End Sub

This code simply blanks out the four text boxes when the Clear button is clicked.

The Visual Basic Language 2-21

3. Code the KeyPress event for the txtFinal object:

Private Sub txtFinal_KeyPress (KeyAscii As Integer)

‘Only allow number keys, decimal point, or backspace

If (KeyAscii >= vbKey0 And KeyAscii <= vbKey9) Or

KeyAscii = vbKeyDecPt Or KeyAscii = vbKeyBack Then

Exit Sub

Else

KeyAscii = 0

Beep

End If

End Sub

We need this code because we can now enter information into the Final Value
text box.

4. The modified code for the Click event of the cmdCalculate button is:

Private Sub cmdCalculate_Click()

Dim IntRate As Single

Dim IntNew As Single

Dim Fcn As Single, FcnD As Single

‘Read the four text boxes

Deposit = Val(txtDeposit.Text)

Interest = Val(txtInterest.Text)

IntRate = Interest / 1200

Months = Val(txtMonths.Text)

Final = Val(txtFinal.Text)

‘Determine which box is blank

‘Compute that missing value and put in text box

If txtDeposit.Text = "" Then

‘Deposit missing

Deposit = Final / (((1 + IntRate) ^ Months - 1) /

IntRate)

txtDeposit.Text = Format(Deposit, "#####0.00")

ElseIf txtInterest.Text = "" Then

‘Interest missing - requires iterative solution

IntNew = (Final / (0.5* Months * Deposit) - 1) /

Months

Do

IntRate = IntNew
Fcn = (1 + IntRate) ^ Months - Final * IntRate /

Deposit - 1

2-22 Learn Visual Basic 6.0

FcnD = Months * (1 + IntRate) ^ (Months - 1) - Final

/ Deposit

IntNew = IntRate - Fcn / FcnD

Loop Until Abs(IntNew - IntRate) < 0.00001 / 12

Interest = IntNew * 1200

txtInterest.Text = Format(Interest, "##0.00")

ElseIf txtMonths.Text = "" Then

‘Months missing

Months = Log(Final * IntRate / Deposit + 1) / Log(1 +

IntRate)

txtMonths.Text = Format(Months, "###.0")

ElseIf txtFinal.Text = "" Then

‘Final value missing

Final = Deposit * ((1 + IntRate) ^ Months - 1) /

IntRate

txtFinal.Text = Format(Final, "#####0.00")

End If

End Sub

In this code. we first read the text information from all four text boxes and
based on which one is blank, compute the missing information and display it in
the corresponding text box. Solving for missing Deposit, Months, or Final

information is a straightforward manipulation of the equation given in Example
2-2.

If the Interest value is missing, we have to solve an Mth-order polynomial using

something called Newton-Raphson iteration - a good example of using a Do loop.
Finding the Interest value is straightforward. What we do is guess at what the

interest is, compute a better guess (using Newton-Raphson iteration), and repeat

the process (loop) until the old guess and the new guess are close to each other.
You can see each step in the code.

5. Test and save your application. Go home and relax.

The Visual Basic Language 2-23

Exercise 2-1

Computing a Mean and Standard Deviation

Develop an application that allows the user to input a sequence of numbers. When
done inputting the numbers, the program should compute the mean of that sequence
and the standard deviation. If N numbers are input, with the ith number represented
by xi, the formula for the mean (x) is:

x = (xi)/ N
i 1

and to compute the standard deviation (s), take the square root of this equation:

s2 = [N
N

i 1

2 - (x
i 1

)2]/[N(N - 1)]

The Greek sigmas in the above equations simply indicate that you add up all the

corresponding elements next to the sigma.

My Solution:

Form:

Label1

Label2

lblNumber

txtInput

cmdAccept cmdCompute

cmdNew cmdExit

Label6
lblMean

Label4 lblStdDev

N

N

x i i

2-24 Learn Visual Basic 6.0

Properties:

Form frmStats:

Caption = Mean and Standard Deviation

CommandButton cmdExit:

Caption = E&xit

CommandButton cmdAccept:

Caption = &Accept Number

CommandButton cmdCompute:

Caption = &Compute

CommandButton cmdNew:

Caption = &New Sequence

TextBox txtInput:

FontName = MS Sans Serif
FontSize = 12

Label lblStdDev:

Alignment = 2 - Center

BackColor = &H00FFFFFF& (White)
BorderStyle = 1 - Fixed Single
FontName = MS Sans Serif
FontSize = 12

Label Label6:

Caption = Standard Deviation

Label lblMean:

Alignment = 2 - Center

BackColor = &H00FFFFFF& (White)
BorderStyle = 1 - Fixed Single
FontName = MS Sans Serif
FontSize = 12

Label Label4:

Caption = Mean

The Visual Basic Language 2-25

Label lblNumber:

Alignment = 2 - Center

BackColor = &H00FFFFFF& (White)
BorderStyle = 1 - Fixed Single
FontName = MS Sans Serif
FontSize = 12

Label Label2:

Caption = Enter Number

Label Label1:

Caption = Number of Values

Code:

General Declarations:

Option Explicit

Dim NumValues As Integer

Dim SumX As Single

Dim SumX2 As Single

Const vbKeyMinus = 45

Const vbKeyDecPt = 46

cmdAccept Click Event:

Private Sub cmdAccept_Click()

Dim Value As Single

txtInput.SetFocus

NumValues = NumValues + 1

lblNumber.Caption = Str(NumValues)

‘Get number and sum number and number-squared

Value = Val(txtInput.Text)

SumX = SumX + Value

SumX2 = SumX2 + Value ^ 2

txtInput.Text = ""

End Sub

2-26 Learn Visual Basic 6.0

cmdCompute Click Event:

Private Sub cmdCompute_Click()

Dim Mean As Single

Dim StdDev As Single

txtInput.SetFocus

‘Make sure there are at least two values

If NumValues < 2 Then

Beep

Exit Sub

End If

‘Compute mean

Mean = SumX / NumValues

lblMean.Caption = Str(Mean)

‘Compute standard deviation

StdDev = Sqr((NumValues * SumX2 - SumX ^ 2) / (NumValues *

(NumValues - 1)))

lblStdDev.Caption = Str(StdDev)

End Sub

cmdExit Click Event:

Private Sub cmdExit_Click()

End

End Sub

cmdNew Click Event:

Private Sub cmdNew_Click()

'Initialize all variables

txtInput.SetFocus

NumValues = 0

lblNumber.Caption = "0"

txtInput.Text = ""

lblMean.Caption = ""

lblStdDev.Caption = ""

SumX = 0

SumX2 = 0

End Sub

The Visual Basic Language 2-27

txtInput KeyPress Event:

Private Sub txtInput_KeyPress(KeyAscii As Integer)

'Only allow numbers, minus sign, decimal point, backspace,

return keys

If (KeyAscii >= vbKey0 And KeyAscii <= vbKey9) Or KeyAscii

= vbKeyMinus Or KeyAscii = vbKeyDecPt Or KeyAscii =

vbKeyBack Then

Exit Sub

ElseIf KeyAscii = vbKeyReturn Then

Call cmdAccept_Click

Else

KeyAscii = 0

End If

End Sub

2-28 Learn Visual Basic 6.0

Exercise 2-2

Flash Card Addition Problems

Write an application that generates random addition problems. Provide some kind of
feedback and scoring system as the problems are answered.

My Solution:

Form:

lblNum2 Label4

Label2

lblNum1

txtAnswer

Label1

lblMessage

lblScore

cmdNext cmdExit

Properties:

Form frmAdd:

BorderStyle = 1 - Fixed Single
Caption = Flash Card Addition

CommandButton cmdNext:

Caption = &Next Problem

Enabled = False

CommandButton cmdExit:

Caption = E&xit

TextBox txtAnswer:

FontName = Arial
FontSize = 48

MaxLength = 2

The Visual Basic Language 2-29

Label lblMessage:

Alignment = 2 - Center

BackColor = &H00FFFF00& (Cyan)
BorderStyle = 1 - Fixed Single
FontName = MS Sans Serif
FontBold = True
FontSize = 24

FontItalic = True

Label lblScore:

Alignment = 2 - Center
BackColor = &H0 000FFFF& (Yellow)
BorderStyle = 1 - Fixed Single
Caption = 0
FontName = Times New Roman

FontBold = True
FontSize = 36

Label Label1:

Alignment = 2 - Center
Caption = Score:
FontName = MS Sans Serif
FontSize = 18

Label Label4:

Alignment = 2 - Center
Caption = =
FontName = Arial
FontSize = 48

Label lblNum2:

Alignment = 2 - Center
FontName = Arial
FontSize = 48

Label Label2:

Alignment = 2 - Center
Caption = +
FontName = Arial
FontSize = 48

Label lblNum1:

Alignment = 2 - Center
FontName = Arial
FontSize = 48

2-30 Learn Visual Basic 6.0

Code:

General Declarations:

Option Explicit

Dim Sum As Integer

Dim NumProb As Integer, NumRight As Integer

cmdExit Click Event:

Private Sub cmdExit_Click()

End

End Sub

cmdNext Click Event:

Private Sub cmdNext_Click()

'Generate next addition problem

Dim Number1 As Integer

Dim Number2 As Integer

txtAnswer.Text = ""

lblMessage.Caption = ""

NumProb = NumProb + 1

'Generate random numbers for addends

Number1 = Int(Rnd * 21)

Number2 = Int(Rnd * 21)

lblNum1.Caption = Format(Number1, "#0")

lblNum2.Caption = Format(Number2, "#0")

'Find sum

Sum = Number1 + Number2

cmdNext.Enabled = False

txtAnswer.SetFocus

End Sub

Form Activate Event:

Private Sub Form_Activate()

Call cmdNext_Click

End Sub

The Visual Basic Language 2-31

Form Load Event:

Private Sub Form_Load()

Randomize Timer

NumProb = 0

NumRight = 0

End Sub

txtAnswer KeyPress Event:

Private Sub txtAnswer_KeyPress(KeyAscii As Integer)

Dim Ans As Integer

'Check for number only input and for return key

If (KeyAscii >= vbKey0 And KeyAscii <= vbKey9) Or KeyAscii

= vbKeyBack Then

Exit Sub

ElseIf KeyAscii = vbKeyReturn Then

'Check answer

Ans = Val(txtAnswer.Text)

If Ans = Sum Then

NumRight = NumRight + 1

lblMessage.Caption = "That's correct!"

Else

lblMessage.Caption = "Answer is " + Format(Sum, "#0")

End If

lblScore.Caption = Format(100 * NumRight / NumProb,

"##0")

cmdNext.Enabled = True

cmdNext.SetFocus

Else

KeyAscii = 0

End If

End Sub

2-32 Learn Visual Basic 6.0

This page intentionally not left blank.

3-1

3. Exploring the Visual Basic Toolbox

Review and Preview

 In this class, we begin a journey where we look at each tool in the Visual Basic
toolbox. We will revisit some tools we already know and learn a lot of new tools.
First, though, we look at an important Visual Basic functions.

The Message Box

 One of the best functions in Visual Basic is the message box. The message box

displays a message, optional icon, and selected set of command buttons. The

user responds by clicking a button.

 The statement form of the message box returns no value (it simply displays the

box):

MsgBox Message, Type, Title

where

Message Text message to be displayed
Type Type of message box (discussed in a bit)

Title Text in title bar of message box

You have no control over where the message box appears on the screen.

 The function form of the message box returns an integer value (corresponding to

the button clicked by the user). Example of use (Response is returned value):

Dim Response as Integer
Response = MsgBox(Message, Type, Title)

 The Type argument is formed by summing four values corresponding to the
buttons to display, any icon to show, which button is the default response, and the
modality of the message box.

Learn Visual Basic 6.0

Exploring the Visual Basic Toolbox 3-11

 The first component of the Type value specifies the buttons to display:

Value Meaning Symbolic Constant
0 OK button only vbOKOnly
1 OK/Cancel buttons vbOKCancel
2 Abort/Retry/Ignore buttons vbAbortRetryIgnore
3 Yes/No/Cancel buttons vbYesNoCancel
4 Yes/No buttons vbYesNo
5 Retry/Cancel buttons vbRetryCancel

 The second component of Type specifies the icon to display in the message

box:

Value Meaning Symbolic Constant
0 No icon (None)

16 Critical icon vbCritical
32 Question mark vbQuestion
48 Exclamation point vbExclamation
64 Information icon vbInformation

 The third component of Type specifies which button is default (i.e. pressing

Enter is the same as clicking the default button):

Value Meaning Symbolic Constant
0 First button default vbDefaultButton1

256 Second button default vbDefaultButton2
512 Third button default vbDefaultButton3

 The fourth and final component of Type specifies the modality:

Value Meaning Symbolic Constant
0 Application modal vbApplicationModal
4096 System modal vbSystemModal

If the box is Application Modal, the user must respond to the box before

continuing work in the current application. If the box is System Modal, all

applications are suspended until the user responds to the message box.

 Note for each option in Type, there are numeric values listed and symbolic

constants. Recall, it is strongly suggested that the symbolic constants be used
instead of the numeric values. You should agree that vbOKOnly means more

than the number 0 when selecting the button type.

3-2 Learn Visual Basic 6.0

 The value returned by the function form of the message box is related to the button
clicked:

Value Meaning Symbolic Constant
1 OK button selected vbOK

2 Cancel button selected vbCancel
3 Abort button selected vbAbort
4 Retry button selected vbRetry
5 Ignore button selected vbIgnore
6 Yes button selected vbYes
7 No button selected vbNo

 Message Box Example:

MsgBox “This is an example of a message box”, vbOKCancel + vbInformation,

“Message Box Example”

 You've seen message boxes if you've ever used a Windows application. Think of

all the examples you've seen. For example, message boxes are used to ask you

if you wish to save a file before exiting and to warn you if a disk drive is not ready.

Object Methods

 In previous work, we have seen that each object has properties and events
associated with it. A third concept associated with objects is the method. A

method is a procedure or function that imparts some action to an object.

 As we move through the toolbox, when appropriate, we'll discuss object methods.
Methods are always enacted at run-time in code. The format for invoking a
method is:

ObjectName.Method {optional arguments}

Note this is another use of the dot notation.

3-4 Learn Visual Basic 6.0

The Form Object

 The Form is where the user interface is drawn. It is central to the development of

Visual Basic applications.

 Form Properties:

Appearance Selects 3-D or flat appearance.

BackColor Sets the form background color.

BorderStyle Sets the form border to be fixed or sizeable.

Caption Sets the form window title.

Enabled If True, allows the form to respond to mouse and

keyboard events; if False, disables form.
Font Sets font type, style, size.

ForeColor Sets color of text or graphics.

Picture Places a bitmap picture in the form.

Visible If False, hides the form.

 Form Events:

Activate Form_Activate event is triggered when form becomes

the active window.

Click Form_Click event is triggered when user clicks on

form.
DblClick Form_DblClick event is triggered when user double-

clicks on form.
Load Form_Load event occurs when form is loaded. This

is a good place to initialize variables and set any run-

time properties.

 Form Methods:

Cls Clears all graphics and text from form. Does not clear

any objects.
Print Prints text string on the form.

Examples

frmExample.Cls ' clears the form
frmExample.Print "This will print on the form"

Exploring the Visual Basic Toolbox 3-5

Command Buttons

 We've seen the command button before. It is probably the most widely used

control. It is used to begin, interrupt, or end a particular process.

 Command Button Properti es:

Appearance Selects 3-D or flat appearance.

Cancel Allows selection of button with Esc key (only one

button on a form can have this property True).

Caption String to be displayed on button.

Default Allows selection of button with Enter key (only one

button on a form can have this property True).

Font Sets font type, style, size.

 Command Button Events:

Click Event triggered when button is selected either by

clicking on it or by pressing the access key.

Label Boxes

 A label box is a control you use to display text that a user can't edit directly.
We've seen, though, in previous examples, that the text of a label box can be
changed at run-time in response to events.

 Label Properties:

Alignment Aligns caption within border.

Appearance Selects 3-D or flat appearance.

AutoSize If True, the label is resized to fit the text specifed by

the caption property. If False, the label will remain the
size defined at design time and the text may be
clipped.

BorderStyle Determines type of border.

Caption String to be displayed in box.

Font Sets font type, style, size.

3-6 Learn Visual Basic 6.0

WordWrap Works in conjunction with AutoSize property. If

AutoSize = True, WordWrap = True, then the text will
wrap and label will expand vertically to fit the Caption.
If AutoSize = True, WordWrap = False, then the text
will not wrap and the label expands horizontally to fit
the Caption. If AutoSize = False, the text will not wrap
regardless of WordWrap value.

 Label Events:

Click Event triggered when user clicks on a label.

DblClick Event triggered when user double-clicks on a label.

Text Boxes

 A text box is used to display information entered at design time, by a user at run-

time, or assigned within code. The displayed text may be edited.

 Text Box Properties:

Appearance Selects 3-D or flat appearance.

BorderStyle Determines type of border.

Font Sets font type, style, size.

MaxLength Limits the length of displayed text (0 value indicates

unlimited length).
MultiLine Specifies whether text box displays single line or

multiple lines.

PasswordChar Hides text with a single character.
ScrollBars Specifies type of displayed scroll bar(s).

SelLength Length of selected text (run-time only).

SelStart Starting position of selected text (run-time only).

SelText Selected text (run-time only).

Tag Stores a string expression.

Text Displayed text.

Exploring the Visual Basic Toolbox 3-7

 Text Box Events:

Change Triggered every time the Text property changes.

LostFocus Triggered when the user leaves the text box. This is a

good place to examine the contents of a text box after

editing.

KeyPress Triggered whenever a key is pressed. Used for key

trapping, as seen in last class.

 Text Box Methods:

SetFocus Places the cursor in a specified text box.

Example

txtExample.SetFocus ' moves cursor to box named txtExample

3-8 Learn Visual Basic 6.0

Example 3 -1

Password Validation

1. Start a new project. The idea of this project is to ask the user to input a password.
If correct, a message box appears to validate the user. If incorrect, other options
are provided.

2. Place a two command buttons, a label box, and a text box on your form so it looks

something like this:

3. Set the properties of the form and each object.

Form1:

BorderStyle 1-Fixed Single

Caption Password Validation
Name frmPassword

Label1:

Alignment 2-Center

BorderStyle 1-Fixed Single
Caption Please Enter Your Password:
FontSize 10

FontStyle Bold

Text1:

FontSize 14
FontStyle Regular
Name txtPassword
PasswordChar *

Tag [Whatever you choose as a password]
Text [Blank]

Exploring the Visual Basic Toolbox 3-9

Command1:

Caption &Validate

Default True
Name cmdValid

Command2:

Cancel True

Caption E&xit
Name cmdExit

Your form should now look like this:

4. Attach the following code to the cmdValid_Click event.

Private Sub cmdValid_Click()

'This procedure checks the input password

Dim Response As Integer

If txtPassword.Text = txtPassword.Tag Then

'If correct, display message box

MsgBox "You've passed security!", vbOKOnly +

vbExclamation, "Access Granted"

Else

'If incorrect, give option to try again

Response = MsgBox("Incorrect password", vbRetryCancel

+ vbCritical, "Access Denied")

If Response = vbRetry Then

txtPassword.SelStart = 0

txtPassword.SelLength = Len(txtPassword.Text)

Else

End

End If

End If

txtPassword.SetFocus

3-10 Learn Visual Basic 6.0

End Sub

Exploring the Visual Basic Toolbox 3-

11

This code checks the input password to see if it matches the stored value. If so, it
prints an acceptance message. If incorrect, it displays a message box to that
effect and asks the user if they want to try again. If Yes (Retry), another try is
granted. If No (Cancel), the program is ended . Notice the use of SelLength and
SelStart to highlight an incorrect entry. This allows the user to type right over the

incorrect response.

5. Attach the following code to the Form_Activate event.

Private Sub Form_Activate()

txtPassword.SetFocus

End Sub

6. Attach the following code to the cmdExit_ Click event.

Private Sub cmdExit_Click()

End

End Sub

7. Try running the program. Try both options: input correct password (note it is case

sensitive) and input incorrect password. Save your project.

If you have time, define a constant, TRYMAX = 3, and modify the code to allow
the user to have just TRYMAX attempts to get the correct password. After the
final try, inform the user you are logging him/her off. You’ll also need a variable
that counts the number of tries (make it a Static variable).

3-12 Learn Visual Basic 6.0

Check Boxes

 Check boxes provide a way to make choices from a list of potential candidates.

Some, all, or none of the choices in a group may be selected.

 Check Box Properties:

Caption Identifying text next to box.

Font Sets font type, style, size.

Value Indicates if unchecked (0, vbUnchecked), checked (1,

vbChecked), or grayed out (2, vbGrayed).

 Check Box Events:

Click Triggered when a box is clicked. Value property is

automatically changed by Visual Basic.

Option Buttons

 Option buttons provide the capability to make a mutually exclusive choice

among a group of potential candidate choices. Hence, option buttons work as a

group, only one of which can have a True (or selected) value.

 Option Button Properties:

Caption Identifying text next to button.

Font Sets font type, style, size.

Value Indicates if selected (True) or not (False). Only one

option button in a group can be True. One button in

each group of option buttons should always be

initialized to True at design time.

 Option Button Events:

Click Triggered when a button is clicked. Value property

is automatically changed by Visual Basic.

Exploring the Visual Basic Toolbox 3-

13

Arrays

 Up to now, we've only worked with regular variables, each having its own unique
name. Visual Basic has powerful facilities for handling multi -dimensional
variables, or arrays. For now, we'll only use single, fixed-dimension arrays.

 Arrays are declared in a manner identical to that used for regular variables. For
example, to declare an integer array named 'Items', with dimension 9, at the

procedure level, we use:

Dim Items(9) as Integer

If we want the array variables to retain their value upon leaving a procedure, we
use the keyword Static:

Static Items(9) as Integer

At the form or module level, in the general declarations area of the Code

window, use:

Dim Items(9) as Integer

And, at the module level, for a global declaration, use:

Global Items(9) as Integer

 The index on an array variable begins at 0 and ends at the dimensioned value.
For example, the Items array in the above examples has ten elements, ranging

from Items(0) to Items(9). You use array variables just like any other variable - just
remember to include its name and its index. For example, to set Item(5) equal to
7, you simply write:

Item(5) = 7

3-14 Learn Visual Basic 6.0

Control Arrays

 With some controls, it is very useful to define control arrays - it depends on the
application. For example, option buttons are almost always grouped in control
arrays.

 Control arrays are a convenient way to handle groups of controls that perform a
similar function. All of the events available to the single control are still available to
the array of controls, the only difference being an argument indicating the index of
the selected array element is passed to the event. Hence, instead of writing
individual procedures for each control (i.e. not using control arrays), you only have
to write one procedure for each array.

 Another advantage to control arrays is that you can add or delete array elements

at run-time. You cannot do that with controls (objects) not in arrays. Refer to the
Load and Unload statements in on-line help for the proper way to add and delete

control array elements at run-time.

 Two ways to create a control array:

1. Create an individual control and set desired properties. Copy the control

using the editor, then paste it on the form. Visual Basic will pop-up a dialog
box that will ask you if you wish to create a control array. Respond yes and the
array is created.

2. Create all the controls you wish to have in the array. Assign the desired control

array name to the first control. Then, try to name the second control with the
same name. Visual Basic will prompt you, asking if you want to create a
control array. Answer yes. Once the array is created, rename all remaining
controls with that name.

 Once a control array has been created and named, elements of the array are
referred to by their name and index. For example, to set the Caption property of

element 6 of a label box array named lblExample, we would use:

lblExample(6).Caption = “This is an example”

We'll use control arrays in the next example.

Exploring the Visual Basic Toolbox 3-

15

Frames

 We've seen that both option buttons and check boxes work as a group. Frames

provide a way of grouping related controls on a form. And, in the case of option

buttons, frames affect how such buttons operate.

 To group controls in a frame, you first draw the frame. Then, the associated
controls must be drawn in the frame. This allows you to move the frame and
controls together. And, once a control is drawn within a frame, it can be copied
and pasted to create a control array within that frame. To do this, first click on the
object you want to copy. Copy the object. Then, click on the frame. Paste the
object. You will be asked if you want to create a control array. Answer Yes.

 Drawing the controls outside the frame and dragging them in, copying them into a
frame, or drawing the frame around existing controls will not result in a proper
grouping. It is perfectly acceptable to draw frames within other frames.

 As mentioned, frames affect how option buttons work. Option buttons within a
frame work as a group, independently of option buttons in other frames. Option

buttons on the form, and not in frames, work as another independent group. That

is, the form is itself a frame by default. We'll see this in the next example.

 It is important to note that an independent group of option buttons is defined by
physical location within frames, not according to naming convention. That is, a
control array of option buttons does not work as an independent group just
because it is a control array. It would only work as a group if it were the only group
of option buttons within a frame or on the form. So, remember physical location,
and physical location only, dictates independent operation of option button
groups.

 Frame Properties:

Caption Title information at top of frame.

Font Sets font type, style, size.

3-16 Learn Visual Basic 6.0

Example 3 -2

Pizza Order

1. Start a new project. We'll build a form where a pizza order can be entered by
simply clicking on check boxes and option buttons.

2. Draw three frames. In the first, draw three option buttons, in the second, draw two

option buttons, and in the third, draw six check boxes. Draw two option buttons on
the form. Add two command buttons. Make things look something like this.

3. Set the properties of the form and each control.

Form1:

BorderStyle 1-Fixed Single

Caption Pizza Order
Name frmPizza

Frame1:

Caption Size

Frame2:

Caption Crust Type

Frame3

Caption Toppings

Exploring the Visual Basic Toolbox 3-

17

Option1:

Caption Small

Name optSize
Value True

Option2:

Caption Medium

Name optSize (yes, create a control array)

Option3:

Caption Large
Name optSize

Option4:

Caption Thi n Crust

Name optCrust
Value True

Option5:

Caption Thick Crust

Name optCrust (yes, create a control array)

Option6:

Caption Eat In
Name optWhere

Value True

Option7:

Caption Take Out
Name optWhere (yes, create a control array)

Check1:

Caption Extra Cheese

Name chkTop

Check2:

Caption Mushrooms
Name chkTop (yes, create a control array)

Check3:

Caption Black Olives
Name chkTop

3-18 Learn Visual Basic 6.0

Check4:

Caption Onions

Name chkTop

Check5:

Caption Green Peppers
Name chkTop

Check6:

Caption Tomatoes

Name chkTop

Command1:

Caption &Build Pizza
Name cmdBuild

Command2:

Caption E&xit

Name cmdExit

The form should look like this now:

4. Declare the following variables in the general declarations area:

Option Explicit

Dim PizzaSize As String

Dim PizzaCrust As String

Dim PizzaWhere As String

This makes the size, crust, and location variables global to the form.

Exploring the Visual Basic Toolbox 3-

19

5. Attach this code to the Form_Load procedure. This initializes the pizza size,

crust, and eating location.

Private Sub Form_Load()

'Initialize pizza parameters

PizzaSize = "Small"

PizzaCrust = "Thin Crust"

PizzaWhere = "Eat In"

End Sub

Here, the global variables are initialized to their default values, corresponding to
the default option buttons.

6. Attach this code to the three option button array Click events. Note the use of the

Index variable:

Private Sub optSize_Click(Index As Integer)

‘Read pizza size

PizzaSize = optSize(Index).Caption

End Sub

Private Sub optCrust_Click(Index As Integer)

‘Read crust type

PizzaCrust = optCrust(Index).Caption

End Sub

Private Sub optWhere_Click(Index As Integer)

‘Read pizza eating location

PizzaWhere = optWhere(Index).Caption

End Sub

In each of these routines, when an option button is clicked, the value of the
corresponding button’s caption is loaded into the respective variable.

3-20 Learn Visual Basic 6.0

7. Attach this code to the cmdBuild_Click event.

Private Sub cmdBuild_Click()

'This procedure builds a message box that displays your

pizza type

Dim Message As String

Dim I As Integer

Message = PizzaWhere + vbCr

Message = Message + Pi zzaSize + " Pizza" + vbCr

Message = Message + PizzaCrust + vbCr

For I = 0 To 5

If chkTop(I).Value = vbChecked Then Message = Message

+ chkTop(I).Caption + vbCr

Next I

MsgBox Message, vbOKOnly, "Your Pizza"

End Sub

This code forms the first part of a message for a message box by concatenating
the pizza size, crust type, and eating location (vbCr is a symbolic constant

representing a ‘carriage return’ that puts each piece of ordering information on a
separate line). Next, the code cycles through the six topping check boxes and
adds any checked information to the message. The code then displays the pizza
order in a message box.

8. Attach this code to the cmdExit_Click event.

Private Sub cmdExit_Click()

End

End Sub

9. Get the application working. Notice how the different selection buttons work in

their individual groups. Save your project.

10. If you have time, try these modifications:

A. Add a new program button that resets the order form to the initial default
values. You’ll have to reinitialize the three global variables, reset all check
boxes to unchecked, and reset all three option button groups to their
default values.

B. Modify the code so that if no toppings are selected, the message “Cheese
Only” appears on the order form. You’ll need to figure out a way to see if
no check boxes were checked.

Exploring the Visual Basic Toolbox 3-

21

List Boxes

 A list box displays a list of items from which the user can select one or more

items. If the number of items exceeds the number that can be displayed, a scroll

bar is automatically added.

 List Box Properties:

Appearance Selects 3-D or flat appearance.

List Array of items in list box.

ListCount Number of items in list.

ListIndex The number of the most recently selected item in list.

If no item is selected, ListIndex = -1.

MultiSelect Controls how items may be selected (0-no multiple

selection allowed, 1-multiple selection allowed, 2-
group selection allowed).

Selected Array with elements set equal to True or False,

depending on whether corresponding list item is

selected.
Sorted True means items are sorted in 'Ascii' order, else

items appear in order added.
Text Text of most recently selected item.

 List Box Events:

Click Event triggered when item in list is clicked.

DblClick Event triggered when item in list is double-clicked.

Primary way used to process selection.

 List Box Methods:

AddItem Allows you to insert item in list.

Clear Removes all items from list box.

RemoveItem Removes item from list box, as identified by index of

item to remove.

Examples

lstExample.AddItem "This is an added item" ' adds text string to list
lstExample.Clear ' clears the list box
lstExample.RemoveItem 4 ' removes lstExample.List(4) from list box

3-22 Learn Visual Basic 6.0

 Items in a list box are usually initialized in a Form_Load procedure. It's always a
good idea to Clear a list box before initializing it.

 You've seen list boxes before. In the standard 'Open File' window, the Directory

box is a list box with MultiSelect equal to zero.

Combo Boxes

 The combo box is similar to the list box. The differences are a combo box

includes a text box on top of a list box and only allows selection of one item. In

some cases, the user can type in an alternate response.

 Combo Box Properties:

Combo box properties are nearly identical to those of the list box, with the deletion
of the MultiSelect property and the addition of a Style property.

Appearance Selects 3-D or flat appearance.

List Array of items in list box portion.

ListCount Number of items in list.

ListIndex The number of the most recently selected item in list.

If no item is selected, ListIndex = -1.

Sorted True means items are sorted in 'Ascii' order, else

items appear in order added.

Style Selects the combo box form.

Style = 0, Dropdown combo; user can change
selection.

Style = 1, Simple combo; user can change selection.
Style = 2, Dropdown combo; user cannot change
selection.

Text Text of most recently selected item.

 Combo Box Events:

Click Event triggered when item in list is clicked.

DblClick Event triggered when item in list is double-clicked.

Primary way used to process selection.

Exploring the Visual Basic Toolbox 3-

23

 Combo Box Methods:

AddItem Allows you to insert item in list.

Clear Removes all items from list box.

RemoveItem Removes item from list box, as identified by index of

item to remove.

Examples

cboExample.AddItem "This is an added item" ' adds text string to list

cboExample.Clear ' clears the combo box
cboExample.RemoveItem 4 ' removes cboExample.List(4) from list box

 You've seen combo boxes before. In the standard 'Open File' window, the File
Name box is a combo box of Style 2, while the Drive box is a combo box of Style
3.

3-24 Learn Visual Basic 6.0

Example 3 -3

Flight Planner

1. Start a new project. In this example, you select a destination city, a seat location,

and a meal preference for airline passengers.

2. Place a list box, two combo boxes, three label boxes and two command buttons

on the form. The form should appear similar to this:

3. Set the form and object properties:

Form1:

BorderStyle 1-Fixed Single
Caption Flight Planner

Name frmFlight

List1:

Name lstCities
Sorted True

Combo1:

Name cboSeat
Style 2-Dropdown List

Exploring the Visual Basic Toolbox 3-

25

Combo2:

Name cboMeal

Style 1-Simple
Text [Blank]

(After setting properties for this combo box, resize it until it is large enough to
hold 4 to 5 entries.)

Label1:

Caption Destination City

Label2:

Caption Seat Location

Label3:

Caption Meal Preference

Command1:

Caption &Assign
Name cmdAssign

Command2:

Caption E&xit

Name cmdExit

Now, the form should look like this:

3-26 Learn Visual Basic 6.0

4. Attach this code to the Form_Load procedure:

Private Sub Form_Load()

‘Add city names to list box

lstCities.Clear

lstCities.AddItem "San Diego"

lstCities.AddItem "Los Angeles"

lstCities.AddItem "Orange County"

lstCities.AddItem "Ontario"

lstCities.AddItem "Bakersfield"

lstCities.AddItem "Oakland"

lstCities.AddItem "Sacramento"

lstCities.AddItem "San Jose"

lstCities.AddItem "San Francisco"

lstCities.AddItem "Eureka"

lstCities.AddItem "Eugene"

lstCities.AddItem "Portland"

lstCities.AddItem "Spokane"

lstCities.AddItem "Seattle"

lstCities.ListIndex = 0

‘Add seat types to first combo box

cboSeat.AddItem "Aisle"

cboSeat.AddItem "Middle"

cboSeat.AddItem "Window"

cboSeat.ListIndex = 0

‘Add meal types to second combo box

cboMeal.AddItem "Chicken"

cboMeal.AddItem "Mystery Meat"

cboMeal.AddItem "Kosher"

cboMeal.AddItem "Vegetarian"

cboMeal.AddItem "Fruit Plate"

cboMeal.Text = "No Preference"

End Sub

This code simply initializes the list box and the list box portions of the two combo

boxes.

Exploring the Visual Basic Toolbox 3-

27

5. Attach this code to the cmdAssign_Click event:

Private Sub cmdAssign_Click()

‘Build message box that gives your assignment

Dim Message As String

Message = "Destination: " + lstCities.Text + vbCr

Message = Message + "Seat Location: " + cboSeat.Text +

vbCr

Message = Message + "Meal: " + cboMeal.Text + vbCr

MsgBox Message, vbOKOnly + vbInformation, "Your

Assignment"

End Sub

When the Assign button is clicked, this code forms a message box message by

concatenating the selected city (from the list box lstCities), seat choice (from

cboSeat), and the meal preference (from cboMeal).

6. Attach this code to the cmdExit_Click event:

Private Sub cmdExit_Click()

End

End Sub

7. Run the application. Save the project.

3-28 Learn Visual Basic 6.0

Exercise 3

Customer Database Input Screen

A new sports store wants you to develop an input screen for its customer database.
The required input information is:

1. Name

2. Age
3. City of Residence
4. Sex (Male or Female)

5. Activities (Running, Walking, Biking, Swimming, Skiing and/or In-Line
Skating)

6. Athletic Level (Extreme, Advanced, Intermediate, or Beginner)

Set up the screen so that only the Name and Age (use text boxes) and, perhaps, City
(use a combo box) need to be typed; all other inputs should be set with check boxes
and option buttons. When a screen of information is complete, display the
summarized profile in a message box. This profile message box should resemble
this:

Exploring the Visual Basic Toolbox 3-

29

My Solution:

Form:

Label1

Frame1

optSex

cboCity

cmdShow

cmdNew

Frame2 chkAct Frame4 optLevel cmdExit

Properties:

Form frmCustomer:

BorderStyle = 1 - Fixed Single

Caption = Customer Profile

CommandButton cmdExit:

Caption = E&xit

Frame Frame3:

Caption = City of Residence
FontName = MS Sans Serif
FontBold = True
FontSize = 9.75

FontItalic = True

ComboBox cboCity:

Sorted = True
Style = 1 - Simple Combo

txtName
Frame3

3-30 Learn Visual Basic 6.0

CommandButton cmdNew:

Caption = &New Profile

CommandButton cmdShow:

Caption = &Show Profile

Frame Frame4:

Caption = Athletic Level
FontName = MS Sans Serif
FontBold = True
FontSize = 9.75
FontItalic = True

OptionButton optLevel:

Caption = Beginner

Index = 3

OptionButton optLevel:

Caption = Intermediate
Index = 2
Value = True

OptionButton optLevel:

Caption = Advanced
Index = 1

OptionButton optLevel:

Caption = Extreme

Index = 0

Frame Frame1:

Caption = Sex
FontName = MS Sans Serif

FontBold = True

FontSize = 9.75

FontItalic = True

OptionButton optSex:

Caption = Female
Index = 1

OptionButton optSex:

Caption = Male
Index = 0
Value = True

Exploring the Visual Basic Toolbox 3-

31

Frame Frame2:

Caption = Activities
FontName = MS Sans Serif
FontBold = True
FontSize = 9.75

FontItalic = True

CheckBox chkAct:

Caption = In-Line Skating
Index = 5

CheckBox chkAct:

Caption = Skiing
Index = 4

CheckBox chkAct:

Caption = Swimming

Index = 3

CheckBox chkAct:

Caption = Biking
Index = 2

CheckBox chkAct:

Caption = Walking

Index = 1

CheckBox chkAct:

Caption = Running
Index = 0

TextBox txtName:

FontName = MS Sans Serif

FontSize = 12

Label Label1:

Caption = Name
FontName = MS Sans Serif
FontBold = True
FontSize = 9.75

FontItalic = True

TextBox txtAge:

FontName = MS Sans Serif
FontSize = 12

3-32 Learn Visual Basic 6.0

Label Label2:

Caption = Age

FontName = MS Sans Serif
FontBold = True
FontSize = 9.75

FontItalic = True

Code:

General Declarations:

Option Explicit

Dim Activity As String

cmdExit Click Event:

Private Sub cmdExit_Click()

End

End Sub

cmdNew Click Event:

Private Sub cmdNew_Click()

'Blank out name and reset check boxes

Dim I As Integer

txtName.Text = ""

txtAge.Text = ""

For I = 0 To 5

chkAct(I).Value = vbUnchecked

Next I

End Sub

cmdShow Click Event:

Private Sub cmdShow_Click()

Dim NoAct As Integer, I As Integer

Dim Msg As String, Pronoun As String

'Check to make sure name entered

If txtName.Text = "" Then

Exploring the Visual Basic Toolbox 3-

33

MsgBox "The profile requires a name.", vbOKOnly +

vbCritical, "No Name Entered"

Exit Sub

End If

'Check to make sure age entered

If txtAge.Text = "" Then

MsgBox "The profile requires an age.", vbOKOnly +

vbCritical, "No Age Entered"

Exit Sub

End If

'Put together customer profile message

Msg = txtName.Text + " is" + Str$(txtAge.Text) + " years

old." + vbCr

If optSex(0).Value = True Then Pronoun = "He " Else

Pronoun = "She "

Msg = Msg + Pronoun + "lives in " + cboCity.Text + "." +

vbCr

Msg = Msg + Pronoun + "is a"

If optLevel(3).Value = False Then Msg = Msg + "n " Else

Msg = Msg + " "

Msg = Msg + Activity + " level athlete." + vbCr

NoAct = 0

For I = 0 To 5

If chkAct(I).Value = vbChecked Then NoAct = NoAct + 1

Next I

If NoAct > 0 Then

Msg = Msg + "Activities include:" + vbCr

For I = 0 To 5

If chkAct(I).Value = vbChecked Then Msg = Msg +

String$(10, 32) + chkAct(I).Caption + vbCr

Next I

Else

Msg = Msg + vbCr

End If

MsgBox Msg, vbOKOnly, "Customer Profile"

End Sub

Form Load Event:

Private Sub Form_Load()

3-34 Learn Visual Basic 6.0

'Load combo box with potential city names

cboCity.AddItem "Seattle"

cboCity.Text = "Seattle"

cboCity.AddItem "Bellevue"

cboCity.AddItem "Kirkland"

cboCity.AddItem "Everett"

cboCity.AddItem "Mercer Island"

cboCity.AddItem "Renton"

cboCity.AddItem "Issaquah"

cboCity.AddItem "Kent"

cboCity.AddItem "Bothell"

cboCity.AddItem "Tukwila"

cboCity.AddItem "West Seattle"

cboCity.AddItem "Edmonds"

cboCity.AddItem "Tacoma"

cboCity.AddItem "Federal Way"

cboCity.AddItem "Burien"

cboCity.AddItem "SeaTac"

cboCity.AddItem "Woodinville"

Activity = "intermediate"

End Sub

optLevel Click Event:

Private Sub optLevel_Click(Index As Integer)

‘Determine activity level

Select Case Index

Case 0

Activity = "extreme"

Case 1

Activity = "advanced"

Case 2

Activity = "intermediate"

Case 3

Activity = "beginner"

End Select

End Sub

txtAge KeyPress Event:

Private Sub txtAge_KeyPress(KeyAscii As Integer)

'Only allow numbers for age

Exploring the Visual Basic Toolbox 3-

35

If (KeyAscii >= vbKey0 And KeyAscii <= vbKey9) Or KeyAscii

= vbKeyBack Then

Exit Sub

Else

KeyAscii = 0

End If

End Sub

3-36 Learn Visual Basic 6.0

This page intentionally not left blank.

4-1

4. More Exploration of the Visual Basic Toolbox

Review and Preview

 In this class, we continue looking at tools in the Visual Basic toolbox. We will look
at some drawing tools, scroll bars, and tools that allow direct interacti on with
drives, directories, and files. In the examples, try to do as much of the building
and programming of the applications you can with minimal reference to the notes.
This will help you build your programming skills.

Display Layers

 In this class, we will look at our first graphic type controls: line tools, shape tools,
picture boxes, and image boxes. And, with this introduction, we need to discuss
the idea of display layers.

 Items shown on a form are not necessarily all on the same layer of dis play. A
form's display is actually made up of three layers as sketched below. All
information displayed directly on the form (by printing or drawing with graphics
methods) appears on the bottom-layer. Information from label boxes, image
boxes, line tools, and shape tools, appears on the middle-layer. And, all other
objects are displayed on the top-layer.

Bottom-layer: form

Middle-layer: label,

image, shape, line

Top-layer: other

controls and objects

Learn Visual Basic 6.0

More Exploration of the Visual Basic Toolbox 4-11

 What this means is you have to be careful where you put things on a form or
something could be covered up. For example, text printed on the form would be
hidden by a command button placed on top of it. Things drawn with the shape tool
are covered by all controls except the image box.

 The next question then is what establishes the relative location of objects in the
same layer. That is, say two command buttons are in the same area of a form -
which one lies on top of which one? The order in which objects in the same layer
overlay each other is called the Z-order. This order is first established when you

draw the form. Items d rawn last lie over items drawn earlier. Once drawn,
however, the Z-order can be modified by clicking on the desired object and
choosing Bring to Front from Visual Basic's Edit menu. The Send to Back

command has the opposite effect. Note these two commands only work within a
layer; middle-layer objects will always appear behind top-layer objects and lower
layer objects will always appear behind middle-layer objects.

Line Tool

 The line tool creates simple straight line segments of various width and color.

Together with the shape tool discussed next, you can use this tool to 'dress up'

your application.

 Line Tool Properties:

BorderColor Determines the line color.

BorderStyle Determines the line 'shape'. Lines can be

transparent, solid, dashed, dotted, and

combinations.
BorderWidth Determines line width.

 There are no events or methods associated with the line tool.

 Since the line tool lies in the middle-layer of the form display, any lines drawn will
be obscured by all controls except the shape tool or image box.

4-2 Learn Visual Basic 6.0

Shape Tool

 The shape tool can create circles, ovals, squares, rectangles, and rounded

squares and rectangles. Colors can be used and various fill patterns are

available.

 Shape Tool Properties:

BackColor Determines the background color of the shape (only

used when FillStyle not Solid.
BackStyle Determines whether the background is transparent

or opaque.
BorderColor Determines the color of the shape's outline.

BorderStyle Determines the style of the shape's outline. The

border can be transparent, solid, dashed, dotted,
and combinations.

BorderWidth Determines the width of the shape border line.

FillColor Defines the interior color of the shape.

FillStyle Determines the interior pattern of a shape. Some

choices are: solid, transparent, cross, etc.

Shape Determines whether the shape is a square,

rectangle, circle, or some other choice.

 Like the line tool, events and methods are not used with the shape tool.

 Shapes are covered by all objects except perhaps line tools and image boxes
(depends on their Z-order) and printed or drawn information. This is a good
feature in that you usually use shapes to contain a group of control objects and
you'd want them to lie on top of the shape.

4-4 Learn Visual Basic 6.0

Horizontal and Vertical Scroll Bars

 Horizontal and vertical scroll bars are widely used in Windows applications.

Scroll bars provide an intuitive way to move through a list of information and make

great input devices.

 Both type of scroll bars are comprised of three areas that can be clicked, or
dragged, to change the scroll bar value. Those areas are:

End arrow

Scroll box (thumb) Bar area

Clicking an end arrow increments the scroll box a small amount, clicking the

bar area increments the scroll box a large amount, and dragging the scroll box

(thumb) provides continuous motion. Using the properties of scroll bars, we can

completely specify how one works. The scroll box position is the only output

information from a scroll bar.

 Scroll Bar Properties:

LargeChange Increment added to or subtracted from the scroll bar

Value property when the bar area is clicked.

Max The value of the horizontal scroll bar at the far right

and the value of the vertical scroll bar at the bottom.

Can range from -32,768 to 32,767.

Min The other extreme value - the horizontal scroll bar at

the left and the vertical scroll bar at the top. Can
range from -32,768 to 32,767.

SmallChange The increment added to or subtracted from the scroll

bar Value property when either of the scroll arrows is

clicked.
Value The current position of the scroll box (thumb) within

the scroll bar. If you set this in code, Visual Basic

moves the scroll box to the proper position.

More Exploration of the Visual Basic Toolbox 4-5

Properties for horizontal scroll bar:

LargeChange

SmallChange

Min

SmallChange

Value

Max

LargeChange

Properties for vertical scroll bar:

Min

SmallChange

LargeChange

Value

LargeChange

SmallChange

Max

 A couple of important notes about scroll bars:

1. Note that although the extreme values are called Min and Max, they do not

necessarily represent minimum and maximum values. There is nothing to
keep the Min value from being greater than the Max value. In fact, with vertical

scroll bars, this is the usual case. Visual Basic automatically adjusts the sign
on the SmallChange and LargeChange properties to insure proper

movement of the scroll box from one extreme to the other.

2. If you ever change the Value, Min, or Max properties in code, make sure

Value is at all times between Min and Max or and the program will stop with an
error message.

4-6 Learn Visual Basic 6.0

 Scroll Bar Events:

Change Event is triggered after the scroll box's position has

been modified. Use this event to retrieve the Value
property after any changes in the scroll bar.

Scroll Event triggered continuously whenever the scroll box

is being moved.

More Exploration of the Visual Basic Toolbox 4-7

Example 4 -1

Temperature Conversion

Start a new project. In this project, we convert temperatures in degrees Fahrenheit

(set using a scroll bar) to degrees Celsius. As mentioned in the Review and

Preview section, you should try to build this application with minimal reference to the

notes. To that end, let's look at the project specifications.

Temperature Conversion Application Specifications

The application should have a scroll bar which adjusts temperature in
degrees Fahrenheit from some reasonable minimum to some
maximum. As the user changes the scroll bar value, both the
Fahrenheit temperature and Celsius temperature (you have to calculate
this) in integer format should be displayed. The formula for converting
Fahrenheit (F) to Celsius (C) is:

C = (F - 32)*5/9

To convert this number to a rounded integer, use the Visual Basic
CInt() function. To change numeric information to strings for display in

label or text boxes, use the Str() or Format() function. Try to build as

much of the application as possible before looking at my approach. Try

incorporating lines and shapes into your application if you can.

4-8 Learn Visual Basic 6.0

One Possible Approach to Temperature Conversion Application:

1. Place a shape, a vertical scroll bar, four labels, and a command button on the

form. Put the scroll bar within the shape - since it is in the top-layer of the form, it
will lie in the shape. It should resemble this:

Shape1

2. Set the properties of the form and each object:

Form1:

BorderStyle 1-Fixed Single
Caption Temperature Conversion
Name frmTemp

Shape1:

BackColor White
BackStyle 1-Opaque
FillColor Red

FillStyle 7-Diagonal Cross
Shape 4-Rounded Rectangle

VScroll1:

LargeChange

10
Max -60
Min 120
Name vsbTemp
SmallChange 1
Value 32

More Exploration of the Visual Basic Toolbox 4-9

Label1:

Alignment 2-Center

Caption Fahrenheit
FontSize 10
FontStyle Bold

Label2:

Alignment 2-Center

AutoSize True
BackColor White

BorderStyle 1-Fixed Single
Caption 32
FontSize 14
FontStyle Bold
Name lblTempF

Label3:

Alignment 2-Center
Caption Celsius
FontSize 10

FontStyle Bold

Label4:

Alignment 2-Center
AutoSize True

BackColor White
BorderStyle 1-Fixed Single

Caption 0
FontSize 14
FontStyle Bold

Name lblTempC

Command1:

Cancel True
Caption E&xit

Name cmdExit

Note the temperatures are i nitialized at 32F and 0C, known values.

4-10 Learn Visual Basic 6.0

When done, the form should look like this:

3. Put this code in the general declarations of your code window.

Option Explicit

Dim TempF As Integer

Dim TempC As Integer

This makes the two temperature variables global.

4. Attach the following code to the scroll bar Scroll event.

Private Sub vsbTemp_Scroll()

'Read F and convert to C

TempF = vsbTemp.Value

lblTempF.Caption = Str(TempF)

TempC = CInt((TempF - 32) * 5 / 9)

lblTempC.Caption = Str(TempC)

End Sub

This code determines the scroll bar Value as it scrolls, takes that value as
Fahrenheit temperature, computes Celsius temperature, and displays both
values.

More Exploration of the Visual Basic Toolbox 4-

11

5. Attach the following code to the scroll bar Change event.

Private Sub vsbTemp_Change()

'Read F and convert to C

TempF = vsbTemp.Value

lblTempF.Caption = Str(TempF)

TempC = CInt((TempF - 32) * 5 / 9)

lblTempC.Caption = Str(TempC)

End Sub

Note this code is identical to that used in the Scroll event. This is almost always
the case when using scroll bars.

6. Attach the following code to the cmdExit_Click procedure.

Private Sub cmdExit_Click()

End

End Sub

7. Give the program a try. Make sure it provides correct information at obvious
points. For example, 32 F better always be the same as 0 C! Save the project -
we’ll return to it briefly in Class 5.

Other things to try:

A. Can you find a point where Fahrenheit temperature equals Celsius

temperature? If you don't know this off the top of your head, it's obvious you've
never lived in extremely cold climates. I've actually witnessed one of those
bank temperature signs flashing degrees F and degrees C and seeing the
same number!

B. Ever wonder why body temperature is that odd figure of 98.6 degrees F? Can

your new application give you some insight to an answer to this question?

C. It might be interesting to determine how wind affects perceived temperature -
the wind chill. Add a second scroll bar to input wind speed and display both
the actual and wind adjusted temperatures. You would have to do some
research to find the mathematics behind wind chill computations. This is not a
trivial extension of the application.

4-12 Learn Visual Basic 6.0

Picture Boxes

 The picture box allows you to place graphics information on a form. It is best

suited for dynamic environments - for example, when doing animation.

 Picture boxes lie in the top layer of the form display. They behave very much like
small forms within a form, possessing most of the same properties as a form.

 Picture Box Properties:

AutoSize If True, box adjusts its size to fit the displayed

graphic.

Font Sets the font size, style, and size of any printing done

in the picture box.
Picture Establishes the graphics file to display in the picture

box.

 Picture Box Events:

Click Triggered when a picture box is clicked.

DblClick Triggered when a picture box is double-clicked.

 Picture Box Methods:

Cls Clears the picture box.

Print Prints information to the picture box.

Examples

picExample.Cls ' clears the box picExample
picExample.Print "a picture box" ' prints text string to picture box

More Exploration of the Visual Basic Toolbox 4-

13

 Picture Box LoadPicture Procedure:

An important function when using picture boxes is the LoadPicture procedure. It

is used to set the Picture property of a picture box at run-time.

Example

picExample.Picture = LoadPicture("c:\pix\sample.bmp")

This command loads the graphics file c:\pix\sample.bmp into the Picture property
of the picExample picture box. The argument in the LoadPicture function must be
a legal, complete path and file name, else your program will stop with an error
message.

 Five types of graphics files can be loaded into a picture box:

Bitmap An image represented by pixels and stored as a

collection of bits in which each bit corresponds to one
pixel. Usually has a .bmp extension. Appears in

original size.
Icon A special type of bitmap file of maximum 32 x 32 size.

Has a .ico extension. We’ll create icon files in Class

5. Appears in original size.
Metafile A file that stores an image as a collection of graphical

objects (lines, circles, polygons) rather than pixels.

Metafiles preserve an image more accurately than
bitmaps when resized. Has a .wmf extension.

Resizes itself to fit the picture box area.
JPEG JPEG (Joint Photographic Experts Group) is a

compressed bitmap format which supports 8 and 24
bit color. It is popular on the Internet. Has a .jpg

extension and scales nicely.
GIF GIF (Graphic Interchange Format) is a compressed

bitmap format originally developed by CompuServe.

It supports up to 256 colors and is popular on the
Internet. Has a .gif extension and scales nicely.

4-14 Learn Visual Basic 6.0

Image Boxes

 An image box is very similar to a picture box in that it allows you to place

graphics information on a form. Image boxes are more suited for static situations
- that is, cases where no modifications will be done to the displayed graphics.

 Image boxes appear in the middle-layer of form display, hence they could be
obscured by picture boxes and other objects. Image box graphics can be resized
by using the Stretch property.

 Image Box Properties:

Picture Establishes the graphics file to display in the image

box.
Stretch If False, the image box resizes itself to fit the graphic.

If True, the graphic resizes to fit the control area.

 Image Box Events:

Click Triggered when a image box is clicked.

DblClick Triggered when a image box is double-clicked.

 The image box does not support any methods, however it does use the
LoadPicture function. It is used in exactly the same manner as the picture box

uses it. And image boxes can load the same file types: bitmap (.bmp), icon
(.ico), metafiles (.wmf), GIF files (.gif), and JPEG files (.jpg). With Stretch = True,

all three graphic types will expand to fit the image box area.

Quick Example: Picture and Image Boxes

1. Start a new project. Draw one picture box and one image box.

2. Set the Picture property of the picture and image box to the same file. If you have

graphics files installed with Visual Basic, bitmap files can be found in the bitmaps
folder, icon files in the icons folder, and metafiles are in the metafile folder.

3. Notice what happens as you resize the two boxes. Notice the layer effect when

you move one box on top of the other. Notice the effect of the image box Stretch

property. Play around with different file types - what differences do you see?

More Exploration of the Visual Basic Toolbox 4-

15

Drive List Box

 The drive list box control allows a user to select a valid disk drive at run-time. It

displays the available drives in a drop-down combo box. No code is needed to

load a drive list box; Visual Basic does this for us. We use the box to get the

current drive identification.

 Drive List Box Properties:

Drive Contains the name of the currently selected drive.

 Drive List Box Events:

Change Triggered whenever the user or program changes the

drive selection.

Directory List Box

 The directory list box displays an ordered, hierarchical list of the user's disk

directories and subdirectories. The directory structure is displayed in a list box.
Like, the drive list box, little coding is needed to use the directory list box - Visual
Basic does most of the work for us.

 Directory List Box Properties:

Path Contains the current directory path.

 Directory List Box Events:

Change Triggered when the directory selection is changed.

4-16 Learn Visual Basic 6.0

File List Box

 The file list box locates and lists files in the directory specified by its Path

property at run-time. You may select the types of files you want to display in the

file list box.

 File List Box Properties:

FileName Contains the currently selected file name.

Path Contains the current path directory.

Pattern Contains a string that determines which files will be

displayed. It supports the use of * and ? wildcard
characters. For example, using *.dat only displays
files with the .dat extension.

 File List Box Events:

DblClick Triggered whenever a file name is double-clicked.

PathChange Triggered whenever the path changes in a file list box.

 You can also use the MultiSelect property of the file list box to allow multiple file

selection.

More Exploration of the Visual Basic Toolbox 4-

17

Synchronizing the Drive, Directory, and File List Boxes

 The drive, directory, and file list boxes are almost always used together to obtain
a file name. As such, it is important that their operation be synchronized to insure
the displayed information is always consistent.

 When the drive selection is changed (drive box Change event), you should

update the directory path. For example, if the drive box is named drvExample and

the directory box is dirExample, use the code:

dirExample.Path = drvExample.Drive

 When the directory selection is changed (directory box Change event), you
should update the displayed file names. With a file box named filExample, this
code is:

filExample.Path = dirExample.Path

 Once all of the selections have been made and you want the file name, you need
to form a text string that correctly and completely specifies the file identifier. This
string concatenates the drive, directory, and file name information. This should be
an easy task, except for one problem. The problem involves the backslash (\)
character. If you are at the root directory of your drive, the path name ends with a
backslash. If you are not at the root directory, there is no backslash at the end of
the path name and you have to add one before tacking on the file name.

 Example code for concatenating the available information into a proper file name
and then loading it into an image box is:

Dim YourFile as String

If Right(filExample.Path,1) = "\" Then

YourFile = filExample.Path + filExample.FileName
Else
YourFile = filExample.Path + "\" + filExample.FileName

End If
imgExample.Picture = LoadPicture(YourFile)

Note we only use properties of the file list box. The drive and directory box
properties are only used to create changes in the file list box via code.

4-18 Learn Visual Basic 6.0

Example 4 -2

Image Viewer

Start a new project. In this application, we search our computer's file structure for
graphics files and display the results of our search in an image box.

Image Viewer Application Specifications

Develop an application where the user can search and find graphics
files (*.ico, *.bmp, *.wmf) on his/her computer. Once a file is selected,
print the corresponding file name on the form and display the graphic

file in an image box using the LoadPicture() function.

More Exploration of the Visual Basic Toolbox 4-

19

One possible solution to the Image Viewer Application:

1. Place a drive list box, directory list box, file list box, four label boxes, a line (use

the line tool) and a command button on the form. We also want to add an image
box, but make it look like it's in some kind of frame. Build this display area in
these steps: draw a 'large shape', draw another shape within this first shape that
is the size of the image display area, and lastly, draw an image box right on top of
this last shape. Since the two shapes and image box are in the same display
layer, the image box is on top of the second shape which is on top of the first
shape, providing the desired effect of a kind of picture frame. The form should
look like this:

Line1

Shape1

Shape2

Image1

Note the second shape is directly beneath the image box.

2. Set properties of the form and each object.

Form1:

BorderStyle 1-Fixed Single
Caption Image Viewer
Name frmImage

Drive1:

Name drvImage

Dir1:

Name dirImage

4-20 Learn Visual Basic 6.0

File1:

Name filImage

Pattern *.bmp;*.ico;*.wmf;*gif;*jpg
[type this line with no spaces]

Label1:

Caption [Blank]

BackColor Yellow
BorderStyle 1-Fixed Single
Name lblImage

Label2:

Caption Files:

Label3:

Caption Directories:

Label4:

Caption Drives:

Command1:

Caption &Show Image
Default True

Name cmdShow

Command2:

Cancel True
Caption E&xit

Name cmdExit

Line1:

BorderWidth 3

Shape1:

BackColor Cyan

BackStyle 1-Opaque
FillColor Blue
FillStyle 4-Upward Diagonal

Shape 4-Rounded Rectangle

Shape2:

BackColor White
BackStyle 1-Opaque

More Exploration of the Visual Basic Toolbox 4-

21

Image1:

BorderStyle 1-Fixed Single

Name imgImage
Stretch True

3. Attach the following code to the drvImage_Change procedure.

Private Sub drvImage_Change()

'If drive changes, update directory

dirImage.Path = drvImage.Drive

End Sub

When a new drive is selected, this code forces the directory list box to display

directories on that drive.

4. Attach this code to the dirImage_Change procedure.

Private Sub dirImage_Change()

'If directory changes, update file path

filImage.Path = dirImage.Path

End Sub

Likewise, when a new directory is chosen, we want to see the files on that

directory.

5. Attach this code to the cmdShow_Click event.

Private Sub cmdShow_Click()

'Put image file name together and

'load image into image box

Dim ImageName As String

'Check to see if at root directory

If Right(filImage.Path, 1) = "\" Then

ImageName = filImage.Path + filImage.filename

Else

ImageName = filImage.Path + "\" + filImage.filename

End If

lblImage.Caption = ImageName

imgImage.Picture = LoadPicture(ImageName)

End Sub

This code forms the file name (ImageName) by concatenating the directory path

with the file name. It then displays the complete name and loads the picture into
the image box.

4-22 Learn Visual Basic 6.0

More Exploration of the Visual Basic Toolbox 4-23

6. Copy the code from the cmdShow_Click procedure and paste it into the
filImage_DblClick procedure. The code is identical because we want to display

the image either by double-clicking on the filename or clicking the command

button once a file is selected. Those of you who know how to call routines in
Visual Basic should note that this duplication of code is unnecessary - we could
simply have the filImage_DblClick procedure call the cmdShow_Click

procedure. We’ll learn more about this next class.

7. Attach this code to the cmdExit_Click procedure.

Private Sub cmdExit_Click()

End

End Sub

8. Save your project. Run and try the application. Find bitmaps, icons, and
metafiles. Notice how the image box Stretch property affects the different
graphics file types. Here’s how the form should look when displaying one
example metafile:

4-24 Learn Visual Basic 6.0

Common Dialog Boxes

 The primary use for the drive, directory, and file name list boxes is to develop

custom file access routines. Two common file access routines in Windows -based

applications are the Open File and Save File operations. Fortunately, you don’t

have to build these routines.

 To give the user a standard interface for common operations in Windows-based
applications, Visual Basic provides a set of common dialog boxes, two of

which are the Open and Save As dialog boxes. Such boxes are familiar to any

Windows user and give your application a professional look. And, with Windows

95, some context -sensitive help is available while the box is displayed. Appendix
II lists many symbolic constants used with common dialog boxes.

 The Common Dialog control is a ‘custom control’ which means we have to

make sure some other files are present to use it. In normal setup configurations,

Visual Basic does this automatically. If the common dialog box does not appear
in the Visual Basic toolbox, you need to add it. This is done by selecting
Components under the Project menu. When the selection box appears, click on
Microsoft Common Dialog Control, then click OK.

 The common dialog tool, although it appears on your form, is invisible at run-time.
You cannot control where the common dialog box appears on your screen. The
tool is invoked at run-time using one of five ‘Show’ methods. These methods are:

Method Common Dialog Box

ShowOpen Open dialog box
ShowSave Save As dialog box

ShowColor Color dialog box
ShowFont Font dialog box

ShowPrinter Printer dialog box

 The format for establishing a common dialog box named cdlExample so that an

Open box appears is:

cdlExample.ShowOpen

Control to the program returns to the line immediately following this line, once the

dialog box is closed in some manner. Common dialog boxes are system modal.

More Exploration of the Visual Basic Toolbox 4-25

 Learning proper use of all the common dialog boxes would require an extensive
amount of time. In this class, we’ll limit ourselves to learning the basics of getting
file names from the Open and Save As boxes in their default form.

Open Common Dialog Box

 The Open common dialog box provides the user a mechanism for specifying the

name of a file to open. We’ll worry about how to open a file in Class 6. The box is

displayed by using the ShowOpen method. Here’s an example of an Open

common dialog box:

 Open Dialog Box Properties:

CancelError If True, generates an error if the Cancel button is

clicked. Allows you to use error-handling procedures
to recognize that Cancel was clicked.

DialogTitle The string appearing in the title bar of the dialog box.

Default is Open. In the example, the DialogTitle is

Open Example.
FileName Sets the initial file name that appears in the File name

box. After the dialog box is closed, this property can

be read to determine the name of the selected file.

4-26 Learn Visual Basic 6.0

Filter Used to restrict the filenames that appear in the file

list box. Complete filter specifications for forming a
Filter can be found using on-line help. In the example,
the Filter was set to allow Bitmap (*.bmp), Icon (*.ico),
Metafile (*.wmf), GIF (*.gif), and JPEG (*.jpg) types
(only the Bitmap choice is seen).

FilterIndex Indicates which filter component is default. The

example uses a 1 for the FilterIndex (the default

value).
Flags Values that control special features of the Open

dialog box (see Appendix II). The example uses no

Flags value.

 When the user closes the Open File box, you should check the returned file name
to make sure it meets the specifications your application requires before you try to
open the file.

Quick Example: The Open Dialog Box

1. Start a new project. Place a common dialog control, a label box, and a command

button on the form. Set the following properties:

Form1:

Caption Common Dialog Examples

Name frmCommon

CommonDialog1:

DialogTitle Open Example
Filter Bitmaps (*.bmp)|*.bmp|

Icons (*.ico)|*.ico|Metafiles (*.wmf)|*.wmf
GIF Files (*.gif)|*.gif|JPEG Files (*,jpg)|*.jpg
(all on one line)

Name cdlExample

Label1:

BorderStyle 1-Fixed Single
Caption [Blank]

Name lblExample

Command1:

Caption &Display Box
Name cmdDisplay

More Exploration of the Visual Basic Toolbox 4-27

When done, the form should look like this (make sure your label box is very long):

2. Attach this code to the cmdDisplay_Click procedure.

Private Sub cmdDisplay_Click()

cdlExample.ShowOpen

lblExample.Caption = cdlExample.filename

End Sub

This code brings up the Open dialog box when the button is clicked and shows the
file name selected by the user once it is closed.

3. Save the application. Run it and try selecting file names and typing file names.

Notice names can be selected by highlighting and clicking the OK button or just by

double-clicking the file name. In this example, clicking the Cancel button is not

trapped, so it has the same effect as clicking OK.

4. Notice once you select a file name, the next time you open the dialog box, that

selected name appears as default, since the FileName property is not affected in
code.

4-28 Learn Visual Basic 6.0

Save As Common Dialog Box

 The Save As common dialog box provides the user a mechanism for specifying

the name of a file to save. We’ll worry about how to save a file in Class 6. The box

is displayed by using the ShowSave method.. Here’s an example of a Save As

common dialog box:

 Save As Dialog Box Properties (mostly the same as those for the Open box):

CancelError If True, generates an error if the Cancel button is

clicked. Allows you to use error-handling procedures

to recognize that Cancel was clicked.

DefaultExt Sets the default extension of a file name if a file is

listed without an extension.
DialogTitle The string appearing in the title bar of the dialog box.

Default is Save As. In the example, the DialogTitle is

Save As Example.
FileName Sets the initial file name that appears in the File name

box. After the dialog box is closed, this property can

be read to determine the name of the selected file.
Filter Used to restrict the filenames that appear in the file

list box.
FilterIndex Indicates which filter component is default.

Flags Values that control special features of the dialog box

(see Appendix II).

More Exploration of the Visual Basic Toolbox 4-29

 The Save File box is commonly configured in one of two ways. If a file is being
saved for the first time, the Save As configuration, with some default name in the
FileName property, is used. In the Save configuration, we assume a file has been

previously opened with some name. Hence, when saving the file again, that same
name should appear in the FileName property. You’ve seen both configuration

types before.

 When the user closes the Save File box, you should check the returned file name
to make sure it meets the specifications your application requires before you try to
save the file. Be especially aware of whether the user changed the file extension
to something your application does not allow.

Quick Example: The Save As Dialog Box

1. We’ll just modify the Open example a bit. Change the DialogTitle property of the

common dialog control to “ Save As Example” and set the DefaultExt property

equal to “bmp”.

2. In the cmdDisplay_Click procedure, change the method to ShowSave (opens

Save As box).

3. Save the application and run it. Try typing names without extensions and note

how .bmp is added to them. Notice you can also select file names by double-

clicking them or using the OK button. Again, the Cancel button is not trapped, so

it has the same effect as clicking OK.

4-30 Learn Visual Basic 6.0

Exercise 4

Student Database Input Screen

You did so well with last week’s assignment that, now, a school wants you to develop
the beginning structure of an input screen for its students. The required input
information is:

1. Student Name
2. Student Grade (1 through 6)
3. Student Sex (Male or Female)

4. Student Date of Birth (Month, Day, Year)
5. Student Picture (Assume they can be loaded as bitmap files)

Set up the screen so that only the Name needs to be typed; all other inputs should be
set with option buttons, scroll bars, and common dialog boxes. When a screen of
information is complete, display the summarized profile in a message box. This
profile message box should resemble this:

Note the student’s age must be computed from the input birth date - watch out for
pitfalls in doing the computation. The student’s picture does not appear in the profile,
only on the input screen.

More Exploration of the Visual Basic Toolbox 4-31

My Solution:

Form:

txtName

lblMonth
lblDay lblYear Frame1

Label1

Frame2

optSex

vsbMonth

vsbDay

Frame3

imgStudent

vsbYear
cmdLoad

cdlBox

Frame4 optLevel cmdShow cmdNew cmdExit

Properties:

Form frmStudent:

BorderStyle = 1- Fixed Single

Caption = Student Profile

CommandButton cmdLoad:

Caption = &Load Picture

Frame Frame3:

Caption = Picture
FontName = MS Sans Serif
FontBold = True
FontSize = 9.75

FontItalic = True

4-32 Learn Visual Basic 6.0

Image imgStudent:

BorderStyle = 1 - Fixed Single

Stretch = True

CommandButton cmdExit:

Caption = E&xit

CommandButton cmdNew:

Caption = &New Profile

CommandButton cmdShow:

Caption = &Show Profile

Frame Frame4:

Caption = Grade Level
FontName = MS Sans Serif
FontBold = True
FontSize = 9.75

FontItalic = True

OptionButton optLevel:

Caption = Grade 6
Index = 5

OptionButton optLevel:

Caption = Grade 5

Index = 4

OptionButton optLevel:

Caption = Grade 4

Index = 3

OptionButton optLevel:

Caption = Grade 3

Index = 2

OptionButton optLevel:

Caption = Grade 2

Index = 1

OptionButton optLevel:

Caption = Grade 1
Index = 0

More Exploration of the Visual Basic Toolbox 4-33

Frame Frame2:

Caption = Sex

FontName = MS Sans Serif
FontBold = True
FontSize = 9.75

FontItalic = True

OptionButton optSex:

Caption = Female
Index = 1

OptionButton optSex:

Caption = Male
Index = 0

Frame Frame1:

Caption = Date of Birth
FontName = MS Sans Serif
FontBold = True
FontSize = 9.75

FontItalic = True

VScrollBar vsbYear:

Max = 1800
Min = 2100

Value = 1960

VScrollBar vsbDay:

Max = 1
Min = 31

Value = 1

VScrollBar vsbMonth:

Max = 1
Min = 12

Value = 1

Label lblYear:

Alignment = 2 - Center
BackColor = &H00FFFFFF& (White)
BorderStyle = 1 - Fixed Single
FontName = MS Sans Serif
FontSize = 10.8

4-34 Learn Visual Basic 6.0

Label lblDay:

Alignment = 2 - Center

BackColor = &H00FFFFFF& (White)
BorderStyle = 1 - Fixed Single
FontName = MS Sans Serif
FontSize = 10.8

Label lblMonth:

Alignment = 2 - Center
BackColor = &H00FFFFFF& (White)
BorderStyle = 1 - Fixed Single
FontName = MS Sans Serif
FontSize = 10.8

TextBox txtName:

FontName = MS Sans Serif
FontSize = 10.8

CommonDialog cdlBox:

Filter = Bitmaps (*.bmp)|*.bmp

Label Label1:

Caption = Name
FontName = MS Sans Serif
FontBold = True

FontSize = 9.75
FontItalic = True

Code:

General Declarations:

Option Explicit

Dim Months(12) As String

Dim Days(12) As Integer

Dim Grade As String

cmdExit Click Event:

Private Sub cmdExit_Click()

End

End Sub

More Exploration of the Visual Basic Toolbox 4-35

4-36 Learn Visual Basic 6.0

cmdLoad Click Event:

Private Sub cmdLoad_Click()

cdlbox.ShowOpen

imgStudent.Picture = LoadPicture(cdlbox.filename)

End Sub

cmdNew Click Event:

Private Sub cmdNew_Click()

'Blank out name and picture

txtName.Text = ""

imgStudent.Picture = LoadPicture("")

End Sub

cmdShow Click Event:

Private Sub cmdShow_Click()

Dim Is_Leap As Integer

Dim Msg As String, Age As Integer, Pronoun As String

Dim M As Integer, D As Integer, Y As Integer

'Check for leap year and if February is current month

If vsbMonth.Value = 2 And ((vsbYear.Value Mod 4 = 0 And

vsbYear.Value Mod 100 <> 0) Or vsbYear.Value Mod 400 = 0)

Then

Is_Leap = 1

Else

Is_Leap = 0

End If

'Check to make sure current day doesn't exceed number of

days in month

If vsbDay.Value > Days(vsbMonth.Value) + Is_Leap Then

MsgBox "Only" + Str(Days(vsbMonth.Value) + Is_Leap) + "

days in " + Months(vsbMonth.Value), vbOKOnly + vbCritical,

"Invalid Birth Date"

Exit Sub

End If

'Get current date to compute age

M = Val(Format(Now, "mm"))

D = Val(Format(Now, "dd"))

Y = Val(Format(Now, "yyyy"))

More Exploration of the Visual Basic Toolbox 4-37

Age = Y - vsbYear

If vsbMonth.Value > M Or (vsbMonth.Value = M And vsbDay >

D) Then Age = Age - 1

'Check for valid age

If Age < 0 Then

MsgBox "Birth date is before current date.", vbOKOnly +

vbCritical, "Invalid Birth Date"

Exit Sub

End If

'Check to make sure name entered

If txtName.Text = "" Then

MsgBox "The profile requires a name.", vbOKOnly +

vbCritical, "No Name Entered"

Exit Sub

End If

'Put together student profile message

Msg = txtName.Text + " is a student in the " + Grade + "

grade." + vbCr

If optSex(0).Value = True Then Pronoun = "He " Else

Pronoun = "She "

Msg = Msg + Pronoun + " is" + Str(Age) + " years old." +

vbCr

MsgBox Msg, vbOKOnly, "Student Profile"

End Sub

Form Load Event:

Private Sub Form_Load()

'Set arrays for dates and initialize labels

Months(1) = "January": Days(1) = 31

Months(2) = "February": Days(2) = 28

Months(3) = "March": Days(3) = 31

Months(4) = "April": Days(4) = 30

Months(5) = "May": Days(5) = 31

Months(6) = "June": Days(6) = 30

Months(7) = "July": Days(7) = 31

Months(8) = "August": Days(8) = 31

Months(9) = "September": Days(9) = 30

Months(10) = "October": Days(10) = 31

Months(11) = "November": Days(11) = 30

4-38 Learn Visual Basic 6.0

Months(12) = "December": Days(12) = 31

lblMonth.Caption = Months(vsbMonth.Value)

lblDay.Caption = Str(vsbDay.Value)

lblYear.Caption = Str(vsbYear.Value)

Grade = "first"

End Sub

More Exploration of the Visual Basic Toolbox 4-39

optLevel Click Event:

Private Sub optLevel_Click(Index As Integer)

Select Case Index

Case 0

Grade = "first"

Case 1

Grade = "second"

Case 2

Grade = "third"

Case 3

Grade = "fourth"

Case 4

Grade = "fifth"

Case 5

Grade = "sixth"

End Select

End Sub

vsbDay Change Event:

Private Sub vsbDay_Change()

lblDay.Caption = Str(vsbDay.Value)

End Sub

vsbMonth Change Event:

Private Sub vsbMonth_Change()

lblMonth.Caption = Months(vsbMonth.Value)

End Sub

vsbYear Change Event:

Private Sub vsbYear_Change()

lblYear.Caption = Str(vsbYear.Value)

End Sub

5-1

5. Creating a Stand-Alone Visual Basic Application

Review and Preview

 We've finished looking at most of the Visual Basic tools and been introduced to
most of the Basic language features. Thus far, to run any of the applications
studied, we needed Visual Basic. In this class, we learn the steps of developing a
stand-alone application that can be run on any Windows-based machine. We’ll
also look at some new components that help make up applications.

Designing an Application

 Before beginning the actual process of building your application by drawing the
Visual Basic interface, setting the object properties, and attaching the Basic
code, many things should be considered to make your application useful.

 A first consideration should be to determine what processes and functions you
want your application to perform. What are the inputs and outputs? Develop a
framework or flow chart of all your application's processes.

 Decide what tools you need. Do the built-in Visual Basic tools and functions meet
your needs? Do you need to develop some tools or functions of your own?

 Design your user interface. What do you want your form to look like? Consider
appearance and ease of use. Make the interface consistent with other Windows
applications. Familarity is good in program design.

 Write your code. Make your code readable and traceable - future code modifiers
will thank you. Consider developing reusable code - modules with utility outside
your current development. This will save you time in future developments.

Learn Visual Basic 6.0

5-2 Learn Visual Basic 6.0

 Make your code 'user-friendly.' Try to anticipate all possible ways a user can
mess up in using your application. It's fairly easy to write an application that works
properly when the user does everything correctly. It's difficult to write an
application that can handle all the possible wrong things a user can do and still not
bomb out.

 Debug your code completely before distributing it. There's nothing worse than
having a user call you to point out flaws in your application. A good way to find all
the bugs is to let several people try the code - a mini beta-testing program.

Using General Sub Procedures in Applications

 So far in this class, the only procedures we have studied are the event-driven
procedures associated with the various tools. Most applications have tasks not
related to objects that require some code to perform these tasks. Such tasks are
usually coded in a general Sub procedure (essentially the same as a subroutine

in other languages).

 Using general Sub procedures can help divide a complex application into more
manageable units of code. This helps meet the above stated goals of readability
and reusability.

 Defining a Sub Procedure:

The form for a general Sub procedure named GenlSubProc is:

Sub GenlSubProc(Arguments) 'Definition header
.
.

End Sub

The definition header names the Sub procedure and defines any arguments

passed to the procedure. Arguments are a comma-delimited list of variables

passed to and/or from the procedure. If there are arguments, they must be

declared and typed in the definition header in this form:

Var1 As Type1, Var2 As Type2, ...

Creating a Stand-Alone Visual Basic Application 5-3

 Sub Procedure Example:

Here is a Sub procedure (USMexConvert) that accepts as inputs an amount in

US dollars (USDollars) and an exchange rate (UStoPeso). It then outputs an

amount in Mexican pesos (MexPesos).

Sub USMexConvert (USDollars As Single, UStoPeso As Single,
MexPesos As Single)

MexPesos = UsDollars * UsToPeso
End Sub

 Calling a Sub Procedure:

There are two ways to call or invoke a Sub procedure. You can also use these to

call event-driven procedures.

Method 1:

Call GenlSubProc(Arguments) (if there are no Arguments, do not type the

parentheses)

Method 2:

GenlSubProc Arguments

I prefer Method 1 - it's more consistent with calling protocols in other languages
and it cleanly delineates the argument list. It seems most Visual Basic
programmers use Method 2, though. I guess they hate typing parentheses!
Choose the method you feel more comfortable with.

Example

To call our dollar exchange routine, we could use:

Call USMexConvert (USDollars, UStoMex, MexPesos)

or

USMexConvert USDollars, UStoMex, MexPesos

5-4 Learn Visual Basic 6.0

 Locating General Sub Procedures:

General Sub procedures can be located in one of two places in your application:
attached to a form or attached to a module. Place the procedure in the form if it

has a purpose specifically related to the form. Place it in a module if it is a
general purpose procedure that might be used by another form or module or
another application.

Whether placing the procedure in a form or module, the methods of creating the
procedure are the same. Select or open the form or module's code window.

Make sure the window's Object list says (General) and the Procedure list says

(Declarations). You can now create the procedure by selecting Add Procedure

from Visual Basic's Tools menu. A window appears allowing you to select Type

Sub and enter a name for your procedure. Another way to create a Sub is to go to

the last line of the General Declarations section, type Sub followed by a space

and the name of your procedure. Then, hit Enter. With either method for

establishing a Sub, Visual Basic will form a template for your procedure. Fill in

the Argument list and write your Basic code. In selecting the Insert Procedure
menu item, note another option for your procedure is Scope. You have the choice

of Public or Private. The scope word appears before the Sub word in the

definition heading. If a module procedure is Public, it can be called from any other

procedure in any other module. If a module procedure is Private, it can only be

called from the module it is defined in. Note, scope only applies to procedures in

modules. By default, all event procedures and general procedures in a form are

Private - they can only be called from within the form. You must decide the scope

of your procedures.

 Passing Arguments to Sub Procedures:

A quick word on passing arguments to procedures. By default, they are passed

by reference. This means if an argument is changed within the procedure, it will

remain changed once the procedure is exited.

C programmers have experienced the concept of passing by value, where a

parameter changed in a procedure will retain the value it had prior to calling the
routine. Visual Basic also allows calling by value. To do this, place the word
ByVal in front of each such variable in the Argument list.

Creating a Stand-Alone Visual Basic Application 5-5

Using General Function Procedures in Applications

 Related to Sub procedures are Function procedures. A Function procedure, or

simply Function, performs a specific task within a Visual Basic program and
returns a value. We've seen some built-in functions such as the MsgBox and the

Format function.

 Defining a Function:

The form for a general Function named GenlFcn is:

Function GenlFcn(Arguments) As Type 'Definition header

.

.
GenlFcn = ...

End Function

The definition header names the Function and specifies its Type (the type of the

returned value) and defines any input Arguments passed to the function. Note

that somewhere in the function, a value for GenlFcn must be computed for return

to the calling procedure.

Creating a Code Module

 If you're going to put code in a module, you'll need to know how to create and save
a module. A good way to think about modules is to consider them forms without
any objects, just code.

 To create a module, click on the New Module button on the toolbar, or select the
Module option from the Insert menu. The module will appear. Note any modules

appear in the Project Window, along with your form(s). You use the Project

Window to move among forms and modules.

 Once the module is active, establish all of your procedures as outlined above. To
name the module, click on the properties window while the module is active. Note
Name is the only property associated with a module. Saving a module is just like

saving a form - use the Save File and Save File As options.

5-6 Learn Visual Basic 6.0

 Function Example:

Here is a Function named CylVol that computes the volume of a cylinder of

known height (Height) and radius (Radius).

Function CylVol(Height As Single, Radius As Single) As Single
Dim Area As Single

Const PI = 3.1415926
Area = PI * Radius ^ 2
CylVol = Area * Height
End Sub

 Calling a Function:

To call or use a Function, you equate a variable (of proper type) to the Function,

with its arguments. That is, if the Function GenlFunc is of Type Integer, then use

the code segment:

Dim RValue as Integer
.

.
RValue = GenlFunc(Arguments)

Example

To call the volume computation function, we could use:

Dim Volume As Single
.
.

Volume = CylVol(Height, Radius)

 Locating Function Procedures:

Like Sub procedures, Functions can be located in forms or modules. They are
created using exactly the same process described for Sub procedures, the only
difference being you use the keyword Function.

And, like Sub procedures, Functions (in modules) can be Public or Private.

Creating a Stand-Alone Visual Basic Application 5-7

Quick Example: Temperature Conversion

1. Open the Temperature Conversion application from last class. Note in the

vsbTemp_Change and vsbTemp_Scroll procedures, there is a lot of repeated

code. We'll replace this code with a Sub procedure that prints the values and a

Function procedure that does the temperature conversion.

2. Add a module to your application. Create a Function (Public by default) named

DegF_To_DegC.

Public Function DegF_To_DegC(DegF As Integer) As Integer

DegF_To_DegC = CInt((DegF - 32) * 5 / 9)

End Function

3. Go back to your form. Create a Sub procedure named ShowTemps. Fill in the

code by cutting from an old procedure. Note this code uses the new Function to

convert temperature and prints both values in their respective label boxes.

Private Sub ShowTemps()

lblTempF.Caption = Str(TempF)

TempC = DegF_To_DegC(TempF)

lblTempC.Caption = Str(TempC)

End Sub

No arguments are needed since TempF and TempC are global to the form.

4. Rewrite the vsbTemp_Change and vsbTemp_Scroll procedures such that they

call the new Sub procedure:

Private Sub vsbTemp_Change()

TempF = vsbTemp.Value

Call ShowTemps

End Sub

Private Sub vsbTemp_Scroll()

Call vsbTemp_Change

End Sub

Note how vsbTemp_Scroll simply calls vsbTemp_Change since they use the

same code. This is an example of calling an event procedure.

5. Save the application and run it. Note how much neater and modular the code is.

5-8 Learn Visual Basic 6.0

Quick Example: Image Viewer (Op tional)

1. Open the Image Viewer application from last class. Note the code in the

cmdShow_Click and filImage_DblClick events is exactly the same. Delete the

code in the filImage_DblClick procedure and simply have it call the

cmdShow_Click procedure. That is, replace the filImage_DblClick procedure

with:

Private Sub filImage_DblClick()

Call cmdShow_Click

End Sub

2. This is another example of calling an event procedure. Save your application.

Adding Menus to an Application

 As mentioned earlier, it is important that the interface of your application be
familar to a seasoned, or not-so-seasoned, Windows user. One such familiar
application component is the Menu bar. Menus are used to provide a user with
choices that control the application. Menus are easily incorporated into Visual
Basic programs using the Menu Editor.

 A good way to think about elements of a menu structure is to consider them as a
hierarchical list of command buttons that only appear when pulled down from the
menu bar. When you click on a menu item, some action is taken. Like command
buttons, menu items are named, have captions, and have properties.

Example

Here is a typical menu structure:

File Edit Format

I
New Cut Bold
Open Copy talic

Save

Exit

Paste Underline
Size

10
 15
 20

Creating a Stand-Alone Visual Basic Application 5-9

The underscored characters are access keys, just like those on command
buttons. The level of indentation indicates position of a menu item within the
hierarchy. For example, New is a sub -element of the File menu. The line under
Save in the File menu is a separator bar (separates menu items).

With this structure, the Menu bar would display:

File Edit Format

The sub-menus appear when one of these ‘top’ level menu items is selected.
Note the Size sub -menu under Format has another level of hierarchy. It is good

practice to not use more than two levels in menus. Each menu element will have a
Click event associated with it.

 The Menu Editor allows us to define the menu structure, adding access keys and

shortcut keys, if desired. We then add code to the Click events we need to

respond to. The Menu Editor is selected from the Tools menu bar or by clicking

the Menu Editor on the toolbar. This selection can only be made when the form

needing the menu is active. Upon selecting the editor, and entering the example

menu structure, the editor window looks like this:

Each item in the menu structure requires several entries in this design box.

5-10 Learn Visual Basic 6.0

 The Caption box is where you type the text that appears in the menu bar. Access
keys are defined in the standard way using the ampersand (&). Separator bars (a
horizontal line used to separate menu items) are defined by using a Caption of a
single hyphen (-). When assigning captions and access keys, try to use conform
to any established Windows standards.

 The Name box is where you enter a control name for each menu item. This is

analogous to the Name property of command buttons and is the name used to set
properties and establish the Click event procedure for each menu item. Each

menu item must have a name, even separator bars! The prefix mnu is used to

name menu items. Sub-menu item names usually refer back to main menu
headings. For example, if the menu item New is under the main heading File

menu, use the name mnuFileNew.

 The Index box is used for indexing any menu items defined as control arrays.

 The Shortcut dropdown box is used to assign shortcut keystrokes to any item in

a menu structure. The shortcut keystroke will appear to the right of the caption for

the menu item. An exa mple of such a keystroke is using Ctrl+X to cut text.

 The HelpContextID and NegotiatePosition boxes relate to using on-line help

and object linking embedding, and are beyond the scope of this discussion.

 Each menu item has four properties associated with it. These properties can be
set at design time using the Menu Editor or at run-time using the standard dot
notation. These properties are:

Checked Used to indicate whether a toggle option is turned on

or off. If True, a check mark appears next to the

menu item.

Enabled If True, menu item can be selected. If False, menu

item is grayed and cannot be selected.

Visible Controls whether the menu item appears in the

structure.
WindowList Used with Multiple Document Interface (MDI) - not

discussed here.

 At the bottom of the Menu Editor form is a list box displaying the hierarchical list of
menu items. Sub-menu items are indented to their level in the hierarchy. The right
and left arrows adjust the levels of menu items, while the up and down arrows
move ite ms within the same level. The Next, Insert, and Delete buttons are used

to move the selection down one line, insert a line above the current selection, or
delete the current selection, respectively.

Creating a Stand-Alone Visual Basic Application 5-11

 Let’s look at the process of entering the example menu structure. To do this, we
‘stack’ the three menus on top of each other, that is enter items as a long list. For

each item in this list, we provide a Caption (with access key, if any), a Name
(indicative of where it is in the structure), a shortcut key (if any), and provide
proper indentation to indication hierarchical location (use the left and right arrows
to move in and out).

 After entering this structure, the complete list box at the bottom of the Menu Editor
would look like this (notice access keys are indicated with ampersands and
shortcut keys are listed at the right, and, the assigned names are shown at the left

- these don’t really appear in the Menu Editor list box; they are shown to illustrate
one possible naming convention):

Name
mnuFile

&File

mnuFileNew
mnuFileOpen

.......&New

.......&Open

mnuFileSave
mnuFileBar
mnuFileExit

.......&Save

.......-

.......E&xit

mnuEdit
mnuEditCut

&Edit
.......Cu&t

Ctrl+X

mnuEditCopy&Copy Ctrl+C

mnuEditPaste
mnuFmt

.......&Paste
F&ormat

Ctrl+V

mnuFmtBold
mnuFmtItalic

.......Bold

.......Italic

mnuFmtUnderline
mnuFmtSize
mnuFmtSize10

.......Underline

.......Size

.............. 10

mnuFmtSize15 15

mnuFmtSize20 20

 At first, using the Menu Editor may seem a little clunky. After you’ve done a

couple of menu structures, however, its use becomes obvious. A neat thing is:
after setting up your menu, you can look at it in the Visual Basic design mode and
see if it looks like it should. In the next example, you’ll get practice setting up a
similar menu structure.

5-12 Learn Visual Basic 6.0

Example 5 -1

Note Editor

1. Start a new project. We will use this application the rest of this class. We will
build a note editor with a menu structure that allows us to control the appearance
of the text in the editor box. Since this is the first time we’ve built menus, I’ll
provide the steps involved.

2. Place a large text box on a form. Set the properties of the form and text box:

Form1:

BorderStyle 1-Fixed Single

Caption Note Editor
Name frmEdit

Text1:

BorderStyle 1-Fixed Single

MultiLine True
Name txtEdit

ScrollBars 2-Vertical
Text [Blank]

The form should look something like this when you’re done:

Creating a Stand-Alone Visual Basic Application 5-13

3. We want to add this menu structure to the Note Editor:

File Format

New Bold
Italic

Exit Underline
Size

Small
Medium
Large

Note the identified access keys. Bring up the Menu Editor and assign the
following Captions, Names, and Shortcut Keys to each item. Make sure each
menu item is at is proper location in the hierarchy.

Caption Name Shortcut
&File mnuFile [None]

&New mnuFileNew [None]
- mnuFileBar [None]
E&xit mnuFileExit [None]
F&ormat mnuFmt [None]
& Bold mnuFmt Bold Ctrl+B
&Italic mnuFmtItalic Ctrl+I
&Underline mnuFmtUnderline Ctrl+U
&Size mnuFmtSize [None]
&Small mnuFmtSizeSmall Ctrl+S
&Medium mnuFmtSizeMedium Ctrl+M
&Large mnuFmtSizeLarge Ctrl+L

The Small item under the Size sub-menu should also be Checked to indicate the

initial font size. When done, look through your menu structure in design mode to

make sure it looks correct. With a menu, the form will appear like:

5-14 Learn Visual Basic 6.0

4. Each menu item that performs an action requires code for its Click event. The

only menu items that do not have events are the menu and sub-menu headings,
namely File, Format, and Size. All others need code. Use the following code for
each menu item Click event. (This may look like a lot of typing, but you should be

able to use a lot of cut and paste.)

If mnuFileNew is clicked, the program checks to see if the user really wants a

new file and, if so (the default response), clears out the text box:

Private Sub mnuFileNew_Click()

'If user wants new file, clear out text

Dim Response As Integer

Response = MsgBox("Are you sure you want to start a new

file?", vbYesNo + vbQuestion, "New File")

If Response = vbYes Then txtEdit.Text = ""

End Sub

If mnuFileExit is clicked, the program checks to see if the user really wants to

exit. If not (the default response), the user is returned to the program:

Private Sub mnuFileExit_Click()

'Make sure user really wants to exit

Dim Response As Integer

Response = MsgBox("Are you sure you want to exit the

note editor?", vbYesNo + vbCritical + vbDefaultButton2,

"Exit Editor")

If Response = vbNo Then

Exit Sub

Else

End

End If

End Sub

If mnuFmtBold is clicked, the program toggles the current bold status:

Private Sub mnuFmtBold_Click()

'Toggle bold font status

mnuFmtBold.Checked = Not (mnuFmtBold.Checked)

txtEdit.FontBold = Not (txtEdit.FontBold)

End Sub

Creating a Stand-Alone Visual Basic Application 5-15

If mnuFmtItalic is clicked, the program toggles the current italic status:

Private Sub mnuFmtItalic_Click()

'Toggle italic font status

mnuFmtItalic.Checked = Not (mnuFmtItalic.Checked)

txtEdit.FontItalic = Not (txtEdit.FontItalic)

End Sub

If mnuFmtUnderline is clicked, the program toggles the current underline status:

Private Sub mnuFmtUnderline_Click()

'Toggle underline font status

mnuFmtUnderline.Checked = Not (mnuFmtUnderline.Checked)

txtEdit.FontUnderline = Not (txtEdit.FontUnderline)

End Sub

If either of the three size sub-menus is clicked, indicate the appropriate check
mark location and change the font size:

Private Sub mnuFmtSizeSmall_Click()

'Set font size to small

mnuFmtSizeSmall.Checked = True

mnuFmtSizeMedium.Checked = False

mnuFmtSizeLarge.Checked = False

txtEdit.FontSize = 8

End Sub

Private Sub mnuFmtSizeMedium_Click()

'Set font size to medium

mnuFmtSizeSmall.Checked = False

mnuFmtSizeMedium.Checked = True

mnuFmtSizeLarge.Checked = False

txtEdit.FontSize = 12

End Sub

Private Sub mnuFmtSizeLarge_Click()

'Set font size to large

mnuFmtSizeSmall.Checked = False

mnuFmtSizeMedium.Checked = False

mnuFmtSizeLarge.Checked = True

txtEdit.FontSize = 18

End Sub

5-16 Learn Visual Basic 6.0

5. Save your application. We will use it again in Class 6 where we’ll learn how to

save and open text files created with the Note Editor. Test out all the options.
Notice how the toggling of the check marks works. Try the shortcut keys.

Using Pop-Up Menus

 Pop-up menus can show up anywhere on a form, usually being activated by a

single or double-click of one of the two mouse buttons. Most Windows
applications, and Windows itself, use pop-up menus. For example, using the right
hand mouse button on almost any object in Windows 95 will display a pop-up
menu. In fact, with the introduction of such pop-up menus with Windows 95, the
need for adding such menus to Visual Basic applications has been reduced.

 Adding pop-up menus to your Visual Basic application is a two step process.
First, you need to create the menu using the Menu Editor (or, you can use any

existing menu structure with at least one sub-menu). If creating a unique pop-up
menu (one that normally does not appear on the menu bar), it’s Visible property is

set to be False at design time. Once created, the menu is displayed on a form

using the PopupMenu method.

 The PopupMenu method syntax is:

ObjectName.PopupMenu MenuName, Flags, X, Y

The ObjectName can be omitted if working with the current form. The arguments
are:

MenuName Full-name of the pop-up menu to display.

Flags Specifies location and behavior of menu (optional).

X, Y (X, Y) coordinate of menu in twips (optional; if either value

is omitted, the current mouse coordinate is used).

 The Flags setting is the sum of two constants. The first constant specifies

location:

Value Meaning Symbolic Constant

0 Left side of menu is at X coordinate vbPopupMenuLeftAlign

4 Menu is centered at X coordinate vbPopupMenuCenterAlign
8 Right side of menu is at X coordinate vbPopupMenuRightAlign

Creating a Stand-Alone Visual Basic Application 5-17

The second specifies behavior:

Value Meaning Symbolic Constant

0 Menu reacts only to left mouse button vbPopupMenuLeftButton
2 Menu reacts to either mouse button vbPopupMenuRightButton

 You need to decide where to put the code that displays the pop-up menu, that is

the PopupMenu method. Usually, a pop-up menu is displayed in response to a

Click event or MouseDown event. The standard (starting with Windows 95)

seems to be leaning toward displaying a pop-up menu in response to a right

mouse button click.

 Just like other menus, each item on your pop-up menu will need code for the
corresponding Click event. Many times, though, the code is simply a call to an

existing menu item’s Click event.

Assigning Icons to Forms

 Notice that whenever you run an application, a small icon appears in the upper left
hand corner of the form. This icon is also used to represent the form when it is
minimized at run-time. The icon seen is the default Visual Basic icon for forms.
Using the Icon property of a form, you can change this displayed icon.

 The idea is to assign a unique icon to indicate the form’s function. To assign an
icon, click on the Icon property in the Property Window for the form. Click on the
ellipsis (...) and a window that allows selection of icon files will appear.

 The icon file you load must have the .ico filename extension and format. When

you first assign an icon to a form (at design time), it will not appear on the form. It

will only appear after you have run the application once.

Designing Your Own Icon with IconEdit

 Visual Basic offers a wealth of icon files from which you could choose an icon to
assign to your form(s). But, it’s also fun to design your own icon to add that
personal touch.

 PC Magazine offers a free utility called IconEdit that allows you to design and

save icons. Included with these notes is this program and other files (directory

IconEdit). To install these files on your machine, copy the folder to your hard drive.

5-18 Learn Visual Basic 6.0

 To run IconEdit, click Start on the Windows 95 task bar, then click Run. Find the

IconEdit.exe program (use Browse mode). You can also establish an shortcut to

start IconEdit from your desktop, if desired. The following Editor window will

appear:

 The basic idea of IconEdit is to draw an icon in the 32 x 32 grid displayed. You
can draw single points, lines, open rectangles and ovals, and filled rectangles and
ovals. Various colors are available. Once completed, the icon file can be saved
for attaching to a form.

 Another fun thing to do with IconEdit is to load in Visual Basic icon files and see
how much artistic talent really goes into creating an icon.

 We won’t go into a lot of detail on using the IconEdit program here - I just want you
to know it exists and can be used to create and save icon files. Its use is fairly
intuitive. Consult the on-line help of the program for details. And, there is a .txt

file included that is very helpful.

Creating a Stand-Alone Visual Basic Application 5-19

Creating Visual Basic Executable Files

 Up to now, to run any of the applications created, we needed Visual Basic. The
goal of creating an application is to let others (without Visual Basic) use it. This is
accomplished by creating an executable version of the application.

 Before creating an executable, you should make sure your program is free of
bugs and operating as desired. Save all forms, modules, and project files. Any
later changes to the application will require re-creating the executable file.

 The executable file will have the extension .exe. To create an exe file for your
application, select Make [Project name] exe from Visual Basic’s File menu.

This will display the Make EXE File dialog box, where you name the exe file. To

open the Options box, click that button. The EXE Options dialog box will appear:

 We’ll only concern ourselves with two pieces of information in this box: Title and
Icon. The Title is the name you want to give your application. It does not have to

be the same as the Project name. The Icon is selected from icons assigned to

form(s) in your application. The selected icon is used to identify the application

everywhere it is needed in Windows 95.

 Once you have selected these options, return to the Make EXE File dialog box,
select a directory (best to use the same directory your application files are in) and
name for your executable file. Click OK and the exe file is created.

5-20 Learn Visual Basic 6.0

 Use Windows Explorer to confirm creation of the file. And, while there, double-
click the executable file name and the program will run!

Creating a Stand-Alone Visual Basic Application 5-21

Example 5 -2

Note Editor - Building an Executable and Attaching an Icon

1. Open your Note Editor project. Attach an icon to the form by setting the Icon

property. If you want to, open up the Image Viewer project from last class to take
a look at icon files. The icon I used is note.ico

2. Create an executable version of your Note Editor. Confirm creation of the exe file

and run it under the Windows Explorer.

3. Something you might want to try with your application is create a Windows 95
shortcut to run your program, that is, display a clickable icon. To get started, click
the Start button on the taskbar, then Settings, then Taskbar. Here, you can add

programs to those that show up when you select Start. The process is
straightforward. Find your application, specify the folder you want the shortcut to
appear in, and name your application. When done, the icon will appear in the
specified location.

5-22 Learn Visual Basic 6.0

Using the Visual Basic Package & Deployment Wizard

 We were able to run the Note Editor executable file because Visual Basic is
installed on our system. If you gave someone a copy of your exe file and they tried
to run it, it wouldn’t work (unless they have Visual Basic installed also). The
reason it wouldn’t run is that the executable file also needs some ancillary files
(primarily, so-called dynamic link libraries) to run properly. These libraries provide
most of the code associated with keeping things on a form working properly.

 So to allow others to run your application, you need to give them the executable
file (exe) and at least two dynamic link libraries. Unfortunately, these dynamic link
libraries take up over 1 Meg of disk space, so it’s hard to move those around on a
floppy disk.

 Visual Basic solves this ‘distribution problem’ by providing a very powerful tool
called the Visual Basic Package & Deployment Wizard. This wizard is

installed along with Visual Basic.

 The Package & Deployment Wizard prepares your application for distribution. It
helps you determine which files to distribute, creates a Setup program (written in
Visual Basic) that works like all other Windows Setup programs (setup.exe),

compresses all required files to save disk space, and writes the compressed files
to the distribution media of choice, usually floppy disk(s).

 To start the Package & Deployment Wizard, click the Start button in Windows,

then find the Visual Basic program folder - click on Visual Basic Tools, then

choose Package & Deployment Wizard The setup follows several steps. The

directions provided with each step pertain to the simple applications we develop

in class. For more complicated examples, you need to modify the directions,

especially regarding what files you need to distribute with your application.

Creating a Stand-Alone Visual Basic Application 5-23

Step 1. Initial Information. Enter the path and file name for your project file

(.vbp). Click the ellipsis (...) to browse vbp files. If an executable (.exe) file does
not exist, one will be created. Click the ‘Package’ button to continue. If you have
previously saved a setup package for the selected project, it will load the package
file created during that session.

Step 2. Package Type. Choose the Standard Setup Package (we want a

standard setup program). Click Next to continue.

Step 3. Package Folder. Select a directory where you want the application

distribution package to be saved. Click Next to continue. Click Back to return to

the previous step.

Step 4. Included Files. The Package & Deployment Wizard will list all files it

believes are required for your application to function properly. If your application
requires any files not found by the wizard (for example, external data files you have
created), you would add them to the setup list here (click Add). To continue, click

Next. Click Back to return to the previous step.

Step 5. Cab Options. Distribution files are called cab files (have a cab

extension). You can choose a Single cab file written to your hard drive (if you use
CD ROM distribution), or Multiple cab files (to allow distribution on floppy disks). If
you choose, Multiple, you also specify the capacity of the disks you will use to

5-24 Learn Visual Basic 6.0

write your distribution file(s). Make your choice. Click Next to Continue. Click
Back to return to the previous step.

Step 6. Installation Title. Enter a title you want your application to have. Click

Next to Continue. Click Back to return to previous step.

Step 7. Start Menu Items. This step determines where your installed

application will be located on the user’s Start menu. We will use the default

choice. Click Next to Continue. Click Back to return to previous step.

Step 8. Install Locations. The wizard gives you an opportunity to change the

locations of installed files. Click Next to Continue. Click Back to return to

previous step.

Step 9. Shared Files. Some files in your application may be shared by other

applications. Shared files will not be removed if the application is uninstalled.
Decide if you have shared files. Click Next to Continue. Click Back to return to
previous step.

Step 10. Finished! Provide a name for saving the script for this wizard session

(a file that saves answers to all the questions you just answered). Click Finish to

Continue. Click Back to return to previous step. The wizard will create and write
the cab files and tell you where they are saved. Click Close. You will be returned

to the Package & Deployment Wizard opening window. Click Close.

Step 11. Write Distribution Media. This is not a step in the wizard, but one you

must take. The cab files (distribution files) the wizard wrote must now be copied
to your distribution media. If you wrote a single cab file (for CD ROM), copy that
file, the setup.exe file (the setup application), and the setup.lst file to your CD
ROM). If you wrote multiple files (for floppy disks), copy the setup.exe, setup.lst,
and first cab file (1 at end of file name) to floppy number 1. Copy the second cab
file (2 at end of file name) to floppy number 2. Copy all subsequent cab files to as
many floppies as needed. Properly label all floppies.

 To install the application using the distribution CD ROM or floppy disk(s), a user
simply puts CD ROM or floppy number 1 in a drive. Then, through the Windows
Explorer, run the setup.exe program. The user will be taken through the

installation procedure step-by-step. The procedure is nearly identical to the

installation process for all Microsoft products.

 The Package & Deployment Wizard is a very powerful tool. We’ve only looked at
using it for simple applications. As your programming skills begin to include
database access and other advanced topics, you will need to become familiar
with other files that should be distributed with your applications.

Creating a Stand-Alone Visual Basic Application 5-25

Example 5 -3

Note Editor - Creating a Distribution Disk

1. Open your Note Editor project again. Create a distribution disk using the
Package & Deployment Wizard.

2. Try installing the application on your computer. Better yet, take the disk to another

Windows 95/98/NT-based machine, preferably without Visual Basic installed.
Install the application using the distribution disk and test its operation.

5-26 Learn Visual Basic 6.0

This page intentionally not left blank.

Creating a Stand-Alone Visual Basic Application 5-27

Exercise 5

US Capitals Quiz

Develop an application that quizzes a user on states and capitals in the United
States. Use a menu structure that allows the user to decide whether they want to
name states or capitals and whether they want mulitple choice or type-in answers.
Throughly test your application. Design an icon for your program using IconEdit or
some other program. Create an executable file. Create a distribution disk using the
Application Setup Wizard. Give someone your application disk and have them install
it on their computer and try out your nifty little program.

My Solution:

Form:

mnuOptions

mnuFile

lblHeadGiven

lblGiven

lblHeadAnswer lblComment

txtAnswer lblAnswer(0)

(under txtAnswer)

lblAnswer(1)

lblAnswer(2)

lblAnswer(3)

cmdNext

cmdExit

lblScore

5-28 Learn Visual Basic 6.0

Properties:

Form frmCapitals:

BorderStyle = 1 - Fixed Single
Caption = US Capitals

CommandButton cmdNext:

Caption = &Next Question

Enabled = False

CommandButton cmdExit:

Caption = E&xit

TextBox txtAnswer:

FontName = MS Sans Serif

FontSize = 13.2
Visible = False

Label lblComment:

Alignment = 2 - Center

BackColor = &H00C00000& (Blue)
BorderStyle = 1 - Fixed Single
FontName = MS Sans Serif
FontSize = 13.2
FontItalic = True

ForeColor = &H0000FFFF& (Yellow)

Label lblScore:

Alignment = 2 - Center
AutoSize = True

BackColor = &H0000FFFF& (Yellow)
BorderStyle = 1 - Fixed Single
Caption = 0%
FontName = MS Sans Serif
FontSize = 15.6
FontBold = True

Label lblAnswer (control array):

Alignment = 2 - Center

BackColor = &H00FFFFFF& (White)
BorderStyle = 1 - Fixed Single
FontName = MS Sans Serif
FontSize = 13.2
Index = 0, 1, 2, 3

Creating a Stand-Alone Visual Basic Application 5-29

Label lblHeadAnswer:

Caption = Capital:

FontName = MS Sans Serif
FontSize = 13.2
FontBold = True

Label lblHeadGiven:

Caption = State:
FontName = MS Sans Serif
FontSize = 13.2

FontBold = True

Menu mnuFile :

Caption = &File

Menu mnuFileNew:

Caption = &New

Menu mnuFileBar:

Caption = -

Menu mnuFileExit:

Caption = E&xit

Menu mnuOptions:

Caption = &Options

Menu mnuOptionsCapitals :

Caption = Name &Capitals

Checked = True

Menu mnuOptionsState:

Caption = Name &State

Menu mnuOptionsBar:

Caption = -

Menu mnuOptionsMC:

Caption = &Multiple Choice Answers
Checked = True

Menu mnuOptionsType:

Caption = &Type In Answers

5-30 Learn Visual Basic 6.0

Code:

General Declarations:

Option Explicit

Dim CorrectAnswer As Integer

Dim NumAns As Integer, NumCorrect As Integer

Dim Wsound(26) As Integer

Dim State(50) As String, Capital(50) As String

SoundEx General Function (this is a neat little function to check if spelling of two
words is similar):

Private Function SoundEx(W As String, Wsound() As Integer)

As String

‘Generates Soundex code for W

‘Allows answers whose spelling is close, but not exact

Dim Wtemp As String, S As String

Dim L As Integer, I As Integer

Dim Wprev As Integer, Wsnd As Integer, Cindex As Integer

Wtemp = UCase(W)

L = Len(W)

If L <> 0 Then

S = Left(Wtemp, 1)

Wprev = 0

If L > 1 Then

For I = 2 To L

Cindex = Asc(Mid(Wtemp, I, 1)) - 64

If Cindex >= 1 And Cindex <= 26 Then

Wsnd = Wsound(Cindex) + 48

If Wsnd <> 48 And Wsnd <> Wprev Then S = S +

Chr(Wsnd)

Wprev = Wsnd

End If

Next I

End If

Else

S = ""

End If

SoundEx = S

End Function

Creating a Stand-Alone Visual Basic Application 5-31

Update_Score General Procedure:

Private Sub Update_Score(Iscorrect As Integer)

Dim I As Integer

'Check if answer is correct

cmdNext.Enabled = True

cmdNext.SetFocus

If Iscorrect = 1 Then

NumCorrect = NumCorrect + 1

lblComment.Caption = "Correct!"

Else

lblComment.Caption = "Sorry ..."

End If

'Display correct answer and update score

If mnuOptionsMC.Checked = True Then

For I = 0 To 3

If mnuOptionsCapitals.Checked = True Then

If lblAnswer(I).Caption <> Capital(CorrectAnswer)

Then

lblAnswer(I).Caption = ""

End If

Else

If lblAnswer(I).Caption <> State(CorrectAnswer) Then

lblAnswer(I).Caption = ""

End If

End If

Next I

Else

If mnuOptionsCapitals.Checked = True Then

txtAnswer.Text = Capital(CorrectAnswer)

Else

txtAnswer.Text = State(CorrectAnswer)

End If

End If

lblScore.Caption = Format(NumCorrect / NumAns, "##0%")

End Sub

cmdExit Click Event:

Private Sub cmdExit_Click()

'Exit program

Call mnuFileExit_Click

End Sub

5-32 Learn Visual Basic 6.0

Creating a Stand-Alone Visual Basic Application 5-33

cmdNext Click Event:

Private Sub cmdNext_Click()

'Generate the next question

cmdNext.Enabled = False

Call Next_Question(CorrectAnswer)

End Sub

Form Activate Event:

Private Sub Form_Activate()

Call mnufilenew_click

End Sub

Form Load Event:

Private Sub Form_Load()

Randomize Timer

'Load soundex function array

Wsound(1) = 0: Wsound(2) = 1: Wsound(3) = 2: Wsound(4) = 3

Wsound(5) = 0: Wsound(6) = 1: Wsound(7) = 2: Wsound(8) = 0

Wsound(9) = 0: Wsound(10) = 2: Wsound(11) = 2: Wsound(12)

= 4

Wsound(13) = 5: Wsound(14) = 5: Wsound(15) = 0: Wsound(16)

= 1

Wsound(17) = 2: Wsound(18) = 6: Wsound(19) = 2: Wsound(20)

= 3

Wsound(21) = 0: Wsound(22) = 1: Wsound(23) = 0: Wsound(24)

= 2

Wsound(25) = 0: Wsound(26) = 2

'Load state/capital arrays

State(1) = "Alabama": Capital(1) = "Montgomery"

State(2) = "Alaska": Capital(2) = "Juneau"

State(3) = "Arizona": Capital(3) = "Phoenix"

State(4) = "Arkansas": Capital(4) = "Little Rock"

State(5) = "California": Capital(5) = "Sacramento"

State(6) = "Colorado": Capital(6) = "Denver"

State(7) = "Connecticut": Capital(7) = "Hartford"

State(8) = "Delaware": Capital(8) = "Dover"

State(9) = "Florida": Capital(9) = "Tallahassee"

State(10) = "Georgia": Capital(10) = "Atlanta"

State(11) = "Hawaii": Capital(11) = "Honolulu"

5-34 Learn Visual Basic 6.0

State(12) = "Idaho": Capital(12) = "Boise"

State(13) = "Illinois": Capital(13) = "Springfield"

State(14) = "Indiana": Capital(14) = "Indianapolis"

State(15) = "Iowa": Capital(15) = "Des Moines"

State(16) = "Kansas": Capital(16) = "Topeka"

State(17) = "Kentucky": Capital(17) = "Frankfort"

State(18) = "Louisiana": Capital(18) = "Baton Rouge"

State(19) = "Maine": Capital(19) = "Augusta"

State(20) = "Maryland": Capital(20) = "Annapolis"

State(21) = "Massachusetts": Capital(21) = "Boston"

State(22) = "Michigan": Capital(22) = "Lansing"

State(23) = "Minnesota": Capital(23) = "Saint Paul"

State(24) = "Mississippi": Capital(24) = "Jackson"

State(25) = "Missouri": Capital(25) = "Jefferson City"

State(26) = "Montana": Capital(26) = "Helena"

State(27) = "Nebraska": Capital(27) = "Lincoln"

State(28) = "Nevada": Capital(28) = "Carson City"

State(29) = "New Hampshire": Capital(29) = "Concord"

State(30) = "New Jersey": Capital(30) = "Trenton"

State(31) = "New Mexico": Capital(31) = "Santa Fe"

State(32) = "New York": Capital(32) = "Albany"

State(33) = "North Carolina": Capital(33) = "Raleigh"

State(34) = "North Dakota": Capital(34) = "Bismarck"

State(35) = "Ohio": Capital(35) = "Columbus"

State(36) = "Oklahoma": Capital(36) = "Oklahoma City"

State(37) = "Oregon": Capital(37) = "Salem"

State(38) = "Pennsylvania": Capital(38) = "Harrisburg"

State(39) = "Rhode Island": Capital(39) = "Providence"

State(40) = "South Carolina": Capital(40) = "Columbia"

State(41) = "South Dakota": Capital(41) = "Pierre"

State(42) = "Tennessee": Capital(42) = "Nashville"

State(43) = "Texas": Capital(43) = "Austin"

State(44) = "Utah": Capital(44) = "Salt Lake City"

State(45) = "Vermont": Capital(45) = "Montpelier"

State(46) = "Virginia": Capital(46) = "Richmond"

State(47) = "Washington": Capital(47) = "Olympia"

State(48) = "West Virginia": Capital(48) = "Charleston"

State(49) = "Wisconsin": Capital(49) = "Madison"

State(50) = "Wyoming": Capital(50) = "Cheyenne"

End Sub

Creating a Stand-Alone Visual Basic Application 5-35

lblAnswer Click Event:

Private Sub lblAnswer_Click(Index As Integer)

'Check multiple choice answers

Dim Iscorrect As Integer

'If already answered, exit

If cmdNext.Enabled = True Then Exit Sub

Iscorrect = 0

If mnuOptionsCapitals.Checked = True Then

If lblAnswer(Index).Caption = Capital(CorrectAnswer)

Then Iscorrect = 1

Else

If lblAnswer(Index).Caption = State(CorrectAnswer) Then

Iscorrect = 1

End If

Call Update_Score(Iscorrect)

End Sub

mnuFileExit Click Event:

Private Sub mnuFileExit_Click()

'End the application

End

End Sub

mnuFileNew Click Event:

Private Sub mnufilenew_click()

'Reset the score and start again

NumAns = 0

NumCorrect = 0

lblScore.Caption = "0%"

lblComment.Caption = ""

cmdNext.Enabled = False

Call Next_Question(CorrectAnswer)

End Sub

5-36 Learn Visual Basic 6.0

mnuOptionsCapitals Click Event:

Private Sub mnuOptionsCapitals_Click()

'Set up for providing capital, given state

mnuOptionsState.Checked = False

mnuOptionsCapitals.Checked = True

lblHeadGiven.Caption = "State:"

lblHeadAnswer.Caption = "Capital:"

Call mnufilenew_click

End Sub

mnuOptionsMC Click Event:

Private Sub mnuOptionsMC_Click()

'Set up for multiple choice answers

Dim I As Integer

mnuOptionsMC.Checked = True

mnuOptionsType.Checked = False

For I = 0 To 3

lblAnswer(I).Visible = True

Next I

txtAnswer.Visible = False

Call mnufilenew_click

End Sub

mnuOptionsState Click Event:

Private Sub mnuOptionsState_Click()

'Set up for providing state, given capital

mnuOptionsState.Checked = True

mnuOptionsCapitals.Checked = False

lblHeadGiven.Caption = "Capital:"

lblHeadAnswer.Caption = "State:"

Call mnufilenew_click

End Sub

Creating a Stand-Alone Visual Basic Application 5-37

mnuOptionsType Click Event:

Private Sub mnuOptionsType_Click()

'Set up for type in answers

Dim I As Integer

mnuOptionsMC.Checked = False

mnuOptionsType.Checked = True

For I = 0 To 3

lblAnswer(I).Visible = False

Next I

txtAnswer.Visible = True

Call mnufilenew_click

End Sub

Next_Question General Procedure:

Private Sub Next_Question(Answer As Integer)

Dim VUsed(50) As Integer, I As Integer, J As Integer

Dim Index(3)

lblComment.Caption = ""

NumAns = NumAns + 1

'Generate the next question based on selected options

Answer = Int(Rnd * 50) + 1

If mnuOptionsCapitals.Checked = True Then

lblGiven.Caption = State(Answer)

Else

lblGiven.Caption = Capital(Answer)

End If

If mnuOptionsMC.Checked = True Then

'Multiple choice answers

'Vused array is used to see which states have

'been selected as possible answers

For I = 1 To 50

VUsed(I) = 0

Next I

'Pick four different state indices (J) at random

'These are used to set up multiple choice answers

'Stored in the Index array

I = 0

Do

Do

J = Int(Rnd * 50) + 1

Loop Until VUsed(J) = 0 And J <> Answer

5-38 Learn Visual Basic 6.0

VUsed(J) = 1

Index(I) = J

I = I + 1

Loop Until I = 4

'Now replace one index (at random) with correct answer

Index(Int(Rnd * 4)) = Answer

'Display multiple choice answers in label boxes

For I = 0 To 3

If mnuOptionsCapitals.Checked = True Then

lblAnswer(I).Caption = Capital(Index(I))

Else

lblAnswer(I).Caption = State(Index(I))

End If

Next I

Else

'Type-in answers

txtAnswer.Locked = False

txtAnswer.Text = ""

txtAnswer.SetFocus

End If

End Sub

Creating a Stand-Alone Visual Basic Application 5-39

txtAnswer KeyPress Event:

Private Sub txtAnswer_KeyPress(KeyAscii As Integer)

'Check type in answer'

Dim Iscorrect As Integer

Dim YourAnswer As String, TheAnswer As String

'Exit if already answered

If cmdNext.Enabled = True Then Exit Sub

If (KeyAscii >= vbKeyA And KeyAscii <= vbKeyZ) _

Or (KeyAscii >= vbKeyA + 32 And KeyAscii <= vbKeyZ + 32) _

Or KeyAscii = vbKeySpace Or KeyAscii = vbKeyBack Or

KeyAscii = vbKeyReturn Then

'Acceptable keystroke

If KeyAscii <> vbKeyReturn Then Exit Sub

'Lock text box once answer entered

txtAnswer.Locked = True

Iscorrect = 0

'Convert response and correct answers to all upper

'case for typing problems

YourAnswer = UCase(txtAnswer.Text)

If mnuOptionsCapitals.Checked = True Then

TheAnswer = UCase(Capital(CorrectAnswer))

Else

TheAnswer = UCase(State(CorrectAnswer))

End If

'Check for both exact and approximate spellings

If YourAnswer = TheAnswer Or _

SoundEx(YourAnswer, Wsound()) = SoundEx(TheAnswer,

Wsound()) Then Iscorrect = 1

Call Update_Score(Iscorrect)

Else

'Unacceptable keystroke

KeyAscii = 0

End If

End Sub

6-1

6. Error-Handling, Debugging and File Input/Output

Review and Preview

 In this class, we expand on our Visual Basic knowledge from past classes and
examine a few new topics. We first look at handling errors in programs, using
both run-time error trapping and debugging techniques. We then study input and
output to disks using sequential files and random access files.

Error Types

 No matter how hard we try, errors do creep into our programs. These errors can

be grouped into three categories:

1. Syntax errors

2. Run-time errors

3. Logic errors

 Syntax errors occur when you mistype a command or leave out an expected

phrase or argument. Visual Basic detects these errors as they occur and even
provides help in correcting them. You cannot run a Visual Basic program until all
syntax errors have been corrected.

 Run-time errors are usually beyond your program's control. Examples include:

when a variable takes on an unexpected value (divide by zero), when a drive door
is left open, or when a file is not found. Visual Basic allows you to trap such errors
and make attempts to correct them.

 Logic errors are the most difficult to find. With logic errors, the program will
usually run, but will produce incorrect or unexpected results. The Visual Basic
debugger is an aid in detecting logic errors.

Learn Visual Basic 6.0

6-2 Learn Visual Basic 6.0

 Some ways to minimize errors:

 Design your application carefully. More design time means less debugging
time.

 Use comments where applicable to help you remember what you were trying
to do.

 Use consistent and meaningful naming conventions for your variables, objects,

and procedures.

Run-Time Error Trapping and Handling

 Run-time errors are trappable. That is, Visual Basic recognizes an error has

occurred and enables you to trap it and take corrective action. If an error occurs
and is not trapped, your program will usually end in a rather unceremonious
manner.

 Error trapping is enabled with the On Error statement:

On Error GoTo errlabel

Yes, this uses the dreaded GoTo statement! Any time a run-time error occurs

following this line, program control is transferred to the line labeled errlabel.

Recall a labeled line is simply a line with the label followed by a colon (:).

 The best way to explain how to use error trapping is to look at an outline of an
example procedure with error trapping.

Sub SubExample()

.

. [Declare variables, ...]

.
On Error GoTo HandleErrors

.

. [Procedure code]

.
Exit Sub

HandleErrors:
.
. [Error handling code]
.

End Sub

Error-Handling, Debugging and File Input/Output 6-3

Once you have set up the variable declarations, constant definitions, and any
other procedure preliminaries, the On Error statement is executed to enable error

trapping. Your normal procedure code follows this statement. The error handling
code goes at the end of the procedure, following the HandleErrors statement

label. This is the code that is executed if an error is encountered anywhere in the
Sub procedure. Note you must exit (with Exit Sub) from the code before reaching

the HandleErrors line to avoid inadvertent execution of the error handling code.

 Since the error handling code is in the same procedure where an error occurs, all

variables in that procedure are available for possible corrective action. If at some
time in your procedure, you want to turn off error trapping, that is done with the

following statement:

On Error GoTo 0

 Once a run-time error occurs, we would like to know what the error is and attempt
to fix it. This is done in the error handling code.

 Visual Basic offers help in identifying run-time errors. The Err object returns, in its

Number property (Err.Number), the number associated with the current error

condition. (The Err function has other useful properties that we won’t cover here -
consult on-line help for further information.) The Error() function takes this error

number as its argument and returns a string description of the error. Consult on-

line help for Visual Basic run-time error numbers and their descriptions.

 Once an error has been trapped and some action taken, control must be returned
to your application. That control is returned via the Resume statement. There are
three options:

Resume Lets you retry the operation that caused the error.

That is, control is returned to the line where the error
occurred. This could be dangerous in that, if the error
has not been corrected (via code or by the user), an
infinite loop between the error handler and the
procedure code may result.

Resume Next Program control is returned to the line immediately

following the line where the error occurred.

Resume label Program control is returned to the line labeled label.

6-4 Learn Visual Basic 6.0

 Be careful with the Resume statement. When executing the error handling portion
of the code and the end of the procedure is encountered before a Resume, an
error occurs. Likewise, if a Resume is encountered outside of the error handling
portion of the code, an error occurs.

General Error Handling Procedure

 Development of an adequate error handling procedure is application
dependent. You need to know what type of errors you are looking for and what
corrective actions must be taken if these errors are encountered. For example, if
a 'divide by zero' is found, you need to decide whether to skip the operation or do
something to reset the offending denominator.

 What we develop here is a generic framework for an error handling procedure. It

simply informs the user that an error has occurred, provides a description of the
error, and allows the user to Abort, Retry, or Ignore. This framework is a good
starting point for designing custom error handling for your applications.

 The generic code (begins with label HandleErrors) is:

HandleErrors:

Select Case MsgBox(Error(Err.Number), vbCritical + vbAbortRetryIgnore,
"Error Number" + Str(Err.Number))
Case vbAbort

Resume ExitLine
Case vbRetry
Resume
Case vbIgnore
Resume Next

End Select
ExitLine:

Exit Sub

Let’s look at what goes on here. First, this routine is only executed when an error
occurs. A message box is displayed, using the Visual Basic provided error
description [Error(Err.Number)] as the message, uses a critical icon along with

the Abort, Retry, and Ignore buttons, and uses the error number [Err.Number]

as the title. This message box returns a response indicating which button was

selected by the user. If Abort is selected, we simply exit the procedure. (This is
done using a Resume to the line labeled ExitLine. Recall all error trapping must

be terminated with a Resume statement of some kind.) If Retry is selected, the
offending program line is retried (in a real application, you or the user would have

to change something here to correct the condition causing the error). If Ignore is

Error-Handling, Debugging and File Input/Output 6-5

selected, program operation continues with the line following the error causing
line.

 To use this generic code in an existing procedure, you need to do three things:

1. Copy and paste the error handling code into the end of your procedure.
2. Place an Exit Sub line immediately preceding the HandleErrors labeled line.

3. Place the line, On Error GoTo HandleErrors, at the beginning of your

procedure.

For example, if your procedure is the SubExample seen earlier, the modified

code will look like this:

Sub SubExample()

.

. [Declare variables, ...]

.

On Error GoTo HandleErrors
.
. [Procedure code]

.
Exit Sub

HandleErrors:
Select Case MsgBox(Error(Err.Number), vbCritical + vbAbortRetryIgnore,
"Error Number" + Str(Err.Number))
Case vbAbort
Resume ExitLine
Case vbRetry
Resume
Case vbIgnore

Resume Next

End Select

ExitLine:

Exit Sub
End Sub

Again, this is a very basic error-handling routine. You must determine its utility in your

applications and make any modifications necessary. Specifically, you need code to
clear error conditions before using the Retry option.

6-6 Learn Visual Basic 6.0

 One last thing. Once you've written an error handling routine, you need to test it to
make sure it works properly. But, creating run -time errors is sometimes difficult
and perhaps dangerous. Visual Basic comes to the rescue! The Visual Basic
Err object has a method (Raise) associated with it that simulates the occurrence
of a run-time error. To cause an error with value Number, use:

Err.Raise Number

 We can use this function to completely test the operation of any error handler we
write. Don’t forget to remove the Raise statement once testing is completed,
though! And, to really get fancy, you can also use Raise to generate your own

‘application-defined’ errors. There are errors specific to your application that you

want to trap.

 To clear an error condition (any error, not just ones generated with the Raise
method), use the method Clear:

Err.Clear

Error-Handling, Debugging and File Input/Output 6-7

Example 6 -1

Simple Error Trapping

1. Start a new project. Add a text box and a command button.

2. Set the properties of the form and each control:

Form1:

BorderStyle 1-Fixed Single
Caption Error Generator

Name frmError

Command1:

Caption Generate Error
Default True

Name cmdGenError

Text1:

Name txtError
Text [Blank]

The form should look something like this:

6-8 Learn Visual Basic 6.0

3. Attach this code to the cmdGenError_Click event.

Private Sub cmdGenError_Click()

On Error GoTo HandleErrors

Err.Raise Val(txtError.Text)

Err.Clear

Exit Sub

HandleErrors:

Select Case MsgBox(Error(Err.Number), vbCritical +

vbAbortRetryIgnore, "Error Number" + Str(Err.Number))

Case vbAbort

Resume ExitLine

Case vbRetry

Resume

Case vbIgnore

Resume Next

End Select

ExitLine:

Exit Sub

End Sub

In this code, we simply generate an error using the number input in the text box.
The generic error handler then displays a message box which you can respond to
in one of three ways.

4. Save your application. Try it out using some of these typical error numbers (or

use numbers found with on-line help). Notice how program control changes
depending on which button is clicked.

Error Number Error Description

6 Overflow

9 Subscript out of range
11 Division by zero
13 Type mismatch
16 Expression too complex
20 Resume without error
52 Bad file name or number
53 File not found

55 File already open
61 Disk full
70 Permission denied

92 For loop not initialized

Error-Handling, Debugging and File Input/Output 6-9

Debugging Visual Basic Programs

 We now consider the search for, and elimination of, logic errors. These are

errors that don’t prevent an application from running, but cause incorrect or

unexpected results. Visual Basic provides an excellent set of debugging tools to

aid in this search.

 Debugging a code is an art, not a science. There are no prescribed processes
that you can follow to eliminate all logic errors in your program. The usual
approach is to eliminate them as they are discovered.

 What we’ll do here is present the debugging tools available in the Visual Basic
environment (several of which appear as buttons on the toolbar) and describe
their use with an example. You, as the program designer, should select the
debugging approach and tools you feel most comfortable with.

 The interface between your application and the debugging tools is via three

different debug windows: the Immediate Window , the Locals Window, and the

Watch Window. These windows can be accessed from the View menu (the

Immediate Window can be accessed by pressing Ctrl+G). Or, they can be

selected from the Debug Toolbar (accessed using the Toolbars option under

the View menu):

 All debugging using the debug windows is done when your application is in break
mode. You can enter break mode by setting breakpoints, pressing Ctrl+Break,

or the program will go into break mode if it encounters an untrapped error or a
Stop statement.

 Once in break mode, the debug windows and other tools can be used to:

 Determine values of variables

 Set breakpoints
 Set watch variables and expressions
 Manually control the application
 Determine which procedures have been called

 Change the values of variables and properties

Immediate
Watch

Locals

6-10 Learn Visual Basic 6.0

Example 6 -2

Debugging Example

1. Unlike other examples, we’ll do this one as a group. It will be used to demonstrate
use of the debugging tools.

2. The example simply has a form with a single command button. The button is used

to execute some code. We won’t be real careful about proper naming
conventions and such in this example.

3. The code attached to this button’s Click event is a simple loop that evaluates a

function at several values.

Private Sub Command1_Click()

Dim X As Integer, Y As Integer

X = 0

Do

Y = Fcn(X)

X = X + 1

Loop While X <= 20

End Sub

This code begins with an X value of 0 and computes the Y value using the general
integer function Fcn. It then increments X by 1 and repeats the Loop. It continues

looping While X is less than or equal to 20. The function Fcn is computed using:

Function Fcn(X As Integer) As Integer

Fcn = CInt(0.1 * X ^ 2)

End Function

Admittedly, this code doesn’t do much, especially without any output, but it makes
a good example for looking at debugger use. Set up the application and get
ready to try debugging.

Error-Handling, Debugging and File Input/Output 6-11

Using the Debugging Tools

 There are several debugging tools available for use in Visual Basic. Access to

these tools is provided with both menu options and buttons on the Debug toolbar.
These tools include breakpoints, watch points, calls, step into, step over, and step
out.

 The simplest tool is the use of direct prints to the immediate window.

 Printing to the Immediate Window:

You can print directly to the immediate window while an application is running.

Sometimes, this is all the debugging you may need. A few carefully placed print
statements can sometimes clear up all logic errors, especially in small
applications.

To print to the immediate window, use the Print method:

Debug.Print [List of variables separated by commas or semi -colons]

 Debug.Print Example:

1. Place the following statement in the Command1_Click procedure

after the line calling the general procedure Fcn:

Debug.Print X; Y

and run the application.

2. Examine the immediate window. Note how, at each iteration of the
loop, the program prints the value of X and Y. You could use this
information to make sure X is incrementing correctly and that Y values
look acceptable.

3. Remove the Debug.Print statement.

6-12 Learn Visual Basic 6.0

 Breakpoints:

In the above examples, the program ran to completion before we could look at the
debug window. In many applications, we want to stop the application while it is
running, examine variables and then continue running. This can be done with
breakpoints .

A breakpoint is a line in the code where you want to stop (temporarily) the
execution of the program, that is force the program into break mode. To set a
breakpoint, put the cursor in the line of code you want to break on. Then, press
<F9> or click the Breakpoint button on the toolbar or select Toggle Breakpoint

from the Debug menu. The line will be highlighted.

When you run your program, Visual Basic will stop when it reaches lines with
breakpoints and allow you to use the immediate window to check variables and
expressions. To continue program operation after a breakpoint, press <F5>, click
the Run button on the toolbar, or choose Start from the Run menu.

You can also change variable values using the immediate window. Simply type a
valid Basic expression. This can sometimes be dangerous, though, as it may
change program operation completely.

 Breakpoint Example:

1. Set a breakpoint on the X = X + 1 line in the sample program. Run the

program.

2. When the program stops, display the immediate window and type the
following line:

Print X;Y

3. The values of these two variables will appear in the debug window. You

can use a question mark (?) as shorthand for the command Print, if

you’d like. Restart the application. Print the new variable values.

4. Try other breakpoints if you have time. Once done, all breakpoints can
be cleared by Ctrl+Shift+<F9> or by choosing Clear All Breakpoints

from the Debug menu. Individual breakpoints can be toggled using

<F9> or the Breakpoint button on the toolbar.

Error-Handling, Debugging and File Input/Output 6-13

 Viewing Variables in the Locals Window:

The locals window shows the value of any variables within the scope of the

current procedure. As execution switches from procedure to procedure, the
contents of this window changes to reflect only the variables applicable to the

current procedure. Repeat the above example and notice the values of X and Y
also appear in the locals window.

 Watch Expressions:

The Add Watch option on the Debug menu allows you to establish watch

expressions for your application. Watch expressions can be variable values or

logical expressions you want to view or test. Values of watch expressions are
displayed in the watch window.

In break mode, you can use the Quick Watch button on the toolbar to add watch

expressions you need. Simply put the cursor on the variable or expression you

want to add to the watch list and click the Quick Watch button.

Watch expressions can be edited using the Edit Watch option on the Debug

menu.

 Watch Expression Example:

1. Set a breakpoint at the X = X + 1 line in the example.

2. Set a watch expression for the variable X. Run the application.

Notice X appears in the watch window. Every time you re-start the
application, the value of X changes.

3. At some point in the debug procedure, add a quick watch on Y.

Notice it is now in the watch window.

4. Clear the breakpoint. Add a watch on the expression: X = Y. Set
Watch Type to ‘Break When Value Is True.’ Run the application.

Notice it goes into break mode and displays the watch window

whenever X = Y. Delete this last watch expression.

6-14 Learn Visual Basic 6.0

 Call Stack:

Selecting the Call Stack button from the toolbar (or pressing Ctrl+L or selecting

Call Stack from the View menu) will display all active procedures, that is those

that have not been exited.

Call Stack helps you unravel situations with nested procedure calls to give you

some idea of where you are in the application.

 Call Stack Example:

1. Set a breakpoint on the Fcn = Cint() line in the general function

procedure. Run the application. It will break at this line.

2. Press the Call Stack button. It will indicate you are currently in the Fcn

procedure which was called from the Command1_Click procedure.

Clear the breakpoint.

 Single Stepping (Step Into):

While at a breakpoint, you may execute your program one line at a time by

pressing <F8>, choosing the Step Into option in the Debug menu, or by clicking

the Step Into button on the toolbar.

This process is single stepping. It allows you to watch how variables change (in

the locals window) or how your form changes, one step at a time.

You may step through several lines at a time by using Run To Cursor option.

With this option, click on a line below your current point of execution. Then press
Ctrl+<F8> (or choose Run To Cursor in the Debug menu). the program will run

through every line up to the cursor location, then stop.

Error-Handling, Debugging and File Input/Output 6-15

 Step Into Example:

1. Set a breakpoint on the Do line in the example. Run the application.

2. When the program breaks, use the Step Into button to single step

through the program.

3. At some point, put the cursor on the Loop While line. Try the Run To

Cursor option (press Ctrl+<F8>).

 Procedure Stepping (Step Over):

While single stepping your program, if you come to a procedure call you know
functions properly, you can perform procedure stepping. This simply executes

the entire procedure at once, rather than one step at a time.

To move through a procedure in this manner, press Shift+<F8>, choose Step

Over from the Debug menu, or press the Step Over button on the toolbar.

 Step Over Example:

1. Run the previous example. Single step through it a couple of times.

2. One time through, when you are at the line calling the Fcn function,

press the Step Over button. Notice how the program did not single

step through the function as it did previously.

 Function Exit (Step Out):

While stepping through your program, if you wish to complete the execution of a
function you are in, without stepping through it line -by-line, choose the Step Out

option. The function will be completed and you will be returned to the procedure
accessing that function.

To perform this step out, press Ctrl+Shift+<F8>, choose Step Out from the

Debug menu, or press the Step Out button on the toolbar. Try this on the

previous example.

6-16 Learn Visual Basic 6.0

Debugging Strategies

 We’ve looked at each debugging tool briefly. Be aware this is a cursory
introduction. Use the on-line help to delve into the details of each tool described.
Only through lots of use and practice can you become a proficient debugger.
There are some guidelines to doing a good job, though.

 My first suggestion is: keep it simple. Many times, you only have one or two bad
lines of code. And you, knowing your code best, can usually quickly narrow down

the areas with bad lines. Don’t set up some elaborate debugging procedure if
you haven’t tried a simple approach to find your error(s) first. Many times, just a
few intelligently-placed Debug.Print statements or a few examinations of the

immediate and locals windows can solve your problem.

 A tried and true approach to debugging can be called Divide and Conquer. If

you’re not sure where your error is, guess somewhere in the middle of your
application code. Set a breakpoint there. If the error hasn’t shown up by then, you

know it’s in the second half of your code. If it has shown up, it’s in the first half.
Repeat this division process until you’ve narrowed your search.

 And, of course, the best debugging strategy is to be careful when you first design
and write your application to minimize searching for errors later.

Error-Handling, Debugging and File Input/Output 6-17

Sequential Files

 In many applications, it is helpful to have the capability to read and write
information to a disk file. This information could be some computed data or
perhaps information loaded into a Visual Basic object.

 Visual Basic supports two primary file formats: sequential and random access.
We first look at sequential files.

 A sequential file is a line-by-line list of data. You can view a sequential file with
any text editor. When using sequential files, you must know the order in which
information was written to the file to allow proper reading of the file.

 Sequential files can handle both text data and variable values. Sequential access
is best when dealing with files that have lines with mixed information of different
lengths. I use them to transfer data between applications.

Sequential File Output (Variables)

 We first look at writing values of variables to sequential files. The first step is to
Open a file to write information to . The syntax for opening a sequential file for

output is:

Open SeqFileName For Output As #N

where SeqFileName is the name of the file to open and N is an integer file

number. The filename must be a complete path to the file.

 When done writing to the file, Close it using:

Close N

Once a file is closed, it is saved on the disk under the path and filename used to
open the file.

 Information is written to a sequential file one line at a time. Each line of output
requires a separate Basic statement.

6-18 Learn Visual Basic 6.0

 There are two ways to write variables to a sequential file. The first uses the Write

statement:

Write #N, [variable list]

where the variable list has variable names delimited by commas. (If the variable
list is omitted, a blank line is printed to the file.) This statement will write one line
of information to the file, that line containing the variables specified in the variable
list. The variables will be delimited by commas and any string variables will be
enclosed in quotes. This is a good format for exporting files to other applications
like Excel.

Example

Dim A As Integer, B As String, C As Single, D As Integer

.

.

Open TestOut For Output As #1
Write #1, A, B, C
Write #1, D

Close 1

After this code runs, the file TestOut will have two lines. The first will have the

variables A, B, and C, delimited by commas, with B (a string variable) in quotes.
The second line will simply have the value of the variable D.

 The second way to write variables to a sequential file is with the Print statement:

Print #N, [variable list]

This statement will write one line of information to the file, that line containing the
variables specified in the variable list. (If the variable list is omitted, a blank line
will be printed.) If the variables in the list are separated with semicolons (;), they
are printed with a single space between them in the file. If separated by commas
(,), they are spaced in wide columns. Be careful using the Print statement with
string variables. The Print statement does not enclose string variables in quotes,
hence, when you read such a variable back in, Visual Basic may have trouble
knowing where a string ends and begins. It’s good practice to ‘tack on’ quotes to
string variables when using Print.

Error-Handling, Debugging and File Input/Output 6-19

Example

Dim A As Integer, B As String, C As Single, D As Integer

.

.

Open TestOut For Output As #1
Print #1, A; Chr(34) + B + Chr(34), C

Print #1, D
Close 1

After this code runs, the file TestOut will have two lines. The first will have the

variables A, B, and C, delimited by spaces. B will be enclosed by quotes

[Chr(34)]. The second line will simply have the value of the variable D.

Quick Example: Writing Variables to Sequential Files

1. Start a new project.

2. Attach the following code to the Form_Load procedure. This code simply writes

a few variables to sequential files.

Private Sub Form_Load()

Dim A As Integer, B As String, C As Single, D As Integer

A = 5

B = "Visual Basic"

C = 2.15

D = -20

Open "Test1.Txt" For Output As #1

Open "Test2.Txt" For Output As #2

Write #1, A, B, C

Write #1, D

Print #2, A, B, C

Print #2, D

Close 1

Close 2

End Sub

3. Run the program. Use a text editor (try the Windows 95 Notepad) to examine the
contents of the two files, Test1.Txt and Test2.Txt. They are probably in the

Visual Basic main directory. Note the difference in the two files, especially how
the variables are delimited and the fact that the string variable is not enclosed in

quotes in Test2.Txt. Save the application, if you want to.

6-20 Learn Visual Basic 6.0

Error-Handling, Debugging and File Input/Output 6-21

Sequential File Input (Variables)

 To read variables from a sequential file, we essentially reverse the write
procedure. First, open the file using:

Open SeqFileName For Input As #N

where N is an integer file number and SeqFileName is a complete file path. The

file is closed using:

Close N

 The Input statement is used to read in variables from a sequential file. The
format is:

Input #N, [variable list]

The variable names in the list are separated by commas. If no variables are

listed, the current line in the file N is skipped.

 Note variables must be read in exactly the same manner as they were written. So,
using our previous example with the variables A, B, C, and D, the appropriate
statements are:

Input #1, A, B, C

Input #1, D

These two lines read the variables A, B, and C from the first line in the file and D
from the second line. It doesn’t matter whether the data was originally written to
the file using Write or Print (i.e. commas are ignored).

6-22 Learn Visual Basic 6.0

Quick Example: Reading Variables from Sequential Files

1. Start a new project or simply modify the previous quick example.

2. Attach the following code to the Form_Load procedure. This code reads in files

created in the last quick example.

Private Sub Form_Load()

Dim A As Integer, B As String, C As Single, D As Integer

Open "Test1.Txt" For Input As #1

Input #1, A, B, C

Debug.Print "A="; A

Debug.Print "B="; B

Debug.Print "C="; C

Input #1, D

Debug.Print "D="; D

Close 1

End Sub

Note the Debug.Print statements and how you can add some identifiers (in

quotes) for printed information.

3. Run the program. Look in the debug window and note the variable values. Save

the application, if you want to.

4. Rerun the program using Test2.Txt as in the input file. What differences do you

see? Do you see the problem with using Print and string variables? Because of
this problem, I almost always use Write (instead of Print) for saving variable

information to files. Edit the Test2.Txt file (in Notepad), putting quotes around the
words Visual Basic. Rerun the program using this file as input - it should work

fine now.

Error-Handling, Debugging and File Input/Output 6-23

Writing and Reading Text Using Sequential Files

 In many applications, we would like to be able to save text information and retrieve
it for later reference. This information could be a text file created by an
application or the contents of a Visual Basic text box.

 Writing Text Files:

To write a sequential text file, we follow the simple procedure: open the file, write

the file, close the file. If the file is a line-by-line text file, each line of the file is
written to disk using a single Print statement:

Print #N, Line

where Line is the current line (a text string). This statement should be in a loop

that encompasses all lines of the file. You must know the number of lines in your

file, beforehand.

If we want to write the contents of the Text property of a text box named

txtExample to a file, we use:

Print #N, txtExample.Text

Example

We have a text box named txtExample. We want to save the contents of the Text

property of that box in a file named MyText.ned on the c: drive in the \MyFiles

directory. The code to do this is:

Open “c:\MyFiles\MyText.ned” For Output As #1

Print #1, txtExample.Text
Close 1

The text is now saved in the file for later retrieval.

 Reading Text Files:

To read the contents of a previously-saved text file, we follow similar steps to the
writing process: open the file, read the file, close the file. If the file is a text file, we
read each individual line with the Line Input command:

Line Input #1, Line

6-24 Learn Visual Basic 6.0

This line is usually placed in a Do/Loop structure that is repeated untill all lines of

the file are read in. The EOF() function can be used to detect an end-of-file

condition, if you don’t know, a prioiri, how many lines are in the file.

To place the contents of a file opened with number N into the Text property of a

text box named txtExample we use the Input function:

txtExample.Text = Input(LOF(N), N)

This Input function has two arguments: LOF(N), the length of the file opened as N

and N, the file number.

Example

We have a file named MyText.ned stored on the c: drive in the \MyFiles directory.

We want to read that text file into the text property of a text box named
txtExample. The code to do this is:

Open “c:\MyFiles\MyText.ned” For Input As #1
txtExample.Text = Input(LOF(1), 1)

Close 1

The text in the file will now be displayed in the text box.

Error-Handling, Debugging and File Input/Output 6-25

Random Access Files

 Note that to access a particular data item in a sequential file, you need to read in
all items in the file prior to the item of interest. This works acceptably well for
small data files of unstructured data, but for large, structured files, this process is
time-consuming and wasteful. Sometimes, we need to access data in
nonsequential ways. Files which allow nonsequential access are random
access files.

 To allow nonsequential access to information, a random access file has a very
definite structure. A random access file is made up of a number of records, each

record having the same length (measured in bytes). Hence, by knowing the length

of each record, we can easily determine (or the computer can) where each record
begins. The first record in a random access file is Record 1, not 0 as used in

Visual Basic arrays. Each record is usually a set of variables, of different types,
describing some item. The structure of a random access file is:

Record 1

N bytes

Record 2
N bytes

Record 3

N bytes

.

.

.

 A good analogy to illustrate the differences between sequential files and random
access files are cassette music tapes and compact discs. To hear a song on a
tape (a sequential device), you must go past all songs prior to your selection. To
hear a song on a CD (a random access device), you simply go directly to the
desired selection. One difference here though is we require all of our random
access records to be the same length - not a good choice on CD’s!

Record Last
N bytes

6-26 Learn Visual Basic 6.0

 To write and read random access files, we must know the record length in

bytes. Some variable types and their length in bytes are:

Type Length (Bytes)

Integer 2

Long 4
Single 4
Double 8

String 1 byte per character

So, for every variable that is in a file’s record, we need to add up the individual
variable length’s to obtain the total record length. To ease this task, we introduce
the idea of user-defined variables.

User-Defined Variables

 Data used with random access files is most often stored in user-defined
variables. These data types group variables of different types into one assembly

with a single, user -defined type associated with the group. Such types

significantly simplify the use of random access files.

 The Visual Basic keyword Type signals the beginning of a user-defined type

declaration and the words End Type signal the end. An example best illustrates

establishing a user-defined variable. Say we want to use a variable that

describes people by their name, their city, their height, and their weight. We
would define a variable of Type Person as follows:

Type Person

Name As String
City As String
Height As Integer
Weight As Integer

End Type

These variable declarations go in the same code areas as normal variable
declarations, depending on desired scope. At this point, we have not reserved
any storage for the data. We have simply described to Visual Basic the layout of
the data.

Error-Handling, Debugging and File Input/Output 6-27

 To create variables with this newly defined type, we employ the usual Dim

statement. For our Person example, we would use:

Dim Lou As Person
Dim John As Person
Dim Mary As Person

And now, we have three variables, each containing all the components of the
variable type Person. To refer to a single component within a user-defined type,

we use the dot-notation:

VarName.Component

As an example, to obtain Lou’s Age, we use:

Dim AgeValue as Integer
.
.

AgeValue = Lou.Age

Note the similarity to dot-notation we’ve been using to set properties of various
Visual Basic tools.

Writing and Reading Random Access Files

 We look at writing and reading random access files using a user-defined

variable. For other variable types, refer to Visual Basic on-line help. To open a
random access file named RanFileName, use:

Open RanFileName For Random As #N Len = RecordLength

where N is an available file number and RecordLength is the length of each

record. Note you don’t have to specify an input or output mode. With random

access files, as long as they’re open, you can write or read to them.

 To close a random access file, use:

Close N

6-28 Learn Visual Basic 6.0

 As mentioned previously, the record length is the sum of the lengths of all
variables that make up a record. A problem arises with String type variables.

You don’t know their lengths ahead of time. To solve this problem, Visual Basic

lets you declare fixed lengths for strings. This allows you to determine record
length. If we have a string variable named StrExample we want to limit to 14

characters, we use the declaration:

Dim StrExample As String * 14

Recall each character in a string uses 1 byte, so the length of such a variable is 14

bytes.

 Recall our example user-defined variable type, Person. Let’s revisit it, now with

restricted string lengths:

Type Person

Name As String * 40
City As String * 35
Height As Integer
Weight As Integer

End Type

The record length for this variable type is 79 bytes (40 + 35 +2 + 2). To open a file
named PersonData as File #1, with such records, we would use the statement:

Open PersonData For Random As #1 Len = 79

 The Get and Put statements are used to read from and write to random access
files, respectively. These statements read or write one record at a time. The
syntax for these statements is simple:

Get #N, [RecordNumber], variable

Put #N, [RecordNumber], variable

The Get statement reads from the file and stores data in the variable, whereas

the Put statement writes the contents of the specified variable to the file. In each

case, you can optionally specifiy the record number. If you do not specify a record

number, the next sequential position is used.

Error-Handling, Debugging and File Input/Output 6-29

 The variable argument in the Get and Put statements is usually a single user-
defined variable. Once read in, you obtain the component parts of this variable
using dot-notation. Prior to writing a user-defined variable to a random access

file, you ‘load ’ the component parts using the same dot-notation.

 There’s a lot more to using random access files; we’ve only looked at the basics.
Refer to your Visual Basic documentation and on-line help for further information.
In particular, you need to do a little cute programming when deleting records from
a random access file or when ‘resorting’ records.

6-30 Learn Visual Basic 6.0

Using the Open and Save Common Dialog Boxes

 Note to both write and read sequential and random access files, we need a file
name for the Open statement. To ensure accuracy and completeness, it is

suggested that common dialog boxes (briefly studied in Class 4) be used to get

this file name information from the user. I’ll provide you with a couple of code
segments that do just that. Both segments assume you have a common dialog

box on your form named cdlFiles, with the CancelError property set equal to

True. With this property True, an error is generated by Visual Basic when the

user presses the Cancel button in the dialog box. By trapping this error, it allows

an elegant exit from the dialog box when canceling the operation is desired.

 The code segment to obtain a file name (MyFileName with default extension Ext)

for opening a file to read is:

Dim MyFileName As String, Ext As String

.

.

cdlFiles.Filter = "Files (*." + Ext + ")|*." + Ext
cdlFiles.DefaultExt = Ext
cdlFiles.DialogTitle = "Open File"
cdlFiles.Flags = cdlOFNFileMustExist + cdlOFNPathMustExist
On Error GoTo No_Open
cdlFiles.ShowOpen
MyFileName = cdlFiles.filename

.

.
Exit Sub

No_Open:

Resume ExitLIne

ExitLine:
Exit Sub
End Sub

A few words on what’s going on here. First, some properties are set such that
only files with Ext (a three letter string variable) extensions are displayed (Filter

property), the default extension is Ext (DefaultExt property), the title bar is set

(DialogTitle property), and some Flags are set to insure the file and path exist

(see Appendix II for more common dialog flags). Error trapping is enabled to trap
the Cancel button. Finally, the common dialog box is displaye d and the filename

property returns with the desired name. That name is put in the string variable
MyFileName . What you do after obtaining the file name depends on what type of

file you are dealing with. For sequential files, you would open the file, read in the

information, and close the file. For random access files, we just open the file here.

Reading and writing to/from the file would be handled elsewhere in your coding.

Error-Handling, Debugging and File Input/Output 6-31

 The code segment to retrieve a file name (MyFileName) for writing a file is:

Dim MyFileName As String, Ext As String

.

.
cdlFiles.Filter = "Files (*." + Ext + ")|*." + Ext
cdlFiles.DefaultExt = Ext
cdlFiles.DialogTitle = "Save File"
cdlFiles.Flags = cdlOFNOverwritePrompt + cdlOFNPathMustExist

On Error GoTo No_Save

cdlFiles.ShowSave

MyFileName = cdlFiles.filename
.
.

Exit Sub
No_Save:
Resume ExitLine
ExitLine:
Exit Sub

End Sub

Note this code is essentially the same used for an Open file name. The Flags
property differs slightly. The user is prompted if a previously saved file is selected
for overwrite. After obtaining a valid file name for a sequential file, we would open
the file for output, write the file, and close it. For a random access file, things are
trickier. If we want to save the file with the same name we opened it with, we
simply close the file. If the name is different, we must open a file (using a different
number) with the new name, write the complete random access file, then close it.
Like I said, it’s trickier.

 We use both of these code segments in the final example where we write and
read sequential files.

6-32 Learn Visual Basic 6.0

Example 6 -3

Note Editor - Reading and Saving Text Files

1. We now add the capability to read in and save the contents of the text box in the
Note Editor application from last class. Load that application. Add a common
dialog box to your form. Name it cdlFiles and set the CancelError property to
True.

2. Modify the File menu (use the Menu Editor and the Insert button) in your

application, such that Open and Save options are included. The File menu sho uld

now read:

File

New
Open
Save

Exit

Properties for these new menu items should be:

Caption Name Shortcut

&Open mnuFileOpen [None]
&Save mnuFileSave [None]

Error-Handling, Debugging and File Input/Output 6-33

3. The two new menu options need code. Attach this code to the

mnuFileOpen_Click event. This uses a modified version of the code segment

seen previously. We assign the extension ned to our note editor files.

Private Sub mnuFileOpen_Click()

cdlFiles.Filter = "Files (*.ned)|*.ned"

cdlFiles.DefaultExt = "ned"

cdlFiles.DialogTitle = "Open File"

cdlFiles.Flags = cdlOFNFileMustExist +

cdlOFNPathMustExist

On Error GoTo No_Open

cdlFiles.ShowOpen

Open cdlFiles.filename For Input As #1

txtEdit.Text = Input(LOF(1), 1)

Close 1

Exit Sub

No_Open:

Resume ExitLine

ExitLine:

Exit Sub

End Sub

And for the mnuFileSave_Click procedure, use this code. Much of this can be

copied from the previous procedure.

Private Sub mnuFileSave_Click()

cdlFiles.Filter = "Files (*.ned)|*.ned"

cdlFiles.DefaultExt = "ned"

cdlFiles.DialogTitle = "Save File"

cdlFiles.Flags = cdlOFNOverwritePrompt +

cdlOFNPathMustExist

On Error GoTo No_Save

cdlFiles.ShowSave

Open cdlFiles.filename For Output As #1

Print #1, txtEdit.Text

Close 1

Exit Sub

No_Save:

Resume ExitLine

ExitLine:

Exit Sub

End Sub

6-34 Learn Visual Basic 6.0

Each of these procedures is similar. The dialog box is opened and, if a filename
is returned, the file is read/written. If Cancel is pressed, no action is taken.

These routines can be used as templates for file operations in other applications.

4. Save your application. Run it and test the Open and Save functions. Note you

have to save a file before you can open one. Check for proper operation of the
Cancel button in the common dialog box.

5. If you have the time, there is one major improvement that should be made to this

application. Notice that, as written, only the text information is saved, not the
formatting (bold, italic, underline, size). Whenever a file is opened, the text is
displayed based on current settings. It would be nice to save formatting
information along with the text. This can be done, but it involves a fair amount of
reprogramming. Suggested steps:

A. Add lines to the mnuFileSave_Click routine that write the text box

properties FontBold, FontItalic, FontUnderline, and FontSize to a

separate sequential file. If your text file is named TxtFile.ned, I would

suggest naming the formatting file TxtFile.fmt. Use string functions to
put this name together. That is, chop the ned extension off the text file

name and tack on the fmt extension. You’ll need the Len() and Left()

functions.

B. Add lines to the mnuFileOpen_Click routine that read the text box

properties FontBold, FontItalic, FontUnderline, and FontSize from
your format sequential file. You’ll need to define some intermediate
variables here because Visual Basic won’t allow you to read
properties directly from a file. You’ll also need logic to set/reset any
check marks in the menu structure to correspond to these input
properties.

C. Add lines to the mnuFileNew_Click procedure that, when the user

wants a new file, reset the text box properties FontBold, FontItalic,
FontUnderline, and FontSize to their default values and set/reset the
corresponding menu check marks.

D. Try out the modified application. Make sure every new option works

as it should.

Actually, there are ‘custom’ tools (we’ll look at custom tools in Class 10) that do

what we are trying to do with this modification, that is save text box contents with
formatting information. Such files are called ‘rich text files’ or rtf files. You may

have seen these before when transferring files from one word processor to
another.

Error-Handling, Debugging and File Input/Output 6-35

6. Another thing you could try: Modify the message box that appears when you try to

Exit. Make it ask if you wish to save your file before exiting - provide Yes, No,

Cancel buttons. Program the code corresponding to each possible response.

Use calls to existing procedures, if possible.

6-36 Learn Visual Basic 6.0

Exercise 6-1

Information Tracking

Design and develop an application that allows the user to enter (on a daily basis)
some piece of information that is to be saved for future review and reference.

Examples could be stock price, weight, or high temperature for the day. The input
screen should display the current date and an input box for the desired information.
all values should be saved on disk for future retrieval and update. A scroll bar should
be available for reviewing all previously-stored values.

My Solution:

Form:
mnuFile

Label1

Label2

lblDate

vsbControl

txtWeight

lblFile cdlFiles

Properties:

Form frmWeight:

BorderStyle = 1 - Fixed Single
Caption = Weight Program

VScrollBar vsbControl:

Min = 1

Value = 1

Error-Handling, Debugging and File Input/Output 6-37

TextBox txtWeight:

Alignment = 2 - Center
FontName = MS Sans Serif
FontSize = 13.5

Label lblFile:

BackColor = &H0000FFFF& (White)
BorderStyle = 1 - Fixed Single
Caption = New File
FontName = MS Sans Serif

FontBold = True

FontItalic = True

FontSize = 8.25

Label lblDate:

Alignment = 2 - Center
BackColor = &H00FFFFFF& (White)
BorderStyle = 1 - Fixed Single
FontName = MS Sans Serif
FontSize = 13.5

Label Label2:

Alignment = 2 - Center
Caption = Weight
FontName = MS Sans Serif
FontSize = 13.5
FontBold = True

Label Label1:

Alignment = 2 - Center

Caption = Date

FontName = MS Sans Serif

FontSize = 13.5
FontBold = True

CommonDialog cdlFiles:

CancelError = True

Menu mnuFile :

Caption = &File

Menu mnuFileNew:

Caption = &New

6-38 Learn Visual Basic 6.0

Menu mnuFileOpen:

Caption = &Open

Menu mnuFileSave:

Caption = &Save

Menu mnuLine:

Caption = -

Menu mnuFileExit:

Caption = E&xit

Code:

General Declarations:

Option Explicit

Dim Dates(1000) As Date

Dim Weights(1000) As String

Dim NumWts As Integer

Init General Procedure:

Sub Init()

NumWts = 1: vsbControl.Value = 1: vsbControl.Max = 1

Dates(1) = Format(Now, "mm/dd/yy")

Weights(1) = ""

lblDate.Caption = Dates(1)

txtWeight.Text = Weights(1)

lblFile.Caption = "New File"

End Sub

Form Load Event:

Private Sub Form_Load()

frmWeight.Show

Call Init

End Sub

Error-Handling, Debugging and File Input/Output 6-39

mnufileExit Click Event:

Private Sub mnuFileExit_Click()

'Make sure user really wants to exit

Dim Response As Integer

Response = MsgBox("Are you sure you want to exit the

weight program?", vbYesNo + vbCritical + vbDefaultButton2,

"Exit Editor")

If Response = vbNo Then

Exit Sub

Else

End

End If

End Sub

mnuFileNew Click Event:

Private Sub mnuFileNew_Click()

'User wants new file

Dim Response As Integer

Response = MsgBox("Are you sure you want to start a new

file?", vbYesNo + vbQuestion, "New File")

If Response = vbNo Then

Exit Sub

Else

Call Init

End If

End Sub

mnuFileOpen Click Event:

Private Sub mnuFileOpen_Click()

Dim I As Integer

Dim Today As Date

Dim Response As Integer

Response = MsgBox("Are you sure you want to open a new

file?", vbYesNo + vbQuestion, "New File")

If Response = vbNo Then Exit Sub

cdlFiles.Filter = "Files (*.wgt)|*.wgt"

cdlFiles.DefaultExt = "wgt"

cdlFiles.DialogTitle = "Open File"

cdlFiles.Flags = cdlOFNFileMustExist + cdlOFNPathMustExist

6-40 Learn Visual Basic 6.0

On Error GoTo No_Open

cdlFiles.ShowOpen

Open cdlFiles.filename For Input As #1

lblFile.Caption = cdlFiles.filename

Input #1, NumWts

For I = 1 To NumWts

Input #1, Dates(I), Weights(I)

Next I

Close 1

Today = Format(Now, "mm/dd/yy")

If Today <> Dates(NumWts) Then

NumWts = NumWts + 1

Dates(NumWts) = Today

Weights(NumWts) = ""

End If

vsbControl.Max = NumWts

vsbControl.Value = NumWts

lblDate.Caption = Dates(NumWts)

txtWeight.Text = Weights(NumWts)

Exit Sub

No_Open:

Resume ExitLine

ExitLine:

Exit Sub

End Sub

mnuFileSave Click Event:

Private Sub mnuFileSave_Click()

Dim I As Integer

cdlFiles.Filter = "Files (*.wgt)|*.wgt"

cdlFiles.DefaultExt = "wgt"

cdlFiles.DialogTitle = "Save File"

cdlFiles.Flags = cdlOFNOverwritePrompt +

cdlOFNPathMustExist

On Error GoTo No_Save

cdlFiles.ShowSave

Open cdlFiles.filename For Output As #1

lblFile.Caption = cdlFiles.filename

Write #1, NumWts

For I = 1 To NumWts

Write #1, Dates(I), Weights(I)

Error-Handling, Debugging and File Input/Output 6-41

Next I

Close 1

Exit Sub

No_Save:

Resume ExitLine

ExitLine:

Exit Sub

End Sub

6-42 Learn Visual Basic 6.0

txtWeight Change Event:

Private Sub txtWeight_Change()

Weights(vsbControl.Value) = txtWeight.Text

End Sub

txtWeight KeyPress Event:

Private Sub txtWeight_KeyPress(KeyAscii As Integer)

If KeyAscii >= vbKey0 And KeyAscii <= vbKey9 Then

Exit Sub

Else

KeyAscii = 0

End If

End Sub

vsbControl Change Event:

Private Sub vsbControl_Change()

lblDate.Caption = Dates(vsbControl.Value)

txtWeight.Text = Weights(vsbControl.Value)

txtWeight.SetFocus

End Sub

Error-Handling, Debugging and File Input/Output 6-43

Exercise 6-2

‘Recent Files’ Menu Option

Under the File menu on nearly every application (that opens files) is a list of the four
most recently-used files (usually right above the Exit option). Modify your information
tracker to implement such a feature. This is not trivial -- there are lots of things to
consider. For example, you’ll need a file to store the last four file names. You need to
open that file and initialize the corresponding menu entries when you run the
application -- you need to rewrite that file when you exit the application. You need
logic to re-order file names when a new file is opened or saved. You need logic to
establish new menu items as new files are used. You’ll need additional error-trapping
in the open procedure, in case a file selected from the menu no longer exists. Like I
said, a lot to consider here.

My Solution:

These new menu items immediately precede the existing Exit menu item:

Menu mnuFileRecent:

Caption = [Blank]
Index = 0, 1, 2, 3 (a control array)

Visible = False

Menu mnuFileBar:

Caption = -
Visible = False

Code Modifications (new code is bold and italicized):

General Declarations:

Option Explicit

Dim Dates(1000) As Date

Dim Weights(1000) As String

Dim NumWts As Integer

Dim NFiles As Integer, RFile(3) As String, MenuOpen As

Integer, FNmenu As String

6-44 Learn Visual Basic 6.0

Rfile Update General Procedure:

Sub RFile_Update(NewFile As String)

‘Routine to place newest file name in proper order

‘in menu structure

Dim I As Integer, J As Integer, InList As Integer

'Convert name to all upper case letters

NewFile = UCase(NewFile)

'See if file is already in list

InList = 0

For I = 0 To NFiles - 1

If RFile(I) = NewFile Then InList = 1: Exit For

Next I

'If file not in list, increment number of items with

'a maximum of 4. Then, move others down, then place

'new name at top of list

If InList = 0 Then

NFiles = NFiles + 1

If NFiles > 4 Then

NFiles = 4

Else

If NFiles = 1 Then mnuFileBar.Visible = True

mnuFileRecent(NFiles - 1).Visible = True

End If

If NFiles <> 1 Then

For I = NFiles - 1 To 1 Step -1

RFile(I) = RFile(I - 1)

Next I

End If

RFile(0) = NewFile

Else

'If file already in list, put name at top and shift

'others accordingly

If I <> 0 Then

For J = I - 1 To 0 Step -1

RFile(J + 1) = RFile(J)

Next J

RFile(0) = NewFile

End If

End If

'Set menu captions according to new list

Error-Handling, Debugging and File Input/Output 6-45

For I = 0 To NFiles - 1

mnuFileRecent(I).Caption = "&" + Format(I + 1, "# ") +

RFile(I)

Next I

End Sub

6-46 Learn Visual Basic 6.0

Form Load Event:

Private Sub Form_Load()

Dim I As Integer

'Open .ini file and load in recent file names

Open "weight.ini" For Input As #1

NFiles = 0: MenuOpen = 0

For I = 0 To 3

Input #1, RFile(I)

If RFile(I) <> "" Then

NFiles = NFiles + 1

mnuFileBar.Visible = True

mnuFileRecent(I).Caption = "&" + Format(I + 1, "# ") +

RFile(I)

mnuFileRecent(I).Visible = True

End If

Next I

Close 1

frmWeight.Show

Call Init

End Sub

mnuFileExit Click Event:

Private Sub mnuFileExit_Click()

'Make sure user really wants to exit

Dim Response As Integer, I As Integer

Response = MsgBox("Are you sure you want to exit the

weight program?", vbYesNo + vbCritical + vbDefaultButton2,

"Exit Editor")

If Response = vbNo Then

Exit Sub

Else

'Write out .ini file when done

Open "weight.ini" For Output As #1

For I = 0 To 3

Write #1, RFile(I)

Next I

Close 1

End

End If

Error-Handling, Debugging and File Input/Output 6-47

End Sub

6-48 Learn Visual Basic 6.0

mnuFileOpen Click Event:

Private Sub mnuFileOpen_Click()

Dim I As Integer

Dim Today As Date

Dim Response As Integer

Dim File_To_Open As String

Response = MsgBox("Are you sure you want to open a new

file?", vbYesNo + vbQuestion, "New File")

If Response = vbNo Then Exit Sub

If MenuOpen = 0 Then

cdlFiles.Filter = "Files (*.wgt)|*.wgt"

cdlFiles.DefaultExt = "wgt"

cdlFiles.DialogTitle = "Open File"

cdlFiles.Flags = cdlOFNFileMustExist +

cdlOFNPathMustExist

On Error GoTo No_Open

cdlFiles.ShowOpen

File_To_Open = cdlFiles.filename

Else

File_To_Open = FNmenu

End If

MenuOpen = 0

On Error GoTo BadOpen

Open File_To_Open For Input As #1

lblFile.Caption = File_To_Open

Input #1, NumWts

For I = 1 To NumWts

Input #1, Dates(I), Weights(I)

Next I

Close 1

Call RFile_Update(File_To_Open)

Today = Format(Now, "mm/dd/yy")

If Today <> Dates(NumWts) Then

NumWts = NumWts + 1

Dates(NumWts) = Today

Weights(NumWts) = ""

End If

vsbControl.Max = NumWts

vsbControl.Value = NumWts

lblDate.Caption = Dates(NumWts)

txtWeight.Text = Weights(NumWts)

Exit Sub

Error-Handling, Debugging and File Input/Output 6-49

No_Open:

Resume ExitLine

ExitLine:

Exit Sub

6-50 Learn Visual Basic 6.0

BadOpen:

Select Case MsgBox(Error(Err.Number), vbCritical +

vbRetryCancel, "File Open Error")

Case vbRetry

Resume

Case vbCancel

Resume No_Open

End Select

End Sub

mnuFileRecent Click Event:

Private Sub mnuFileRecent_Click(Index As Integer)

FNmenu = RFile(Index): MenuOpen = 1

Call mnuFileOpen_Click

End Sub

mnuFileSave Click Event:

Private Sub mnuFileSave_Click()

Dim I As Integer

cdlFiles.Filter = "Files (*.wgt)|*.wgt"

cdlFiles.DefaultExt = "wgt"

cdlFiles.DialogTitle = "Save File"

cdlFiles.Flags = cdlOFNOverwritePrompt +

cdlOFNPathMustExist

On Error GoTo No_Save

cdlFiles.ShowSave

Open cdlFiles.filename For Output As #1

lblFile.Caption = cdlFiles.filename

Write #1, NumWts

For I = 1 To NumWts

Write #1, Dates(I), Weights(I)

Next I

Close 1

Call RFile_Update(cdlFiles.filename)

Exit Sub

No_Save:

Resume ExitLine

ExitLine:

Exit Sub

Error-Handling, Debugging and File Input/Output 6-51

End Sub

6-52 Learn Visual Basic 6.0

This page intentionally not left blank.

7-1

7. Graphics Techniques with Visual Basic

Review and Preview

 In past classes, we've used some graphics tools: line tools, shape tools, image
boxes, and picture boxes. In this class, we extend our graphics programming
skills to learn how to draw lines and circles, do drag and drop, perform simple
animation, and study some basic plotting routines.

Graphics Methods

 Graphics methods apply to forms and picture boxes (remember a picture box is

like a form within a form). With these methods, we can draw lines, boxes, and
circles. Before discussing the commands that actually perform the graphics
drawing, though, we need to look at two other topics: screen management and

screen coordinates.

 In single program environments (DOS, for example), when something is drawn on
the screen, it stays there. Windows is a multi-tasking environment. If you switch
from a Visual Basic application to some other application, your Visual Basic form
may become partially obscured. When you return to your Visual Basic
application, you would like the form to appear like it did before being covered. All
controls are automatically restored to the screen. Graphics methods drawings
may or may not be restored - we need them to be, though. To accomplish this, we
must use proper screen management.

 The simplest way to maintain graphics is to set the form or picture box's
AutoRedraw property to True. In this case, Visual Basic always maintains a
copy of graphics output in memory (creates persistent graphics). Another way

to maintain drawn graphics is (with AutoRedraw set to False) to put all graphics
commands in the form or picture box's Paint event. This event is called whenever

an obscured object becomes unobscured. There are advantages and
disadvantages to both approaches (beyond the scope of discussion here). For
now, we will assume our forms won't get obscured and, hence, beg off the
question of persistent graphics and using the AutoRedraw property and/or Paint
event.

Learn Visual Basic 6.0

Graphics Techniques with Visual Basic 7-11

0, 0)

ScaleWidth

Scale
Height

 All graphics methods described here will use the default coordinate system:

(

y

Note the x (horizontal) coordinate runs from left to right, starting at 0 and extending

to ScaleWidth - 1. The y (vertical) coordinate goes from top to bottom, starting at

0 and ending at ScaleHeight - 1. Points in this coordinate system will always be

referred to by a Cartesian pair, (x, y). Later, we will see how we can use any

coordinate system we want.

ScaleWidth and ScaleHeight are object properties representing the “graphics”
dimensions of an object. Due to border space, they are not the same as the
Width and Height properties. For all measurements in twips (default coordinates),
ScaleWidth is less than Width and ScaleHeight is less than Height. That is, we
can’t draw to all points on the form.

 PSet Method:

To set a single point in a graphic object (form or picture box) to a particular color,
use the PSet method. We usually do this to designate a starting point for other

graphics methods. The syntax is:

ObjectName.PSet (x, y), Color

where ObjectName is the object name, (x, y) is the selected point, and Color is

the point color (discussed in the next section). If the ObjectName is omitted, the

current form is assumed to be the object. If Color is omitted, the object's
ForeColor property establishes the color. PSet is usually used to initialize some

further drawing process.

7-2 Learn Visual Basic 6.0

 Pset Method Example:

This form has a ScaleWidth of 3975 (Width 4095) and a ScaleHeight of 2400
(Height 2805). The command:

PSet (1000, 500)

will have the result:

4095

3975

(1000, 500)

The marked point (in color ForeColor, black in this case) is pointed to by the

Cartesian coordinate (1000, 500) - this marking, of course, does not appear on
the form. If you want to try this example, and the other graphic methods, put the

code in the Form_Click event. Run the project and click on the form to see the
results (necessary because of the AutoRedraw problem).

 CurrentX and CurrentY:

After each drawing operation, the coordinate of the last point drawn to is
maintained in two Visual Basic system variables, CurrentX and CurrentY. This

way we always know where the next drawing operation will begin. We can also
change the values of these variables to move this last point. For example, the

code:

CurrentX = 1000
CurrentY = 500

is equivalent to:

PSet(1000, 500)

7-4 Learn Visual Basic 6.0

 Line Method:

The Line method is very versatile. We can use it to draw line segments, boxes,

and filled boxes. To draw a line, the syntax is:

ObjectName.Line (x1, y1) - (x2, y2), Color

where ObjectName is the object name, (x1, y1) the starting coordinate, (x2, y2)

the ending coordinate, and Color the line color. Like PSet, if ObjectName is

omitted, drawing is done to the current form and, if Color is omitted, the object’s
ForeColor property is used.

To draw a line from (CurrentX, CurrentY) to (x2, y2), use:

ObjectName.Line - (x2, y2), Color

There is no need to specify the start point since CurrentX and CurrentY are

known.

To draw a box bounded by opposite corners (x1, y1) and (x2, y2), use:

ObjectName.Line (x1, y1) - (x2, y2), Color, B

and to fill that box (using the current FillPattern), use:

ObjectName.Line (x1, y1) - (x2, y2), Color, BF

Graphics Techniques with Visual Basic 7-5

 Line Method Examples:

Using the previous example form, the commands:

Line (1000, 5 00) - (3000, 2000)

Line - (3000, 1000)

draws these line segments:

(1000, 500)

(3000, 1000)

(3000, 2000)

The command:

Line (1000, 500) - (3000, 2000), , B

draws this box (note two commas after the second coordinate - no color is
specified):

(1000, 500)

(3000,2000)

7-6 Learn Visual Basic 6.0

 Circle Method:

The Circle method can be used to draw circles, ellipses, arcs, and pie slices.

We'll only look at drawing circles - look at on-line help for other drawing modes.
The syntax is:

ObjectName.Circle (x, y), r, Color

This command will draw a circle with center (x, y) and radius r, using Color.

 Circle Example:

With the same example form, the command:

Circle (2000, 1000), 800

produces the result:

(2000, 1000)

 Print Method:

Another method used to 'draw' to a form or picture box is the Print method. Yes,

for these objects, printed text is drawn to the form. The syntax is:

ObjectName.Print [information to print]

Here the printed information can be variables, text, or some combination. If no

object name is provided, printing is to the current form.

Information will print be ginning at the object's CurrentX and CurrentY value. The

color used is specified by the object's ForeColor property and the font is

specified by the object's Font characteristics.

Graphics Techniques with Visual Basic 7-7

 Print Method Example:

The code (can’t be in the Form_Load procedure because of that pesky
AutoRedraw property):

CurrentX=200
CurrentY=200

Print "Here is the line of text"

will produce this result (I’ve used a large font):

 Cls Method:

To clear the graphics drawn to an object, use the Cls method. The syntax is:

ObjectNa me.Cls

If no object name is given, the current form is cleared. Recall Cls only clears the
lowest of the three display layers. This is where graphics methods draw.

 For each graphic method, line widths, fill patterns, and other graphics features can
be controlled via other object properties. Consult on-line help for further
information.

7-8 Learn Visual Basic 6.0

Using Colors

 Notice that all the graphics methods can use a Color argument. If that argument
is omitted, the ForeColor property is used. Color is actually a hexadecimal (long

integer) representation of color - look in the Properties Window at some of the

values of color for various object properties. So, one way to get color values is to
cut and paste values from the Properties Window. There are other ways, though.

 Symbolic Constants:

Visual Basic offers eight symbolic constants (see Appendix I) to represent

some basic colors. Any of these constants can be used as a Color argument.

Constant
vbBlack

Value
0x0

Color
Black

vbRed 0xFF Red
vbGreen 0xFF00 Green
vbYellow 0xFFFF Yellow
vbBlue 0xFF0000 Blue
vbMagenta 0xFF00FF Magenta
vbCyan 0xFFFF00 Cyan
vbWhite 0xFFFFFF White

 QBColor Function:

For Microsoft QBasic, GW-Basic and QuickBasic programmers, Visual Basic
replicates the sixteen most used colors with the QBColor function. The color is

specified by QBColor(Index), where the colors corresponding to the Index are:

Index Color Index Color

0 Black 8 Gray
1 Blue 9 Light blue
2 Green 10 Light green
3 Cyan 11 Light cyan
4 Red 12 Light red
5 Magenta 13 Light magenta
6 Brown 14 Yellow
7 White 15 Light (bright) white

Graphics Techniques with Visual Basic 7-9

 RGB Function:

The RGB function can be used to produce one of 224 (over 16 million) colors! The

syntax for using RGB to specify the color property is:

RGB(Red, Green, Blue)

where Red, Green, and Blue are integer measures of intensity of the

corresponding primary colors. These measures can range from 0 (least intensity)
to 255 (greatest intensity). For example, RGB(255, 255, 0) will produce yellow.

 Any of these four representations of color can be used anytime your Visual Basic
code requires a color value.

 Color Examples:

frmExample.BackColor = vbGreen
picExample.FillColor = QBColor(3)
lblExample.ForeColor = RGB(100, 100, 100)

7-10 Learn Visual Basic 6.0

Mouse Events

 Related to graphics methods are mouse events. The mouse is a primary

interface to performing graphics in Visual Basic. We've already used the mouse

to Click and DblClick on objects. Here, we see how to recognize other mouse

events to allow drawing in forms and picture boxes.

 MouseDown Event:

The MouseDown event procedure is triggered whenever a mouse button is

pressed while the mouse cursor is over an object. The form of this procedure is:

Sub ObjectName_MouseDown(Button As Integer, Shift As Integer, X As

Single, Y As Single)
.

.
End Sub

The arguments are:

Button Specifies which mouse button was pressed.

Shift Specifies state of Shift, Ctrl, and Alt keys.

X, Y Coordinate of mouse cursor when button was

pressed.

Values for the Button argument are:

Symbolic Constant Value Description

vbLeftButton 1 Left button is pressed.
vbRightButton 2 Right button is pressed.
vbMiddleButton 4 Middle button is pressed.

Only one button press can be detected by the MouseDown event. Values for the

Shift argument are:

Symbolic Constant Value Description
vbShiftMask 1 Shift key is pressed.
vbCtrlMask 2 Ctrl key is pressed.
vbAltMask 4 Alt key is pressed.

The Shift argument can represent multiple key presses. For example, if Shift = 5
(vbShiftMask + vbAltMask), both the Shift and Alt keys are being pressed when
the MouseDo wn event occurs.

Graphics Techniques with Visual Basic 7-

11

 MouseUp Event:

The MouseUp event is the opposite of the MouseDown event. It is triggered

whenever a previously pressed mouse button is released. The procedure outline
is:

Sub ObjectName_MouseUp(Button As Integer, Shift As Integer, X As Single, Y

As Single)
.
.

End Sub

The arguments are:

Button Specifies which mouse button was released.

Shift Specifies state of Shift, Ctrl, and Alt keys.

X, Y Coordinate of mouse cursor when button was

released.

The Button and Shift constants are the same as those for the MouseDown event.

 MouseMove Event:

The MouseMove event is continuously triggered whenever the mouse is being

moved. The procedure outline is:

Sub ObjectName_MouseMove(Button As Integer, Shift As Integer, X As

Single, Y As Single)
.
.

End Sub

The arguments are:

Button Specifies which mouse button(s), if any, are pressed.

Shift Specifies state of Shift, Ctrl, and Alt keys

X, Y Current coordinate of mouse cursor

7-12 Learn Visual Basic 6.0

The Button and Shift constants are the same as those for the MouseDown event.

A difference here is that the Button argument can also represent multiple button
presses or no press at all. For example, if Button = 0, no button is pressed as the
mouse is moved. If Button = 3 (vbLeftButton + vbRightButton), both the left and
right buttons are pressed while the mouse is being moved.

Graphics Techniques with Visual Basic 7-

13

Example 7 -1

Blackboard

1. Start a new application. Here, we will build a blackboard we can scribble on with
the mouse (using colored ‘chalk’).

2. Set up a simple menu structure for your application using the Menu Editor. The

menu should be:

File

New

Exit

Properties for these menu items should be:

Caption Name

&File mnuFile
&New mnuFileNew
- mnuFileSep

E&xit mnuFileExit

3. Put a picture box and a single label box (will be used to set color) on the form. Set

the following properties:

Form1:

BorderStyle 1-Fixed Single

Caption Blackboard
Name frmDraw

Picture1:

Name picDraw

Label1:

BorderStyle 1-Fixed Single

Caption [Blank]
Name lblColor

7-14 Learn Visual Basic 6.0

The form should look something like this:

4. Now, copy and paste the label box (create a control array named lblColor) until

there are eight boxes on the form, lined up vertically under the original box. When

done, the form will look just as above, except there will be eight label boxes.

5. Type these lines in the general declarations area. DrawOn will be used to

indicate whether you are drawing or not.

Option Explicit

Dim DrawOn As Boolean

Graphics Techniques with Visual Basic 7-

15

6. Attach code to each procedure.

The Form_Load procedure loads colors into each of the label boxes to allow

choice of drawing color. It also sets the BackColor to black and the ForeColor

to Bright White.

Private Sub Form_Load()

'Load drawing colors into control array

Dim I As Integer

For I = 0 To 7

lblColor(I).BackColor = QBColor(I + 8)

Next I

picDraw.ForeColor = QBColor(15) ‘ Bright White

picDraw.BackColor = QBColor(0) ‘ Black

End Sub

In the mnuFileNew_Click procedure, we check to see if the user really wants to

start over. If so, the picture box is cleared with the Cls method.

Private Sub mnuFileNew_Click()

'Make sure user wants to start over

Dim Response As Integer

Response = MsgBox("Are you sure you want to start a new

drawing?", vbYesNo + vbQuestion, "New Drawing")

If Response = vbYes Then picDraw.Cls

End Sub

In the mnuFileExit_Click procedure, make sure the user really wants to stop the

application.

Private Sub mnuFileExit_Click()

'Make sure user wants to quit

Dim Response As Integer

Response = MsgBox("Are you sure you want to exit the

Blackboard?", vbYesNo + vbCritical + vbDefaultButton2,

"Exit Blackboard")

If Response = vbYes Then End

End Sub

7-16 Learn Visual Basic 6.0

When the left mouse button is clicked, drawing is initialized at the mouse cursor
location in the picDraw_MouseDown procedure.

Private Sub picDraw_MouseDown(Button As Integer, Shift

As Integer, X As Single, Y As Single)

'Drawing begins

If Button = vbLeftButton Then

DrawOn = True

picDraw.CurrentX = X

picDraw.CurrentY = Y

End If

End Sub

When drawing ends, the DrawOn switch is toggled in picDraw_MouseUp.

Private Sub picDraw_MouseUp(Button As Integer, Shift A s

Integer, X As Single, Y As Single)

'Drawing ends

If Button = vbLeftButton Then DrawOn = False

End Sub

While mouse is being moved and DrawOn is True, draw lines in current color in

the picDraw_MouseMove procedure.

Private Sub picDraw_MouseMove(Button As Integer, Shift

As Integer, X As Single, Y As Single)

'Drawing continues

If DrawOn Then picDraw.Line -(X, Y), picDraw.ForeColor

End Sub

Finally, when a label box is clicked, the drawing color is changed in the

lblColor_Click procedure.

Private Sub lblColor_Click(Index As Integer)

'Make audible tone and reset drawing color

Beep

picDraw.ForeColor = lblColor(Index).BackColor

End Sub

7. Run the application. Click on the label boxes to change the color you draw with.
Fun, huh? Save the application.

Graphics Techniques with Visual Basic 7-

17

8. A challenge for those who like challenges. Add Open and Save options that

allow you to load and save pictures you draw. Suggested steps (may take a while

- I suggest trying it outside of class):

A. Change the picture box property AutoRedraw to True. This is

necessary to save pictures. You will notice the drawing process slows
down to accommodate persistent graphics.

B. Add the Open option. Write code that brings up a common dialog box

to get a filename to open (will be a .bmp file) and put that picture in the
picDraw.Picture property using the LoadPicture function.

C. Add the Save option. Again, add code to use a common dialog box to

get a proper filename. Use the SavePicture method to save the

Image property of the picDraw object. We save the Image property,

not the Picture property, since this is where Visual Basic maintains the

persistent graphics.

D. One last change. The Cls method in the mnuFileNew_Click code will

not clear a picture loaded in via the Open code (has to do with using
AutoRedraw). So, replace the Cls statement with code that manually
erases the picture box. I'd suggest using the BF option of the Line

method to simply fill the space with a box set equal to the BackColor

(white). I didn't say this would be easy.

7-18 Learn Visual Basic 6.0

Drag and Drop Events

 Related to mouse events are drag and drop events. This is the process of

using the mouse to pick up some object on a form and move it to another location.
We use drag and drop all the time in Visual Basic design mode to locate objects
on our application form.

 Drag and drop allows you to design a simple user interface where tasks can be
performed without commands, menus, or buttons. Drag and drop is very intuitive
and, at times, faster than other methods. Examples include dragging a file to
another folder or dragging a document to a printer queue.

 Any Visual Basic object can be dragged and dropped, but we usually use picture

and image boxes. The item being dragged is called the source object. The item

being dropped on (if there is any) is called the target.

 Object Drag Properties:

If an object is to be dragged, two properties must be set:

DragMode Enables dragging of an object (turns off ability to

receive Click or MouseDown events). Usually use 1-
Automatic (vbAutomatic).

DragIcon Specifies icon to display as object is being dragged.

As an object is being dragged, the object itself does not move, only the DragIcon.
To move the object, some additional code using the Move method (discussed in

a bit) must be used.

 DragDrop Event:

The DragDrop event is triggered whenever the source object is dropped on the

target object. The procedure form is:

Sub ObjectName_DragDrop(Source As Control, X As Single, Y As Single)
.
.

End Sub

The arguments are:

Source Object being dragged.

X, Y Current mouse cursor coordinates.

Graphics Techniques with Visual Basic 7-

19

 DragOver Event:

The DragOver event is triggered when the source object is dragged over

another object. Its procedure form is:

Private Sub ObjectName_DragOver(Source As Control, X As Single, Y
As Single, State As Integer)

.

.
End Sub

The first three arguments are the same as those for the DragDrop event. The

State argument tells the object where the source is. Its values are 0-Entering

(vbEnter), 1-Leaving (vbLeave), 2-Over (vbOver).

 Drag and Drop Methods:

Drag Starts or stops manual dragging (won't be addressed

here - we use Automatic dragging)
Move Used to move the source object, if desired.

Example

To move the source object to the location specified by coordinates X and Y, use:

Source.Move X, Y

The best way to illustrate the use of drag and drop is by example.

7-20 Learn Visual Basic 6.0

Example 7 -2

Letter Disposal

1. We'll build a simple application of drag and drop where unneeded
correspondence is dragged and dropped into a trash can. Start a new
application. Place four image boxes and a single command button on the form.
Set these properties:

Form1:

BackColor White

BorderStyle 1-Fixed Single
Caption Letter Disposal

Name frmDispose

Command1:

Caption &Reset
Name cmdReset

Image1:

Name imgCan

Picture trash01.ico
Stretch True

Image2:

Name imgTrash

Picture trash01.ico
Visible False

Image3:

Name imgBurn

Picture trash02b.ico
Visible False

Image4:

DragIcon drag1pg.ico

DragMode 1-Automatic
Name imgLetter

Picture mail06.ico
Stretch True

Graphics Techniques with Visual Basic 7-

21

The form will look like this:

Image4 Image1

Image2

Image3

Some explanation about the images on this form is needed. The letter image is
the control to be dragged and the trash can (at Image1 location) is where it will be

dragged to. The additional images (the other trash can and burning can) are not
visible at run-time and are used to change the state of the trash can, when
needed. We could load these images from disk files at run-time, but it is much
quicker to place them on the form and hide them, then use them when required.

2. The code here is minimal. The Form_DragDrop event simply moves the letter

image if it is dropped on the form.

Private Sub Form_DragDrop(Source As Control, X As

Single, Y As Single)

Source.Move X, Y

End Sub

3. The imgCan_DragDrop event changes the trash can to a burning pyre if the

letter is dropped on it.

Private Sub imgCan_DragDrop(Index As Integer, Source As

Control, X As Single, Y As Single)

'Burn mail and make it disappear

imgCan.Picture = imgBurn.Picture

Source.Visible = False

End Sub

7-22 Learn Visual Basic 6.0

4. The cmdReset_Click event returns things to their original state.

Private Sub cmdReset_Click()

'Reset to trash can picture

imgCan.Picture = imgTrash.Picture

imgLetter.Visible = True

End Sub

5. Save and run the application. Notice how only the drag icon moves. Notice the
letter moves once it is dropped. Note, too, that the letter can be dropped
anywhere. The fire appears only when it is dropped in the trash.

Graphics Techniques with Visual Basic 7-

23

Timer Tool and Delays

 Many times, especially in using graphics, we want to repeat certain operations at
regular intervals. The timer tool allows such repetition. The timer tool does not

appear on the form while the application is running.

 Timer tools work in the background, only being invoked at time intervals you
specify. This is multi-tasking - more than one thing is happening at a time.

 Timer Properties:

Enabled Used to turn the timer on and off. When on, it

continues to operate until the Enabled property is set

to False.

Interval Number of milliseconds between each invocation of

the Timer Event.

 Timer Events:

The timer tool only has one event, Timer. It has the form:

Sub TimerName_Timer()
.
.

End Sub

This is where you put code you want repeated every Interval seconds.

 Timer Example:

To make the computer beep every second, no matter what else is going on, you
add a timer tool (named timExample) to the form and set the Interval property to

1000. That timer tool's event procedure is then:

Sub timExample_Timer()

Beep
End Sub

 In complicated applications, many timer tools are often used to control numerous
simultaneous operations. With experience, you will learn the benefits and
advantages of using timer tools.

7-24 Learn Visual Basic 6.0

 Simple Delays:

If you just want to use a simple delay in your Visual Basic application, you might
want to consider the Timer function. This is not related to the Timer tool. The

Timer function simply returns the number of seconds elapsed since midnight.

To use the Timer function for a delay of Delay seconds (the Timer function seems

to be accurate to about 0.1 seconds, at best), use this code segment :

Dim TimeNow As Single

.

.
TimeNow = Timer
Do While Timer - TimeNow < Delay
Loop

One drawback to this kind of coding is that the application cannot be interrupted

while in the Do loop. So, keep delays to small values.

Animation Techniques

 One of the more fun things to do with Visual Basic programs is to create animated
graphics. We'll look at a few simple animation techniques here. I'm sure you'll
come up with other ideas for animating your application.

 One of the simplest animation effects is a chieved by toggling between two

images. For example, you may have a picture of a stoplight with a red light. By

quickly changing this picture to one with a green light, we achieve a dynamic
effect - animation. Picture boxes and image boxes are used to achieve this

effect.

 Another approach to animation is to rotate through several pictures - each a slight
change in the previous picture - to obtain a longer animation. This is the principle
motion pictures are based on - pictures are flashed by us at 24 frames per
second and our eyes are tricked into believing things are smoothly moving.
Control arrays are usually used to achieve this type of animation.

 More elaborate effects can be achieved by moving an image while, at the same,
time changing the displayed picture. Effects such as a little guy walking across
the screen are easily achieved. An object is moved using the Move method. You
can do both absolute and relative motion (using an object's Left and Top

properties).

Graphics Techniques with Visual Basic 7-

25

For example, to move a picture box named picExample to the coordinate (100,

100), use:

picExample.Move 100, 100

To move it 20 twips to the right and 50 twips down, use:

picExample.Move picExample.Left + 20, picExample.Top + 50

Quick Example: Simple Animation

1. Start a new application. Place three image boxes on the form. Set the following

properties:

Image1:

Picture mail02a.ico

Visible False

Image2:

Picture mail02b.ico
Visible False

Image3:

Picture mail02a.ico

Stretch True

Make Image3 larger than default size, using the ‘handles.’

A few words about what we're going to do. Image1 holds a closed envelope,

while Image2 holds an opened one. These images are not visible - they will be

selected for display in Image3 (which is visible) as Image3 is clicked. (This is

similar to hiding things in the drag and drop example.) It will seem the envelope is

being torn opened, then repaired.

2. Attach the following code to the Image3_Click procedure.

Private Sub Image3_Click()

Static PicNum As Integer

If PicNum = 0 Then

Image3.Picture = Image2.Picture : PicNum = 1

Else

Image3.Picture = Image1.Picture : PicNum = 0

End If

End Sub

7-26 Learn Visual Basic 6.0

When the envelope is clicked, the image displayed in Image3 is toggled (based

on the value of the static variable PicNum).

3. Run and save the application.

Quick Example: Animation with the Timer Tool

1. In this example, we cycle through four different images using timer controlled

animation. Start a new application. Put two image boxes, a timer tool, and a
command button on the form. Set these properties :

Image1:

Picture trffc01.ico
Visible False

Now copy and paste this image box three times, so there are four elements in

the Image1 control array. Set the Picture properties of the other three

elements to:

Image1(1):

Picture trffc02.ico

Image1(2):

Picture trffc03.ico

Image1(3):

Picture trffc04.ico

Image2:

Picture trffc01.ico
Stretch True

Command1:

Caption Start/Stop

Timer1:

Enabled False

Interval 200

Graphics Techniques with Visual Basic 7-

27

The form should resemble this:

2. Attach this code to the Command1_Click procedure.

Private Sub Command1_Click()

Timer1.Enabled = Not (Timer1.Enabled)

End Sub

The timer is turned on or off each time this code is invoked.

3. Attach this code to the Timer1_Timer procedure.

Private Sub Timer1_Timer()

Static PicNum As Integer

PicNum = PicNum + 1

If PicNum > 3 Then PicNum = 0

Image2.Picture = Image1(PicNum).Picture

End Sub

This code changes the image displayed in the Image2 box, using the static

variable PicNum to keep track of what picture is next.

4. Save and run the application. Note how the timer tool and the four small icons do

not appear on the form at run-time. The traffic sign appears to be spinning, with
the display updated by the timer tool every 0.2 seconds (200 milliseconds).

5. You can make the sign ‘walk off’ one side of the screen by adding this line after

setting the Picture property:

Image2.Move Image2.Left + 150

7-28 Learn Visual Basic 6.0

Random Numbers (Revisited) and Games

 Another fun thing to do with Visual Basic is to create games. You can write

games that you play against the computer or against another opponent.

 To introduce chaos and randomness in games, we use random numbers.

Random numbers are used to have the computer roll a die, spin a roulette wheel,
deal a deck of cards, and draw bingo numbers. Visual Basic develops random
numbers using its built-in random number generator.

 Randomize Statement:

The random number generator in Visual Basic must be seeded. A Seed value

initializes the generator. The Randomize statement is used to do this:

Randomize Seed

If you use the same Seed each time you run your application, the same sequence

of random numbers will be generated. To insure you get different numbers every
time you use your application (preferred for games), use the Timer function to

seed the generator:

Randomize Timer

With this, you will always obtain a different sequence of random numbers, unless

you happen to run the application at exactly the same time each day.

 Rnd Function:

The Visual Basic function Rnd returns a single precision, random number

between 0 and 1 (actually greater than or equal to 0 and less than 1). To produce
random integers (I) between Imin and Imax (again, what we usually do in games),
use the formula:

I = Int((Imax - Imin + 1) * Rnd) + Imin

 Rnd Example:

To roll a six-sided die, the number of spots would be computed using:

NumberSpots = Int(6 * Rnd) + 1

To randomly choose a number between 100 and 200, use:

Number = Int(101 * Rnd) + 100

Graphics Techniques with Visual Basic 7-

29

Randomly Sorting N Integers

 In many games, we have the need to randomly sort a number of integers. For
example, to s huffle a deck of cards, we sort the integers from 1 to 52. To
randomly sort the state names in a states/capitals game, we would randomize the
values from 1 to 50.

 Randomly sorting N integers is a common task. Here is a ‘self-documenting’
general procedure that does that task. Calling arguments for the procedure are N

(the largest integer to be sorted) and an array, NArray, dimensioned to N
elements. After calling the routine N_Integers, the N randomly sorted integers

are returned in NArray. Note the procedure randomizes the integers from 1 to N,
not 0 to N - the zeroth array element is ignored.

Private Sub N_Integers(N As Integer, Narray() As Integer)
'Randomly sorts N integers and puts results in Narray
Dim I As Integer, J As Integer, T As Integer
'Order all elements initially
For I = 1 To N: Narray(I) = I: Next I
'J is number of integers remaining
For J = N to 2 Step -1
I = Int(Rnd * J) + 1

T = Narray(J)
Narray(J) = Narray(I)
Narray(I) = T

Next J
End Sub

7-30 Learn Visual Basic 6.0

Example 7 -3

One-Buttoned Bandit

1. Start a new application. In this example, we will build a computer version of a slot
machine. We'll use random numbers and timers to display three random pictures.
Certain combinations of pictures win you points. Place two image boxes, two
label boxes, and two command buttons on the form.

2. Set the following properties:

Form1:

BorderStyle 1-Fixed Single

Caption One -Buttoned Bandit
Name frmBandit

Command1:

Caption &Spin It

Default True
Name cmdSpin

Command2:

Caption E&xit

Name cmdExit

Timer1:

Enabled False
Interval 100

Name timSpin

Timer2:

Enabled False
Interval 2000

Name timDone

Label1:

Caption Bankroll
FontBold True

FontItalic True
FontSize 14

Graphics Techniques with Visual Basic 7-

31

Label2:

Alignment 2-Center

AutoSize True
BorderStyle 1-Fixed Single
Caption 100

FontBold True
FontSize 14

Name lblBank

Image1:

Name imgChoice
Picture earth.ico

Visible False

Copy and paste this image box three times, creating a control element
(imgChoice) with four elements total. Set the Picture property of the

other three boxes.

Image1(1):

Picture snow.ico

Image1(2):

Picture misc44.ico

Image1(3):

Picture face03.ico

Image2:

BorderStyle 1-Fixed single
Name imgBandit

Stretch True

Copy and paste this image box two times, creating a three element control

array (Image2). You don't have to change any properties of the newly

created image boxes.

7-32 Learn Visual Basic 6.0

When done, the form should look something like this:

Image1
control
array
(not

visible)

Image2
control
array

(visible)

A few words on what we're doing. We will randomly fill the three large

image boxes by choosing from the four choices in the non-visible image
boxes. One timer (timSpin) will be used to flash pictures in the boxes.

One timer (timDone) will be used to time the entire process.

3. Type the following lines in the general declarations area of your form's code

window. Bankroll is your winnings.

Option Explicit

Dim Bankroll As Integer

4. Attach this code to the Form_Load procedure.

Private Sub Form_Load()

Randomize Timer

Bankroll = Val(lblBank.Caption)

End Sub

Here, we seed the random number generator and initialize your bankroll.

5. Attach the following code to the cmdExit_Click event.

Private Sub cmdExit_Click()

MsgBox "You ended up with" + Str(Bankroll) + " points.",

vbOKOnly, "Game Over"

End

End Sub

When you exit, your final earnings are displayed in a message box.

Graphics Techniques with Visual Basic 7-

33

6. Attach this code to the cmdSpin_Click event.

Private Sub cmdSpin_Click()

If Bankroll = 0 Then

MsgBox "Out of Cash!", vbOKOnly, "Game Over"

End

End If

Bankroll = Bankroll - 1

lblBank.Caption = Str(Bankroll)

timSpin.Enabled = True

timDone.Enabled = True

End Sub

Here, we first check to see if you're out of cash. If so, the game ends. If not, you
are charged 1 point and the timers are turned on.

7. This is the code for the timSpin_Timer event.

Private Sub timSpin_Timer()

imgBandit(0).Picture = imgChoice(Int(Rnd * 4)).Picture

imgBandit(1).Picture = imgChoice(Int(Rnd * 4)).Picture

imgBandit(2).Picture = imgChoice(Int(Rnd * 4)).Picture

End Sub

Every 0.1 seconds, the three visible image boxes are filled with a random image.
This gives the effect of the spinning slot machine.

8. And, the code for the timDone_Timer event. This event is triggered after the

bandit spins for 2 seconds.

Private Sub timDone_Timer()

Dim P0 As Integer, P1 As Integer, P2 As Integer

Dim Winnings As Integer

Const FACE = 3

timSpin.Enabled = False

timDone.Enabled = False

P0 = Int(Rnd * 4)

P1 = Int(Rnd * 4)

P2 = Int(Rnd * 4)

imgBandit(0).Picture = imgChoice(P0).Picture

imgBandit(1).Picture = imgChoice(P1).Picture

imgBandit(2).Picture = imgChoice(P2).Picture

7-34 Learn Visual Basic 6.0

If P0 = FACE Then

Winnings = 1

If P1 = FACE Then

Winnings = 3

If P2 = FACE Then

Winnings = 10

End If

End If

ElseIf P0 = P1 Then

Winnings = 2

If P1 = P2 Then Winnings = 4

End If

Bankroll = Bankroll + Winnings

lblBank.Caption = Str(Bankroll)

End Sub

First, the timers are turned off. Final pictures are displayed in each position.
Then, the pictures are checked to see if you won anything.

9. Save and run the application. See if you can become wealthy.

10. If you have time, try these things.

A. Rather than display the three final pictures almost simultaneously, see if

you can stop each picture from spinning at a different time. You'll need
a few more Timer tools.

B. Add some graphics and/or printing to the form when you win. You'll

need to clear these graphics with each new spin - use the Cls method.

C. See if you can figure out the logic I used to specify winning. See if you
can show the one-buttoned bandit returns 95.3 percent of all the
'money' put in the machine. This is higher than what Vegas machines
return. But, with truly random operation, Vegas is guaranteed their
return. They can't lose!

Graphics Techniques with Visual Basic 7-

35

User-Defined Coordinates

 Another major use for graphics in Visual Basic is to generate plots of data. Line
charts, bar charts, and pie charts can all be easily generated.

 We use the Line tool and Circle tool to generate charts. The difficult part of using
these tools is converting our data into the Visual Basic coordinate system. For
example, say we wanted to plot the four points given by:

x = 0, y = 2
x = 2, y = 7
x = 5, y = 11

x = 6, y = 13

(0,2)

To draw such a plot, for each point, we would need to scale each (x, y) pair to fit

within the dimensions of the form specified by the ScaleWidth and ScaleHeight

properties. This is a straightforward, but tedious computation.

 An easier solution lies in the ability to incorporate user-defined coordinates in a

Visual Basic form. The simplest way to define such coordinates is with the Scale

method. The form for this method is:

ObjectName.Scale (x1, y1) - (x2, y2)

The point (x1, y1) represents the top left corner of the newly defined coordinate

system, while (x2, y2) represents the lower right corner. If ObjectName is

omitted, the scaling is associated with the current form.

 Once the coordinate system has been redefined, all graphics methods must use
coordinates in the new system. To return to the default coordinates, use the
Scale method without any arguments.

(5,11)

7-36 Learn Visual Basic 6.0

 Scale Example:

Say we wanted to plot the data from above. We would first define the following
coordinate system:

Scale (0, 13) - (6, 2)

This shows that x ranges from 0 (left side of plot) to 6 (right side of plot), while y
ranges from 2 (bottom of plot) to 13 (top of plot). The graphics code to plot this
function is then:

Pset (0, 2)

Line - (2, 7)
Line - (5, 11)
Line - (6, 13)

Note how much easier this is than would be converting each number pair to twips.

Simple Function Plotting (Line Charts)

 Assume we have a function specified by a known number of (x, y) pairs. Assume
N points in two arrays dimensioned to N - 1: x(N - 1), and y(N - 1). Assume the

points are sorted in the order they are to be plotted. Can we set up a general
procedure to plot these functions, that is create a line chart? Of course!

 The process is:

1. Go through all of the points and find the minimum x value (Xmin) ,

maximum x value (Xmax), minimum y value (Ymin) and the maximum y

value (Ymax). These will be used to define the coordinate system.

Extend each y extreme (Ymin and Ymax) a little bit - this avoids having

a plotted point ending up right on the plot border.

2. Define a coordinate system using Scale:

Scale (Xmin, Ymax) - (Xmax, Ymin)

Ymax is used in the first coordinate because, recall, it defines the
upper left corner of the plot region.

Graphics Techniques with Visual Basic 7-

37

3. Initialize the plotting procedure at the first point using PSet:

PSet (x(0), y(0))

4. Plot subsequent points with the Line procedure:

Line - (x(i), y(i))

 Here is a general procedure that does this plotting using these steps. It
can be used as a basis for more elaborate plotting routines. The
arguments are ObjectName the name of the object (form or picture box)
you are plotting on, N the number of points, X the array of x points, and Y

the array of y points.

Sub LineChart(ObjectName As Control, N As Integer, X() As Single, Y() As

Single)

Dim Xmin As Single, Xmax As Single
Dim Ymin As Single, Ymax As Single
Dim I As Integer
Xmin = X(0): Xmax = X(0)
Ymin = Y(0): Ymax = Y(0)
For I = 1 To N - 1
If X(I) < Xmin Then Xmin = X(I)
If X(I) > Xmax Then Xmax = X(I)
If Y(I) < Ymin Then Ymin = Y(I)
If Y(I) > Ymax Then Ymax = Y(I)

Next I

Ymin = (1 - 0.05 * Sgn(Ymin)) * Ymin ‘ Extend Ymin by 5 percent
Ymax = (1 + 0.05 * Sgn(Ymax)) * Ymax ‘ Extend Ymax by 5 percent
ObjectName.Scale (Xmin, Ymax) - (Xmax, Ymin)

ObjectName.Cls
ObjectName.PSet (X(0), Y(0))
For I = 1 To N - 1
ObjectName.Line - (X(I), Y(I))

Next I

End Sub

7-38 Learn Visual Basic 6.0

Simple Bar Charts

 Here, we have a similar situation, N points in arrays X(N - 1) and Y(N - 1). Can

we draw a bar chart using these points? The answer again is yes.

 The procedur e to develop a bar chart is similar to that for line charts:

1. Find the minimum x value (Xmin), the maximum x value (Xmax), the

minimum y value (Ymin) and the maximum y value (Ymax). Extend the

y extremes a bit.

2. Define a coordinate system using Scale:

Scale (Xmin, Ymax) - (Xmax, Ymin)

3. For each point, draw a bar using the Line procedure:

Line (x(i), 0) - (x(i), y(i))

Here, we assume the bars go from 0 to the corresponding y value. You
may want to modify this. You could also add color and widen the bars
by using the DrawWidth property (the example uses blue bars).

Graphics Techniques with Visual Basic 7-

39

 Here is a general procedure that draws a bar chart. Note its similarity to
the line chart procedure. Modify it as you wish. The arguments are
ObjectName the name of the object (form or picture box) you are plotting

on, N the number of points, X the array of x points, and Y the array of y

points.

Sub BarChart(ObjectName As Control, N As Integer, X() As Single, Y() As Single)

Dim Xmin As Single, Xmax As Single
Dim Ymin As Single, Ymax As Single
Dim I As Integer
Xmin = X(0): Xmax = X(0)
Ymin = Y(0): Ymax = Y(0)
For I = 1 To N - 1
If X(I) < Xmin Then Xmin = X(I)
If X(I) > Xmax Then Xmax = X(I)
If Y(I) < Ymin Then Ymin = Y(I)
If Y(I) > Ymax Then Ymax = Y(I)

Next I

Ymin = (1 - 0.05 * Sgn(Ymin)) * Ymin ‘ Extend Ymin by 5 percent
Ymax = (1 + 0.05 * Sgn(Ymax)) * Ymax ‘ Extend Ymax by 5 percent
ObjectName.Scale (Xmin, Ymax) - (Xmax, Ymin)
ObjectName.Cls

For I = 0 To N - 1

ObjectName.Line (X(I), 0) - (X(I), Y(I)), vbBlue
Next I
End Sub

7-40 Learn Visual Basic 6.0

Example 7-4

Line Chart and Bar Chart Application

1. Start a new application. Here, we’ll use the general line chart and bar chart
procedures to plot a simple sine wave.

2. Put a picture box on a form. Set up this simple menu structure using the Menu

Editor:

Plot

Line Chart
Bar Chart
Spiral Chart

Exit

Properties for these menu items should be:

Caption Name

&Plot mnuPlot
&Line Chart mnuPlotLine
&Bar Chart mnuPlotBar
&Spiral Chart mnuPlotSpiral
- mnuPlotSep
E&xit mnuPlotExit

Other properties should be:

Form1:

BorderStyle 1-Fixed Single

Caption Plotting Examples
Name frmPlot

Picture1:

BackColor White

Name picPlot

Graphics Techniques with Visual Basic 7-

41

The form should resemble this:

3. Place this code in the general declarations area. This makes the x and y arrays

and the number of points global.

Option Explicit

Dim N As Integer

Dim X(199) As Single

Dim Y(199) As Single

Dim YD(199) As Single

4. Attach this code to the Form_Load procedure. This loads the arrays with the

points to plot.

Private Sub form_Load()

Dim I As Integer

Const PI = 3.14159

N = 200

For I = 0 To N - 1

X(I) = I

Y(I) = Exp(-0.01 * I) * Sin(PI * I / 10)
YD(I) = Exp(-0.01 * I) * (PI * Cos(PI * I / 10) / 10 -

0.01 * Sin(PI * I / 10))

Next I

End Sub

5. Attach this code to the mnuPlotLine_Click event. This draws the line chart.

Private Sub mnuPlotLine_Click()

Call LineChart(picPlot, N, X, Y)

7-42 Learn Visual Basic 6.0

End Sub

Graphics Techniques with Visual Basic 7-

43

6. Attach this code to the mnuPlotBar_Click event. This draws the bar chart.

Private Sub mnuPlotBar_Click()

Call BarChart(picPlot, N, X, Y)

End Sub

7. Attach this code to the mnuPlotSpiral_Click event. This draws a neat little

spiral. [Using the line chart, it plots the magnitude of the sine wave (Y array) on

the x axis and its derivative (YD array) on the y axis, in case you are interested.]

Private Sub mnuPlotSpiral_Click()

Call LineChart(picPlot, N, Y, YD)

End Sub

8. And, code for the mnuPlotExit_Click event. This stops the application.

Private Sub mnuPlotExit_Click()

End

End Sub

9. Put the LineChart and BarChart procedures from these notes in your form as

general procedures.

10. Finally, save and run the application. You’re ready to tackle any plotting job now.

11. These routines just call out for enhancements. Some things you might try.

A. Label the plot axes using the Print method.

B. Draw grid lines on the plots. Use dotted or dashed lines at regular

intervals.

C. Put titling information on the axes and the plot.

D. Modify the line chart routine to allow plotting more than one function.

Use colors or different line styles to differentiate the lines. Add a
legend defining each plot.

E. See if you can figure out how to draw a pie chart. Use the Circle method to

draw the pie segments. Figure out how to fill these segments with different

colors and patterns. Label the pie segments.

7-44 Learn Visual Basic 6.0

Exercise 7-1

Blackjack

Develop an application that simulates the playing of the card game Blackjack. The
idea of Blackjack is to score higher than a Dealer’s hand without exceeding twenty-
one. Cards count their value, except face cards (jacks, queens, kings) count for ten,
and aces count for either one or eleven (your pick). If you beat the Dealer, you get 10
points. If you get Blackjack (21 with just two cards) and beat the Dealer, you get 15
points.

The game starts by giving two cards (from a standard 52 card deck) to the Dealer
(one face down) and two cards to the player. The player decides whether to Hit (get
another card) or Stay. The player can choose as many extra cards as desired. If the
player exceeds 21 before staying, it is a loss (-10 points). If the player does not
exceed 21, it becomes the dealer’s turn. The Dealer add cards until 16 is exceeded.
When this occurs, if the dealer also exceeds 21 or if his total is less than the player’s,
he loses. If the dealer total is greater than the player total (and under 21), the dealer
wins. If the dealer and player have the same total, it is a Push (no points added or
subtracted). There are lots of other things you can do in Blackjack, but these simple
rules should suffice here. The cards should be reshuffled whenever there are fewer
than fifteen (or so) cards remaining in the deck.

Graphics Techniques with Visual Basic 7-

45

My Solution (not a trivial problem):

Form:
lblResults

lblWinnings

imgSuit

There are so many things here, I won’t label them all. The button names are obvious.

The definition of the cards is not so obvious. Each card is made up of three different
objects (each a control array). The card itself is a shape (shpDealer for dealer

cards, shpPlayer for player cards), the number on the card is a label box (lblDealer

for dealer cards, lblPlayer for player cards), and the suit is an image box (imgDealer

for dealer cards, imgPlayer for player cards). There are six elements (one for each

card) in each of these control arrays, ranging from element 0 at the left to element 5 at

the right. The zero elements of the dealer card controls are obscured by shpBack

(used to indicate a face down card).

7-46 Learn Visual Basic 6.0

Properties:

Form frmBlackJack:

BackColor = &H00FF8080& (Light Blue)
BorderStyle = 1 - Fixed Single

Caption = Blackjack Game

CommandButton cmdDeal:

Caption = &DEAL
FontName = MS Sans Serif
FontSize= 13.5

CommandButton cmdExit:

Caption = E&xit

CommandButton cmdStay:

Caption = &STAY
FontName = MS Sans Serif
FontSize= 13.5

CommandButton cmdHit :

Caption = &HIT

FontName = MS Sans Serif
FontSize= 13.5

Image imgSuit:

Index = 3

Picture = misc37.ico
Visible = False

Image imgSuit:

Index = 2

Picture = misc36.ico
Visible = False

Image imgSuit:

Index = 1

Picture = misc35.ico
Visible = False

Image imgSuit:

Index = 0

Picture = misc34.ico
Visible = False

Graphics Techniques with Visual Basic 7-

47

Shape shpBack:

BackColor = &H00FF00FF& (Magenta)

BackStyle = 1 - Opaque
BorderWidth = 2
FillColor = &H0000FFFF& (Yellow)
FillStyle = 7 - Diagonal Cross
Shape = 4 - Rounded Rectangle

Label lblPlayer:

Alignment = 2 - Center
BackColor = &H00FFFFFF&
Caption = 10
FontName = MS Sans Serif
FontBold = True
FontSize = 18

ForeColor = &H00C00000& (Blue)
Index = 5, 4, 3, 2, 1, 0

Image imgPlayer:

Picture = misc35.ico

Stretch = True
Index = 5, 4, 3, 2, 1, 0

Shape shpPlayer:

BackColor = &H00FFFFFF& (White)

BackStyle = 1 - Opaque
BorderWidth = 2

Shape = 4 - Rounded Rectangle
Index = 5, 4, 3, 2, 1, 0

Label lblDealer:

Alignment = 2 - Center
BackColor = &H00FFFFFF&
Caption = 10
FontName = MS Sans Serif

FontBold = True
FontSize = 18
ForeColor = &H00C00000& (Blue)
Index = 5, 4, 3, 2, 1, 0

Image imgDealer:

Picture = misc35.ico

Stretch = True
Index = 5, 4, 3, 2, 1, 0

7-48 Learn Visual Basic 6.0

Shape shpDealer:

BackColor = &H00FFFFFF& (White)

BackStyle = 1 - Opaque
BorderWidth = 2
Shape = 4 - Rounded Rectangle

Index = 5, 4, 3, 2, 1, 0

Label Label2:

BackColor = &H00FF8080& (Light Blue)
Caption = Player:

FontName = MS Sans Serif
FontBold = True

FontSize = 18

Label lblResults:

Alignment = 2 - Center
BackColor = &H0080FFFF& (Light Yellow)

BorderStyle = 1 - Fixed Single
FontName = MS Sans Serif
FontSize = 18

Label Label3:

BackColor = &H00FF8080& (Light Blue)
Caption = Won
FontName = MS Sans Serif

FontBold = True
FontSize = 18

Label lblWinnings:

Alignment = 2 - Center

BackColor = &H0080FFFF& (Light Yellow)
BorderStyle = 1 - Fixed Single

Caption = 0
FontName = MS Sans Serif
FontSize = 18

Graphics Techniques with Visual Basic 7-

49

Code:

General Declarations:

Option Explicit

Dim CardName(52) As String

Dim CardSuit(52) As Integer

Dim CardValue(52) As Integer

Dim Winnings As Integer, CurrentCard As Integer

Dim Aces_Dealer As Integer, Aces_Player As Integer

Dim Score_Dealer As Integer, Score_Player As Integer

Dim NumCards_Dealer As Integer, NumCards_Player As Integer

Add_Dealer General Procedure:

Sub Add_Dealer()

Dim I As Integer

'Adds a card at index I to dealer hand

NumCards_Dealer = NumCards_Dealer + 1

I = NumCards_Dealer - 1

lblDealer(I).Caption = CardName(CurrentCard)

imgDealer(I).Picture =

imgSuit(CardSuit(CurrentCard)).Picture

Score_Dealer = Score_Dealer + CardValue(CurrentCard)

If CardValue(CurrentCard) = 1 Then Aces_Dealer =

Aces_Dealer + 1

CurrentCard = CurrentCard + 1

lblDealer(I).Visible = True

imgDealer(I).Visible = True

shpDealer(I).Visible = True

End Sub

Add_Player General Procedure:

Sub Add_Player()

Dim I As Integer

'Adds a card at index I to player hand

NumCards_Player = NumCards_Player + 1

I = NumCards_Player - 1

lblPlayer(I).Caption = CardName(CurrentCard)

imgPlayer(I).Picture =

imgSuit(CardSuit(CurrentCard)).Picture

7-50 Learn Visual Basic 6.0

Score_Player = Score_Player + CardValue(CurrentCard)

If CardValue(CurrentCard) = 1 Then Aces_Player =

Aces_Player + 1

lblPlayer(I).Visible = True

imgPlayer(I).Visible = True

shpPlayer(I).Visible = True

CurrentCard = CurrentCard + 1

End Sub

Graphics Techniques with Visual Basic 7-

51

End_Hand General Procedure:

Sub End_Hand(Msg As String, Change As Integer)

shpBack.Visible = False

lblResults.Caption = Msg

'Hand has ended - update winnings

Winnings = Winnings + Change

lblwinnings.Caption = Str(Winnings)

cmdHit.Enabled = False

cmdStay.Enabled = False

cmdDeal.Enabled = True

End Sub

New_Hand General Procedure:

Sub New_Hand()

'Deal a new hand

Dim I As Integer

'Clear table of cards

For I = 0 To 5

lblDealer(I).Visible = False

imgDealer(I).Visible = False

shpDealer(I).Visible = False

lblPlayer(I).Visible = False

imgPlayer(I).Visible = False

shpPlayer(I).Visible = False

Next I

lblResults.Caption = ""

cmdHit.Enabled = True

cmdStay.Enabled = True

cmdDeal.Enabled = False

If CurrentCard > 35 Then Call Shuffle_Cards

'Get two dealer cards

Score_Dealer = 0: Aces_Dealer = 0: NumCards_Dealer = 0

shpBack.Visible = True

Call Add_Dealer

Call Add_Dealer

'Get two player cards

Score_Player = 0: Aces_Player = 0: NumCards_Player = 0

Call Add_Player

Call Add_Player

'Check for blackjacks

7-52 Learn Visual Basic 6.0

If Score_Dealer = 11 And Aces_Dealer = 1 Then Score_Dealer

= 21

If Score_Player = 11 And Aces_Player = 1 Then Score_Player

= 21

If Score_Dealer = 21 And Score_Player = 21 Then

Call End_Hand("Two Blackjacks!", 0)

Exit Sub

ElseIf Score_Dealer = 21 Then

Call End_Hand("Dealer Blackjack!", -10)

Exit Sub

ElseIf Score_Player = 21 Then

Call End_Hand("Player Blackjack!", 15)

Exit Sub

End If

End Sub

N_Integers General Procedure:

Private Sub N_Integers(N As Integer, Narray() As Integer)

'Randomly sorts N integers and puts results in Narray

Dim I As Integer, J As Integer, T As Integer

'Order all elements initially

For I = 1 To N: Narray(I) = I: Next I

'J is number of integers remaining

For J = N to 2 Step -1

I = Int(Rnd * J) + 1

T = Narray(J)

Narray(J) = Narray(I)

Narray(I) = T

Next J

End Sub

Shuffle_Cards General Procedure:

Sub Shuffle_Cards()

'Shuffle a deck of cards. That is, randomly sort

'the integers from 1 to 52 and convert to cards.

'Cards 1-13 are the ace through king of hearts

'Cards 14-26 are the ace through king of clubs

'Cards 27-39 are the ace through king of diamonds

'Cards 40-52 are the ace through king of spades

'When done:

Graphics Techniques with Visual Basic 7-

53

'The array element CardName(i) has the name of the ith

card

'The array element CardSuit(i) is the index to the ith

card suite

'The array element CardValue(i) has the point value of the

ith card

Dim CardUsed(52) As Integer

Dim J As Integer

Call N_Integers(52, CardUsed())

For J = 1 to 52

Select Case (CardUsed(J) - 1) Mod 13 + 1

Case 1

CardName(J) = "A"

CardValue(J) = 1

Case 2

CardName(J) = "2"

CardValue(J) = 2

Case 3

CardName(J) = "3"

CardValue(J) = 3

Case 4

CardName(J) = "4"

CardValue(J) = 4

Case 5

CardName(J) = "5"

CardValue(J) = 5

Case 6

CardName(J) = "6"

CardValue(J) = 6

Case 7

CardName(J) = "7"

CardValue(J) = 7

Case 8

CardName(J) = "8"

CardValue(J) = 8

Case 9

CardName(J) = "9"

CardValue(J) = 9

Case 10

CardName(J) = "10"

CardValue(J) = 10

Case 11

CardName(J) = "J"

7-54 Learn Visual Basic 6.0

CardValue(J) = 10

Case 12

CardName(J) = "Q"

CardValue(J) = 10

Case 13

CardName(J) = "K"

CardValue(J) = 10

End Select

CardSuit(J) = Int((CardUsed(J) - 1) / 13)

Next J

CurrentCard = 1

End Sub

cmdDeal Click Event:

Private Sub cmdDeal_Click()

Call New_Hand

End Sub

Graphics Techniques with Visual Basic 7-

55

cmdExit Click Event:

Private Sub cmdExit_Click()

'Show final winnings and quit

If Winnings > 0 Then

MsgBox "You won" + Str(Winnings) + " points!", vbOKOnly,

"Game Over"

ElseIf Winnings = 0 Then

MsgBox "You broke even.", vbOKOnly, "Game Over"

Else

MsgBox "You lost" + Str(Abs(Winnings)) + " points!",

vbOKOnly, "Game Over"

End If

End

End Sub

cmdHit Click Event:

Private Sub cmdHit_Click()

'Add a card if player requests

Call Add_Player

If Score_Player > 21 Then

Call End_Hand("Player Busts!", -10)

Exit Sub

End If

If NumCards_Player = 6 Then

cmdHit.Enabled = False

Call cmdStay_Click

Exit Sub

End If

End Sub

cmdStay Click Event:

Private Sub cmdStay_Click()

Dim ScoreTemp As Integer, AcesTemp As Integer

'Check for aces in player hand and adjust score

'to highest possible

cmdHit.Enabled = False

cmdStay.Enabled = False

If Aces_Player <> 0 Then

Do

7-56 Learn Visual Basic 6.0

Score_Player = Score_Player + 10

Aces_Player = Aces_Player - 1

Loop Until Aces_Player = 0 Or Score_Player > 21

If Score_Player > 21 Then Score_Player = Score_Player -

10

End If

'Uncover dealer face down card and play dealer hand

shpBack.Visible = False

NextTurn:

ScoreTemp = Score_Dealer: AcesTemp = Aces_Dealer

'Check for aces and adjust score

If AcesTemp <> 0 Then

Do

ScoreTemp = ScoreTemp + 10

AcesTemp = AcesTemp - 1

Loop Until AcesTemp = 0 Or ScoreTemp > 21

If ScoreTemp > 21 Then ScoreTemp = ScoreTemp - 10

End If

'Check if dealer won

If ScoreTemp > 16 Then

If ScoreTemp > Score_Player Then

Call End_Hand("Dealer Wins!", -10)

Exit Sub

ElseIf ScoreTemp = Score_Player Then

Call End_Hand("It's a Push!", 0)

Exit Sub

Else

Call End_Hand("Player Wins!", 10)

Exit Sub

End If

End If

'If six cards shown and dealer hasn't won, player wins

If NumCards_Dealer = 6 Then

Call End_Hand("Player Wins!", 10)

Exit Sub

End If

'See if hit is needed

If ScoreTemp < 17 Then Call Add_Dealer

If Score_Dealer > 21 Then

Call End_Hand("Dealer Busts!", 10)

Exit Sub

End If

GoTo NextTurn

Graphics Techniques with Visual Basic 7-

57

End Sub

Form_Load Event:

Private Sub Form_Load()

'Seed random number generator, shuffle cards, deal new

hand

Randomize Timer

Call Shuffle_Cards

Call New_Hand

End Sub

7-58 Learn Visual Basic 6.0

Exercise 7-2

Information Tracking Plotting

Add plotting capabilities to the information tracker you developed in Class 6. Plot
whatever information you stored versus the date. Use a line or bar chart.

My Solution:

Form (like form in Homework 6, with a picture box and Plot menu item added):

picPlot

New Properties:

Form frmWeight:

FontName = MS Sans Serif
FontSize = 10

PictureBox picPlot:

BackColor = &H00FFFFFF& (White)
DrawWidth = 2

Menu mnuFilePlot:

Caption = &Plot

Graphics Techniques with Visual Basic 7-

59

New Code:

mnuFilePlot Click Event:

Private Sub mnuFilePlot_Click()

Dim X(100) As Integer, Y(100) As Integer

Dim I As Integer

Dim Xmin As Integer, Xmax As Integer

Dim Ymin As Integer, Ymax As Integer

Dim Legend As String

Xmin = 0: Xmax = 0

Ymin = Val(Weights(1)): Ymax = Ymin

For I = 1 To NumWts

X(I) = DateDiff("d", Dates(1), Dates(I))

Y(I) = Val(Weights(I))

If X(I) < Xmin Then Xmin = X(I)

If X(I) > Xmax Then Xmax = X(I)

If Y(I) < Ymin Then Ymin = Y(I)

If Y(I) > Ymax Then Ymax = Y(I)

Next I

Xmin = Xmin - 1: Xmax = Xmax + 1

Ymin = (1 - 0.05 * Sgn(Ymin)) * Ymin

Ymax = (1 + 0.05 * Sgn(Ymax)) * Ymax

picplot.Scale (Xmin, Ymax)-(Xmax, Ymin)

Cls

picplot.Cls

For I = 1 To NumWts

picplot.Line (X(I), Ymin)-(X(I), Y(I)), QBColor(1)

Next I

Legend = Str(Ymax)

CurrentX = picplot.Left - TextWidth(Legend)

CurrentY = picplot.Top - 0.5 * TextHeight(Legend)

Print Legend

Legend = Str(Ymin)

CurrentX = picplot.Left - TextWidth(Legend)

CurrentY = picplot.Top + picplot.Height - 0.5 *

TextHeight(Legend)

Print Legend

End Sub

7-60 Learn Visual Basic 6.0

This page intentionally not left blank.

8-1

8. Database Access and Management

Review and Preview

 In past classes, we’ve seen the power of the built-in Visual Basic tools. In this
class, we look at one of the more powerful tools, the Data Control. Using this tool,
in conjunction with associated ‘data-aware’ tools, allows us to access and
manage databases. We only introduce the ideas of database access and
management - these topics alone could easily take up a ten week course.

 A major change in Visual Basic, with the introduction of Version 6.0, is in its
database management tools. New tools based on ActiveX Data Object (ADO)
technology have been developed. These new tools will eventually replace the
older database tools, called DAO (Data Access Object) tools. We will only
discuss the ADO tools. Microsoft still includes the DAO tools for backward
compatibility. You might want to study these on your own, if desired.

Database Structure and Terminology

 In simplest terms, a database is a collection of information. This collection is

stored in well-defined tables, or matrices.

 The rows in a database table are used to describe similar items. The rows are

referred to as database records. In general, no two rows in a database table will

be alike.

 The columns in a database table provide characteristics of the records. These
characteristics are called database fields. Each field contains one specific piece

of information. In defining a database field, you specify the data type, assign a

length, and describe other attributes.

Learn Visual Basic 6.0

Database Access and Management 8-11

 Here is a simple database example:

Field

Record

Table

In this database table, each record represents a single individual. The fields

(descriptors of the individuals) include an identification number (ID No), Name,

Date of Birth, Height, and Weight.

 Most databases use indexes to allow faster access to the information in the

database. Indexes are sorted lists that point to a particular row in a table. In the
example just seen, the ID No field could be used as an index.

 A database using a single table is called a flat database. Most databases are

made up of many tables. When using multiple tables within a database, these

tables must have some common fields to allow cross-referencing of the tables.
The referral of one table to another via a common field is called a relation. Such

groupings of tables are called relational databases.

 In our first example, we will use a sample database that comes with Visual Basic.
This database (BIBLIO.MDB) is found in the main Visual Basic directory (try

c:\Program Files\Microsoft Visual Studio\VB98). It is a database of books about
computers. Let’s look at its relational structure. The BIBLIO.MDB database is

made up of four tables:

Authors Table (6246 Records, 3 Fields)

Au_ID Author Year Born

ID No Name Date of Birth Height Weight

1 Bob Jones 01/04/58 72 170

2 Mary Rodgers 11/22/61 65 125

3 Sue Williams 06/11/57 68 130

8-2 Learn Visual Basic 6.0

Publishers Table (727 Records, 10 Fields)

Title Author Table (16056 Records, 2 Fields)

ISBN Au_ID

Titles Table (8569 Records, 8 Fields)

The Authors table consists of author identification numbers, the author’s name,

and the year born. The Publishers table has information regarding book

publishers. Some of the fields include an identification number, the publisher
name, and pertinent phone numbers. The Title Author table correlates a book’s

ISBN (a universal number assigned to books) with an author’s identification

number. And, the Titles table has several fields describing each individual book,

including title, ISBN, and publisher identification.

 Comments

8-4 Learn Visual Basic 6.0

Note each table has two types of information: source data and relational data.

Source data is actual information, such as titles and author names. Relational
data are references to data in other tables, such as Au_ID and PubID. In the
Authors, Publishers and Title Author tables, the first column is used as the table
index. In the Titles table, the ISBN value is the index.

 Using the relational data in the four tables, we should be able to obtain a complete
description of any book title in the database. Let’s look at one example:

Titles Publishers

Here, the book in the Titles table, entitled “Step-by-step dBase IV,” has an ISBN

of 0 -0280095-2-5 and a PubID of 52. Taking the PubID into the Publishers

table, determines the book is published by McGraw-Hill and also allows us to
access all other information concerning the publisher. Using the ISBN in the Title

Author table provides us with the author identification (Au_ID) of 171, which,

when used in the Authors table, tells us the book’s author is Toby Wraye.

 We can form alternate tables from a database’s inherent tables. Such virtual

tables, or logical views, are made using queries of the database. A query is

simply a request for information from the database tables. As an example with
the BIBLIO.MDB database, using pre-defined query languages, we could ‘ask’ the
database to form a table of all authors and books published after 1992, or provide
all author names starting with B. We’ll look briefly at queries.

 McGraw-Hill

Title Author Authors

Database Access and Management 8-5

 Keeping track of all the information in a database is handled by a database
management system (DBMS). They are used to create and maintain

databases. Examples of commercial DBMS programs are Microsoft Access,

Microsoft FoxPro, Borland Paradox, Borland dBase, and Claris FileMaker. We
can also use Visual Basic to develop a DBMS. Visual Basic shares the same
‘engine’ used by Microsoft Access, known as the Jet engine. In this class, we will

see how to use Visual Basic to access data, display data, and perform some

elementary management operations.

8-6 Learn Visual Basic 6.0

ADO Data Control

 The ADO (ActiveX Data Object) data control is the primary interface between a

Visual Basic application and a database. It can be used without writing any code

at all! Or, it can be a central part of a complex database management system.
This icon may not appear in your Visual Basic toolbox. If it doesn’t, select Project

from the main menu, then click Components. The Components window will

appear. Select Microsoft ADO Data Control, then click OK. The control will be

added to your toolbox.

 As mentioned in Review and Preview, previous versions of Visual Basic used
ano ther data control. That control is still included with Visual Basic 6.0 (for
backward compatibility) and has as its icon:

Make sure you are not using this data control for the work in this class. This

control is suitable for small databases. You might like to study it on your own.

 The data control (or tool) can access databases created by several other
programs besides Visual Basic (or Microsoft Access). Some other formats
supported include Btrieve, dBase, FoxPro, and Paradox databases.

 The data control can be used to perform the following tasks:

1. Connect to a database.
2. Open a specified database table.

3. Create a virtual table based on a database query.
4. Pass database fields to other Visual Basic tools, for display or

editing. Such tools are bound tools (controls), or data aware.

5. Add new records or update a database.
6. Trap any errors that may occur while accessing data.

7. Close the database.

Database Access and Management 8-7

 Data Control Properties:

Align Determines where data control is displayed.

Caption Phrase displayed on the data control.

ConnectionString Contains the information used to establish a

connection to a database.
LockType Indicates the type of locks placed on records

during editing (default setting makes databases

read-only).
Recordset A set of records defined by a data control’s

ConnectionString and RecordSource properties.
Run-time only.

RecordSource Determines the table (or virtual table) the data

control is attached to.

 As a rule, you need one data control for every database table, or virtual table, you
need access to. One row of a table is accessible to each data control at any one
time. This is referred to as the current record.

 When a data control is placed on a form, it appears with the assigned caption and
four arrow buttons:

Move to first row

Move to previous row

Move to last row

Move to next row

The arrows are used to navigate through the table rows (records). As indicated,
the buttons can be used to move to the beginning of the table, the end of the table,
or from record to record.

8-8 Learn Visual Basic 6.0

Data Links

 After placing a data control on a form, you set the ConnectionString property.

The ADO data control can connect to a variety of database types. There are three
ways to connect to a database: using a data link, using an ODBC data source, or
using a connection string. In this class, we will look only at connection to a
Microsoft Access database using a data link. A data link is a file with a UDL

extension that contains information on database type.

 If your database does not have a data link, you need to create one. This process
is best illustrated by example. We will be using the BIBLIO.MDB database in our
first example, so these steps show you how to create its data link:

1. Open Windows Explorer.

2. Open the folder where you will store your data link file.
3. Right-click the right side of Explorer and choose New. From the list of files,

select Microsoft Data Link.

4. Rename the newly created file BIBLIO.UDL

5. Right-click this new UDL file and click Properties.

6. Choose the Provider tab and select Microsoft Jet 3.51 OLE DB Provider

(an Access database).
7. Click the Next button to go to the Connection tab.
8. Click the ellipsis and use the Select Access Database dialog box to choose

the BIBLIO.MDB file which is in the Visual Basic main folder. Click Open.

9. Click Test Connection. Then, click OK (assuming it passed). The UDL file
is now created and can be assigned to ConnectionString, using the steps

below.

 If a data link has been created and exists for your database, click the ellipsis that
appears next to the ConnectionString property. Choose Use Data Link File .

Then, click Browse and find the file. Click Open. The data link is now assigned

to the property. Click OK.

Database Access and Management 8-9

Assigning Tables

 Once the ADO data control is connected to a database, we need to assign a
table to that control. Recall each data control is attached to a single table,
whether it is a table inherent to the database or the virtual table we discussed.
Assigning a table is done via the RecordSource property.

 Tables are assigned by making queries of the database. The language used to
make a query is SQL (pronounced ‘sequel,’ meaning structured query language).

SQL is an English-like language that has evolved into the most widely used
database query language. You use SQL to formulate a question to ask of the
database. The data base ‘answers’ that question with a new table of records and
fields that match your criteria.

 A table is assigned by placing a valid SQL statement in the RecordSource
property of a data control. We won’t be learning any SQL here. There are many

texts on the subject - in fact, many of them are in the BIBLIO.MDB database we’ve
been using. Here we simply show you how to use SQL to have the data control

‘point’ to an inherent database table.

 Click on the ellipsis next to RecordSource in the property box. A Property

Pages dialog box will appear. In the box marked Command Text (SQL), type

this line:

SELECT * FROM TableName

This will select all fields (the * is a wildcard) from a table named TableName in

the database. Click OK.

 Setting the RecordSource property also establishes the Recordset property,

which we will see later is a very important property.

 In summary, the relationship between the data control and its two primary

properties (ConnectionString and RecordSource) is:

Database file
Database table

ADO Data control

ConnectionString RecordSource

Current record

8-10 Learn Visual Basic 6.0

Bound Data Tools

 Most of the Visual Basic tools we’ve studied can be used as bound, or data-
aware, tools (or controls). That means, certain tool properties can be tied to a

particular database field. To use a bound control, one or more data controls must

be on the form.

 Some bound data tools are:

Label Can be used to provide display-only access to a

specified text data field.
Text Box Can be used to provide read/write access to a

specified text data field. Probably, the most

widely used data bound tool.
Check Box Used to provide read/write access to a Boolean

field.
Combo Box Can be used to provide read/write access to a

text data field.
List Box Can be used to provide read/write access to a

text data field.

Picture Box Used to display a graphical image from a bitmap,

icon, or metafile on your form. Provides read/write
access to a image/binary data field.

Image Box Used to display a graphical image from a bitmap,

icon, or metafile on your form (uses fewer
resources than a picture box). Provides
read/write access to a image/binary data field.

 There are also three ‘custom’ data aware tools, the DataCombo (better than

using the bound combo box), DataList (better than the bound list box), and

DataGrid tools, we will look at later.

 Bound Tool Properties:

DataChanged Indicates whether a value displayed in a bound

control has changed.
DataField Specifies the name of a field in the table pointed

to by the respective data control.
DataSource Specifies which data control the control is bound

to.

Database Access and Management 8-

11

If the data in a data-aware control is changed and then the user changes focus to
another control or tool, the database will automatically be updated with the new
data (assuming LockType is set to allow an update).

 To make using bound controls easy, follow these steps (in order listed) in placing
the controls on a form:

1. Draw the bound control on the same form as the data control to which it

will be bound.
2. Set the DataSource property. Click on the drop-down arrow to list the

data controls on your form. Choose one.
3. Set the DataField property. Click on the drop-down arrow to list the

fields associated with the selected data control records. Make your
choice.

4. Set all other properties, as required.

By following these steps in order, we avoid potential data access errors.

 The relationships between the bound data control and the data control are:

Database table ADO Data control

DataSource

DataField (field in current record)

Bound data

control

8-12 Learn Visual Basic 6.0

Example 8 -1

Accessing the Books Database

1. Start a new application. We’ll develop a form where we can skim through the
books database, examining titles and ISBN values. Place an ADO data control,
two label boxes, and two text boxes on the form.

2. If you haven’t done so, create a data link for the BIBLIO.MDB database following

the steps given under Data Links in these notes.

3. Set the following properties for each control. For the data control and the two text

boxes, make sure you set the properties in the order given.

Form1:

BorderStyle 1-Fixed Single

Caption Books Database
Name frmBooks

Adodc1:

Caption Book Titles

ConnectionString BIBLIO.UDL (in whatever folder you saved it in -
select, don’t type)

RecordSource SELECT * FROM Titles
Name dtaTitles

Label1:

Caption Title

Label2:

Caption ISBN

Text1:

DataSource dtaTitles (select, don’t type)
DataField Title (select, don’t type)
Locked True

MultiLine True
Name txtTitle

Text [Blank]

Database Access and Management 8-

13

Text2:

DataSource dtaTitles (select, don’t type)

DataField ISBN (select, don’t type)
Locked True

Name txtISBN

Text [Blank]

When done, the form will look something like this (try to space your controls as
shown; we’ll use all the blank space as we continue with this example):

4. Save the application. Run the application. Cycle through the various book titles
using the data control. Did you notice something? You didn’t have to write one
line of Visual Basi c code! This indicates the power behind the data tool and
bound tools.

8-14 Learn Visual Basic 6.0

Creating a Virtual Table

 Many times, a database table has more information than we want to display. Or,
perhaps a table does not have all the information we want to display. For
instance, in Example 8 -1, seeing the Title and ISBN of a book is not real
informative - we would also like to see the Author, but that information is not
provided by the Titles table. In these cases, we can build our own virtual table,

displaying only the information we want the user to see.

 We need to form a different SQL statement in the RecordSource property. Again,
we won’t be learning SQL here. We will just give you the proper statement.

Quick Example: Forming a Virtual Table

1. We’ll use the results of Example 8-1 to add the Author name to the form.

Replace the RecordSource property of the dtaTitles control with the following

SQL statement:

SELECT Author,Titles.ISBN,Title FROM Authors,[Title Author],Titles
WHERE Authors.Au_ID=[Title Author].Au_ID AND Titles.ISBN=[Title
Author].ISBN ORDER BY Author

This must be typed as a single line in the Command Text (SQL) area that appears
when you click the ellipsis by the RecordSource property. Make sure it is typed in
exactly as shown. Make sure there are spaces after ‘SELECT’, after
‘Author,Titles.ISBN,Title’, after ‘FROM’, after ‘Authors,[Title Author],Titles’, after
‘WHERE’, after ‘Authors.Au_ID=[Title Author].Au_ID’, after ‘AND’, after
‘Titles.ISBN=[Title Author].ISBN’, and separating the final three wo rds ‘ORDER
BY Author’. The program will tell you if you have a syntax error in the SQL
statement, but will give you little or no help in telling you what’s wrong.

Here’s what this statement does: It selects the Author, Titles.ISBN, and Title

fields from the Authors, Title Author, and Titles tables, where the respective

Au_ID and ISBN fields match. It then orders the resulting virtual table, using

authors as an index.

Database Access and Management 8-

15

2. Add a label box and text box to the form, for displaying the author name. Set the
control properties.

Label3:

Caption Author

Text1:

DataSource dtaTitles (select, don’t type)
DataField Author (select, don’t type)

Locked True

Name txtAuthor
Text [Blank]

When done, the form should resemble this:

3. Save, then rerun the application. The author’s names will now appear with the
book titles and ISBN values. Did you notice you still haven’t written any code? I
know you had to type out that long SQL statement, but that’s not code, technically
speaking. Notice how the books are now ordered based on an alphabetical
listing of authors’ last names.

8-16 Learn Visual Basic 6.0

Finding Specific Records

 In addition to using the data control to move through database records, we can
write Visual Basic code to accomplish the same, and other, tasks. This is
referred to as programmatic control. In fact, many times the data control

Visible property is set to False and all data manipulations are performed in code.

We can also use programmatic control to find certain records.

 There are four methods used for moving in a database. These methods replicate
the capabilities of the four arrow buttons on the data control:

MoveFirst Move to the first record in the table.

MoveLast Move to the last record in the table.

MoveNext Move to the next record (with respect to the current

record) in the table.

MovePrevious Move to the previous record (with respect to the

current record) in the table.

 When moving about the database programmatically, we need to test the BOF
(beginning of file) and EOF (end of file) properties. The BOF property is True

when the current record is positioned before any data. The EOF property is True

when the current record has been positioned past the end of the data. If either
property is True, the current record is invalid. If both properties are True, then

there is no data in the database table at all.

 These properties, and the programmatic control methods, operate on the
Recordset property of the data control. Hence, to move to the first record in a
table attached to a data control named dtaExample , the syntax is:

dtaExample.Recordset.MoveFirst

 There is a method used for searching a database:

Find Find a record that meets the specified search

criteria.

This method also operates on the Recordset property and has three arguments

we will be concerned with. To use Find with a data control named dtaExample :

dtaExample.Recordset.Find Criteria,NumberSkipped,SearchDirection

 The search Criteria is a string expression like a WHERE clause in SQL. We

won’t go into much detail on such criteria here. Simply put, the criteria describes

what particular records it wants to look at. For example, using our book

Database Access and Management 8-

17

database, if we want to look at books with titles (the Title field) beginning with S,

we would use:

Criteria = “Title >= ‘S’”

Note the use of single quotes around the search letter. Single quotes are used to
enclose strings in Criteria statements. Three logical operators can be used:
equals (=), greater than (>), and less than (<).

 The NumberSkipped argument tells how many records to skip before beginning

the Find. This can be used to exclude the current record by setting

NumberSkipped to 1.

 The SearchDirection argument has two possible values: adSearchForward or

adSearchBackward. Note, in conjunction with the four Move methods, the

SearchDirection argument can be used to provide a variety of search types

(search from the top, search from the bottom, etc.)

 If a search fails to find a record that matches the criteria, the Recordset’s EOF or

BOF property is set to True (depending on search direction). Another property

used in searches is the Bookmark property. This allows you to save the current

record pointer in case you want to return to that position later. The example

illustrates its use.

8-18 Learn Visual Basic 6.0

Example 8 -2

‘Rolodex’ Searching of the Books Database

1. We expand the book database application to allow searching for certain author
names. We’ll use a ‘rolodex’ approach where, by pressing a particular letter
button, books with author last names corresponding to that button appear on the
form.

2. We want a row of buttons starting at ‘A’ and ending at ‘Z’ to appear on the lower
part of our form. Drawing each one individually would be a big pain, so we’ll let
Visual Basic do all the work in the Form_Load procedure. What we’ll do is

create one command button (the ‘A’), make it a control array, and then
dynamically create 25 new control array elements at run -time, filling each with a
different letter. We’ll even let the code decide on proper spacing.

So, add one command button to the previous form. Name it cmdLetter and give

it a Caption of A. Set its Index property to 0 to make it a control array element.

On my form, things at this point look like this:

Database Access and Management 8-

19

3. Attach this code to the Form_Load procedure. This code sets up the rolodex

control array and draws the additional 25 letter buttons on the form. (Sorry, you

have to type some code now!)

Private Sub Form_Load()

Dim I As Integer

‘Size buttons

cmdLetter(0).Width = (frmBooks.ScaleWidth - 2*

cmdLetter(0).Left) / 26

For I = 1 To 25

Load cmdLetter(I) ' Cr eate new control array element

'Position new letter next to previous one

cmdLetter(I).Left = cmdLetter(I - 1).Left +

cmdLetter(0).Width

'Set caption and make visible

cmdLetter(I).Caption = Chr(vbKeyA + I)

cmdLetter(I).Visible = True

Next I

End Sub

At this point, even though all the code is not in place, you could run your
application to check how the letter buttons look. My finished form (at run-time)
looks like this:

Notice how Visual Basic adjusted the button widths to fit nicely on the form.

8-20 Learn Visual Basic 6.0

4. Atta ch this code to the cmdLetter_Click procedure. In this procedure, we use a

search criteria that finds the first occurrence of an author name that begins with
the selected letter command button. If the search fails, the record displayed prior
to the search is retained (using the Bookmark property).

Private Sub cmdLetter_Click(Index As Integer)

Dim BookMark1 As Variant

'Mark your place in case no match is found

BookMark1 = dtaTitles.Recordset.Bookmark

'Move to top of table to start search

dtaTitles.Recordset.MoveFirst

dtaTitles.Recordset.Find "Author >= '" +

cmdLetter(Index).Caption + "'", 0, adSearchForward

If dtaTitles.Recordset.EOF = True Then

dtaTitles.Recordset.Bookmark = BookMark1

End If

txtAuthor.SetFocus

End Sub

Let’s look at the search a little closer. We move to the top of the database using

MoveFirst. Then, the Find is executed (notice the selected letter is surrounded

by single quotes). If EOF is True after the Find, it means we didn’t find a match to

the Criteria and Bookmark is returned to its saved value.

5. Save your application. Test its operation. Note once the program finds the first

occurrence of an author name beginning with the selected letter (or next highest
letter if there is no author with the pressed letter), you can use the data control
navigation buttons (namely the right arrow button) to find other author names
beginning with that letter.

Database Access and Management 8-

21

Data Manager

 At this point, we know how to use the data control and associated data bound
tools to access a database. The power of Visual Basic lies in its ability to
manipulate records in code. Such tasks as determining the values of particular
fields, adding records, deleting records, and moving from record to record are
easily done. This allows us to build a complete database management system
(DBMS).

 We don’t want to change the example database, BIBLIO.MDB. Let’s create our
own database to change. Fortunately, Visual Basic helps us out here. The
Visual Data Manager is a Visual Basic Add-In that allows the creation and

management of databases. It is simple to use and can create a database

compatible with the Microsoft Jet (or Access) database engine.

 To examine an existing database using the Data Manager, follow these steps:

1. Select Visual Data Manager from Visual Basic’s Add-In menu (you

may be asked if you want to add SYSTEM.MDA to the .INI file - answer
No.)

2. Select Open Database from the Data Manager File menu.

3. Select the database type and name you want to examine.

Once the database is opened, you can do many things. You can simply look
through the various tables. You can search for particular records. You can apply
SQL queries. You can add/delete records. The Data Manager is a DBMS in
itself. You might try using the Data Manager to look through the BIBLIO.MDB
example database.

 To create a new database, follow these steps:

1. Select Visual Data Manager from Visual Basic’s Add-In menu (you

may be asked if you want to add SYSTEM.MDA to the .INI file - answer

No.)

2. Select New from the Data Manager File menu. Choose database type

(Microsoft Access, Version 7.0), then select a directory and enter a
name for your database file. Click OK.

3. The Database window will open. Right click the window and select
New Table. In the Name box, enter the name of your table. Then

define the table’s fields, one at a time, by clicking Add Field, then

entering a field name, selecting a data type, and specifying the size of

the field, if required. Once the field is defined, click the OK button to

add it to the field box. Once all fields are defined, click the Build the

Table button to save your table.

8-22 Learn Visual Basic 6.0

Example 8 -3

Phone Directory - Creating the Database

1. With this example, we begin the development of a simple phone directory. In the
directory, we will keep track of names and phone numbers. We’ll be able to edit,
add and delete names and numbers from the directory. And, we’ll be able to
search the directory for certain names. In this first step, we’ll establish the
structure for the database we’ll use. The directory will use a single table, with
three fields: Name, Description, and Phone. Name will contain the name of the

person or company, Description will contain a descriptive phrase (if desired) of
who the person or company is, and Phone will hold the phone number.

2. Start the Data Manager. Use the previously defined steps to establish a new

database (this is a Microsoft Access, Version 7.0 database). Use PhoneList as

a Name for your database table. Define the three fields. Each should be a Text

data type. Assign a size of 40 to the Name and Description fields, a size of 15

to the Phone field. When all fields have been defined, the screen should look like

this:

Database Access and Management 8-

23

When done with the field definitions, click Build the Table to save your

new table. You will be returned to the Database Tables window.

3. We’re now ready to enter some data in our database. From the Database Tables

window, right click the PhoneList table and select Open. The following window

will appear:

At this point, add several (at least five - make them up or whatever) records to
your database. The steps for each record are: (1) click Add to add a record, (2)

fill in the three fields (or, at least the Name and Phone fields), and (3) click
Update to save the contents.

You can also Delete records and Find records, if desired. You can move

through the records using the scroll bar at the bottom of the screen. When
done entering records, click Close to save your work. Select Exit from the

Data Manager File menu. Your database has been created.

8-24 Learn Visual Basic 6.0

Database Management

 The Data Manager is a versatile utility for creating and viewing databases.
However, its interface is not that pretty and its use is somewhat cumbersome. We
would not want to use it as a database management system (DBMS). Nor,

would we expect users of our programs to have the Data Manager available for
their use. The next step in our development of our database skills is to use Visual
Basic to manage our databases, that is develop a DBMS.

 We will develop a simple DBMS. It will allow us to view records in an existing

database. We will be able to edit records, add records, and delete records.

Such advanced tasks as adding tables and fields to a database and creating a

new database can be done with Visual Basic, but are far beyond the scope of the

discussion here.

 To create our DBMS, we need to define a few more programmatic control
methods associated with the data control Recordset property. These methods

are:

AddNew A new record is added to the table. All fields are

set to Null and this record is made the current

record.
Delete The current record is deleted from the table. This

method must be immediately followed by one of

the Move methods because the current record is

invalid after a Delete.
Update Saves the current contents of all bound tools.

 To edit an existing record, you simply display the record and make any required

changes. The LockType property should be set to adLockPessimistic (locks

each record as it is edited). Then, when you move off of that record, either with a

navigation button or through some other action, Visual Basic will automatically
update the record. If desired, or needed, you may invoke the Update method to

force an update (use LockType = asLockOptimistic). For a data control named

dtaExample , the syntax for this statement is:

dtaExample.Recordset.Update

 To add a record to the database, we invoke the AddNew method. The syntax for

our example data control is:

dtaExample.Recordset.AddNew

This statement will blank out any bound data tools and move the current record to
the end of the database. At this point, you enter the new values. When you move

Database Access and Management 8-

25

off of this record, the changes are automatically made to the database. Another
way to update the database with the changes is via the Update method.

After adding a record to a database, you should invoke the Refresh property of

the data control to insure proper sorting (established by RecordSource SQL

statement) of the new entry. The format is:

dtaExample.Refresh

 To delete a record from the database, make sure the record to delete is the

current record. Then, we use the Delete method. The syntax for the example data

control is:

dtaExample.Recordset.Delete

Once we execute a Delete, we must move (using one of the ‘Move’ methods) off

of the current record because it no longer exists and an error will occur if we don’t
move. This gets particularly tricky if deleting the last record (check the EOF

property). If EOF is true, you must move to the top of the database (MoveFirst).

You then must make sure there is a valid record there (check the BOF property).

The example code demonstrates proper movement.

8-26 Learn Visual Basic 6.0

Example 8 -4

Phone Directory - Managing the Database

1. Before starting, make a copy of your phone database file using the Windows
Explorer. That way, in case we mess up, you still have a good copy. And, create
a data link to the database. Here, we develop a simple DBMS for our phone
number database. We will be able to display individual records and edit them.
And, we will be able to add or delete records. Note this is a simple system and
many of the fancy ‘bells and whistles’ (for example, asking if you really want to
delete a record) that should really be here are not. Adding such amenities is left
as an exercise to the student.

2. Load your last Books Database application (Example 8-2 - the one with the

‘Rolodex’ search). We will modify this application to fit the phone number DBMS.
Resave your form and project with different names. Add three command buttons
to the upper right corner of the form. Modify/set the following properties for each
tool. For the data control and text boxes, make sure you follow the order shown.

frmBooks (this is the old name):

Caption Phone List

Name frmPhone

dtaTitles (this is the old name):

Caption Phone Numbers
ConnectionString [your phone database data link] (select, don’t type)

RecordSource SELECT * FROM PhoneList ORDER BY Name (the

ORDER keyword sorts the database by the given

field)
Name dtaPhone
LockType adLockOptimistic

Label1:

Caption Description

Label2:

Caption Phone

Label3:

Caption Name

Database Access and Management 8-

27

txtAuthor (this is the old name):

DataSource dtaPhone (select, don’t type)

DataField Name (select, don’t type)
Locked False
Name txtName

MaxLength 40
TabIndex 1

txtISBN (this is the old name):

DataSource dtaPhone (select, don’t type)

DataField Phone (select, don’t type)
Locked False

Name txtPhone
MaxLength 15
TabIndex 3

txtTitle (this is the old name):

DataSource dtaPhone (select, don’t type)
DataField Description (select, don’t type)
Locked False

Name txtDesc
MaxLength 40

TabIndex 2

Command1:

Caption &Add
Name cmdAdd

Command2:

Caption &Save

Enabled False
Name cmdSave

Command3:

Caption &Delete

Name cmdDelete

8-28 Learn Visual Basic 6.0

When done, my form looked like this:

At this point, you can run your application and you should be able to navigate
through your phone database using the data control. Don’t try any other options,
though. We need to do some coding.

3. In Form_Load, replace the word frmBooks with frmPhone. This will allow the

letter keys to be displayed properly.

4. In the cmdLetter_Click procedure, replace all occurrences of the word dtaTitles

with dtaPhone. Replace all occurrences of Author with Name. The modified

code will be:

Private Sub cmdLetter_Click(Index As Integer)

Dim BookMark1 As Variant

'Mark your place in case no match is found

BookMark1 = dtaPhone.Recordset.Bookmark

dtaPhone.Recordset.MoveFirst

dtaPhone.Recordset.Find "Name >= '" +

cmdLetter(Index).Caption + "'"

If dtaPhone.Recordset.EOF = True Then

dtaPhone.Recordset.Bookmark = BookMark1

End If

txtName.SetFocus

End Sub

Database Access and Management 8-

29

5. Attach this code to the cmdAdd_Click procedure. This code invokes the code

needed to add a record to the database. The Add and Delete buttons are

disabled. Click the Save button when done adding a new record.

Private Sub cmdAdd_Click()

cmdAdd.Enabled = False

cmdSave.Enabled = True

cmdDelete.Enabled = False

dtaPhone.Recordset.AddNew

txtName.SetFocus

End Sub

6. Add this code to the cmdSave_Click procedure. When done entering a new

record, the command button status’s are toggled, the Recordset updated, and the

data control Refresh method invoked to insure proper record sorting.

Private Sub cmdSave_Click()

dtaPhone.Recordset.Update

dtaPhone.Refresh

cmdAdd.Enabled = True

cmdSave.Enabled = False

cmdDelete.Enabled = True

txtName.SetFocus

End Sub

7. Attach this code to the cmdDelete_Click procedure. This deletes the current

record and moves to the next record. If we bump into the end of file, we need to
check if there are no records remaining. If no records remain in the table, we
display a message box. If records remain, we move around to the first record.

Private Sub cmdDelete_Click()

dtaPhone.Recordset.Delete

dtaPhone.Recordset.MoveNext

If dtaPhone.Recordset.EOF = True Then

dtaPhone.Refresh

If dtaPhone.Recordset.BOF = True Then

MsgBox "You must add a record.", vbOKOnly +

vbInformation, "Empty file"

Call cmdAdd_Click

Else

dtaPhone.Recordset.MoveFirst

End If

End If

txtName.SetFocus

8-30 Learn Visual Basic 6.0

End Sub

Database Access and Management 8-

31

8. Save the application. Try running it. Add records, delete records, edit rec ords. If

you’re really adventurous, you could add a button that dials your phone (via
modem) for you! Look at the custom communications control.

8-32 Learn Visual Basic 6.0

Custom Data Aware Controls

 As mentioned earlier, there are three custom data aware tools, in addition to the

standard Visual Basic tools: the DataList, DataCombo, and DataGrid ADO

tools. We’ll present each of these, giving their suggested use, some properties
and some events. If the icons for these tools are not in the toolbox, select Project

from the main menu, then click Components. Select Microsoft DataList

Controls 6.0 (OLEDB) and Microsoft DataGrid 6.0 (OLEDB) in the

Components window. Click OK - the controls will appear.

 Like the data control, previous versions of Visual Basic used DAO versions of the
list, combo, and grid controls, named DBList, DBCombo, and DBGrid. Make
sure you are not using these tools.

 DataList Box:

The first bound data custom tool is the DataList Box. The list box is

automatically filled with a fi eld from a specified data control. Selections from the
list box can then be used to update another field from the same data control or,
optionally, used to update a field from another data control.

Some properties of the DataList box are:

DataSource Name of data control that is updated by the

selection.

DataField Name of field updated in Recordset specified by

DataSource.

RowSource Name of data control used as source of items in

list box.
ListField Name of field in Recordset specified by

RowSource used to fill list box.
BoundColumn Name of field in Recordset specified by

RowSource to be passed to DataField, once
selection is made. This is usually the same as
ListField.

BoundText Text value of BoundColumn field. This is the value

passed to DataField property.

Text Text value of selected item in list. Usually the

same as BoundText.

The most prevalent use of the DataList box is to fill the list from the database, then
allow selections. The selection can be used to fill any tool on a form, whether it is
data aware or not.

Database Access and Management 8-33

8-34 Learn Visual Basic 6.0

As a quick example, here is a DataList box filled with the Title (ListField) field

from the dtaExample (RowSource) data control. The data control is bound to

the Titles table in the BIBLIO.MDB database.

 DataCombo Box:

The DataCombo Box is nearly identical to the DataList box, hence we won’t look

at a separate set of properties. The only differences between the two tools is that,
with the DataCombo box, the list portion appears as a drop-down box and the
user is given the opportunity to change the contents of the returned Text property.

 DataGrid Tool:

The DataGrid tool is, by far, the most useful of the custom data bound tools. It can
display an entire database table, referenced by a data control. The table can then
be edited as desired.

The DataGrid control is in a class by itself, when considering its capabilities. It is

essentially a separate, highly functional program. The only property we’ll be
concerned with is the DataSource property, which, as always, identifies the table

associated with the respective data control. Refer to the Visual Basic
Programmer’s Guide and other references for complete details on using the
DataGrid control.

Database Access and Management 8-35

As an example of the power of the DataGrid control, here’s what is obtained by

simply setting the DataSource property to the dtaExample data control, which is

bound to the Titles table in the BIBLIO.MDB database:

At this point, we can scroll through the table and edit any values we choose. Any
changes are automatically reflected in the underlying database. Column widths
can be changed at run -time! Multiple row and column selections are possible!
Like we said, a very powerful tool.

Creating a Data Report

 Once you have gone to all the trouble of developing and managing a database, it
is nice to have the ability to obtain printed or displayed information from your data.
The process of obtaining such information is known as creating a data report.

 There are two steps to creating a data report. First, we need to create a Data

Environment. This is designed within Visual Basic and is used to tell the data

report what is in the database. Second, we create the Data Report itself. This,

too, is done within Visual Basic. The Data Environment and Data Report files

then become part of the Visual Basic project developed as a database

management system.

 The Visual Basic 6.0 data report capabilities are vast and using them is a
detailed process. The use of these capabilities is best demonstrated by
example. We will look at the rudiments of report creation by building a tabular
report for our phone database.

8-36 Learn Visual Basic 6.0

Example 8 -5

Phone Directory - Building a Data Report

We will build a data report that lists all the names and phone numbers in our phone
database. We will do this by first creating a Data Environment, then a Data Report.
We will then reopen the phone database management project and add data reporting
capabilities.

Creating a Data Environment

1. Start a new Standard EXE project.

2. On the Project menu, click Add Data Environment. If this item is not on the

menu, click Components. Click the Designers tab, and choose Data

Environment and click OK to add the designer to your menu.

3. We need to point to our database. In the Data Environment window, right-click

the Connection1 tab and select Properties. In the Data Link Properties dialog

box, choose Microsoft Jet 3.51 OLE DB Provider. Click Next to get to the

Connection tab. Click the ellipsis button. Find your phone database (mdb) file.

Click OK to close the dialog box.

4. We now tell the Data Environment what is in our database. Right -click the

Connection1 tab and click Rename. Change the name of the tab to Phone.

Right-click this newly named tab and click Add Command to create a

Command1 tab. Right-click this tab and choose Properties. Assign the

following properties:

Command Name PhoneList

Connection Phone

DataBase Object Table

ObjectName PhoneList

5. Click OK. All this was needed just to connect the environment to our database .

Database Access and Management 8-37

6. Display the properties window and give the data environment a name property of
denPhone. Click File and Save denPhone As. Save the environment in an

appropriate folder. We will eventually add this file to our phone database
management system. At this point, my data environment window looks like this (I
expanded the PhoneList tab by clicking the + sign):

Creating a Data Report

Once the Data Environment has been created, we can create a Data Report. We will
drag things out of the Data Environment onto a form created for the Data Report, so
make sure your Data Environment window is still available.

1. On the Project menu, click Add Data Report and one will be added to your

project. If this item is not on the menu, click Components. Click the Designers

tab, and choose Data Report and click OK to add the designer to your menu.

2. Set the following properties for the report:

Name rptPhone

Caption Phone Directory

DataSource denPhone (your phone data environment - choose,

don’t type)
DataMember PhoneList (the table name - choose don’t type)

3. Right-click the Data Report and click Retrieve Structure. This establishes a

report format based on the Data Environment.

4. Note there are five sections to the data report: a Report Header, a Page

Header , a Detail section, a Page Footer, and a Report Footer. The headers

and footers contain information you want printed in the report and on each page.

To place information in one of these regions, right-click the selected region, click

8-38 Learn Visual Basic 6.0

Add Control, then choose the control you wish to place. These controls are

called data report controls and properties are established just like you do for

usual controls. Try adding some headers.

5. The Detail section is used to layout the information you want printed for each

record in your database. We will place two field listings (Name, Phone) there.

Click on the Name tab in the Data Environment window and drag it to the Detail
section of the Data Report. Two items should appear: a text box Name and a

text box Name (PhoneList). The first text box is heading information. Move this

text box into the Page Header section. The second text box is the actual value for
Name from the PhoneList table. Line this text box up under the Name header.

Now, drag the Phone tab from the Data Environment to the Data Report. Adjust
the text boxes in the same manner. Our data report will have page headers Name

and Phone. Under these headers, these fields for each record in our database
will be displayed. When done, the form should look something like this:

In this form, I’ve resized the labels a bit and added a Report Header. Also, make
sure you close up the Detail section to a single line. Any space left in this section
will be inserted after each entry.

6. Click File and Save rptPhone As. Save the environment in an appropriate

folder. We will now reopen our phone database manager and attach this and the

data environment to that project and add capabilities to display the report.

Database Access and Management 8-39

Accessing the Data Report

1. Reopen the phone directory project. Add a command button named cmdReport

and give it a Caption of Show Report. (There may be two tabs in your toolbox,

one named General and one named DataReport . Make sure you select from the

General tools.)

2. We will now add the data environment and data report files to the project. Click

the Project menu item, then click Add File. Choose denPhone and click OK.

Also add rptPhone. Look at your Project Window. Those files should be listed

under Designers.

3. Use this code in cmdReport_Click:

Private Sub cmdReport_Click()

rptPhone.Show

End Sub

4. This uses the Show method to display the data report.

5. Save the application and run it. Click the Show Report button and this should

appear:

You now have a printable copy of the phone directory. Just click the Printer icon.
Notice the relationship with this displayed report and the sections available in the
Data Report designer.

8-40 Learn Visual Basic 6.0

This page intentionally not left blank.

Database Access and Management 8-41

Exercise 8

Home Inventory Database

Design and develop an application that manages a home inventory database. Add
the option of obtaining a printed list of your inventoried property.

My Solution:

Database Design:

The first step is to design a database using Data Manager (or Access). My

database is a single table (named MYSTUFF). Its specifications are:

Field Name Field Type Field Length

Item Text 40
Serial Number Text 20
Date Purchased Text 20
New Value Currency <N/A>
Location Text 40

This database is saved as file HomeInv.mdb. Create a data link to your database.

The link is saved as HomeInv.udl.

8-42 Learn Visual Basic 6.0

Report Design:

The second step is to use the Data Environment and Data Report designers to setup
how you want the printed home inventory to appear. Use your discretion here. My
final report design is saved in denHomeInv and rptHomeInv. We will access this

report from our Visual Basic application. My Data Report design looks like this:

Database Access and Management 8-43

Project Design:

Form:

txtDate txtSerial txtItem txtValue

Label1

Label2

Label3

cmdNext

cmdPrevious

Label4

Label5

txtLocation

cmdShow

cmdAdd cmdExit cmdDelete dtaHome

Properties:

Form frmHome:

BorderStyle = 1 - Fixed Single

Caption = Home Inventory

CommandButton cmdExit:

Caption = E&xit

ADO Data Control dtaHome:

Caption = Book Titles

ConnectionString = HomeInv.udl (in whatever folder you saved it in -
select, don’t type)

RecordSource = SELECT * FROM MyStuff
Visible = False

CommandButton cmdShow:

Caption = Show &Report

CommandButton cmdPrevious:

Caption = &Previous Item

8-44 Learn Visual Basic 6.0

CommandButton cmdNext:

Caption = &Next Item

CommandButton cmdDelete:

Caption = &Delete Item

CommandButton cmdAdd:

Caption = &Add Item

TextBox txtLocation:

DataField = Location
DataSource = dtaHome
FontName = MS Sans Serif
FontSize = 9.75
MaxLength = 40

TextBox txtValue:

DataField = New Value
DataSource = dtaHome
FontName = MS Sans Serif
FontSize = 9.75

TextBox txtDate:

DataField = Date Purchased
DataSource = dtaHome
FontName = MS Sans Serif
FontSize = 9.75

MaxLength = 20

TextBox txtSerial:

DataField = Serial Number
DataSource = dtaHome
FontName = MS Sans Serif
FontSize = 9.75
MaxLength = 20

TextBox txtItem:

DataField = Item
DataSource = dtaHome
FontName = MS Sans Serif
FontSize = 9.75
MaxLength = 40

Database Access and Management 8-45

Label Label5:

Caption = Location

FontName = Times New Roman
FontSize = 12

Label Label4:

Caption = New Value

FontName = Times New Roman
FontSize = 12

Label Label3:

Caption = Purchase Date
FontName = Times New Roman
FontSize = 12

Label Label2:

Caption = Serial Number
FontName = Times New Roman
FontSize = 12

Label Label1:

Caption = Item

FontName = Times New Roman
FontSize = 12

Code:

General Declarations:

Option Explicit

cmdAdd Click Event:

Private Sub cmdAdd_Click()

'Add new item to database

dtaHome.Recordset.AddNew

txtItem.SetFocus

End Sub

8-46 Learn Visual Basic 6.0

cmdDelete Click Event:

Private Sub cmdDelete_Click()

'Delete item from database

Dim Rvalue As Integer

Rvalue = MsgBox("Are you sure you want to delete this

item?", vbQuestion + vbYesNo, "Delete Item")

If Rvalue = vbNo Then Exit Sub

dtaHome.Recordset.Delete

dtaHome.Recordset.MoveNext

If dtaHome.Recordset.EOF Then

If dtaHome.Recordset.BOF Then

MsgBox "You must add an item.", vbOKOnly +

vbInformation, "Empty Database"

Call cmdAdd_Click

Else

dtaHome.Recordset.MoveFirst

End If

End If

txtItem.SetFocus

End Sub

cmdExit Click Event:

Private Sub cmdExit_Click()

End

End Sub

cmdNext Click Event:

Private Sub cmdNext_Click()

'Move to next item - if at end-of-file, backup one item

dtaHome.Recordset.MoveNext

If dtaHome.Recordset.EOF Then

dtaHome.Recordset.MovePrevious

txtItem.SetFocus

End Sub

Database Access and Management 8-47

cmdPrevious Click Event:

Private Sub cmdPrevious_Click()

'Move to previous item - if at beginning-of-file, go down

one item

dtaHome.Recordset.MovePrevious

If dtaHome.Recordset.BOF Then dtaHome.Recordset.MoveNext

txtItem.SetFocus

End Sub

cmdShow Click Event:

Private Sub cmdShow_Click()

rptHomeInv.Show

End Sub

8-48 Learn Visual Basic 6.0

This page intentionally not left blank.

9-1

9. Dynamic Link Libraries and the Windows API

Review and Preview

 In our last class, we saw how using the data control and bound data tools allowed
us to develop a simple database management system. Most of the work done by
that DBMS, though, was done by the underlying Jet database engine, not Visual
Basic. In this class, we learn how to interact with another underlying set of code
by programming the Windows applications interface (API) using dynamic link
libraries (DLL). Alphabet soup!

Dynamic Link Libraries (DLL)

 All Windows applications at their most basic level (even ones written using Visual
Basic) interact with the computer environment by using calls to dynamic link

libraries (DLL). DLL’s are libraries of routines, usually written in C, C++, or

Pascal, that you can link to and use at run -time.

 Each DLL usually performs a specific function. By using DLL routines with Visual
Basic, you are able to extend your application’s capabilities by making use of the
many hundreds of functions that make up the Windows Application Programming
Interface (Windows API). These functions are used by virtually every application
to perform functions like displaying windows, file manipulation, printer control,
menus and dialog boxes, multimedia, string manipulation, graphics, and
managing memory.

 The advantage to using DLL’s is that you can use available routines without
having to duplicate the code in Basic. In many cases, there isn’t even a way to do
a function in Basic and calling a DLL routine is the only way to accomplish the
task. Or, if there is an equivalent function in Visual Basic, using the corresponding
DLL routine may be faster, more efficient, or more adaptable. Reference material
on DLL calls and the API run thousands o f pages - we’ll only scratch the surface
here. A big challenge is just trying to figure out what DLL procedures exist, what
they do, and how to call them.

Learn Visual Basic 6.0

Dynamic Link Libraries and the Windows API 9-11

 There is a price to pay for access to this vast array of code. Once you leave the
protective surroundings of the Visual Basic environment, as you must to call a
DLL, you get to taunt and tease the dreaded general protection fault (GPF)
monster, which can bring your entire computer system to a screeching halt! So,
be careful. And, if you don’t have to use DLL’s, don’t.

Accessing the Windows API With DLL

 Using a DLL procedure from Visual Basic is not much different from calling a

general basic function or procedure. Just make sure you pass it the correct
number and correct type of arguments. Say DLLFcn is a DLL function and

DLLProc is a DLL procedure. Proper syntax to invoke these is, respectively

(ignoring arguments for now):

ReturnValue = DLLFcn()
Call DLLProc()

 Before you call a DLL procedure, it must be declared in your Visual Basic
program using the Declare statement. Declare statements go in the general
declarations area of form and code modules. The Declare statement informs

your program about the name of the procedure, and the number and type of

arguments it takes. This is nearly identical to function prototyping in the C
language. For a DLL function (DLLFcn), the syntax is:

Declare Function DLLFcn Lib DLLname [(argument list)] As type

where DLLname is a string specifying the name of the DLL file that contains the

procedure and type is the returned value type.

For a procedure (DLLProc), use:

Declare Sub DLLProc Lib DLLname [(argument list)]

In code modules, you need to preface the Declare statements with the keywords
Public or Private to indicate the procedure scope. In form modules, preface the

Declare statement with Private, the default (and only possible) scope in a form

module.

 Nearly all arguments to DLL procedures are passed by value (use the ByVal

keyword), so the argument list has the syntax:

ByVal argname1 As type, ByVal argname2 As type, ...

9-2 Learn Visual Basic 6.0

Again, it is very important, when calling DLL procedures, that the argument lists
be correct, both regarding number and type. If the list is not correct, very bad
things can happen.

 And, it is critical that the Declare statement be exactly correct or very bad things

can happen. Fortunately, there is a program included with Visual Basic called the

API Text Viewer , which provides a complete list of Declare statements for all API

procedures. The viewer is available from the Start Menu folder for Visual Basic
6.0 (choose Visual Basic 6.0 Tools folder, then API Text Viewer). Most of the
Declare statements are found in a file named win32api.txt (load this from the File

menu).

Always use this program to establish Declare statements for your DLL calls. The
procedure is simple. Scroll through the listed items and highlight the desired
routine. Choose the scope (Public or Private). Click Add to move it to the
Selected Items area. Once all items are selected, click Copy. This puts the

desired Declare statements in the Windows clipboard area. Then move to the
General Declarations area of your application and choose Paste from the Edit

menu. The Declare statements will magically appear. The API Text Viewer can
also be used to obtain any constants your DLL routine may need.

9-4 Learn Visual Basic 6.0

 To further confuse things, unlike Visual Basic routine names, DLL calls are case-
sensitive, we must pay attention to proper letter case when accessing the API.

 Lastly, always, always, always save your Visual Basic application before

testing any DLL calls. More good code has gone down the tubes with GPF’s -
they are very difficult to recover from. Sometimes, the trusty on-off switch is the
only recovery mechanism.

Timing with DLL Calls

 Many times you need some method of timing within an application. You may want
to know how long a certain routine (needed for real-time simulations) takes to
execute or want to implement some sort of delay in your code. The DLL function
GetTickCount is very useful for such tasks.

 The DLL function GetTickCount is a measure of the number of milliseconds that

have elapsed since Windows was started on your machine. GetTickCount is 85

percent faster than the Visual Basic Timer or Now functions. The GetTickCount

function has no arguments. The returned value is a long integer. The usage

syntax is:

Dim TickValue as Long

.

.

TickValue = GetTickCount()

Let’s look at a couple of applications of this function.

Dynamic Link Libraries and the Windows API 9-5

Quick Example 1: Using GetTickCount to Build a Stopwatch

Remember way back in Class 1, where we built a little stop watch. We’ll modify that
example here using GetTickCount to do our timing.

1. Load Example 1-3 from long, long ago.

2. Use the API Text Viewer to obtain the Declare statement for the GetTickCount

function. Choose Private scope. Copy and paste it into the applications

General Declarations area (new code is italicized).

Option Explicit

Dim StartTime As Variant

Dim EndTime As Variant

Dim ElapsedTime As Variant

Private Declare Function GetTickCount Lib "kernel32" ()

As Long

3. Modify the cmdStart_Click procedure as highlighted:

Private Sub cmdStart_Click()

'Establish and print starting time

StartTime = GetTickCount() / 1000

lblStart.Caption = Format(StartTime, "#########0.000")

lblEnd.Caption = ""

lblElapsed.Caption = ""

End Sub

4. Modify the cmdEnd_Click procedure as highlighted:

Private Sub cmdEnd_Click()

'Find the ending time, compute the elapsed time

'Put both values in label boxes

EndTime = GetTickCount() / 1000

ElapsedTime = EndTime - StartTime

lblEnd.Caption = Format(EndTime, "#########0.000")

lblElapsed.Caption = Format(ElapsedTime,

"#########0.000")

End Sub

5. Run the application. Note we now have timing with millisecond (as opposed to
one second) accuracy.

9-6 Learn Visual Basic 6.0

Quick Example 2: Using GetTickCount to Implement a Delay

Many times, you want some delay in a program. We can use GetTickCount to form a
user routine to implement such a delay. We’ll write a quick example that delays two
seconds between beeps.

1. Start a new project. Put a command button on the form. Copy and paste the

proper Declare statement.

2. Use this for the Command1_Click event:

Private Sub Command1_Click()

Beep

Call Delay(2#)

Beep

End Sub

3. Add the routine to implement the delay. The routine I use is:

Private Sub Delay(DelaySeconds As Single)

Dim T1 As Long

T1 = GetTickCount()

Do While GetTickCount() - T1 < CLng(DelaySeconds * 1000)

Loop

End Sub

To use this routine, note you simply call it with the desired delay (in seconds) as
the argument. This example delays two seconds. One drawback to this routine is
that the application cannot be interrupted and no other events can be processed
while in the Do loop. So, keep delays to small values.

4. Run the example. Click on the command button. Note the delay between beeps.

Dynamic Link Libraries and the Windows API 9-7

Drawing Ellipses

 There are several DLL routines that support graphic methods (similar to the Line
and Circle methods studied in Class 7). The DLL function Ellipse allows us to
draw an ellipse bounded by a pre-defined rectangular region.

 The Declare statement for the Ellipse function is:

Private Declare Function Ellipse Lib "gdi32" Alias "Ellipse" (ByVal hdc As Long,
ByVal X1 As Long, ByVal Y1 As Long, ByVal X2 As Long, ByVal Y2 As Long) As
Long

Note there are five arguments: hdc is the hDC handle for the region (Form or

Picture Box) being drawn to, (X1, Y1) define the upper left hand corner of the

rectangular region surrounding the ellipse and (X2,Y2) define the lower right hand

corner. The region drawn to must have its ScaleMode property set to Pixels (all

DLL drawing routine use pixels for coordinates).

 Any ellipse drawn with this routine is drawn using the currently selected
DrawWidth and ForeColor properties and filled according to FillColor and

FillStyle .

Quick Example 3 - Drawing Ellipses

1. Start a new application. Set the form’s ScaleMode property to Pixels.

2. Use the API Text Viewer to obtain the Declare statement for the Ellipse function

and copy it into the General Declarations area:

Option Explicit

Private Declare Function Ellipse Lib "gdi32" (ByVal hdc

As Long, ByVal X1 As Long, ByVal Y1 As Long, ByVal X2 As

Long, ByVal Y2 As Long) As Long

3. Attach the following code to the Form_Resize event:

Private Sub Form_Resize()

Dim RtnValue As Long

Form1.Cls

RtnValue = Ellipse(Form1.hdc, 0.1 * ScaleWidth, 0.1 *

ScaleHeight, 0.9 * ScaleWidth, 0.9 * ScaleHeight)

End Sub

9-8 Learn Visual Basic 6.0

Dynamic Link Libraries and the Windows API 9-9

4. Run the application. Resize the form and see how the drawn ellipse takes on new

shapes. Change the form’s DrawWidth, ForeColor, FillColor, and FillStyle

properties to obtain different styles of ellipses.

Drawing Lines

 Another DLL graphic function is Polyline. It is used to connect a series of

connected line segments. This is useful for plotting information or just free hand
drawing. Polyline uses the DrawWidth and DrawStyle properties. This function

is similar to the Line method studied in Class 7, however the last point drawn to
(CurrentX and CurrentY) is not retained by this DLL function.

 The Declare statement for Polyline is:

Private Declare Function Polyline Lib "gdi32" Alias "Polyline" (ByVal hdc As
Long, lpPoint As POINTAPI, ByVal nCount As Long) As Long

Note it has three arguments: hdc is the hDC handle of the region (Form or

Picture Box-again, make sure ScaleMode is Pixels) being drawn to, lpPoint is

the first point in an array of points defining the endpoints of the line segments - it is
of a special user-defined type POINTAPI (we will talk about this next), and

nCount is the number of points defining the line segments.

 As mentioned, Polyline employs a special user-defined variable (a data structure)
of type POINTAPI. This definition is made in the general declarations area and
looks like:

Private Type POINTAPI
X As Long

Y As Long
End Type

Any variable defined to be of type POINTAPI will have two coordinates, an X value
and a Y value. As an example, say we define variable A to be of type POINTAPI
using:

Dim A As POINTAPI

A will have an X value referred to using the dot notation A.X and a Y value referred
to as A.Y. Such notation makes using the Polyline function simpler. We will use
this variable type to define the array of line segment endpoints.

9-10 Learn Visual Basic 6.0

 So, to draw a sequence of line segments in a picture box, first decide on the (X,
Y) coordinates of each segment endpoint. Then, decide on line color and line
pattern and set the corresponding properties for the picture box. Then, using
Polyline to draw the segments is simple. And, as usual, the process is best
illustrated using an example.

Quick Example 4 - Drawing Lines

1. Start a new application. Add a command button. Set the form’s ScaleMode

property to Pixels:

2. Set up the General Declarations area to include the user-defined variable

(POINTAPI) and the Declare statement for Polyline. Also define a variable for

the line endpoints:

Option Explicit

Private Type POINTAPI

X As Long

Y As Long

End Type

Private Declare Function Polyline Lib "gdi32" (ByVal hdc

As Long, lpPoint As POINTAPI, ByVal nCount As Long) As

Long

Dim V(20) As POINTAPI

Dim Index As Integer

Dynamic Link Libraries and the Windows API 9-

11

3. Establish the Form_MouseDown event (saves the points):

Private Sub Form_MouseDown(Button As Integer, Shift As

Integer, X As Single, Y As Single)

If Index = 0 Then Form1.Cls

Index = Index + 1

V(Index).X = X

V(Index).Y = Y

End Sub

4. Establish the Command1_Click event (draws the segments):

Private Sub Command1_Click()

Dim RtnValue As Integer

Form1.Cls

RtnValue = Polyline(Form1.hdc, V(1), Index)

Index = 0

End Sub

5. Run the application. Click on the form at different points, then click the command
button to connect the ‘clicked’ points. Try different colors and line styles.

Drawing Polygons

 We could try to use the Polyline function to draw closed regions, or polygons. One

drawback to this method is that drawing filled regions is not possible. The DLL
function Polygon allows us to draw any closed region defined by a set of (x, y)

coordinate pairs.

 Let’s look at the Declare statement for Polygon (from the API Text Viewer):

Private Declare Function Polygon Lib "gdi32" Alias "Polygon" (ByVal hdc As

Long, lpPoint As POINTAPI, ByVal nCount As Long) As Long

Note it has three arguments: hdc is the hDC handle of the region (Form or

Picture Box) being drawn to, lpPoint is the first point in an array of points defining

the vertices of the polygon - it is of type POINTAPI, and nCount is the number of

points defining the enclosed region.

 So, to draw a polygon in a picture box, first decide on the (X, Y) coordinates of
each vertex in the polygon. Then, decide on line color, line pattern, fill color and fill
pattern and set the corresponding properties for the picture box. Then, using
Polygon to draw the shape is simple.

9-12 Learn Visual Basic 6.0

Dynamic Link Libraries and the Windows API 9-

13

Quick Example 5 - Drawing Polygons

1. Start a new application and establish a form with the following controls: a picture

box (ScaleMode set to Pixels), a control array of five option buttons, and a

command button:

2. Set up the General Declarations area to include the user-defined variable

(POINTAPI) and the Declare statement for Polygon:

Option Explicit

Private Type POINTAPI

X As Long

Y As Long

End Type

Private Declare Function Polygon Lib "gdi32" (ByVal hdc

As Long, lpPoint As POINTAPI, ByVal nCount As Long) As

Long

3. Establish the Command1_Click event:

Private Sub Command1_Click()

Dim I As Integer

For I = 0 To 4

If Option1(I).Value = True Then

Exit For

End If

Next I

Picture1.Cls

Call Draw_Shape(Picture1, I)

9-14 Learn Visual Basic 6.0

End Sub

Dynamic Link Libraries and the Windows API 9-15

4. Set up a general procedure to draw a particular shape number (PNum) in a

general control (PBox). This procedure can draw one of five shapes (0-Square,

1-Rectangle, 2-Triangle, 3-Hexagon, 4-Octagon). For each shape, it establishes
some margin area (DeltaX and DeltaY) and then defines the vertices of the

shape using the V array (a POINTAPI type variable).

Private Sub Draw_Shape(PBox As Control, PNum As Integer)

Dim V(1 To 8) As POINTAPI, Rtn As Long

Dim DeltaX As Integer, DeltaY As Integer

Select Case PNum

Case 0

'Square

DeltaX = 0.05 * PBox.ScaleWidth

DeltaY = 0.05 * PBox.ScaleHeight

V(1).X = DeltaX: V(1).Y = DeltaY

V(2).X = PBox.ScaleWidth - DeltaX: V(2).Y = V(1).Y

V(3).X = V(2).X: V(3).Y = PBox.ScaleHeight - DeltaY

V(4).X = V(1).X: V(4).Y = V(3).Y

Rtn = Polygon(PBox.hdc, V(1), 4)

Case 1

'Rectangle

DeltaX = 0.3 * PBox.ScaleWidth

DeltaY = 0.05 * PBox.ScaleHeight

V(1).X = DeltaX: V(1).Y = DeltaY

V(2).X = PBox.ScaleWidth - DeltaX: V(2).Y = V(1).Y

V(3).X = V(2).X: V(3).Y = PBox.ScaleHeight - DeltaY

V(4).X = V(1).X: V(4).Y = V(3).Y

Rtn = Polygon(PBox.hdc, V(1), 4)

Case 2

'Triangle

DeltaX = 0.05 * PBox.ScaleWidth

DeltaY = 0.05 * PBox.ScaleHeight

V(1).X = DeltaX: V(1).Y = PBox.ScaleHeight - DeltaY

V(2).X = 0.5 * PBox.ScaleWidth: V(2).Y = DeltaY

V(3).X = PBox.ScaleWidth - DeltaX: V(3).Y = V(1).Y

Rtn = Polygon(PBox.hdc, V(1), 3)

Case 3

'Hexagon

DeltaX = 0.05 * PBox.ScaleWidth

DeltaY = 0.05 * PBox.ScaleHeight

V(1).X = DeltaX: V(1).Y = 0.5 * PBox.ScaleHeight

V(2).X = 0.25 * PBox.ScaleWidth: V(2).Y = DeltaY

V(3).X = 0.75 * PBox.ScaleWidth: V(3).Y = V(2).Y

9-16 Learn Visual Basic 6.0

V(4).X = PBox.ScaleWidth - DeltaX: V(4).Y = V(1).Y

V(5).X = V(3).X: V(5).Y = PBox.ScaleHeight - DeltaY

V(6).X = V(2).X: V(6).Y = V(5).Y

Rtn = Polygon(PBox.hdc, V(1), 6)

Dynamic Link Libraries and the Windows API 9-17

Case 4

'Octagon

DeltaX = 0.05 * PBox.ScaleWidth

DeltaY = 0.05 * PBox.ScaleHeight

V(1).X = DeltaX: V(1).Y = 0.3 * PBox.ScaleHeight

V(2).X = 0.3 * PBox.ScaleWidth: V(2).Y = DeltaY

V(3).X = 0.7 * PBox.ScaleWidth: V(3).Y = V(2).Y

V(4).X = PBox.ScaleWidth - DeltaX: V(4).Y = V(1).Y

V(5).X = V(4).X: V(5).Y = 0.7 * PBox.ScaleHeight

V(6).X = V(3).X: V(6).Y = PBox.ScaleHeight - DeltaY

V(7).X = V(2).X: V(7).Y = V(6).Y

V(8).X = V(1).X: V(8).Y = V(5).Y
Rtn = Polygon(PBox.hdc, V(1), 8)

End Select

End Sub

5. Run the application. Select a shape and click the command button to draw it.
Play with the picture box properties to obtain different colors and fill patterns.

6. To see the importance of proper variable declarations when using DLL’s and the

API, make the two components (X and Y) in the POINTAPI variable of type Integer
rather than Long. Rerun the program and see the strange results.

9-18 Learn Visual Basic 6.0

Sounds with DLL Calls - Other Beeps

 As seen in the above example and by perusing the Visual Basic literature, only
one sound is available in Visual Basic - Beep. Not real exciting. By using
available DLL’s, we can add all kinds of sounds to our applications.

 A DLL routine like the Visual Basic Beep function is MessageBeep. It also

beeps the speaker but, with a sound card, you can hear different kinds of beeps.

Message Beep has a single argument, that being an long integer that describes

the type of beep you want. MessageBeep returns a long integer. The usage

syntax is:

Dim BeepType As Long, RtnValue as Long

.

.

.
RtnValue = MessageBeep(BeepType)

 BeepType has five possible values. Sounds are related to the four possible

icons available in the Message Box (these sounds are set from the Windows 95

control panel). The DLL constants available are:

MB_ICONSTOP - Play sound associated with the critical icon

MB_ICONEXCLAMATION - Play sound associated with the exclamation icon

MB_ICONINFORMATION - Play sound associated with the information icon

MB_ICONQUESTION - Play sound associated with the question icon

MB_OK - Play sound associated with no icon

Dynamic Link Libraries and the Windows API 9-19

Quick Example 6 - Adding Beeps to Message Box Displays

We can use MessageBeep to add beeps to our display of message boxes.

1. Start a new application. Add a text box and a command button.

2. Copy and paste the Declare statement for the MessageBeep function to the

General Declarations area. Also, copy and paste the following seven constants

(we need seven since some of the ones we use are equated to other constants):

Private Declare Function MessageBeep Lib "user32" (ByVal

wType As Long) As Long

Private Const MB_ICONASTERISK = &H40&

Private Const MB_ICONEXCLAMATION = &H30&

Private Const MB_ICONHAND = &H10&

Private Const MB_ICONINFORMATION = MB_ICONASTERISK

Private Const MB_ICONSTOP = MB_ICONHAND

Private Const MB_ICONQUESTION = &H20&

Private Const MB_OK = &H0&

3. In the above constant definitions, you will have to change the word Public (which

comes from the text viewer) with the word Private.

4. Use this code to the Command1_Click event.

Private Sub Command1_Click()

Dim BeepType As Long, RtnValue As Long

Select Case Val(Text1.Text)

Case 0

BeepType = MB_OK

Case 1

BeepType = MB_ICONINFORMATION

Case 2

BeepType = MB_ICONEXCLAMATION

Case 3

BeepType = MB_ICONQUESTION

Case 4

BeepType = MB_ICONSTOP

End Select

RtnValue = MessageBeep(BeepType)

MsgBox "This is a test", BeepType, "Beep Test"

End Sub

9-20 Learn Visual Basic 6.0

5. Run the application. Enter values from 0 to 4 in the text box and click the
command button. See if you get different beep sounds.

Dynamic Link Libraries and the Windows API 9-21

More Elaborate Sounds

 Beeps are nice, but many times you want to play more elaborate sounds. Most
sounds you hear played in Windows applications are saved in WAV files (files

with WAV extensions). These are the files formed when you record using one of
the many sound recorder programs available.

 WAV files are easily played using DLL functions. There is more than one way to
play such a file. We’ll use the sndPlaySound function. This is a long function

that requires two arguments, a string argument with the name of the WAV file and

a long argument indicating how to play the sound. The usage syntax is:

Dim WavFile As String, SndType as Long, RtnValue as Long

.

.

.
RtnValue = sndPlaysound(WavFile, SndType)

 SndType has many possible values. We’ll just look at two:

SND_SYNC - Sound is played to completion, then execution continues

SND_ASYNC - Execution continues as sound is played

Quick Example 7 - Playing WAV Files

1. Start a new application. Add a command button and a common dialog box.

Copy and paste the sndPlaySound Declare statement from the API Text Viewer

program into your application. Also copy the SND_SYNC and SND_ASYNC

constants. When done copying and making necessary scope modifications, you

should have:

Private Declare Function sndPlaySound Lib "winmm.dll"

Alias "sndPlaySoundA" (ByVal lpszSoundName As String,

ByVal uFlags As Long) As Long

Private Const SND_ASYNC = &H1

Private Const SND_SYNC = &H0

9-22 Learn Visual Basic 6.0

2. Add this code to the Command1_Click procedure:

Private Sub Command1_Click()

Dim RtnVal As Integer

'Get name of .wav file to play

CommonDialog1.Filter = "Sound Files|*.wav"

CommonDialog1.ShowOpen

RtnVal = sndPlaySound(CommonDialog1.filename, SND_SYNC)

End Sub

3. Run the application. Find a WAV file and listen to the lovely results.

Playing Sounds Quickly

 Using the sndPlaySound function in the previous example requires first opening a
file, then playing the sound. If you want quick sounds, say in games, the loading
procedure could slow you down quite a bit. What would be nice would be to have
a sound file ‘saved’ in some format that could be played quickly. We can do that!

 What we will do is open the sound file (say in the Form_Load procedure) and

write the file to a string variable. Then, we just use this string variable in place of
the file name in the sndPlaySound argument list. We also need to ‘Or’ the
SndType argument with the constant SND_MEMORY (this tells sndPlaySound

we are playing a sound from memory as opposed to a WAV file). This technique
is borrowed from “Black Art of Visual Basic Game Programming,” by Mark Pruett,
published by The Waite Group in 1995. Sounds played using this technique must
be short sounds (less than 5 seconds) or mysterious results could happen.

Dynamic Link Libraries and the Windows API 9-23

Quick Example 8 - Playing Sounds Quickly

We’ll write some code to play a quick ‘bonk’ sound.

1. Start a new application. Add a command button.

2. Copy and paste the sndPlaySound Declare statement and the two needed

constants (see Quick Example 4). Declare a variable (BongSound) for the sound
file. Add SND_MEMORY to the constants declarations. The two added

statements are:

Dim BongSound As String

Private Const SND_MEMORY = &H4

3. Add the following general function, StoreSound, that will copy a WAV file into a

string variable:

Private Function StoreSound(ByVal FileName) As String

'---

' Load a sound file into a string variable.

' Taken from:

' Mark Pruett
' Black Art of Visual Basic Game Programming

' The Waite Group, 1995

'---

Dim Buffer As String

Dim F As Integer

Dim SoundBuffer As String

On Error GoTo NoiseGet_Error

Buffer = Space$(1024)

SoundBuffer = ""

F = FreeFile

Open FileName For Binary As F

Do While Not EOF(F)

Get #F, , Buffer

SoundBuffer = SoundBuffer & Buffer

Loop

Close F

StoreSound = Trim(SoundBuffer)

Exit Function

NoiseGet_Error:

SoundBuffer = ""

Exit Function

End Function

9-24 Learn Visual Basic 6.0

Dynamic Link Libraries and the Windows API 9-25

4. Write the following Form_Load procedure:

Private Sub Form_Load()

BongSound = StoreSound("bong.wav")

End Sub

5. Use this as the Command1_Click procedure:

Private Sub Command1_Click()

Call sndPlaySound(BongSound, SND_SYNC Or SND_MEMORY)

End Sub

6. Make sure the sound (BONK.WAV) is in the same directory as your application.

Run the application. Each time you click the command button, you should hear a

bonk!

Fun With Graphics

 One of the biggest uses of the API is for graphics, whether it be background
scrolling, sprite animation, or many other special effects. A very versatile API
function is BitBlt, which stands for Bit Block Transfer. It is used to copy a

section of one bitmap from one place (the source) to another (the destination).

 Let’s look at the Declaration statement for BitBlt (from the API Text Viewer):

PrivateDeclare Function BitBlt Lib "gdi32" Alias "BitBlt"
(ByVal hDestDC As Long,

ByVal x As Long,

ByVal y As Long,

ByVal nWidth As Long,

ByVal nHeight As Long,
ByVal hSrcDC As Long,
ByVal xSrc As Long,
ByVal ySrc As Long,
ByVal dwRop As Long) As
Long

Lots of stuff here, but fairly straightforward. hDestDC is the device context

handle, or hDC of the destination bitmap. The coordinate pair (X, Y) specifies the

upper left corner in the destination bitmap to copy the source. The parameters

nWidth and nHeight are, respectively, the width and height of the copied bitmap.

hSrcDC is the device context handle for the source bitmap and (Xsrc, Ysrc) is

the upper left corner of the region of the source bitmap being copied. Finally,
dwRop is a constant that defines how the bitmap is to be copied. We will do a

9-26 Learn Visual Basic 6.0

direct copy or set dwRop equal to the constant SRCCOPY. The BitBlt function

expects all geometric units to be pixels.

Dynamic Link Libraries and the Windows API 9-27

 BitBlt returns an long integer value -- we won’t be concerned with its use right now.
So, the syntax for using BitBlt is:

Dim RtnValue As Long

.

.
RtnValue = BitBlt(Dest.hDC, X, Y, Width, Height,

Src.hDC, Xsrc, Ysrc, SRCCOPY)

This function call takes the Src bitmap, located at (Xsrc, Ysrc), with width Width

and height Height, and copies it directly to the Dest bitmap at (X, Y).

Quick Example 9 - Bouncing Ball With Sound!

We’ll build an application with a ball bouncing from the top to the bottom as an
illustration of the use of BitBlt.

1. Start a new application. Add two picture boxes, a shape (inside the smaller

picture box), a timer control, and a command button.:

Picture1 Command1

Timer1

Shape1

Picture2

9-28 Learn Visual Basic 6.0

2. For Picture1 (the destination), set the ScaleMode property to Pixel. For Shape1,

set the FillStyle property to Solid, the Shape property to Circle, and choose a

FillColor. For Picture2 (the ball), set the ScaleMode property to Pixel and the

BorderStyle property to None. For Timer1, set the Enabled property to False

and the Interval property to 100 .

3. Copy and paste constants for the BitBlt Declare statement and constants. Also

copy and paste the necessary sndPlaySound statements and declare some

variables. The general declarations area is thus:

Option Explicit

Dim BongSound As String

Dim BallY As Long, BallDir As Integer

Private Declare Function sndPlaySound Lib "winmm.dll"

Alias "sndPlaySoundA" (ByVal lpszSoundName As String,

ByVal uFlags As Long) As Long

Private Const SND_ASYNC = &H1

Private Const SND_SYNC = &H0

Private Const SND_MEMORY = &H4

Private Declare Function BitBlt Lib "gdi32" (ByVal

hDestDC As Long, ByVal x As Long, ByVal y As Long, ByVal

nWidth As Long, ByVal nHeight As Long, ByVal hSrcDC As

Long, ByVal xSrc As Long, ByVal ySrc As Long, ByVal

dwRop As Long) As Long

Private Const SRCCOPY = &HCC0020

4. Add a Form_Load procedure:

Private Sub Form_Load()

BallY = 0

BallDir = 1

BongSound = StoreSound("bong.wav")

End Sub

5. Write a Command1_Click event procedure to toggle the timer:

Private Sub Command1_Click()

Timer1.Enabled = Not (Timer1.Enabled)

End Sub

Dynamic Link Libraries and the Windows API 9-29

6. The Timer1_Timer event controls the bouncing ball position:

Private Sub Timer1_Timer()

Static BallY As Long

Dim RtnValue As Long

Picture1.Cls

BallY = BallY + BallDir * Picture1.ScaleHeight / 50

If BallY < 0 Then

BallY = 0

BallDir = 1

Call sndPlaySound(BongSound, SND_ASYNC Or SND_MEMORY)

ElseIf BallY + Picture2.ScaleHeight >

Picture1.ScaleHeight Then

BallY = Picture1.ScaleHeight - Picture2.ScaleHeight

BallDir = -1

Call sndPlaySound(BongSound, SND_ASYNC Or SND_MEMORY)

End If

RtnValue = BitBlt(Picture1.hDC, CLng(0.5 *

(Picture1.ScaleWidth - Picture2.ScaleWidth)), _

BallY, CLng(Picture2.ScaleWidth),

CLng(Picture2.ScaleHeight), Picture2.hDC, CLng(0),

CLng(0), SRCCOPY)

End Sub

7. We also need to make sure we include the StoreSound procedure from the last

example so we can hear the bong when the ball bounces.

8. Once everything is together, run it and follow the bouncing ball!

Flicker Free Animation

 You may notice in the bouncing ball example that there is a bit of flicker as it
bounces. Much smoother animation can be achieved with just a couple of
changes.

 The idea behind so-called flicker free animation is to always work with two picture
boxes for the animation (each with the same properties, but one is visible and one
is not). The non-visible picture box is our working area where everything is
positioned where it needs to be at each time point in the animation sequence.
Once everything is properly positioned, we then copy (using BitBlt) the entire non-
visible picture box into the visible picture box. The results are quite nice.

9-30 Learn Visual Basic 6.0

Quick Example 10 - Flicker Free Animation

We modify the previous example to make it flicker free.

1. Change the Index property of Picture1 to 0 (zero). This makes it a control array

which we can make a copy of. Once this copy is made. Picture1(0) will be our

visible area and Picture1(1) will be our non-visible, working area.

2. Add these statements to the Form_Load procedure to create Picture1(1):

Load Picture1(1)

Picture1(1).AutoRedraw = True

3. Make the italicized changes to the Timer1_Timer event. The ball is now drawn to

Picture1(1). Once drawn, the last statement in the procedure copies Picture1(1)

to Picture1(0).

Private Sub Timer1_Timer()

Static BallY As Long

Dim RtnValue As Long

Picture1(1).Cls

BallY = BallY + BallDir * Picture1(1).ScaleHeight / 50

If BallY < 0 Then

BallY = 0

BallDir = 1

Call sndPlaySound(BongSound, SND_ASYNC Or SND_MEMORY)

ElseIf BallY + Picture2.ScaleHeight >

Picture1(1).ScaleHeight Then

BallY = Picture1(1).ScaleHeight - Picture2.ScaleHeight

BallDir = -1

Call sndPlaySound(BongSound, SND_ASYNC Or SND_MEMORY)

End If

RtnValue = BitBlt(Picture1(1).hDC, CLng(0.5 *

(Picture1(1).ScaleWidth - Picture2.ScaleWidth)), _

BallY, CLng(Picture2.ScaleWidth),

CLng(Picture2.ScaleHeight), Picture2.hDC, CLng(0),

CLng(0), SRCCOPY)

RtnValue = BitBlt(Picture1(0).hDC, CLng(0), CLng(0),

CLng(Picture1(1).ScaleWidth),

CLng(Picture1(1).ScaleHeight), Picture1(1).hDC, CLng(0),

CLng(0), SRCCOPY)

End Sub

Dynamic Link Libraries and the Windows API 9-31

4. Run the application and you should notice the smoother ball motion.

9-32 Learn Visual Basic 6.0

Quick Example 11 - Horizontally Scrolling Background

Most action arcade games employ scrolling backgrounds. What they really use is
one long background picture that wraps around itself. We can use the BitBlt API
function to generate such a background. Here’s the idea. Say we have one long
bitmap of some background (here, an underseascape created in a paint program
and saved as a bitmap file):

At each program cycle, we copy a bitmap of the size shown to a destination location.
As X increases, the background appears to scroll. Note as X reaches the end of this
source bitmap, we need to copy a little of both ends to the destination bitmap.

1. Start a new application. Add a horizontal scroll bar, two picture boxes, and a

timer control. Your form should resemble:

HScroll1

Picture1

Timer1

Picture2

Width

Dynamic Link Libraries and the Windows API 9-33

2. For Picture1 (the destination), set the ScaleMode property to Pixel. For

Picture2, set ScaleMode to Pixel, AutoSize and AutoRedraw to True, and

Picture to Undrsea1.bmp (provided on class disk). Set Picture1 Height

property to the same as Picture2. Set Timer1 Interval property to 50. Set the

Hscroll1 Max property to 20 and LargeChange property to 2. After setting

properties, resize the form so Picture2 does not appear.

3. Copy and paste the BitBlt Declare statement from the API text viewer. Also, copy

the SRCCOPY constant:

4. Attach the following code to the Timer1_Timer event:

Private Sub Timer1_Timer()

Static x As Long

Dim AWidth As Long

Dim RC As Long

'Find next location on Picture2

x = x + HScroll1.Value

If x > Picture2.ScaleWidth Then x = 0

'When x is near right edge, we need to copy

'two segments of Picture2 into Picture1

If x > (Picture2.ScaleWidth - Picture1.ScaleWidth) Then

AWidth = Picture2.ScaleWidth - x

RC = BitBlt(Picture1.hDC, CLng(0), CLng(0), AWidth,

CLng(Picture2.ScaleHeight), Picture2.hDC, x, CLng(0),

SRCCOPY)

RC = BitBlt(Picture1.hDC, AWidth, CLng(0),

CLng(Picture1.ScaleWidth - AWidth),

CLng(Picture2.ScaleHeight), Picture2.hDC, CLng(0),

CLng(0), SRCCOPY)

Else

RC = BitBlt(Picture1.hDC, CLng(0), CLng(0),

CLng(Picture1.ScaleWidth), CLng(Picture2.ScaleHeight),

Picture2.hDC, x, CLng(0), SRCCOPY)

End If

End Sub

5. Run the application. The scroll bar is used to control the speed of the scrolling
(the amount X increases each time a timer event occurs).

9-34 Learn Visual Basic 6.0

A Bit of Multimedia

 The computer of the 90’s is the multimedia computer (graphics, sounds, video).

Windows provides a set of rich multimedia functions we can use in our Visual
Basic applications. Of course, to have access to this power, we use the API.
We’ll briefly look at using the API to play video files with the AVI (audio-visual

interlaced) extension.

 In order to play AVI files, your computer needs to have software such as Video for
Windows (from Microsoft) or QuickTime for Windows (from Apple) loaded on your
machine. When a video is played from Visual Basic, a new window is opened
with the title of the video file shown. When the video is complete, the window is
automatically closed.

 The DLL function mciExecute is used to play video files (note it will also play

WAV files). The syntax for using this function is:

Dim RtnValue as Long

.

.

RtnValue = mciExecute (Command)

where Command is a string argument consisting of the keyword ‘Play’

concatenated with the complete pathname to the desired file.

Quick Example 12 - Multimedia Sound and Video

1. Start a new application. Add a command button and a common dialog box.

Copy and paste the mciExecute Declare statement from the API Text Viewer

program into your application. It should read:

Private Declare Function mciExecute Lib "winmm.dll"

(ByVal lpstrCommand As String) As Long

2. Add this code to the Command1_Click procedure:

Private Sub Command1_Click()

Dim RtnVal As Long

'Get name of .avi file to play

CommonDialog1.Filter = "Video Files|*.avi"

CommonDialog1.ShowOpen

RtnVal = mciExecute("play " + CommonDialog1.filename)

End Sub

Dynamic Link Libraries and the Windows API 9-35

3. Run the application. Find a AVI file and see and hear the lovely results.

9-36 Learn Visual Basic 6.0

Exercise 9

The Original Video Game - Pong!

In the early 1970’s, Nolan Bushnell began the video game revolution with Atari’s Pong
game -- a very simple Ping-Pong kind of game. Try to replicate this game using
Visual Basic. In the game, a ball bounces from one end of a court to another,
bouncing off side walls. Players try to deflect the ball at each end using a controllable
paddle. Use sounds where appropriate (look at my solution for some useful DLL’s for
sound).

My solution freely borrows code and techniques from several reference sources. The
primary source is a book on game programming, by Mark Pruett, entitled “Black Art
of Visual Basic Game Programming,” published by The Waite Group in 1995. In my
simple game, the left paddle is controlled with the A and Z keys on the keyboard,
while the right paddle is controlled with the K and M keys.

My Solution:

Form:

Label1 lblScore1 cmdNew cmdPause cmdExit Label3 lblScore2

Shape1

picBlank

timGame

picPaddle

picBall

picField

Dynamic Link Libraries and the Windows API 9-37

Properties:

Form frmPong:

BackColor = &H00FFC0C0& (Light blue)
Caption = The Original Video Game - Pong!

Timer timGame:

Enabled = False
Interval = 25 (may need different values for different machines)

PictureBox picPaddle:

Appearance = Flat
AutoRedraw = True
AutoSize = True
Picture = paddle.bmp
ScaleMode = Pixel
Visible = False

CommandButton cmdPause:

Caption = &Pause

Enabled = 0 'False

CommandButton cmdExit:

Caption = E&xit

CommandButton cmdNew:

Caption = &New Game

Default = True

PictureBox picField :

BackColor = &H0080FFFF& (Light yellow)
BorderStyle = None

FontName = MS Sans Serif
FontSize = 24
ForeColor = &H000000FF& (Red)

ScaleMode = Pixel

PictureBox picBlank:

Appearance = Flat
AutoRedraw = True

BackColor = &H0080FFFF& (Light yellow)
. BorderStyle = None

FillStyle = Solid
Visible = False

9-38 Learn Visual Basic 6.0

PictureBox picBall:

Appearance = Flat
AutoRedraw = True
AutoSize = True
BorderStyle = None
Picture = ball.bmp
ScaleMode = Pixel
Visible = False

Shape Shape1:

BackColor = &H00404040& (Black)
BackStyle = Opaque

Label lblScore2:

Alignment = Center

BackColor = &H00FFFFFF& (White)
BorderStyle = Fixed Single

Caption = 0
FontName = MS Sans Serif
FontBold = True

FontSize = 18

Label Label3:

BackColor = &H00FFC0C0& (Light blue)
Caption = Player 2

FontName = MS Sans Serif
FontSize = 13.5

Label lblScore1:

Alignment = Center

BackColor = &H00FFFFFF& (White)
BorderStyle = Fixed Single

Caption = 0
FontName = MS Sans Serif
FontBold = True

FontSize = 18

Label Label1:

BackColor = &H00FFC0C0& (Light blue)
Caption = Player 1

FontName = MS Sans Serif
FontSize = 13.5

Dynamic Link Libraries and the Windows API 9-39

Code:

General Declarations:

Option Explicit

'Sound file strings

Dim wavPaddleHit As String

Dim wavWall As String

Dim wavMissed As String

'A user-defined variable to position bitmaps

Private Type tBitMap

Left As Long

Top As Long

Right As Long

Bottom As Long

Width As Long

Height As Long

End Type

'Ball information

Dim bmpBall As tBitMap

Dim XStart As Long, YStart As Long

Dim XSpeed As Long, YSpeed As Long

Dim SpeedUnit As Long

Dim XDir As Long, YDir As Long

'Paddle information

Dim bmpPaddle1 As tBitMap, bmpPaddle2 As tBitMap

Dim YStartPaddle1 As Long, YStartPaddle2 As Long

Dim XPaddle1 As Long, XPaddle2 As Long

Dim PaddleIncrement As Long

Dim Score1 As Integer, Score2 As Integer

Dim Paused As Boolean

'Number of points to win

Const WIN = 10

'Number of bounces before speed increases

Const BOUNCE = 10

Dim NumBounce As Integer

'API Functions and constants

Private Declare Function BitBlt Lib "gdi32" (ByVal hDestDC

As Long, ByVal x As Long, ByVal y As Long, ByVal nWidth As

Long, ByVal nHeight As Long, ByVal hSrcDC As Long, ByVal

xSrc As Long, ByVal ySrc As Long, ByVal dwRop As Long) As

Long

9-40 Learn Visual Basic 6.0

Const SRCCOPY = &HCC0020 ' (DWORD) dest = source

Private Declare Function sndPlaySound Lib "winmm.dll"

Alias "sndPlaySoundA" (ByVal lpszSoundName As String,

ByVal uFlags As Long) As Long

Private Declare Function sndStopSound Lib "winmm.dll"

Alias "sndPlaySoundA" (ByVal lpszNull As String, ByVal

uFlags As Long) As Long

Const SND_ASYNC = &H1

Const SND_SYNC = &H0

Const SND_MEMORY = &H4

Const SND_LOOP = &H8

Const SND_NOSTOP = &H10

' Windows API rectangle function

Private Declare Function IntersectRect Lib "user32"

(lpDestRect As tBitMap, lpSrc1Rect As tBitMap, lpSrc2Rect

As tBitMap) As Long

NoiseGet General Function:

Function NoiseGet(ByVal FileName) As String

'---

' Load a sound file into a string variable.

' Taken from:

' Mark Pruett

' Black Art of Visual Basic Game Programming

' The Waite Group, 1995

'---

Dim buffer As String

Dim f As Integer

Dim SoundBuffer As String

On Error GoTo NoiseGet_Error

buffer = Space$(1024)

SoundBuffer = ""

f = FreeFile

Open FileName For Binary As f

Do While Not EOF(f)

Get #f, , buffer ' Load in 1K chunks

SoundBuffer = SoundBuffer & buffer

Loop

Close f

Dynamic Link Libraries and the Windows API 9-41

NoiseGet = Trim$(SoundBuffer)

Exit Function

NoiseGet_Error:

SoundBuffer = ""

Exit Function

End Function

9-42 Learn Visual Basic 6.0

NoisePlay General Procedure:

Sub NoisePlay(SoundBuffer As String, ByVal PlayMode As

Integer)

'---

' Plays a sound previously loaded into memory with

function

' NoiseGet().

' Taken from:

' Mark Pruett

' Black Art of Visual Basic Game Programming

' The Waite Group, 1995

'---

Dim retcode As Integer

If SoundBuffer = "" Then Exit Sub

' Stop any sound that may currently be playing.

retcode = sndStopSound(0, SND_ASYNC)

' PlayMode should be SND_SYNC or SND_ASYNC
retcode = sndPlaySound(ByVal SoundBuffer, PlayMode Or

SND_MEMORY)

End Sub

Bitmap_Move General Procedure:

Private Sub Bitmap_Move(ABitMap As tBitMap, ByVal NewLeft

As Integer, ByVal NewTop As Integer, SourcePicture As

PictureBox)

' Move bitmap from one location to the next

' Modified from:

' Mark Pruett

' Black Art of Visual Basic Game Programming

' The Waite Group, 1995

Dim RtnValue As Integer

'First erase at old location

RtnValue = BitBlt(picField.hDC, ABitMap.Left, ABitMap.Top,

ABitMap.Width, ABitMap.Height, picBlank.hDC, 0, 0,

SRCCOPY)

'Then, establish and redraw at new location

ABitMap.Left = NewLeft

ABitMap.Top = NewTop

Dynamic Link Libraries and the Windows API 9-43

RtnValue = BitBlt(picField.hDC, ABitMap.Left, ABitMap.Top,

ABitMap.Width, ABitMap.Height, SourcePicture.hDC, 0, 0,

SRCCOPY)

End Sub

9-44 Learn Visual Basic 6.0

ResetPaddles General Procedure:

Private Sub ResetPaddles()

'Reposition paddles

bmpPaddle1.Top = YStartPaddle1

bmpPaddle2.Top = YStartPaddle2

Call Bitmap_Move(bmpPaddle1, bmpPaddle1.Left,

bmpPaddle1.Top, picPaddle)

Call Bitmap_Move(bmpPaddle2, bmpPaddle2.Left,

bmpPaddle2.Top, picPaddle)

End Sub

Update_Score General Procedure:

Private Sub Update_Score(Player As Integer)

Dim Winner As Integer, RtnValue As Integer

Winner = 0

'Update scores and see if game over

timGame.Enabled = False

Call NoisePlay(wavMissed, SND_SYNC)

Select Case Player

Case 1

Score2 = Score2 + 1

lblScore2.Caption = Format(Score2, "#0")

lblScore2.Refresh

If Score2 = WIN Then Winner = 2

Case 2

Score1 = Score1 + 1

lblScore1.Caption = Format(Score1, "#0")

lblScore1.Refresh

If Score1 = WIN Then Winner = 1

End Select

If Winner = 0 Then

Call ResetBall

timGame.Enabled = True

Else

cmdNew.Enabled = False

cmdPause.Enabled = False

cmdExit.Enabled = False

RtnValue = sndPlaySound(App.Path + "\cheering.wav",

SND_SYNC)

picField.CurrentX = 0.5 * (picField.ScaleWidth -

picField.TextWidth("Game Over"))

Dynamic Link Libraries and the Windows API 9-45

picField.CurrentY = 0.5 * picField.ScaleHeight -

picField.TextHeight("Game Over")

picField.Print "Game Over"

cmdNew.Enabled = True

cmdExit.Enabled = True

End If

End Sub

9-46 Learn Visual Basic 6.0

ResetBall General Procedure:

Sub ResetBall()

'Set random directions

XDir = 2 * Int(2 * Rnd) - 1

YDir = 2 * Int(2 * Rnd) - 1

bmpBall.Left = XStart

bmpBall.Top = YStart

End Sub

cmdExit_Click Event:

Private Sub cmdExit_Click()

'End game

End

End Sub

cmdNew Click Event:

Private Sub cmdNew_Click()

'New game code

'Reset scores

lblScore1.Caption = "0"

lblScore2.Caption = "0"

Score1 = 0

Score2 = 0

'Reset ball

SpeedUnit = 1

XSpeed = 5 * SpeedUnit

YSpeed = XSpeed

Call ResetBall

'Reset paddles

picField.Cls

PaddleIncrement = 5

NumBounce = 0

Call ResetPaddles

cmdPause.Enabled = True

timGame.Enabled = True

picField.SetFocus

End Sub

Dynamic Link Libraries and the Windows API 9-47

Collided General Function:

Private Function Collided(A As tBitMap, B As tBitMap) As

Integer

'--

' Check if the two rectangles (bitmaps) intersect,

' using the IntersectRect API call.

' Taken from:

' Mark Pruett

' Black Art of Visual Basic Game Programming

' The Waite Group, 1995

'--

' Although we won't use it, we need a result

' rectangle to pass to the API routine.

Dim ResultRect As tBitMap

' Calculate the right and bottoms of rectangles needed

by the API call.

A.Right = A.Left + A.Width - 1

A.Bottom = A.Top + A.Height - 1

B.Right = B.Left + B.Width - 1

B.Bottom = B.Top + B.Height - 1

' IntersectRect will only return 0 (false) if the

' two rectangles do NOT intersect.

Collided = IntersectRect(ResultRect, A, B)

End Function

cmdPause Click Event:

Private Sub cmdPause_Click()

If Not (Paused) Then

timGame.Enabled = False

cmdNew.Enabled = False

Paused = True

cmdPause.Caption = "&UnPause"

Else

timGame.Enabled = True

cmdNew.Enabled = True

Paused = False

cmdPause.Caption = "&Pause"

9-48 Learn Visual Basic 6.0

End If

picField.SetFocus

End Sub

Dynamic Link Libraries and the Windows API 9-49

Form Load Event:

Private Sub Form_Load()

Randomize Timer

'Place from at middle of screen

frmPong.Left = 0.5 * (Screen.Width - frmPong.Width)

frmPong.Top = 0.5 * (Screen.Height - frmPong.Height)

'Load sound files into strings from fast access

wavPaddleHit = NoiseGet(App.Path + "\paddle.wav")

wavMissed = NoiseGet(App.Path + "\missed.wav")

wavWall = NoiseGet(App.Path + "\wallhit.wav")

'Initialize ball and paddle locations

XStart = 0.5 * (picField.ScaleWidth - picBall.ScaleWidth)

YStart = 0.5 * (picField.ScaleHeight -

picBall.ScaleHeight)

XPaddle1 = 5

XPaddle2 = picField.ScaleWidth - picPaddle.ScaleWidth - 5

YStartPaddle1 = 0.5 * (picField.ScaleHeight -

picPaddle.ScaleHeight)

YStartPaddle2 = YStartPaddle1

'Get ball dimensions

bmpBall.Left = XStart

bmpBall.Top = YStart

bmpBall.Width = picBall.ScaleWidth

bmpBall.Height = picBall.ScaleHeight

'Get paddle dimensions

bmpPaddle1.Left = XPaddle1

bmpPaddle1.Top = YStartPaddle1

bmpPaddle1.Width = picPaddle.ScaleWidth

bmpPaddle1.Height = picPaddle.ScaleHeight

bmpPaddle2.Left = XPaddle2

bmpPaddle2.Top = YStartPaddle2

bmpPaddle2.Width = picPaddle.ScaleWidth

bmpPaddle2.Height = picPaddle.ScaleHeight

'Get ready to play

Paused = False

frmPong.Show

Call ResetPaddles

End Sub

9-50 Learn Visual Basic 6.0

picField KeyDown Event:

Private Sub picField_KeyDown(KeyCode As Integer, Shift As

Integer)

Select Case KeyCode

'Player 1 Motion

Case vbKeyA

If (bmpPaddle1.Top - PaddleIncrement) > 0 Then

Call Bitmap_Move(bmpPaddle1, bmpPaddle1.Left,

bmpPaddle1.Top - PaddleIncrement, picPaddle)

End If

Case vbKeyZ

If (bmpPaddle1.Top + bmpPaddle1.Height +

PaddleIncrement) < picField.ScaleHeight Then

Call Bitmap_Move(bmpPaddle1, bmpPaddle1.Left,

bmpPaddle1.Top + PaddleIncrement, picPaddle)

End If

'Player 2 Motion

Case vbKeyK

If (bmpPaddle2.Top - PaddleIncrement) > 0 Then

Call Bitmap_Move(bmpPaddle2, bmpPaddle2.Left,

bmpPaddle2.Top - PaddleIncrement, picPaddle)

End If

Case vbKeyM

If (bmpPaddle2.Top + bmpPaddle2.Height +

PaddleIncrement) < picField.ScaleHeight Then

Call Bitmap_Move(bmpPaddle2, bmpPaddle2.Left,

bmpPaddle2.Top + PaddleIncrement, picPaddle)

End If

End Select

End Sub

timGame Timer Event:

Private Sub timGame_Timer()

'Main routine

Dim XInc As Integer, YInc As Integer

Dim Collision1 As Integer, Collision2 As Integer,

Collision As Integer

Static Previous As Integer

'If paused, do nothing

If Paused Then Exit Sub

'Determine ball motion increments

Dynamic Link Libraries and the Windows API 9-51

XInc = XDir * XSpeed

YInc = YDir * YSpeed

'Ball hits top wall

If (bmpBall.Top + YInc) < 0 Then

YDir = -YDir

YInc = YDir * YSpeed

Call NoisePlay(wavWall, SND_ASYNC)

End If

'Ball hits bottom wall

If (bmpBall.Top + bmpBall.Height + YInc) >

picField.ScaleHeight Then

YDir = -YDir

YInc = YDir * YSpeed

Call NoisePlay(wavWall, SND_ASYNC)

End If

'Ball goes past left wall - Player 2 scores

If (bmpBall.Left) > picField.ScaleWidth Then

Call Update_Score(2)

End If

'Ball goes past right wall - Player 1 scores

If (bmpBall.Left + bmpBall.Width) < 0 Then

Call Update_Score(1)

End If

'Check if either paddle and ball collided

Collision1 = Collided(bmpBall, bmpPaddle1)

Collision2 = Collided(bmpBall, bmpPaddle2)

'Move ball

Call Bitmap_Move(bmpBall, bmpBall.Left + XInc, bmpBall.Top

+ YInc, picBall)

'If paddle hit, redraw paddle

If Collision1 Then

Call Bitmap_Move(bmpPaddle1, bmpPaddle1.Left,

bmpPaddle1.Top, picPaddle)

Collision = Collision1

ElseIf Collision2 Then

Call Bitmap_Move(bmpPaddle2, bmpPaddle2.Left,

bmpPaddle2.Top, picPaddle)

Collision = Collision2

End If

'If we hit a paddle, change ball direction

If Collision And (Not Previous) Then

NumBounce = NumBounce + 1

If NumBounce = BOUNCE Then

9-52 Learn Visual Basic 6.0

NumBounce = 0

XSpeed = XSpeed + SpeedUnit

YSpeed = YSpeed + SpeedUnit

End If

XDir = -XDir

Call NoisePlay(wavPaddleHit, SND_ASYNC)

End If

Previous = Collision

End Sub

10-1

10. Other Visual Basic Topics

Review and Preview

 In this last class, we look at a lot of relatively unrelated topics - a Visual Basic
playground. We’ll cover lots of things, each with enough detail to allow you, as a
now-experienced Visual Basic programmer, to learn more about the topics that
interest you.

Custom Controls

 A custom control is an extension to the standard Visual Basic toolbox. You use

custom controls just as you would any other control. In fact, you’ve used (or at
least seen) custom controls before. The common dialog box, the DBList box,

the DBCombo box, and the DBGrid tool, are all examples of custom controls.

Custom controls can be used to add some really cool features to your

applications.

 Custom controls are also referred to as ActiveX controls. ActiveX is a technology

newly introduced by Microsoft to describe what used to be known as OLE

Automation. Prior to Visual Basic 5.0, the only way to create your own controls

was to use C or C++. Now, with ActiveX technology, you can create your own

controls knowing only Visual Basic! Of course, this would be a course by itself

(and is).

 To use a custom control, you must load it into the toolbox. To do this, choose
Components from the Visual Basic Project menu. The Components (custom

controls) dialog box is displayed.

Learn Visual Basic 6.0

Other Visual Basic Topics 10-11

 To add a control, select the check box next to the desired selection. When done,
choose OK and the selected controls will now appear in the toolbox.

 Each custom control has its own set of properties, events, and methods. The

best reference for each control is the Microsoft Visual Basic Component Tools
Guide manual that comes with Visual Basic 6.0. And, each tool also features on-
line help.

 Here, we’ll look at several custom controls and brief examples of their usage. And,
we’ll give some of the more important and unique properties, events, and
methods for each. The main purpose here is to expose you to a few of these
controls. You are encouraged to delve into the toolbox and look at all the tools
and find ones you can use in your applications.

10-2 Learn Visual Basic 6.0

Masked Edit Control

 The masked edit control is used to prompt users for data input using a mask

pattern. The mask allows you to specify exactly the desired input format. With a
mask, the control acts like a standard text box. This control is loaded by selecting
the Microsoft Masked Edit Control from the Components dialog box.

 Possible uses for this control include:

 To prompt for a date, a time, number, or currency value.

 To prompt for something that follows a pattern, like a phone
number or social security number.

 To format the display and printing of mask input data.

 Masked Edit Properties:

Mask Determines the type of information that is input

into the control. It uses characters to define the
type of input (see on-line help for complete
descriptions).

Text Contains data entered into the control (including

all prompt characters of the input mask).

 Masked Edit Events:

Change Event called when the data in the control changes.

Validation Error Event called when the data being entered by the

user does not match the input mask.

10-4 Learn Visual Basic 6.0

 Masked Edit Example:

We’ll use the masked edit control to obtain a phone number. Place a masked
edit control on a form. Set the masked edit controls Mask property equal to:

(###)-### -####

Set the Font Size property to 12. My form now looks like this:

Run the example and notice how simple it is to fill in the phone number. Break the
application and examine the Text property of the control in the Immediate Window.

Chart Control

 The chart control is an amazing tool. In fact, it’s like a complete program in

itself. It allows you to design all types of graphs interactively on your form. Then,

at run-time, draw graphs, print them, copy them, and change their styles. The
control is loaded by selecting Microsoft Chart Control from the Components

dialog box.

 Possible uses for this control include:

 To display data in one of many 2D or 3D charts.

 To load data into a grid from an array.

 Chart Control Properties:

ChartType Establishes the type of chart to display.

RandomFill Used to fill chart with random values (good for

chcking out chart at design-time). Data is
normally loaded from a data grid object
associated with the chart control (consult on-line
help).

Other Visual Basic Topics 10-5

Obviously, there are many more properties used with the chart control. We
only look at these two to illustrate what can be done with this powerful
control.

 Chart Control Examples:

Start a new application. Add a chart control to the form. A default bar graph will

appear:

Change the ChartType property to a 3 and obtain a line chart:

10-6 Learn Visual Basic 6.0

or obtain a fancy 3D chart by using a ChartType of 8:

These few quick examples should give you an appreciation for the power and

ease of use of the chart control.

Multimedia Control

 The multimedia control allows you to manage Media Control Interface (MCI)

devices. These devices include: sound boards, MIDI sequencers, CD-ROM

drives, audio players, videodisc players, and videotape recorders and players.
This control is loaded by selecting the Microsoft Multimedia Control from the

Components dialog box.

 The primary use for this control is:

 To manage the recording and playback of MCI devices. This
includes the ability to play CD’s, record WAV files, and playback
WAV files.

 When placed on a form, the multimedia control resembles the buttons you typically
see on a VCR:

You should recognize buttons such as Play, Rewind, Pause, etc.

Other Visual Basic Topics 10-7

 Programming the Multimedia Control:

The multimedia control uses a set of high-level, device-independent commands,
known as MCI (media control interface) commands, to contr ol various multimedia

devices. Our example will show you what these commands look like. You are
encouraged to further investigate the control (via on-line help) for further functions.

 Multimedia Control Example:

We’ll use the multimedia control to build a simple audio CD player. Put a
multimedia control on a form. Place the following code in the Form_Load Event:

Private Sub Form_Load()

'Set initial properties

Form1.MMControl1.Notify = False

Form1.MMControl1.Wait = True

Form1.MMControl1.Shareable = False

Form1.MMControl1.DeviceType = "CDAudio"

'Open the device

Form1.MMControl1.Command = "Open"

End Sub

This code initializes the device at run time. If an audio CD is loaded into the CD

drive, the appropriate buttons on the Multimedia control are enabled:

This button enabling is an automatic process - no coding is necessary. Try
playing a CD with this example and see how the button status changes.

10-8 Learn Visual Basic 6.0

Rich Textbox Control

 The rich textbox control allows the user to enter and edit text, providing more
advanced formatting features than the conventional textbox control. You can use

different fonts for different text sections. You can even control indents, hanging
indents, and bulleted paragraphs. This control is loaded by selecting the
Microsoft Rich Textbox Control from the Components dialog box.

 Possible uses for this control include:

 Read and view large text files.

 Implement a full-featured text editor into any applications.

 Rich Textbox Properties, Events, and Methods:

Most of the properties, events, and methods associated with the conventional
textbox are available with the rich text box. A major difference between the two
controls is that with the rich textbox, multiple font sizes, styles, and colors are
supported. Some unique properties of the rich textbox are:

FileName Can be used to load the contents of a .txt or .rtf file

into the control.
SelFontName Set the font name for the selected text.
SelFontSize Set the font size for the selected text.

SelFontColor Set the font color for the selected text.

Some unique methods of the rich textbox are:

LoadFile Open a file and load the contents into the control.

SaveFile Save the control contents into a file.

 Rich Textbox Example:

Put a rich textbox control on a form. Put a combo box on the form (we will use this

to display the fonts available for use). Use the following code in the Form_Load

event:

Private Sub Form_Load()

Dim I As Integer

For I = 0 To Screen.FontCount - 1

Combo1.AddItem Screen.Fonts(I)

Next I

Other Visual Basic Topics 10-9

End Sub

10-10 Learn Visual Basic 6.0

Use the following code in the Combo1_Click event:

Private Sub Combo1_Click()

RichTextBox1.SelFontName = Combo1.Text

End Sub

Run the application. Type some text. Highlight text you want to change the font
on. Go to the combo box and select the font. Notice that different areas within the
text box can have different fonts:

Slider Control

 The slider control is similar to a scroll bar yet allows the ability to select a range

of values, as well as a single value. This control is part of a group of controls

loaded by selecting the Microsoft Windows Common Controls from the

Components dialog box.

 Possible uses for this control include:

 To set the value of a point on a graph.
 To select a range of numbers to be passed into an array.

 To resize a form, field, or other graphics object.

Other Visual Basic Topics 10-

11

 Slider Control Properties:

Value Current slider value.

Min, Max Establish upper and lower slider limits.

TickFrequency Determines how many ticks appear on slider.

TickStyle Determines how and where ticks appear.

SmallChange Amount slider value changes when user presses

left or right arrow keys.

LargeChange Amount slider value changes when user clicks the

slider or presses PgUp or PgDn arrow keys.

SelectRange Enable selecting a range of values.

SelStart Starting selected value.

SelLength Length of select range of values.

 Slider Control Example:

We’ll build a slider that lets us select a range of number somewhere between the
extreme values of 0 to 100. Put two label boxes and a slider on a form:

Set the slider control SmallChange to 1, LargeChange to 10, Min to 0, Max to

100 , TickFrequency to 10, and SelectRange to True. Use the following in the

Slider1_MouseDown event:

Private Sub Slider1_MouseDown(Button As Integer, Shift

As Integer, x As Single, y As Single)

If Shift = 1 Then

Slider1.SelStart = Slider1.Value

Label1.Caption = Slider1.Value

Slider1.SelLength = 0

Label2.Caption = ""

End If

End Sub

10-12 Learn Visual Basic 6.0

and this code in the Slider1_MouseUp event:

Private Sub Slider1_MouseUp(Button As Integer, Shift As

Integer, x As Single, y As Single)

On Error Resume Next

If Shift = 1 Then

Slider1.SelLength = Slider1.Value - Slider1.SelStart

Label2.Caption = Slider1.Value

Else

Slider1.SelLength = 0

End If

End Sub

Run the application. Establish a starting value for the selected range by moving
the slider to a desired point. Then, click the slider thumb while holding down the
Shift key and move it to the desired upper value.

Other Visual Basic Topics 10-

13

Tabbed Dialog Control

 The tabbed dialog control provides an easy way to present several dialogs or

screens of information on a single form using the same interface seen in many
commercial Windows applications. This control is loaded by selecting the
Sheridan Tabbed Dialog Control from the Components dialog box.

 The tabbed dialog control provides a group of tabs, each of which acts as a
container (works just like a frame or separate form) for other controls. Only one
tab can be active at a time. Using this control is easy. Just build each tab
container as separate applications: add controls, set properties, and write code
like you do for any application. Navigation from one container to the next is
simple: just click on the corresponding tab.

 Tabbed Dialog Control Example:

Start an application and put a tabbed dialog control on the form:

Design each tab with some controls, then run the application. Note how each tab
in the folder has its own working space.

10-14 Learn Visual Basic 6.0

UpDown Control

 The updown control is a pair of arrow buttons that the user can click to

increment or decrement a value. It works with a buddy control which uses the

updown control’s value property. This control is part of a group of controls loaded
by selecting the Microsoft Windows Common Controls from the Components

dialog box.

 UpDown Control Properties:

Value Current control value.

Min, Max Establish upper and lower control limits.

Increment Amount control value changes each time an arrow

is clicked.
Orientation Determines whether arrows lie horizontally or

vertically.

 UpDown Control Events:

Change Invoked when value property changes.

UpClick Invoked when up arrow is clicked.

DownClick Invoked when down arrow is clicked.

 UpDown Control Example:

We’ll build an example that lets us establish a number between 1 and 25. Add a
updown control and a label box to a form. Set the updown control’s Min property
to 1 and Max property to 25. The form should resemble:

Use this simple code in the UpDown1_Change event, then give it a try:

Private Sub UpDown1_Change()

Label1.Caption = UpDown1.Value

End Sub

Other Visual Basic Topics 10-

15

Toolbar Control

 Almost all Windows applications these days use toolbars. A toolbar provides
quick access to the most frequently used menu commands in an application. The
toolbar control is a mini-application in itself. It provides everything you need to

design and implement a toolbar into your application. This control is part of a
group of controls loaded by selecting the Microsoft Windows Common
Controls from the Components dialog box.

 Possible uses for this control include:

 Provide a consistent interface between applications with matching
toolbars.

 Place commonly used functions in an easily-accessed space.

 Provide an intuitive, graphical interface for your application.

 To create a basic toolbar, you need to follow a sequence of steps. You
add buttons to a Button collection - each button can have optional text

and/or an image, supplied by an associated ImageList control (another

custom control). Buttons can have tooltips. In more advanced

applications, you can even allow your user to customize the toolbar to

their liking!

 After setting up the toolbar, you need to write code for the ButtonClick

event. The index of the clicked button is passed as an argument to this
event. Since toolbar buttons provide quick access to already coded menu

options, the code in this event is usually just a call to the respective menu
item’s Click procedure.

 Toolbar Control Example

We’ll look at the simplest use of the toolbar control - building a fixed
format toolbar (pictures only) at design time. We’ll create a toolbar with
five buttons: one to create a new file, one to open a file, one to save a
file, one to print a file, and one for help. Place a toolbar and imagelist

control on a form. Right click on the imagelist control to set the pictures to
be used. Using the Images tab, assign the following five images: Image

1 - NEW.BMP, Image 2 - OPEN.BMP, Image 3 - SAVE.BMP, Image 4 -
PRINT.BMP, and Image 5 - HELP.BMP

10-16 Learn Visual Basic 6.0

When done, the image control should look like this:

Click OK to close this box. Now, right mouse click on the toolbar control.

The Property Pages dialog box will appear. Using the General tab,

select the imagelist control just formed. Now, choose the Buttons tab to

define each button:

Other Visual Basic Topics 10-

17

A new button is added to the toolbar by clicking Insert Button. At a

minimum, for each button, specify the ToolTipText property, and the

Image number. Values I used are:

Index ToolTipText Image

1 New File 1
2 Open File 2
3 Save File 3
4 Print File 4
5 -None- 0
6 Help me! 5

Note button 5 is a placeholder (set Style property to tbrPlaceholder) that puts

some space between the first four buttons and the Help button. When done, my

form looked like this:

Save and run the application. Note the button’s just click - we didn’t write any
code (as mentioned earlier, the code is usually just a call to an existing menu
item’s click event). Check out how the tool tips work.

 Quick Note on Tooltips:

Many of the Visual Basic controls support tooltips to inform the user of what a

particular control. Simply set individual control’s ToolTipText property to a non-

blank text string to enable this capability.

10-18 Learn Visual Basic 6.0

Using the Windows Clipboard

 The Clipboard object has no properties or events, but it has several methods that
allow you to transfer data to and from the Windows clipboard. Some methods
transfer text, some transfer graphics.

 A method that works with both text and graphics is the Clear method:

Clipboard.Clear Clear the clipboard contents.

 To move text information to and from the clipboard, use the SetText and GetText

methods:

Clipboard.SetText Places text in clipboard.

Clipboard.GetText Returns text stored in clipboard.

These methods are most often used to implement cutting, copying, and pasting
operations.

 To move graphics to and from the clipboard, use the SetData and GetData

methods:

Clipboard.SetData Places a picture in clipboard.

Clipboard.GetData Returns a picture stored in clipboard.

 When using the clipboard methods, you need to know what type of data you are
transferring (text or graphics). The GetFormat method allows that:

Clipboard.GetFormat(datatype) Returns True if the clipboard contents are

of the type specified by datatype.

Possible datatypes are:

Type
DDE conversation info

Value
HBF00

Symbolic Constant
vbCFLink

Rich text format HBF01 vbCFRTF
Text 1 vbCFText
Bitmap 2 vbCFBitmap
Metafile 3 vbCFMetafile
Device-independent bitmap 8 vbCFDIB
Color palette 9 vbCFPalette

Other Visual Basic Topics 10-

19

Printing with Visual Basic

 Any serious Visual Basic application will need to use the printer to provide the
user with a hard copy of any work done or results (text or graphics) obtained.
Printing is one of the more complex programming tasks within Visual Basic.

 Visual Basic uses two primary approaches to printing text and graphics:

 You can produce the output you want on a form and then print the entire
form using the PrintForm method.

 You can send text and graphics to the Printer object and then print

them using the NewPage and EndDoc methods.

We’ll look at how to use each approach, examining advantages and
disadvantages of both. All of these techniques use the system default printer.
You can also select a printer in Visual Basic, but we won’t look at that here.

 The PrintForm method sends a pixel-by-pixel image of the specified form to the
printer. To print, you first display the form as desired and via code invoke the
command: PrintForm. This command will print the entire form, using its selected

dimensions, even if part of the form is not visible on the screen. If a form contains
graphics, they will be printed only if the form’s AutoRedraw property is True.

 The PrintForm method is by far the easiest way to print from an application. But,
graphics results may be disappointing because they are reproduced in the
resolution of the screen, not the printer. And small forms are still small when
printed.

 PrintForm Example:

Start a new application. Put an image box on the form. Size it and set the
Stretch property to True. Set the Picture property to some picture (metafiles are

best, you choose). Add a label box. Put some formatted text in the box. My form
looks like this:

10-20 Learn Visual Basic 6.0

Add this code to the Form_Click event:

Private Sub Form_Click()

PrintForm

End Sub

Run the application. Click on the form (not the image or label) and things should
print. Not too hard, huh?

 Using the Printer object to print in Visual Basic is more complicated, but usually

provides superior results. But, to get these better results requires a bit (and, at

times, more than a bit) of coding .

 The Printer object is a drawing space that supports many methods, like Print,

PSet, CurrentX, CurrentY, Line, PaintPicture (used to print contents of Picture

boxes), and Circle, to create text and graphics. You use these methods just like

you would on a form. When you finish placing information on the Printer object,

use the EndDoc method to send the output to the printer. The NewPage method

allows printing multi-page documents.

 The Printer object also has several properties that control print quality, page size,
number of copies, scaling, page numbers, and more. Consult Visual Basic on-
line help for further information.

 The usual approach to using the Printer object is to consider each printed page to
be a form with its own coordinate system. Use this coordinate system and the
above listed methods to place text and graphics on the page. When complete,
use the EndDoc method (or NewPage method if there are more pages). At that

point, the page will print. The main difficulty in using the Printer object is planning
where everything goes. I usually use the Scale method to define an 8.5” by 11”

sheet of standard paper in 0.01” increments:

Printer.Scale (0, 0) - (850, 1100)

I then place everything on the page relative to these coordinates. The example

illustrates the use of a few of these techniques. Consult other Visual Basic
documentation for advanced printing techniques.

Other Visual Basic Topics 10-

21

 Printer Object Example:

In this example, we’ll first define a standard sheet of paper. Then, we’ll use the
Line method to draw a box, the Circle method to draw a circle, and the Print

method to ‘draw’ some text. Start a new application. We don’t need any controls
on the form - all the printing is done in the Form_Click procedure.

Private Sub Form_Click()

Printer.Scale (0, 0)-(850, 1100)

Printer.Line (100, 100)-(400, 300), , B

Printer.Circle (425, 550), 300

Printer.CurrentX = 100

Printer.CurrentY= 800

Printer.Print "This is some text."

Printer.EndDoc

End Sub

A few words on each line in this code.
First, we establish the printing area to
be 850 units wide by 1100 units long.
This allows us to place items on a
standard page within 0.01 inches.
Next, we draw a box, starting 1 inch
from the left and 1 inch from the top,
that is 3 inches wide and 2 inches
high. Then, a circle, centered at mid-
page, with radius of 3 inches is
drawn. Finally, a line of text is printed
near the bottom of the page. The
EndDoc method does the printing for

us. The printed page is shown to the
right.

Run the application. Click the form to start the printing. Relate the code to the

finished drawing.

 The best way to learn how to print in Visual Basic is to do lots of it. You’ll develop
your own approaches and techniques as you gain familiarity. Use FormPrint for

simple jobs. For detailed, custom printing, you’ll need to use the Printer object.

10-22 Learn Visual Basic 6.0

Multiple Form Visual Basic Applications

 All applications developed in this class use a single form. In reality, most Visual
Basic applications use multiple forms. The About window associated with

most applications is a common example of using a second form in an application.
We need to learn how to manage multiple forms in our projects.

 To add a form to an application, click the New Form button on the toolbar or
select Form under the Insert menu. Each form is designed using exactly the

same procedure we always use: draw the controls, assign properties, and write
code. Display of the different forms is handled by code you write. You need to
decide when and how you want particular forms to be displayed. The user always
interacts with the ‘active’ form.

 The first decision you need to make is to determine which form will be your
startup form. This is the form that appears when your application first begins.

The startup form is designated using the Project Properties window, activated

using the Visual Basic Project menu:

Other Visual Basic Topics 10-

23

 As mentioned, the startup form automatically loads when your application is run.
When you want another form to appear, you write code to load and display it.
Similarly, when you want a form to disappear, you write code to unload or hide it.
This form management is performed using various keywords:

Keyword Task

Load Loads a form into memory, but does not display it.

Show vbModeless Loads (if not already loaded) and displays a modeless
form (default Show form style).

Show vbModal Loads (if not already loaded) and displays a modal

form.
Hide Sets the form’s Visible property to False. Form

remains in memory.

Unload Hides a form and removes it from memory.

A modeless form can be left to go to other forms. A modal form must be closed

before going to other forms. The startup form is modeless.

Examples

Load Form1 ‘ Loads Form1 into memory, but does not display it
Form1.Show ‘ Loads (if needed) and shows Form1 as modeless
Form1.Show vbModal ‘ Loads (if needed) and shows Form1 as modal.
Form1.Hide ‘ Sets Form1’s Visible property to False
Hide ‘ Hides the current form

Unload Form1 ‘ Unloads Form1 from memory and hides it.

 Hiding a form allows it to be recalled quickly, if needed. Hiding a form retains any
data attached to it, including property values, print output, and dynamically created
controls. You can still refer to properties of a hidden form. Unload a form if it is
not needed any longer, or if memory space is limited.

 If you want to speed up display of forms and memory is not a problem, it is a good
idea to Load all forms when your application first starts. That way, they are in

memory and available for fast recall.

10-24 Learn Visual Basic 6.0

 Multiple Form Example:

Start a new application. Put two command buttons on the form (Form1). Set

one’s Caption to Display Form2 and the other’s Caption to Display Form3.

The form will look like this:

Attach this code to the two command buttons Click events.

Private Sub Command1_Click()

Form2.Show vbModeless

End Sub

Private Sub Command2_Click()

Form3.Show vbModal

End Sub

Add a second form to the application (Form2). This form will be modeless.

Place a command button on the form. Set its Caption to Hide Form.

Atta ch this code to the button’s Click event.

Private Sub Command1_Click()

Form2.Hide

Form1.Show

End Sub

Other Visual Basic Topics 10-

25

Add a third form to the application (Form3). This form will be modal. Place a

command button on the form. Set its Caption to Hide Form.

Attach this code to the button’s Click event.

Private Sub Command1_Click()

Form3.Hide

Form1.Show

End Sub

Make sure Form1 is the startup form (check the Project Properties window

under the Project menu). Run the application. Note the difference between

modal (Form3) and modeless (Form2) forms.

10-26 Learn Visual Basic 6.0

Visual Basic Multiple Document Interface (MDI)

 In the previous section, we looked at using multiple forms in a Visual Basic
application. Visual Basic actually provides a system for maintaining multiple-form
applications, known as the Multiple Document Interface (MDI). MDI allows you

to maintain multiple forms within a single container form. Examples of MDI
applications are Word, Excel, and the Windows Explorer program.

 An MDI application allows the user to display many forms at the same time. The
container window is called the parent form, while the individual forms within the

parent are the child forms. Both parent and child forms are modeless, meaning

you can leave one window to move to another. An application can have only one

parent form. Creating an MDI application is a two-step process. You first create
the MDI form (choose Add MDI Form from Project menu) and define its menu

structure. Next, you design each of the application’s child forms (set MDIChild

property to True).

 Design-Time Features of MDI Child Forms:

At design time, child forms are not restricted to the area inside the parent form.

You can add controls, set properties, write code, and design the features of child

forms anywhere on the desktop.

You can determine whether a form is a child by examining its MDIChild property,

or by examining the project window. The project window uses special icons to
distinguish standard forms, MDI child forms, and MDI parent forms:

Standard form

Child form

Parent form

 Run-Time Features of MDI Child Forms:

At run-time, the parent and child forms take on special characteristics and

abilities. Some of these are:

1. At run-time all child forms are displayed within the parent form’s internal
area. The user can move and size child forms like any other form, but
they must stay in this internal area.

Other Visual Basic Topics 10-

27

2. When a child is minimized, its icon appears on the MDI parent form
instead of the user’s desktop. When the parent form is minimized, the
entire application is represented by a single icon. When restored, all
forms are redisplayed as they were.

3. When a child form is maximized, its caption is combined with the

parent form’s caption and displayed in the parent title bar.

4. By setting the AutoShowChildren property, you can display child

forms automatically when forms are loaded (True), or load child forms

as hidden (False).

5. The active child form’s menus (if any) are displayed on the parent

form’s menu bar, not the child form.

6. New child forms can be created at run-time using a special fo rm of the

Dim statement and the Show statement (the example illustrates this

process).

7. The parent form’s ActiveForm property indicates which child form is

currently active. The ActiveControl property indicates which control on

the active child form has focus.

8. The Arrange command can be used to determine how the child forms

and their icons (if closed) are displayed. The syntax is:

Arrange style

where style can take on these values:

Style Symbolic Constant Effect

0 vbCascade Cascade all nonminimized MDI
child forms.

1 vbTileHorizontal Horizontally tile all nonminimized

2

vbTileVertical
MDI child forms.
Vertically tile all nonminimized MDI

3

vbArrangeIcons

child forms.
Arrange icons for minimized MDI

 child forms.

10-28 Learn Visual Basic 6.0

 Multiple-Document Application (MDI) Example:

We’ll create an MDI application which uses a simple, text box-based, editor as the
child application. There are a lot of steps, even for a simple example. Start a new
application. Create a parent form by selecting MDI Form from the Insert menu.

At this point, the project will contain an MDI parent form (MDIForm1) and a

standard form (Form1) which we will use as a child form. Make MDIForm1 the

startup form. We work with the parent form first:

1. Set the following properties:

Caption MDI Example

Name frmParent
WindowState 2-Maximized

2. Set up the following menu structure:

Caption Name Indented
&File mnuFile No
&New mnuFileNew Yes
&Arrange mnuArrange No
&Cascade mnuArrangeItem Yes Index = 0
&Horizontal Tile mnuArrangeItem Yes Index = 1
&Vertical Tile mnuArrangeItem Yes Index = 2
&Arrange Icons mnuArrangeItem Yes Index = 3

3. Attach this code to the mnuFileNew_Click procedure. This code

creates new child forms (named frmChild - developed next).

Private Sub mnuFileNew_Click()

Dim NewDoc As New frmChild

NewDoc.Show

End Sub

4. Attach this code to the mnuArrangeItem_Click procedure. This

establishes how child forms are displayed.

Private Sub mnuArrangeItem_Click(Index As

Integer)

Arrange Index

End Sub

Other Visual Basic Topics 10-

29

Now, we’ll work with Form1 which will hold the child application:

5. Draw a text box on the form. Set the following properties for the form

and the text box:

Form1:

Caption Child Form

MDIChild True
Name frmChild
Visible False

Text1:

Left 0
MultiLine True
ScrollBars 2-Vertical

Text [Blank]
Top 0

My form resembles this:

6. Attach this code to the Form_Resize procedure. This insures that

whenever a child window is resized, the text box fills up the entire
window.

Private Sub Form_Resize()

Text1.Height = ScaleHeight

Text1.Width = ScaleWidth

End Sub

Run the application. Create new forms by selecting New from the File

menu. Try resizing forms, maximizing forms (notice how the parent form
title bar changes), minimizing forms, closing forms. Try all the Arrange

menu options.

10-30 Learn Visual Basic 6.0

Creating a Help File

 During this course, we’ve made extensive use of the Visual Basic on-line help
system. In fact, one of the major advances in software in the past few years has
been improvements in such interactive help. Adding a help file to your Visual

Basic application will give it real polish, as well as making it easier to use.

 Your help file will contain text and graphics information needed to be able to run
your application. The help file will be displayed by the built-in Windows help utility
that you use with every Windows application, hence all functions available with that
utility are available with your help system. For example, each file can contain one
or more topics that your user can select by clicking a hot spot, using a keyword
search, or browsing through text. And, it’s easy for your user to print any or all

help topics.

 Creating a complete help file is a major task and sometimes takes as much time
as creating the application itself! Because of this, we will only skim over the steps
involved, generate a simple example, and provide guidance for further reference.

 There are five major steps involved in building your own help file:

1. Create your application and develop an outline of help system

topics.
2. Create the Help Text File (or Topic File) in RTF format.
3. Create the Help Project File (HPJ).

4. Compile the Help File using the Help Compiler and Project File.

5. Attach the Help File to your Visual Basic application.

Step 1 is application-dependent. We’ll look briefly at the last four steps here.
More complete details, including formatting and file structure requirements, are
available in many Visual Basic references..

 Creating a Help Text File:

To create a Help Text File, you need to use a word processor capable of saving
documents in rich-text format (RTF). Word and WordPerfect do admirable jobs.

You must also be familiar with text formatting procedures such as underlining,
double-underlining, typing hidden text, and using footnotes. This formatting is

used to delineate different parts of the help file. You should make sure all
formatting options are visible when creating the Help Text File.

Other Visual Basic Topics 10-

31

The Help Text File is basically a cryptically encoded list of hypertext jumps (jump

phrases) and context strings. These are items that allow navigation through the

topics in your help file. Some general rules of Help Text Files:

 Topics are separated by hard page breaks.

 Each topic must have a unique context string.
 Each topic can have a title.

 A topic can have many keywords attached to it to enable quick
access utilizing a search facility.

 Topics can have build-tag indicators and can be assigned a browse
sequence.

 Jumps can be to another secondary window or to another file.

Once completed, your Help Text File must be saved as an RTF file.

 Help Text File Example:

We’ll create a very simple help text file with three topics. I used Word 6.0 in this
example. Create a document with the following structure and footnotes:

10-32 Learn Visual Basic 6.0

Some things to note: Topic1 and Topic3 (hypertext jumps) are double-

underlined to indicate clickable jumps to topics. Topic2 is single-underlined to

indicate a jump to a pop-up topic. The words HID_TOPIC1, HID_TOPIC2, and

HID_TOPIC3 (context strings) are formatted as hidden text. Note page breaks

separate each section. Do not put a page break at the end of the file.

Also, note the use of footnotes. The # footnote is used to specify a Help context

ID, the $ provides Topic Titles for searching, and K yields search keywords. The

footnotes for this example are:

When done, save this file as SIMPLE.RTF (Rich Text Format).

 Creating the Help Project File:

The Help Project File contains the information required by the Help Compiler to

create the Help file. The file is created using any text editor and must be saved as
unformatted text (ASCII). The file extension is HPJ.

The Help Project File can contain up to nine sections, each of which supplies
information about the source file to compile. Sections names are placed within
square brackets []. Semicolons are used to indicate a comment. Sections can

be in any order. The sections are:

[OPTIONS] Specifies options for build (optional).
[FILES] Specifies Help Text Files (RTF) (required).
[BUILDTAGS] Specifies any build tags (optional).

[CONFIG] Author defined menus, macros, etc. (optional)

Other Visual Basic Topics 10-

33

[BITMAPS] Specifies any bitmaps needed for build.
[ALIAS] Can be used to specify context strings to topics (optional).

[MAP] Associates context strings with numbers. Used with context -
sensitive help (optional).

[WINDOWS] Defines primary and secondary windows (required only if

secondary windows used).
[BAGGAGE] Lists files to be included in HLP file.

 Help Project File Example:

For our simple example, the Help Project File is equally simple:

[OPTIONS]
CONTENTS=HID_CONTENTS
TITLE=SIMPLE Application Help

[FILES]
SIMPLE.RTF

This file specifies the context ID of the Table of Contents screen and the name of
the RTF file that contains the help text. Save this file as SIMPLE.HPJ (in Text, or

ASCII format).

 Compiling the Help File:

This is the easiest step. The help compiler is located in the c:\Program

Files\DevStudio\vb\hc directory and is the program hc.exe. Your file is

compiled within the DOS window. Once in that window, move to the directory

containing your HPJ file and type:

c:\Program Files\DevStudio\vb\hc\hc filename.HPJ

where filename is your Help Project File. This process generates a binary help
resource file and may take a long time to complete. Any errors are probably due
to problems in the RTF file(s). The created file has the same name as your Help
Project File with an HLP extension.

 Help File Example:

To compile the example, at a DOS prompt, type:

c:\Program Files\DevStudio\vb\hc\hc SIMPLE.HPJ

The help file SIMPLE.HLP will be created (if no errors occur) and saved in the

same directory as your HPJ file.

10-34 Learn Visual Basic 6.0

 Attaching the Help File:

The final step is to attach the compiled help file to your application. As a first

step, open the Project Properties window under the Project menu. Under Help

File , select the name of your HLP file by clicking the ellipsis (...). This ties the help

file to the application, enabling the user to press F1 for help.

You can also add a Help item somewhere in your menu structure that invokes help

via its Click event. If you do this, you must write code to invoke the help file. The

code involves a call to the Windows API function, WinHelp. But, after last class,

we’re not daunted by such functions, are we? First, we need the function

declaration (from the API Text Viewer):

Declare Function WinHelp Lib "user32" Alias "WinHelpA" (ByVal hwnd
As Long, ByVal lpHelpFile As String, ByVal wCommand As Long,
ByVal dwData As Long) As Long

We also need a constant (also from the API Text Viewer):

Const HELP_INDEX = &H3 ' Display index

This constant will declare the Help files index page upon invocation of WinHelp.

There are other constants that can be used with WinHelp - this is just a simple
example. The Declare statement and constant definitions usually go in the

general declarations area of a code module and made Public. If you only have

one form in your application, then put these statements in the general declarations
area of your form (and declare them Private). Once everything is in-place, to

invoke the Help file from code, use the function call:

Dim R As Long

.

.

R = WinHelp(startupform.hWnd, filename.HLP, HELP_INDEX, CLng(0))

where startupform is the name of your application main form and filename is the

help file name, including path information.

Other Visual Basic Topics 10-

35

 Help File Example:

We can now try our example help file in a Visual Basic application. We’ll only use
the F1 option here. Start a new application. Bring up the Project Properties

window via the Project menu. Select the correct Help File by clicking the ellipsis

and finding your newly created file. Click OK. Now, run your application (I know

there’s nothing in the application, but that’s all right). Once, it’s running press F1.

This Help screen should appear:

Move the mouse cursor to Topic1 and notice the cursor changes to a hand. Click

there and the corresponding Topic 1 screen appears:

The HID_TOPIC1 text in the Table of Contents screen links to the corresponding

context ID (the # footnote) in the topic page. This link is a jump. The link to Topic

2 is a pop-up jump, try it and you’ll see.

10-36 Learn Visual Basic 6.0

Go back to the Table of Contents screen and click the Search button. A dialog

box displaying the help file’s list of keywords appears. In our example, the three
topics all have the same keyword (the K footnotes), SIMPLE Topics. When you

double-click on this keyword, you see all the associated topic titles (the $

footnotes):

You can now select your topic of choice.

 More Help File Topics:

After all this work, you will still only have a simple help file, nothing that rivals those
seen in most applications. To improve your help system, you need to add some
more stuff. Information on these advanced help topics is found in many Visual

Basic references.

A big feature of help systems is context-sensitive help. With this, you place the

cursor on or in something your interested in knowing about and press F1. A Help

topic, if one exists, shows up. The application is smart enough to know what you
want help with. Graphics always spiff up a help system. Help systems use a

special type of graphics called hypergraphics. Lastly, Help macros add

functionality to your help system. There are over 50 macro routines built into the

DLL WinHelp application.

 If, after seeing the rather daunting tasks involved in creating a help system, you
don’t want to tackle the job, take heart. There are several third party software
packages that assist in help system authoring and development. Look at
computer magazine advertisements (especially the Visual Basic Programmer’s
Journal) for potential leads.

Other Visual Basic Topics 10-

37

Class Summary

 That’s all I know about Visual Basic. You should now have a good breadth of
knowledge concerning the Visual Basic environment and language. This breadth
should serve as a springboard into learning more as you develop your own
applications. Feel free to contact me, if you think I can answer any questions you
might have.

 Where do you go from here? With Visual Basic 6.0, you can extend your
knowledge to write Web-based applications, develop massive database front-
ends using Visual Basic’s powerful database tools and techniques, and even
develop your own ActiveX (custom) controls. Other classes cover such topics.

 And, the last example:

10-38 Learn Visual Basic 6.0

Exercise 10

The Ultimate Application

Design an application in Visual Basic that everyone on the planet wants to buy. Draw
objects, assign properties, attach code. Thoroughly debug and test your application.
Create a distribution disk. Find a distributor or distribute it yourself through your
newly created company. Become fabulously wealthy. Remember those who made it
all possible by rewarding them with jobs and stock options.

My Solution:

Still working on it ...

Other Visual Basic Topics 10-

39

This page intentionally not left blank.

I-1

Appendix I. Visual Basic Symbolic Constants

Contents

Alignment Constants .. I-4

Align Property .. I-4
Alignment Property.. I-4

Border Property Constants... I-4
BorderStyle Property (Form).. I-4
BorderStyle Property (Shape and Line).. I-4

Clipboard Object Constants... I-5
Color Constants... I-5

Colors ... I-5
System Colors ... I-5

Control Constants .. I-6

ComboBox Control.. I-6
ListBox Control .. I-6
ScrollBar Control ... I-6
Shape Control.. I-7

Data Control Constants .. I-7
Error Event Constants... I-7
EditMode Property Constants.. I-7

Options Property Constants ... I-7
Validate Event Action Constants ... I-8
Beginning-of-File Constants... I-8

End -of-File Constants ... I-8
Recordset-Type Constants... I-8

Date Constants.. I-9

firstdayofweek Argument Values ... I-9

firstweekofyear Argument Values ... I-9

Return Values... I-9

Learn Visual Basic 6.0

I-2 Learn Visual Basic 6.0

DBGrid Control Constants ... I-9
Alignment Constants ... I-9

BorderStyle Constants ..I-10
DataMode Constants.. I-10
DividerStyle Constants ...I-10

RowDividerStyle Constants..I-10
Scroll Bar Constants ...I-20

DDE Constants.. I-11
linkerr (LinkError Event) ..I-11
LinkMode Property (Forms and Controls) ..I-11

Dir, GetAttr, and SetAttr Constants ...I-11
Drag-and-Drop Constants..I-12

DragOver Event ...I-12
Drag Method (Controls) ..I-12
DragMode Property ..I-12

Drawing Constants..I-12
DrawMode Property..I-12
DrawStyle Property ...I-13

Form Constants ...I-13
Show Parameters ..I-13

Arrange Method for MDI Forms ...I-13
WindowState Property..I-13

Graphics Constants...I-14
FillStyle Property..I-14
ScaleMode Property...I-14

Grid Control Constants ...I-14
ColAlignment, FixedAlignment Properties ...I-14

FillStyle Property..I-14
Help Constants .. I-15
Key Code Constants...I-15

Key Codes ...I-15
KeyA Through KeyZ ..I-16

Key0 Through Key9 ...I-17
Keys on the Numeric Keypad...I-17
Function Keys ..I-18

Menu Accelerator Constants..I-18
Menu Control Constants ...I-22

PopupMenu Method Alignment .. I-22
PopupMenu Mouse Button Recognition ...I-22

Visual Basic Symbolic Constants I-3

Miscellaneous Constants ... I-22
ZOrder Method...I-22

QueryUnload Method .. I-22
Shift Parameter Masks ...I-22
Button Parameter Masks..I-23

Application Start Mode ...I-23
LoadResPicture Method...I-23
Check Value...I-23

Mouse Pointer Constants ...I-24
MsgBox Constants ..I-25

MsgBox Arguments...I-25
MsgBox Return Values ...I-25

OLE Container Control Constants...I-25
OLEType Property...I-25
OLETypeAllowed Property ...I-26

UpdateOptions Proper ty...I-26
AutoActivate Property...I-26
SizeMode Property ...I-26
DisplayType Property.. I-27
Updated Event Constants...I-27
Special Verb Values ...I-27
Verb Flag Bit Masks ...I-28

VBTranslateColor/OLETranslateColor Constants...I-28
Picture Object Constants.. I-28
Printer Object Constants...I-29

Printer Color Mode..I-29
Duplex Printing...I-29

Printer Orientation ...I-29
Print Quality.. I-29

PaperBin Property...I-29
PaperSize Property...I-30

RasterOp Constants..I-31

Shell Constants.. I-32
StrConv Constants ..I-33

Variant Type Constants ..I-33
VarType Constants..I-34

I-4 Learn Visual Basic 6.0

Alignment Constants

Align Property

Constant Value Description

vbAlignNone 0 Size and location set at design

vbAlignTop

1

time or in code.
Picture box at top of form.

vbAlignBottom 2 Picture box at bottom of form.
vbAlignLeft 3 Picture box at left of form.

vbAlignRight 4 Picture box at right of form.

Alignment Property

Constant Value Description

vbLeftJustify 0 Left align.
vbRightJustify 1 Right align.
vbCenter 2 Center.

Border Property Constants

BorderStyle Property (Form)

Constant Value Description

vbBSNone 0 No border.

vbFixedSingle 1 Fixed single.
vbSizable 2 Sizable (forms only)
vbFixedDouble 3 Fixed double (forms only)

BorderStyle Property (Shape and Line)

Constant Value Description

vbTransparent 0 Transparent.
vbBSSolid 1 Solid.
vbBSDash 2 Dash.
vbBSDot 3 Dot.
vbBSDashDot 4 Dash-dot.
vbBSDashDotDot 5 Dash-dot-dot.
vbBSInsideSolid 6 Inside solid.

Visual Basic Symbolic Constants I-5

Clipboard Object Constants

Constant

vbCFLink

Value

0xBF00

Description

DDE conversation information.
vbCFRTF 0xBF01 Rich Text Format (.RTF file)
vbCFText 1 Text (.TXT file)
vbCFBitmap 2 Bitmap (.BMP file)
vbCFMetafile 3 Metafile (.WMF file)
vbCFDIB 8 Device-independent bitmap.

vbCFPalette 9 Color palette.

Color Constants

Colors

Constant Value Description

vbBlack 0x0 Black.
vbRed 0xFF Red.
vbGreen 0xFF00 Green.
vbYellow 0xFFFF Yellow.
vbBlue 0xFF0000 Blue.
vbMagenta 0xFF00FF Magenta.
vbCyan 0xFFFF00 Cyan.

vbWhite 0xFFFFFF White.

System Colors

Constant Value Description

vbScrollBars 0x80000000 Scroll bar color.
vbDesktop 0x80000001 Desktop color.

vbActiveTitleBar 0x80000002 Color of the title bar for the
active window.

vbInactiveTitleBar 0x80000003 Color of the title bar for the
inactive window.

vbMenuBar 0x80000004 Menu background color.
vbWindowBackground 0x80000005 Window background color.
vbWindowFrame 0x80000006 Window frame color.
vbMenuText 0x80000007 Color of text on menus.
vbWindowText 0x80000008 Color of text in windows.

vbTitleBarText 0x80000009 Color of text in caption, size box,
and scroll arrow.

vbActiveBorder 0x8000000A Border color of active window.
vbInactiveBorder 0x8000000B Border color of inactive window.
vbApplicationWorkspace 0x8000000C Background color of multiple-
 document interface (MDI)

I-6 Learn Visual Basic 6.0

System Colors (continued)

Constant Value Description

vbHighlight 0x8000000D Background color of items

vbHighlightText

0x8000000E
selected in a control.
Text color of items selected in a

vbButtonFace

0x8000000F
control.
Color of shading on the face of

vbButtonShadow

0x80000010
command buttons.
Color of shading on the edge of

 command buttons.
vbGrayText 0x80000011 Grayed (disabled)
vbButtonText 0x80000012 Text color on push buttons.
vbInactiveCaptionText 0x80000013 Color of text in an inactive

vb3DHighlight

0x80000014
caption.
Highlight color for 3D display

vb3DDKShadow

0x80000015
elements.
Darkest shadow color for 3D

vb3DLight

0x80000016
display elements.
Second lightest of the 3D colors

 after vb3DHighlight.
vbInfoText 0x80000017 Color of text in ToolTips.

vbInfoBackground 0x80000018 Background color of ToolTips.

Control Constants

ComboBox Control

Constant Value Description

vbComboDropdown 0 Dropdown Combo.
vbComboSimple 1 Simple Combo.

vbComboDropdownList 2 Dropdown List.

ListBox Control

Constant Value Description

vbMultiSelectNone 0 None.

vbMultiSelectSimple 1 Simple.

vbMultiSelectExtended 2 Extended.

ScrollBar Control

Constant Value Description

vbSBNone 0 None.
vbHorizontal 1 Horizontal.
vbVertical 2 Vertical.
vbBoth 3 Both.

Visual Basic Symbolic Constants I-7

Shape Control

Constant Value Description

vbShapeRectangle 0 Rectangle.

vbShapeSquare 1 Square.
vbShapeOval 2 Oval.
vbShapeCircle 3 Circle.
vbShapeRoundedRectangle 4 Rounded rectangle.

vbShapeRoundedSquare 5 Rounded square.

Data Control Constants

Error Event Constants

Constant Value Description

vbDataErrContinue 0 Continue.

vbDataErrDisplay 1 (Default)

EditMode Property Constants

Constant Value Description

vbDataEditNone 0 No editing operation in

vbDataEditMode

1
progress.
Edit method invoked; current

 record in copy buffer.

vbDataEditAdd 2 AddNew method invoked;
current record hasn't been

 saved.

Options Property Constants

Constant Value Description

vbDataDenyWrite 1 Other users can't change

vbDataDenyRead

2
records in recordset.
Other users can't read records in

 recordset.

vbDataReadOnly 4 No user can change records in
recordset.

vbDataAppendOnly 8 New records can be added to
the recordset, but existing
records can't be read.

vbDataInconsistent 16 Updates can apply to all fields of
the recordset.

vbDataConsistent 32 Updates apply only to those
fields that will not affect other
records in the recordset.

vbDataSQLPassThrough 64 Sends an SQL statement to an
ODBC database.

I-8 Learn Visual Basic 6.0

Validate Event Action Constants

Constant Value Description
vbDataActionCancel 0 Cancel the operation when the

vbDataActionMoveFirst

1

Sub exits.
MoveFirst method.

vbDataActionMovePrevious 2 MovePrevious method.
vbDataActionMoveNext 3 MoveNext method.
vbDataActionMoveLast 4 MoveLast method.
vbDataActionAddNew 5 AddNew method.
vbDataActionUpdate 6 Update operation (not

vbDataActionDelete

7

UpdateRecord)
Delete method.

vbDataActionFind 8 Find method.
vbDataActionBookmark 9 The Bookmark property is set.
vbDataActionClose 10 Close method.

vbDataActionUnload 11 The form is being unloaded.

Beginning-of-File Constants

Constant Value Description

vbMoveFirst 0 Move to first record.

vbBOF 1 Move to beginning of file.

End-of-File Constants

Constant Value Description

vbMoveLast 0 Move to last record.

vbEOF 1 Move to end of file.

vbAddNew 2 Add new record to end of file.

Recordset-Type Constants

Constant Value Description

vbRSTypeTable 0 Table-type recordset.
vbRSTypeDynaset 1 Dynaset-type recordset.
vbRSTypeSnapShot 2 Snapshot-type recordset.

Visual Basic Symbolic Constants I-9

Date Constants

firstdayofweek Argument Values

Constant Value Description

vbUseSystem 0 Use NLS API setting.
vbSunday 1 Sunday
vbMonday 2 Monday
vbTuesday 3 Tuesday

vbWednesday 4 Wednesday
vbThursday 5 Thursday
vbFriday 6 Friday

vbSaturday 7 Saturday

firstweekofyear Argument Values

Constant Value Description

vbUseSystem 0 Use application setting if one
exists; otherwise use NLS API
setting.

vbFirstJan1 1 Start with week in which January
1 occurs (default)

vbFirstFourDays 2 Start with the first week that has
at least four days in the new
year.

vbFirstFullWeek 3 Start with the first full week of the
year.

Return Values

Constant Value Description

vbSunday 1 Sunday
vbMonday 2 Monday
vbTuesday 3 Tuesday

vbWednesday 4 Wednesday
vbThursday 5 Thursday
vbFriday 6 Friday
vbSaturday 7 Saturday

DBGrid Control Constants

Alignment Constants

Constant Value Description

dbgLeft 0 Left.
dbgRight 1 Right.
dbgCenter 2 Center.

I-10 Learn Visual Basic 6.0

dbgGeneral 3 General.

Visual Basic Symbolic Constants I-11

BorderStyle Constants

Constant Value Description

dbgNone 0 None.

dbgFixedSingle 1 FixedSingle.

DataMode Constants

Constant Value Description

dbgBound 0 Bound.

dbgUnbound 1 Unbound.

DividerStyle Constants

Constant Value Description

dbgNoDividers 0 NoDividers.

dbgBlackLine 1 BlackLine.
dbgDarkGrayLine 2 DarkGrayLine.
dbgRaised 3 Raised.
dbgInset 4 Inset.

dbgUseForeColor 5 UseForeColor.

RowDividerStyle Constants

Constant Value Description
dbgNoDividers 0 NoDividers.
dbgBlackLine 1 BlackLine.
dbgDarkGrayLine 2 DarkGrayLine.
dbgRaised 3 Raised.
dbgInset 4 Inset.

dbgUseForeColor 5 UseForeColor.

Scroll Bar Constants

Constant Value Description

dbgNone 0 None.
dbgHorizontal 1 Horizontal.
dbgVertical 2 Vertical.
dbgBoth 3 Both.
dbgAutomatic 4 Automatic.

I-12 Learn Visual Basic 6.0

DDE Constants

linkerr (LinkError Event)

Constant Value Description

vbWrongFormat 1 Another application requested

vbDDESourceClosed

6
data in wrong format.
Destination application

 attempted to continue after

vbTooManyLinks

7
source closed.
All source links are in use.

vbDataTransferFailed 8 Failure to update data in
destination.

LinkMode Property (Forms and Controls)

Constant Value Description

vbLinkNone 0 None.
vbLinkSource 1 Source (forms only)
vbLinkAutomatic 1 Automatic (controls only)
vbLinkManual 2 Manual (controls only)
vbLinkNotify 3 Notify (controls only)

Dir, GetAttr, and SetAttr Constants

Constant Value Description
vbNormal 0 Normal (default for Dir and

vbReadOnly

1

SetAttr)
Read-only.

vbHidden 2 Hidden.
vbSystem 4 System file.
vbVolume 8 Volume label.
vbDirectory 16 Directory.
vbArchive 32 File has changed since last
 backup.

Visual Basic Symbolic Constants I-13

Drag-and-Drop Constants

DragOver Event

Constant Value Description

vbEnter 0 Source control dragged into

target.
vbLeave 1 Source control dragged out of

target.
vbOver 2 Source control dragged from

one position in target to another.

Drag Method (Controls)

Constant Value Description

vbCancel 0 Cancel drag operation.
vbBeginDrag 1 Begin dragging control.

vbEndDrag 2 Drop control.

DragMode Property

Constant Value Description

vbManual 0 Manual.

vbAutomatic 1 Automatic.

Drawing Constants

DrawMode Property

Constant Value Description

vbBlackness 1 Black.

vbNotMergePen 2 Not Merge pen.
vbMaskNotPen 3 Mask Not pen.
vbNotCopyPen 4 Not Copy pen.

vbMaskPenNot 5 Mask pen Not.
vbInvert 6 Invert.

vbXorPen 7 Xor pen.
vbNotMaskPen 8 Not Mask pen.
vbMaskPen 9 Mask pen.

vbNotXorPen 10 Not Xor pen.
vbNop 11 No operation; output remains

unchanged.
vbMergeNotPen 12 Merge Not pen.
vbCopyPen 13 Copy pen.
vbMergePenNot 14 Merge pen Not.
vbMergePen 15 Merge pen.

vbWhiteness 16 White.

I-14 Learn Visual Basic 6.0

DrawStyle Property

Constant Value Description

vbSolid 0 Solid.

vbDash 1 Dash.
vbDot 2 Dot.

vbDashDot 3 Dash-dot.
vbDashDotDot 4 Dash-dot-dot.

vbInvisible 5 Invisible.
vbInsideSolid 6 Inside solid.

Form Constants

Show Parameters

Constant Value Description

vbModal 1 Modal form.
vbModeless 0 Modeless form.

Arrange Method for MDI Forms

Constant Value Description

vbCascade 0 Cascade all nonminimized MDI
child forms.

vbTileHorizontal 1 Horizontally tile all nonminimized

MDI child forms.

vbTileVertical 2 Vertically tile all nonminimized

MDI child forms.
vbArrangeIcons 3 Arrange icons for minimized MDI

child forms.

WindowState Property

Constant Value Description

vbNormal 0 Normal.
vbMinimized 1 Minimized.

vbMaximized 2 Maximized.

Visual Basic Symbolic Constants I-15

Graphics Constants

FillStyle Property

Constant Value Description

vbFSSolid 0 Solid.

vbFSTransparent 1 Transparent.
vbHorizontalLine 2 Horizontal line.
vbVerticalLine 3 Vertical line.
vbUpwardDiagonal 4 Upward diagonal.
vbDownwardDiagonal 5 Downward diagonal.
vbCross 6 Cross.

vbDiagonalCross 7 Diagonal cross.

ScaleMode Property

Constant Value Description

vbUser 0 User.
vbTwips 1 Twips.
vbPoints 2 Points.
vbPixels 3 Pixels.
vbCharacters 4 Characters.
vbInches 5 Inches.
vbMillimeters 6 Millimeters.

vbCentimeters 7 Centimeters.

Grid Control Constants

ColAlignment, FixedAlignment Properties

Constant Value Description

grdAlignCenter 2 Center data in column.
grdAlignLeft 0 Left-align data in column.

grdAlignRight 1 Right-align data in column.

FillStyle Property

Constant Value Description

grdSingle 0 Changing Text property setting

grdRepeat

1
affects only active cell.
Changing Text property setting

 affects all selected cells.

I-16 Learn Visual Basic 6.0

Help Constants

Constant Value Description

cdlHelpContext 0x1 Displays Help for a particular
topic.

cdlHelpQuit 0x2 Notifies the Help application that
the specified Help file is no
longer in use.

cdlHelpIndex 0x3 Displays the index of the
specified Help file.

cdlHelpContents 0x3 Displays the contents topic in the

cdlHelpHelpOnHelp

0x4
current Help file.
Displays Help for using the Help

cdlHelpSetIndex

0x5
application itself.
Sets the current index for multi-

cdlHelpSetContents

0x5
index Help.
Designates a specific topic as

 the contents topic.

cdlHelpContextPopup 0x8 Displays a topic identified by a
context number.

cdlHelpForceFile 0x9 Creates a Help file that displays
text in only one font.

cdlHelpKey 0x101 Displays Help for a particular

cdlHelpCommandHelp

0x102
keyword.
Displays Help for a particular

cdlHelpPartialKey

0x105
command.
Calls the search engine in

 Windows Help.

Key Code Constants

Key Codes

Constant Value Description

vbKeyLButton 0x1 Left mouse button.

vbKeyRButton 0x2 Right mouse button.
vbKeyCancel 0x3 CANCEL key.
vbKeyMButton 0x4 Middle mouse button.
vbKeyBack 0x8 BACKSPACE key.
vbKeyTab 0x9 TAB key.
vbKeyClear 0xC CLEAR key.
vbKeyReturn 0xD ENTER key.
vbKeyShift 0x10 SHIFT key.
vbKeyControl 0x11 CTRL key.
vbKeyMenu 0x12 MENU key.

Visual Basic Symbolic Constants I-17

Key Codes (continued)
Constant

Value

Description

vbKeyPause 0x13 PAUSE key.

vbKeyCapital 0x14 CAPS LOCK key.
vbKeyEscape 0x1B ESC key.
vbKeySpace 0x20 SPACEBAR key.
vbKeyPageUp 0x21 PAGE UP key.
vbKeyPageDown 0x22 PAGE DOWN key.
vbKeyEnd 0x23 END key.
vbKeyHome 0x24 HOME key.
vbKeyLeft 0x25 LEFT ARROW key.
vbKeyUp 0x26 UP ARROW key.
vbKeyRight 0x27 RIGHT ARROW key.
vbKeyDown 0x28 DOWN ARROW key.
vbKeySelect 0x29 SELECT key.
vbKeyPrint 0x2A PRINT SCREEN key.
vbKeyExecute 0x2B EXECUTE key.
vbKeySnapshot 0x2C SNAPSHOT key.
vbKeyInsert 0x2D INS key.
vbKeyDelete 0x2E DEL key.
vbKeyHelp 0x2F HELP key.
vbKeyNumlock 0x90 NUM LOCK key.

KeyA Through KeyZ Are the Same as Their ASCII Equivalents: 'A' Through 'Z'

Constant Value Description

vbKeyA 65 A key.
vbKeyB 66 B key.
vbKeyC 67 C key.
vbKeyD 68 D key.
vbKeyE 69 E key.
vbKeyF 70 F key.
vbKeyG 71 G key.
vbKeyH 72 H key.
vbKeyI 73 I key.
vbKeyJ 74 J key.
vbKeyK 75 K key.
vbKeyL 76 L key.
vbKeyM 77 M key.
vbKeyN 78 N key.
vbKeyO 79 O key.
vbKeyP 80 P key.
vbKeyQ 81 Q key.
vbKeyR 82 R key.
vbKeyS 83 S key.
vbKeyT 84 T key.

I-18 Learn Visual Basic 6.0

KeyA Through KeyZ (continued)

Constant Value Description
vbKeyU 85 U key.

vbKeyV 86 V key.
vbKeyW 87 W key.
vbKeyX 88 X key.
vbKeyY 89 Y key.
vbKeyZ 90 Z key.

Key0 Through Key9 Are the Same as Their ASCII Equivalents: '0' Through '9'

Constant Value Description
vbKey0 48 0 key.
vbKey1 49 1 key.
vbKey2 50 2 key.
vbKey3 51 3 key.
vbKey4 52 4 key.
vbKey5 53 5 key.
vbKey6 54 6 key.
vbKey7 55 7 key.
vbKey8 56 8 key.

vbKey9 57 9 key.

Keys on the Numeric Keypad

Constant Value Description

vbKeyNumpad0 0x60 0 key.

vbKeyNumpad1 0x61 1 key.
vbKeyNumpad2 0x62 2 key.
vbKeyNumpad3 0x63 3 key.
vbKeyNumpad4 0x64 4 key.
vbKeyNumpad5 0x65 5 key.
vbKeyNumpad6 0x66 6 key.
vbKeyNumpad7 0x67 7 key.
vbKeyNumpad8 0x68 8 key.
vbKeyNumpad9 0x69 9 key.
vbKeyMultiply 0x6A MULTIPLICATION SIGN (*)
vbKeyAdd 0x6B PLUS SIGN (+)
vbKeySeparator 0x6C ENTER key.
vbKeySubtract 0x6D MINUS SIGN (-)
vbKeyDecimal 0x6E DECIMAL POINT (.)
vbKeyDivide 0x6F DIVISION SIGN (/)

Visual Basic Symbolic Constants I-19

Function Keys
Constant

Value

Description

vbKeyF1 0x70 F1 key.

vbKeyF2 0x71 F2 key.
vbKeyF3 0x72 F3 key.
vbKeyF4 0x73 F4 key.
vbKeyF5 0x74 F5 key.
vbKeyF6 0x75 F6 key.
vbKeyF7 0x76 F7 key.
vbKeyF8 0x77 F8 key.
vbKeyF9 0x78 F9 key.
vbKeyF10 0x79 F10 key.
vbKeyF11 0x7A F11 key.
vbKeyF12 0x7B F12 key.
vbKeyF13 0x7C F13 key.
vbKeyF14 0x7D F14 key.
vbKeyF15 0x7E F15 key.
vbKeyF16 0x7F F16 key.

Menu Accelerator Constants

Constant Value Description

vbMenuAccelCtrlA 1 User-defined shortcut
keystrokes.

vbMenuAccelCtrlB 2 User-defined shortcut

vbMenuAccelCtrlC

3
keystrokes.
User-defined shortcut

vbMenuAccelCtrlD

4

keystrokes.
User-defined shortcut

vbMenuAccelCtrlE

5

keystrokes.
User-defined shortcut

 keystrokes.

vbMenuAccelCtrlF 6 User-defined shortcut
keystrokes.

vbMenuAccelCtrlG 7 User-defined shortcut
keystrokes.

vbMenuAccelCtrlH 8 User-defined shortcut

vbMenuAccelCtrlI

9
keystrokes.
User-defined shortcut

vbMenuAccelCtrlJ

10

keystrokes.
User-defined shortcut

vbMenuAccelCtrlK

11

keystrokes.
User-defined shortcut

 keystrokes.

I-20 Learn Visual Basic 6.0

Menu Accelerator Constants (continued)
Constant Value Description
vbMenuAccelCtrlL 12 User-defined shortcut

vbMenuAccelCtrlM

13

keystrokes.
User-defined shortcut

vbMenuAccelCtrlN

14

keystrokes.
User-defined shortcut

 keystrokes.

vbMenuAccelCtrlO 15 User-defined shortcut
keystrokes.

vbMenuAccelCtrlP 16 User-defined shortcut

vbMenuAccelCtrlQ

17
keystrokes.
User-defined shortcut

vbMenuAccelCtrlR

18

keystrokes.
User-defined shortcut

vbMenuAccelCtrlS

19

keystrokes.
User-defined shortcut

 keystrokes.

vbMenuAccelCtrlT 20 User-defined shortcut
keystrokes.

vbMenuAccelCtrlU 21 User-defined shortcut
keystrokes.

vbMenuAccelCtrlV 22 User-defined shortcut

vbMenuAccelCtrlW

23
keystrokes.
User-defined shortcut

vbMenuAccelCtrlX

24

keystrokes.
User-defined shortcut

vbMenuAccelCtrlY

25

keystrokes.
User-defined shortcut

 keystrokes.

vbMenuAccelCtrlZ 26 User-defined shortcut
keystrokes.

vbMenuAccelF1 27 User-defined shortcut

vbMenuAccelF2

28
keystrokes.
User-defined shortcut

vbMenuAccelF3

29

keystrokes.
User-defined shortcut

vbMenuAccelF4

30

keystrokes.
User-defined shortcut

 keystrokes.

vbMenuAccelF5 31 User-defined shortcut
keystrokes.

vbMenuAccelF6 32 User-defined shortcut
keystrokes.

Visual Basic Symbolic Constants I-21

vbMenuAccelF7 33 User-defined shortcut
keystrokes.

I-22 Learn Visual Basic 6.0

Menu Accelerator Constants (continued)
Constant Value Description
vbMenuAccelF8 34 User-defined shortcut

vbMenuAccelF9

35

keystrokes.
User-defined shortcut

vbMenuAccelF11

36

keystrokes.
User-defined shortcut

 keystrokes.

vbMenuAccelF12 37 User-defined shortcut
keystrokes.

vbMenuAccelCtrlF1 38 User-defined shortcut

vbMenuAccelCtrlF2

39
keystrokes.
User-defined shortcut

vbMenuAccelCtrlF3

40

keystrokes.
User-defined shortcut

vbMenuAccelCtrlF4

41

keystrokes.
User-defined shortcut

 keystrokes.

vbMenuAccelCtrlF5 42 User-defined shortcut
keystrokes.

vbMenuAccelCtrlF6 43 User-defined shortcut
keystrokes.

vbMenuAccelCtrlF7 44 User-defined shortcut

vbMenuAccelCtrlF8

45
keystrokes.
User-defined shortcut

vbMenuAccelCtrlF9

46

keystrokes.
User-defined shortcut

vbMenuAccelCtrlF11

47

keystrokes.
User-defined shortcut

 keystrokes.

vbMenuAccelCtrlF12 48 User-defined shortcut
keystrokes.

vbMenuAccelShiftF1 49 User-defined shortcut

vbMenuAccelShiftF2

50
keystrokes.
User-defined shortcut

vbMenuAccelShiftF3

51

keystrokes.
User-defined shortcut

vbMenuAccelShiftF4

52

keystrokes.
User-defined shortcut

 keystrokes.

vbMenuAccelShiftF5 53 User-defined shortcut
keystrokes.

vbMenuAccelShiftF6 54 User-defined shortcut
keystrokes.

Visual Basic Symbolic Constants I-23

vbMenuAccelShiftF7 55 User-defined shortcut
keystrokes.

I-24 Learn Visual Basic 6.0

Menu Accelerator Constants (continued)
Constant Value Description
vbMenuAccelShiftF8 56 User-defined shortcut

vbMenuAccelShiftF9

57

keystrokes.
User-defined shortcut

vbMenuAccelShiftF11

58

keystrokes.
User-defined shortcut

 keystrokes.

vbMenuAccelShiftF12 59 User-defined shortcut
keystrokes.

vbMenuAccelShiftCtrlF1 60 User-defined shortcut

vbMenuAccelShiftCtrlF2

61
keystrokes.
User-defined shortcut

vbMenuAccelShiftCtrlF3

62

keystrokes.
User-defined shortcut

vbMenuAccelShiftCtrlF4

63

keystrokes.
User-defined shortcut

 keystrokes.
vbMenuAccelShiftCtrlF5 64 ser-defined shortcut keystrokes.
vbMenuAccelShiftCtrlF6 65 User-defined shortcut

vbMenuAccelShiftCtrlF7

66

keystrokes.
User-defined shortcut

vbMenuAccelShiftCtrlF8

67

keystrokes.
User-defined shortcut

 keystrokes.
vbMenuAccelShiftCtrlF9 68 ser-defined shortcut keystrokes.
vbMenuAccelShiftCtrlF11 69 User-defined shortcut

vbMenuAccelShiftCtrlF12

70

keystrokes.
User-defined shortcut

 keystrokes.

vbMenuAccelCtrlIns 71 User-defined shortcut
keystrokes.

vbMenuAccelShiftIns 72 User-defined shortcut

vbMenuAccelDel

73
keystrokes.
User-defined shortcut

vbMenuAccelShiftDel

74

keystrokes.
User-defined shortcut

vbMenuAccelAltBksp

75

keystrokes.
User-defined shortcut

 keystrokes.

Visual Basic Symbolic Constants I-25

Menu Control Constants

PopupMenu Method Alignment

Constant Value Description

vbPopupMenuLeftAlign 0 Pop-up menu left-aligned.

vbPopupMenuCenterAlign 4 Pop-up menu centered.
vbPopupMenuRightAlign 8 Pop-up menu right-aligned.

PopupMenu Mouse Button Recognition

Constant Value Description

vbPopupMenuLeftButton 0 Pop-up menu recognizes left
mouse button only.

vbPopupMenuRightButton 2 Pop-up menu recognizes right and
left mouse buttons.

Miscellaneous Constants

ZOrder Method

Constant Value Description

vbBringToFront 0 Bring to front.

vbSendToBack 1 Send to back.

QueryUnload Method

Constant Value Description

vbAppWindows 2 Current Windows session

ending.

vbFormMDIForm 4 MDI child form is closing

because the MDI form is closing.
vbFormCode 1 Unload method invoked from

code.

vbFormControlMenu 0 User has chosen Close
command from the Control-menu
box on a form.

vbAppTaskManager 3 Windows Task Manager is
closing the application.

Shift Parameter Masks

Constant Value Description

vbShiftMask 1 SHIFT key bit mask.
vbCtrlMask 2 CTRL key bit mask.

vbAltMask 4 ALT key bit mask.

I-26 Learn Visual Basic 6.0

Button Parameter Masks

Constant Value Description

vbLeftButton 1 Left mouse button.

vbRightButton 2 Right mouse button.

vbMiddleButton 4 Middle mouse button.

Application Start Mode

Constant Value Description

vbSModeStandalone 0 Stand-alone application.

vbSModeAutomation 1 OLE automation server.

LoadResPicture Method

Constant Value Description

vbResBitmap 0 Bitmap resource.
vbResIcon 1 Icon resource.

vbResCursor 2 Cursor resource.

Check Value

Constant Value Description

vbUnchecked 0 Unchecked.

vbChecked 1 Checked.
vbGrayed 2 Grayed.

Visual Basic Symbolic Constants I-27

Mouse Pointer Constants

Constant Value Description

vbDefault 0 Default.
vbArrow 1 Arrow.
vbCrosshair 2 Cross.
vbIbeam 3 I beam.
vbIconPointer 4 Icon.
vbSizePointer 5 Size.
vbSizeNESW 6 Size NE, SW.

vbSizeNS 7 Size N, S.
vbSizeNWSE 8 Size NW, SE.
vbSizeWE 9 Size W, E.

vbUpArrow 10 Up arrow.
vbHourglass 11 Hourglass.
vbNoDrop 12 No drop.
vbArrowHourglass 13 Arrow and hourglass. (Only

available in 32-bit Visual Basic
4.0.)

vbArrowQuestion 14 Arrow and question mark. (Only
available in 32-bit Visual Basic
4.0.)

vbSizeAll 15 Size all. (Only available in 32-bit
Visual Basic 4.0.)

vbCustom 99 Custom icon specified by the

MouseIcon property.

I-28 Learn Visual Basic 6.0

MsgBox Constants

MsgBox Arguments

Constant Value Description

vbOKOnly 0 OK button only (default)

vbOKCancel 1 OK and Cancel buttons.
vbAbortRetryIgnore 2 Abort, Retry, and Ignore buttons.
vbYe sNoCancel 3 Yes, No, and Cancel buttons.
vbYesNo 4 Yes and No buttons.
vbRetryCancel 5 Retry and Cancel buttons.
vbCritical 16 Critical message.
vbQuestion 32 Warning query.
vbExclamation 48 Warning message.
vbInformation 64 Information message.
vbDefaultButton1 0 First button is default (default)
vbDefaultButton2 256 Second button is default.
vbDefaultButton3 512 Third button is default.
vbApplicationModal 0 Application modal message box

vbSystemModal

4096

(default)
System modal message box.

MsgBox Return Values

Constant Value Description

vbOK 1 OK button pressed.
vbCancel 2 Cancel button pressed.
vbAbort 3 Abort button pressed.
vbRetry 4 Retry button pressed.
vbIgnore 5 Ignore button pressed.
vbYes 6 Yes button pressed.
vbNo 7 No button pressed.

OLE Container Control Constants

OLEType Property

Constant Value Description

vbOLELinked 0 OLE container control contains a
linked object.

vbOLEEmbedded 1 OLE container control contains
an embedded object.

vbOLENone 3 OLE container control doesn't
contain an object.

Visual Basic Symbolic Constants I-29

OLETypeAllowed Property

Constant Value Description

vbOLEEither 2 OLE container control can

 contain either a linked or an
embedded object.

UpdateOptions Property

Constant Value Description

vbOLEAutomatic 0 Object is updated each time the
linked data changes.

vbOLEFrozen 1 Object is updated whenever the
user saves the linked document
from within the application in

vbOLEManual

2
which it was created.
Object is updated only when the

 Action property is set to 6
(Update)

AutoActivate Property

Constant Value Description

vbOLEActivateManual 0 OLE object isn't automatically

vbOLEActivateGetFocus

1
activated.
Object is activated when the

 OLE container control gets the
focus.

vbOLEActivateDoubleclick 2 Object is activated when the
OLE container control is double-

vbOLEActivateAuto

3
clicked.
Object is activated based on the

 object's default method of

 activation.

SizeMode Property

Constant Value Description

vbOLESizeClip 0 Object's image is clipped by the

vbOLESizeStretch

1
OLE container control's borders.
Object's image is sized to fill the

vbOLESizeAutoSize

2
OLE container control.
OLE container control is

 automatically resized to display

vbOLESizeZoom

3
the entire object.
Object's image is stretched but

 in proportion.

I-30 Learn Visual Basic 6.0

DisplayType Property

Constant Value Description

vbOLEDisplayContent 0 Object's data is displayed in the

vbOLEDisplayIcon

1
OLE container control.
Object's icon is displayed in the

Updated Event Constants
 OLE container control.

Constant Value Description

vbOLEChanged 0 Object's data has changed.
vbOLESaved 1 Object's data has been saved by

vbOLEClosed

2

the application that created the
object.
Application file containing the

 linked object's data has been
closed.

vbOLERenamed 3 Application file containing the
linked object's data has been

 renamed.

Special Verb Values

Constant Value Description
vbOLEPrimary 0 Default action for the object.
vbOLEShow -1 Activates the object for editing.

vbOLEOpen -2 Opens the object in a separate
application window.

vbOLEHide -3 For embedded objects, hides
the application that created the

vbOLEInPlaceUIActivate

-4
object.
All UI's associated with the

 object are visible and ready for

vbOLEInPlaceActivate

-5
use.
Object is ready for the user to

vbOLEDiscardUndoState

-6

click inside it and start working
with it.
For discarding all record of

 changes that the object's
application can undo.

Visual Basic Symbolic Constants I-31

Verb Flag Bit Masks

Constant Value Description

vbOLEFlagEnabled 0x0 Enabled menu item.

vbOLEFlagGrayed 0x1 Grayed menu item.
vbOLEFlagDisabled 0x2 Disabled menu item.
vbOLEFlagChecked 0x8 Checked menu item.
vbOLEFlagSeparator 0x800 Separator bar in menu item list.

vbOLEMiscFlagMemStorage 0x1 Causes control to use memory
to store the object while it's
loaded.

vbOLEMiscFlagDisableInPlace 0x2 Forces OLE container control to
activate objects in a separate

 window.

VBTranslateColor/OLETranslateColor Constants

Constant Value Description

vbInactiveCaptionText 0x80000013 Color of text in an inactive

caption.
vb3DHighlight 0x80000014 Highlight color for 3-D display

elements.

vb3DFace 0x8000000F Dark shadow color for 3-D
display elements.

vbMsgBox 0x80000017 Background color for message
boxes and system dialog boxes.

vbMsgBoxText 0x80000018 Color of text displayed in
message boxes and system
dialog boxes.

vb3DShadow 0x80000010 Color of automatic window
shadows.

vb3DDKShadow 0x80000015 Darkest shadow.

vb3DLight 0x80000016 Second lightest of the 3-D colors
(after vb3DHighlight)

Picture Object Constants

Constant Value Description

vbPicTypeBitmap 1 Bitmap type of Picture object.

vbPicTypeMetafile 2 Metafile type of Picture object.
vbPicTypeIcon 3 Icon type of Picture object.

I-32 Learn Visual Basic 6.0

Printer Object Constants

Printer Color Mode

Constant Value Description

vbPRCMMonochrome 1 Monochrome output.

vbPRCMColor 2 Color output.

Duplex Printing

Constant Value Description

vbPRDPSimplex 1 Single-sided printing.

vbPRDPHorizontal 2 Double-sided horizontal printing.

vbPRDPVertical 3 Double-sided vertical printing.

Printer Orientation

Constant Value Description

vbPRORPortrait 1 Documents print with the top at

vbPRORLandscape

2
the narrow side of the paper.
Documents print with the top at

 the wide side of the paper.

Print Quality

Constant Value Description

vbPRPQDraft -1 Draft print quality.

vbPRPQLow -2 Low print quality.
vbPRPQMedium -3 Medium print quality.

vbPRPQHigh -4 High print quality.

PaperBin Property

Constant Value Description

vbPRBNUpper 1 Use paper from the upper bin.
vbPRBNLower 2 Use paper from the lower bin.
vbPRBNMiddle 3 Use paper from the middle bin.
vbPRBNManual 4 Wait for manual insertion of each

vbPRBNEnvelope

5
sheet of paper.
Use envelopes from the

vbPRBNEnvManual

6
envelope feeder.
Use envelopes from the

 envelope feeder, but wait for

vbPRBNAuto

7
manual insertion.
(Default)

vbPRBNTractor 8 Use paper fed from the tractor
feeder.

Visual Basic Symbolic Constants I-33

PaperBin Property (continued)

Constant Value Description

vbPRBNSmallFmt 9 Use paper from the small paper

feeder.
vbPRBNLargeFmt 10 Use paper from the large paper

bin.
vbPRBNLargeCapacity 11 Use paper from the large

capacity feeder.
vbPRBNCassette 14 Use paper from the attached

cassette cartridge.

PaperSize Property

Constant Value Description

vbPRPSLetter 1 Letter, 8 1/2 x 11 in.

vbPRPSLetterSmall 2 +A611Letter Small, 8 1/2 x 11 in.
vbPRPSTabloid 3 Tabloid, 11 x 17 in.

vbPRPSLedger 4 Ledger, 17 x 11 in.
vbPRPSLegal 5 Legal, 8 1/2 x 14 in.

vbPRPSStatement 6 Statement, 5 1/2 x 8 1/2 in.
vbPRPSExecutive 7 Executive, 7 1/2 x 10 1/2 in.
vbPRPSA3 8 A3, 297 x 420 mm.

vbPRPSA4 9 A4, 210 x 297 mm.
vbPRPSA4Small 10 A4 Small, 210 x 297 mm.
vbPRPSA5 11 A5, 148 x 210 mm.
vbPRPSB4 12 B4, 250 x 354 mm.
vbPRPSB5 13 B5, 182 x 257 mm.
vbPRPSFolio 14 Folio, 8 1/2 x 13 in.
vbPRPSQuarto 15 Quarto, 215 x 275 mm.

vbPRPS10x14 16 10 x 14 in.
vbPRPS11x17 17 11 x 17 in.
vbPRPSNote 18 Note, 8 1/2 x 11 in.

vbPRPSEnv9 19 Envelope #9, 3 7/8 x 8 7/8 in.
vbPRPSEnv10 20 Envelope #10, 4 1/8 x 9 1/2 in.
vbPRPSEnv11 21 Envelope #11, 4 1/2 x 10 3/8 in.
vbPRPSEnv12 22 Envelope #12, 4 1/2 x 11 in.
vbPRPSEnv14 23 Envelope #14, 5 x 11 1/2 in.
vbPRPSCSheet 24 C size sheet.
vbPRPSDSheet 25 D size sheet.

vbPRPSESheet 26 E size sheet.
vbPRPSEnvDL 27 Envelope DL, 110 x 220 mm.
vbPRPSEnvC3 29 Envelope C3, 324 x 458 mm.

vbPRPSEnvC4 30 Envelope C4, 229 x 324 mm.
vbPRPSEnvC5 28 Envelope C5, 162 x 229 mm.
vbPRPSEnvC6 31 Envelope C6, 114 x 162 mm.
vbPRPSEnvC65 32 Envelope C65, 114 x 229 mm.

I-34 Learn Visual Basic 6.0

PaperSize Property (continued)

Constant Value Description

vbPRPSEnvB4 33 Envelope B4, 250 x 353 mm.

vbPRPSEnvB5 34 Envelope B5, 176 x 250 mm.
vbPRPSEnvB6 35 Envelope B6, 176 x 125 mm.

vbPRPSEnvItaly 36 Envelope, 110 x 230 mm.
vbPRPSEnvMonarch 37 Envelope Monarch, 3 7/8 x 7 1/2

in.
vbPRPSEnvPersonal 38 Envelope, 3 5/8 x 6 1/2 in.
vbPRPSFanfoldUS 39 U.S. Standard Fanfold, 14 7/8 x

11 in.
vbPRPSFanfoldStdGerman 40 German Standard Fanfold, 8 1/2

x 12 in.
vbPRPSFanfoldLglGerman 41 German Legal Fanfold, 8 1/2 x

13 in.

vbPRPSUser 256 User-defined.

RasterOp Constants

Constant Value Description

vbDstInvert 0x00550009 Inverts the destination bitmap.
vbMergeCopy 0x00C000CA Combines the pattern and the

source bitmap.

vbMergePaint 0x00BB0226 Combines the inverted source
bitmap with the destination
bitmap by using Or.

vbNotSrcCopy 0x00330008 Copies the inverted source

bitmap to the destination.

vbNotSrcErase 0x001100A6 Inverts the result of combining
the destination and source
bitmaps by using Or.

vbPatCopy 0x00F00021L Copies the pattern to the
destination bitmap.

vbPatInvert 0x005A0049L Combines the destination
bitmap with the pattern by using
Xor.

vbPatPaint 0x00FB0A09L Combines the inverted source
bitmap with the pattern by using
Or. Combines the result of this
operation with the destination
bitmap by using Or.

vbSrcAnd 0x008800C6 Combines pixels of the
destination and source bitmaps
by using And.

Visual Basic Symbolic Constants I-35

RasterOp Constants (continued)
Constant Value Description
vbSrcCopy 0x00CC0020 Copies the source bitmap to the

vbSrcErase

0x00440328

destination bitmap.
Inverts the destination bitmap

vbSrcInvert

0x00660046

and combines the result with the
source bitmap by using And.
Combines pixels of the

 destination and source bitmaps
by using Xor.

vbSrcPaint 0x00EE0086 Combines pixels of the
destination and source bitmaps
by using Or.

Shell Constants

Constant Value Description

vbHide 0 Window is hidden and focus is
passed to the hidden window.

vbNormalFocus 1 Window has focus and is
restored to its original size and
position.

vbMinimizedFocus 2 Window is displayed as an icon
with focus.

vbMaximizedFocus 3 Window is maximized with

vbNormalNoFocus

4
focus.
Window is restored to its most

 recent size and position. The
currently active window remains

vbMinimizedNoFocus

6

active.
Window is displayed as an icon.

 The currently active window
 remains active.

I-36 Learn Visual Basic 6.0

StrConv Constants

Constant Value Description

vbUpperCase 1 Uppercases the string.
vbLowerCase 2 Lowercases the string.
vbProperCase 3 Uppercases first letter of every

vbWide*

4*
word in string.
Converts narrow (single-

vbNarrow*

8*

byte)(double-byte)
Converts wide (double -

vbKatakana**

16**

byte)(single-byte)
Converts Hiragana characters in

 string to Katakana characters.

vbHiragana** 32** Converts Katakana characters in
string to Hiragana characters.

vbUnicode*** 64*** Converts the string to Unicode
using the default code page of
the system.

vbFromUnicode*** 128*** Converts the string from Unicode
to the default code page of the

 system.

*Applies to Far East locales
**Applies to Japan only.
***Specifying this bit on 16-bit systems causes a run-time error

.

Variant Type Constants

Constant Value Description

vbVEmpty 0 Empty (uninitialized)
vbVNull 1 Null (no valid data)
vbVInteger 2 Integer data type.
vbVLong 3 Long integer data type.
vbVSingle 4 Single-precision floating-point

vbVDouble

5

data type.
Double-precision floating-point

 data type.
vbVCurrency 6 Currency (scaled integer)
vbVDate 7 Date data type.
vbVString 8 String data type.

Visual Basic Symbolic Constants I-37

VarType Constants

Constant Value Description

vbEmpty 0 Uninitialized (default)
vbNull 1 Contains no valid data.
vbInteger 2 Integer.
vbLong 3 Long integer.
vbSingle 4 Single-precision floating-point

vbDouble

5
number.
Double-precision floating-point

vbCurrency

6
number.
Currency.

vbDate 7 Date.
vbString 8 String.
vbObject 9 OLE Automation object.
vbError 10 Error.
vbBoolean 11 Boolean.
vbVariant 12 Variant (used only for arrays of

vbDataObject

13
Variants)
Non-OLE Automation object.

vbByte 17 Byte
vbArray 8192 Array.

II-1

Appendix II. Common Dialog Box Constants

CommonDialog Control Constants

File Open/Save Dialog Box Flags

Constant Value Description

cdlOFNReadOnly 0x1 Checks Read-Only check box for

cdlOFNOverwritePrompt

0x2
Open and Save As dialog boxes.
Causes the Save As dialog box to

 generate a message box if the
selected file already exists.

cdlOFNHideReadOnly 0x4 Hides the Read-Only check box.

cdlOFNNoChangeDir 0x8 Sets the current directory to what it
was when the dialog box was

cdlOFNHelpButton

0x10

invoked.
Causes the dialog box to display the

cdlOFNNoValidate

0x100

Help button.
Allows invalid characters in the

 returned filename.

cdlOFNAllowMultiselect 0x200 Allows the File Name list box to
have multiple selections.

cdlOFNExtensionDifferent 0x400 The extension of the returned
filename is different from the
extension set by the DefaultExt

cdlOFNPathMustExist

0x800

property.
User can enter only valid path

cdlOFNFileMustExist

0x1000

names.
User can enter only names of

 existing files.

cdlOFNCreatePrompt 0x2000 Sets the dialog box to ask if the user
wants to create a file that doesn't

 currently exist.

Learn Visual Basic 6.0

II-2 Learn Visual Basic 6.0

File Open/Save Dialog Box Flags (continued)

Constant Value Description
cdlOFNShareAware 0x4000 Sharing violation errors will be

cdlOFNNoReadOnlyReturn

0x8000

ignored.
The returned file doesn't have the

 Read-Only attribute set and won't be
in a write-protected directory.

cdlOFNExplorer 0x0008000 Use the Explorer-like Open A File
dialog box template. (Windows 95
only.)

cdlOFNNoDereferenceLinks 0x00100000 Do not dereference shortcuts (shell
links) default, choosing a shortcut

cdlOFNLongNames

0x00200000

causes it to be dereferenced by the
shell. (Windows 95 only.)
Use Long filenames. (Windows 95

 only.)

Color Dialog Box Flags

Constant Value Description

cdlCCRGBInit 0x1 Sets initial color value for the dialog

cdlCCFullOpen

0x2

box.
Entire dialog box is displayed,

cdlCCPreventFullOpen

0x4

including the Define Custom Colors
section.
Disables the Define Custom Colors

cdlCCHelpButton

0x8
section of the dialog box.
Dialog box displays a Help button.

Fonts Dialog Box Flags

Constant Value Description

cdlCFScreenFonts 0x1 Dialog box lists only screen fonts

cdlCFPrinterFonts

0x2
supported by the system.
Dialog box lists only fonts supported

cdlCFBoth

0x3

by the printer.
Dialog box lists available screen

cdlCFHelpButton

0x4

and printer fonts.
Dialog box displays a Help button.

cdlCFEffects 0x100 Dialog box enables strikeout,

cdlCFApply

0x200
underline, and color effects.
Dialog box enables the Apply

cdlCFANSIOnly

0x400

button.
Dialog box allows only a selection of

 fonts that use the Windows
character set.

Common Dialog Box Constants II-3

cdlCFNoVectorFonts 0x800 Dialog box should not allow vector-
font selections.

II-4 Learn Visual Basic 6.0

Fonts Dialog Box Flags (continued)

Constant Value Description
cdlCFNoSimulations 0x1000 Dialog box should not allow graphic

cdlCFLimitSize

0x2000

device interface (GDI)
Dialog box should select only font

 sizes within the range specified by
the Min and Max properties.

cdlCFFixedPitchOnly 0x4000 Dialog box should select only fixed-

cdlCFWYSIWYG

0x8000
pitch fonts.
Dialog box should allow only the

 selection of fonts available to both
the screen and printer.

cdlCFForceFontExist 0x10000 An error dialog box is displayed if a
user selects a font or style that
doesn't exist.

cdlCFScalableOnly 0x20000 Dialog box should allow only the
selection of scalable fonts.

cdlCFTTOnly 0x40000 Dialog box should allow only the

cdlCFNoFaceSel

0x80000
selection of TrueType fonts.
No font name selected.

cdlCFNoStyleSel 0x100000 No font style selected.

cdlCFNoSizeSel 0x200000 No font size selected.

Printer Dialog Box Flags

Constant Value Description

cdlPDAllPages 0x0 Returns or sets state of All Pages
option button.

cdlPDCollate 0x10 Returns or sets state of Collate

cdlPDDisablePrintToFile

0x80000
check box.
Disables the Print To File check

cdlPDHidePrintToFile

0x100000

box.
The Print To File check box isn't

cdlPDNoPageNums

0x8

displayed.
Returns or sets the state of the

 Pages option button.

cdlPDNoSelection 0x4 Disables the Selection option
button.

cdlPDNoWarning 0x80 Prevents a warning message when

cdlPDPageNums

0x2
there is no default printer.
Returns or sets the state of the

cdlPDPrintSetup

0x40

Pages option button.
Displays the Print Setup dialog box

 rather than the Print dialog box.

Common Dialog Box Constants II-5

Printer Dialog Box Flags (continued)

Constant Value Description
cdlPDPrintToFile 0x20 Returns or sets the state of the Print

cdlPDReturnDC

0x100

To File check box.
Returns a device context for the

 printer selection value returned in
the hDC property of the dialog box.

cdlPDReturnDefault 0x400 Returns default printer name.

cdlPDReturnIC 0x200 Returns an information context for
the printer selection value returned

 in the hDC property of the dialog
box.

cdlPDSelection 0x1 Returns or sets the state of the

cdlPDHelpButton

0x800
Selection option button.
Dialog box displays the Help button.

cdlPDUseDevModeCopies 0x40000 Sets support for multiple copies
action; depends upon whether or not

 printer supports multiple copies.

II-6 Learn Visual Basic 6.0

CommonDialog Error Constants

Constant Value Description

cdlAlloc &H7FF0& Couldn't allocate memory for
FileName or Filter property.

cdlCancel &H7FF3& Cancel was selected.

cdlDialogFailure &H8000& The function failed to load the dialog
box.

cdlFindResFailure &H7FF9& The function failed to load a
specified resource.

cdlHelp &H7FEF& Call to Windows Help failed.

cdlInitialization &H7FFD& The function failed during
initialization.

cdlLoadResFailure &H7FF8& The function failed to load a
specified string.

cdlLockResFailure &H7FF7& The function failed to lock a

cdlMemAllocFailure

&H7FF6&
specified resource.
The function was unable to allocate

cdlMemLockFailure

&H7FF5&

memory for internal data structures.
The function was unable to lock the

cdlNoFonts

&H5FFE&

memory associated with a handle.
No fonts exist.

cdlBufferTooSmall &H4FFC& The buffer at which the member

cdlInvalidFileName

&H4FFD&

lpstrFile points is too small.
Filename is invalid.

cdlSubclassFailure &H4FFE& An attempt to subclass a list box
failed due to insufficient memory.

cdlCreateICFailure &H6FF5& The PrintDlg function failed when it
attempted to create an information
context.

cdlDndmMismatch &H6FF6& Data in the DevMode and
DevNames data structures describe

cdlGetDevModeFail

&H6FFA&

two different printers.
The printer device driver failed to

 initialize a DevMode data structure.

cdlInitFailure &H6FF9& The PrintDlg function failed during
initialization.

cdlLoadDrvFailure &H6FFB& The PrintDlg function failed to load
the specified printer's device driver.

Common Dialog Box Constants II-7

CommonDialog Error Constants (continued)
Constant Value Description
cdlNoDefaultPrn &H6FF7& A default printer doesn't exist.

cdlNoDevices &H6FF8& No printer device drivers were
found.

cdlParseFailure &H6FFD& The CommonDialog function failed
to parse the strings in the [devices]
section of WIN.INI.

cdlPrinterCodes &H6FFF& The PDReturnDefault flag was set,
but either the hDevMode or

cdlPrinterNotFound

&H6FF4&

hDevNames field was nonzero.
The [devices] section of WIN.INI

 doesn't contain an entry for the

cdlRetDefFailure

&H6FFC&

requested printer.
The PDReturnDefault flag was set,

cdlSetupFailure

&H6FFE&

but either the hDevMode or
hDevNames field was nonzero.
Failed to load required resources.

	Contents
	1. Introduction to the Visual Basic Language and Environment
	1-1
	Preview
	Course Objectives
	What is Visual Basic?
	Visual Basic 6.0 versus Other Versions of Visual Basic
	16 Bits versus 32 Bits
	Structure of a Visual Basic Application
	Steps in Developing Application
	Drawing the User Interface and Setting Properties
	Setting Properties of Objects at Design Time
	Setting Properties at Run Time
	How Names are Used in Object Events
	Form1:
	Command1:
	Command2:
	Command3:
	Label1:
	Label2:
	Label3:
	Label4:
	Label5:
	Label6:
	Variables
	Visual Basic Data Types
	Variable Declaration
	Module1
	Option Explicit
	Sub cmdStart_Click ()
	Sub cmdEnd_Click ()
	Sub cmdExit_Click () End
	My Solution:

	2-1
	2. The Visual Basic Language
	Review and Preview
	A Brief History of Basic
	Visual Basic Statements and Expressions
	Examples:
	Visual Basic Operators
	Operator Operation
	Operator Comparison
	Operator Operation (1)
	Visual Basic Functions
	Function Value Returned
	A Closer Look at the Rnd Function
	 Examples:
	Form1:
	Label1:
	Label2:
	Label3:
	Label4:
	Text1:
	Text2:
	Text3:
	Text4:
	Command1:
	Command2:
	Option Explicit
	Private Sub cmdCalculate_Click ()
	Private Sub cmdExit_Click () End
	Visual Basic Symbolic Constants
	Visual Basic Branching - If Statements
	Key Trapping
	Const vbKeyDecPt = 46
	Private Sub txtDeposit_KeyPress (KeyAscii As Integer) ‘Only allow number keys, decimal point, or backspace If (KeyAscii >= vbKey0 And KeyAscii <= vbKey9) Or KeyAscii = vbKeyDecPt Or KeyAscii = vbKeyBack Then
	Select Case - Another Way to Branch
	The GoTo Statement
	Visual Basic Looping
	Visual Basic Counting
	Example
	Command3:
	Private Sub cmdClear_Click () ‘Blank out the text boxes txtDeposit.Text = "" txtInterest.Text = "" txtMonths.Text = "" txtFinal.Text = ""
	Private Sub txtFinal_KeyPress (KeyAscii As Integer) ‘Only allow number keys, decimal point, or backspace If (KeyAscii >= vbKey0 And KeyAscii <= vbKey9) Or KeyAscii = vbKeyDecPt Or KeyAscii = vbKeyBack Then
	Private Sub cmdCalculate_Click() Dim IntRate As Single
	My Solution:
	My Solution: (1)

	3-1
	3. Exploring the Visual Basic Toolbox
	Review and Preview
	The Message Box
	Object Methods
	The Form Object
	Examples
	Command Buttons
	Label Boxes
	Text Boxes
	Example
	Form1:
	Label1:
	Text1:
	Command1:
	Command2:
	Private Sub cmdValid_Click()
	Private Sub Form_Activate() txtPassword.SetFocus
	Private Sub cmdExit_Click() End
	Check Boxes
	Option Buttons
	Arrays
	Control Arrays
	Frames
	Form1: (1)
	Frame1:
	Frame2:
	Frame3
	Option1:
	Option2:
	Option3:
	Option4:
	Option5:
	Option6:
	Option7:
	Check1:
	Check2:
	Check3:
	Check4:
	Check5:
	Check6:
	Command1: (1)
	Command2: (1)
	Option Explicit
	Private Sub Form_Load() 'Initialize pizza parameters PizzaSize = "Small" PizzaCrust = "Thin Crust" PizzaWhere = "Eat In"
	Private Sub optSize_Click(Index As Integer) ‘Read pizza size
	Private Sub cmdBuild_Click()
	Private Sub cmdExit_Click() End (1)
	List Boxes
	Examples (1)
	Combo Boxes
	Examples (2)

	Example 3 -3 Flight Planner
	Form1:
	List1:
	Combo1:
	Combo2:
	Label1:
	Label2:
	Label3:
	Command1:
	Command2:
	Private Sub Form_Load() ‘Add city names to list box lstCities.Clear
	Private Sub cmdAssign_Click()
	Private Sub cmdExit_Click() End
	My Solution:

	4-1
	4. More Exploration of the Visual Basic Toolbox
	Review and Preview
	Display Layers
	Line Tool
	Shape Tool
	Horizontal and Vertical Scroll Bars

	Example 4 -1 Temperature Conversion
	One Possible Approach to Temperature Conversion Application:
	Form1:
	Shape1:
	Label1:
	Label2:
	Label3:
	Label4:
	Command1:
	Option Explicit
	Private Sub vsbTemp_Scroll() 'Read F and convert to C TempF = vsbTemp.Value lblTempF.Caption = Str(TempF)
	Private Sub vsbTemp_Change() 'Read F and convert to C TempF = vsbTemp.Value lblTempF.Caption = Str(TempF)
	Private Sub cmdExit_Click() End
	Picture Boxes
	Examples
	Example
	Image Boxes
	Quick Example: Picture and Image Boxes
	Drive List Box
	Directory List Box
	File List Box
	Synchronizing the Drive, Directory, and File List Boxes
	One possible solution to the Image Viewer Application:
	Form1: (1)
	Drive1:
	Dir1:
	File1:
	Label1: (1)
	Label2: (1)
	Label3: (1)
	Label4: (1)
	Command1: (1)
	Command2:
	Line1:
	Shape1: (1)
	Shape2:
	Image1:
	Private Sub drvImage_Change()
	Private Sub dirImage_Change()
	Private Sub cmdShow_Click()
	Private Sub cmdExit_Click() End (1)
	Common Dialog Boxes
	Method Common Dialog Box
	Open Common Dialog Box
	Quick Example: The Open Dialog Box
	Form1: (2)
	CommonDialog1:
	Label1: (2)
	Command1: (2)
	Private Sub cmdDisplay_Click() cdlExample.ShowOpen
	Save As Common Dialog Box
	Quick Example: The Save As Dialog Box
	My Solution:

	5-1
	5. Creating a Stand-Alone Visual Basic Application
	Review and Preview
	Designing an Application
	Using General Sub Procedures in Applications
	Method 1:
	Method 2:
	Example
	Using General Function Procedures in Applications
	Example (1)
	Quick Example: Temperature Conversion
	DegF_To_DegC.
	Private Sub ShowTemps() lblTempF.Caption = Str(TempF) TempC = DegF_To_DegC(TempF) lblTempC.Caption = Str(TempC) End Sub
	Private Sub vsbTemp_Change() TempF = vsbTemp.Value
	Quick Example: Image Viewer (Op tional)
	Private Sub filImage_DblClick() Call cmdShow_Click
	Adding Menus to an Application
	Example (2)

	Example 5 -1 Note Editor
	Form1:
	Text1:
	Private Sub mnuFileNew_Click()
	Private Sub mnuFileExit_Click() 'Make sure user really wants to exit Dim Response As Integer
	Private Sub mnuFmtBold_Click() 'Toggle bold font status
	Private Sub mnuFmtItalic_Click() 'Toggle italic font status
	Private Sub mnuFmtUnderline_Click() 'Toggle underline font status
	Private Sub mnuFmtSizeSmall_Click() 'Set font size to small mnuFmtSizeSmall.Checked = True mnuFmtSizeMedium.Checked = False mnuFmtSizeLarge.Checked = False txtEdit.FontSize = 8
	Using Pop-Up Menus
	Assigning Icons to Forms
	Designing Your Own Icon with IconEdit
	Creating Visual Basic Executable Files
	Using the Visual Basic Package & Deployment Wizard
	My Solution:

	6-1
	6. Error-Handling, Debugging and File Input/Output
	Review and Preview
	Error Types
	Run-Time Error Trapping and Handling
	General Error Handling Procedure
	Form1:
	Command1:
	Text1:
	Private Sub cmdGenError_Click() On Error GoTo HandleErrors Err.Raise Val(txtError.Text) Err.Clear
	Error Number Error Description
	Debugging Visual Basic Programs
	Private Sub Command1_Click() Dim X As Integer, Y As Integer X = 0
	Function Fcn(X As Integer) As Integer Fcn = CInt(0.1 * X ^ 2)
	Using the Debugging Tools
	Debug.Print X; Y
	Debugging Strategies
	Sequential Files
	Sequential File Output (Variables)
	Example
	Example (1)
	Quick Example: Writing Variables to Sequential Files
	Private Sub Form_Load()
	Sequential File Input (Variables)
	Quick Example: Reading Variables from Sequential Files
	Private Sub Form_Load() (1)
	Writing and Reading Text Using Sequential Files
	Example (2)
	Example (3)
	Random Access Files
	.
	Type Length (Bytes)
	User-Defined Variables
	Writing and Reading Random Access Files
	Using the Open and Save Common Dialog Boxes
	Private Sub mnuFileOpen_Click() cdlFiles.Filter = "Files (*.ned)|*.ned" cdlFiles.DefaultExt = "ned" cdlFiles.DialogTitle = "Open File" cdlFiles.Flags = cdlOFNFileMustExist + cdlOFNPathMustExist
	Private Sub mnuFileSave_Click() cdlFiles.Filter = "Files (*.ned)|*.ned" cdlFiles.DefaultExt = "ned" cdlFiles.DialogTitle = "Save File" cdlFiles.Flags = cdlOFNOverwritePrompt + cdlOFNPathMustExist
	My Solution:
	My Solution: (1)
	Dim NFiles As Integer, RFile(3) As String, MenuOpen As Integer, FNmenu As String
	Sub RFile_Update(NewFile As String)
	Dim I As Integer
	'Write out .ini file when done Open "weight.ini" For Output As #1 For I = 0 To 3
	Dim File_To_Open As String
	If MenuOpen = 0 Then
	File_To_Open = cdlFiles.filename Else
	BadOpen:
	Private Sub mnuFileRecent_Click(Index As Integer) FNmenu = RFile(Index): MenuOpen = 1
	Call RFile_Update(cdlFiles.filename)

	7-1
	7. Graphics Techniques with Visual Basic
	Review and Preview
	Graphics Methods
	y
	Using Colors
	Mouse Events
	Caption Name
	Form1:
	Picture1:
	Label1:
	Option Explicit
	Private Sub Form_Load()
	Private Sub mnuFileNew_Click() 'Make sure user wants to start over Dim Response As Integer
	Private Sub mnuFileExit_Click() 'Make sure user wants to quit Dim Response As Integer
	Private Sub picDraw_MouseDown(Button As Integer, Shift As Integer, X As Single, Y As Single)
	Private Sub picDraw_MouseUp(Button As Integer, Shift A s Integer, X As Single, Y As Single)
	Private Sub picDraw_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As Single)
	Private Sub lblColor_Click(Index As Integer) 'Make audible tone and reset drawing color Beep
	Drag and Drop Events
	Example
	Form1: (1)
	Command1:
	Image1:
	Image2:
	Image3:
	Image4:
	Private Sub Form_DragDrop(Source As Control, X As Single, Y As Single)
	Private Sub imgCan_DragDrop(Index As Integer, Source As Control, X As Single, Y As Single)
	Private Sub cmdReset_Click() 'Reset to trash can picture imgCan.Picture = imgTrash.Picture imgLetter.Visible = True
	Timer Tool and Delays
	Animation Techniques
	Quick Example: Simple Animation
	Image1: (1)
	Image2: (1)
	Image3: (1)
	Private Sub Image3_Click() Static PicNum As Integer If PicNum = 0 Then
	Quick Example: Animation with the Timer Tool
	Image1: (2)
	Image1(1):
	Image1(2):
	Image1(3):
	Image2: (2)
	Command1: (1)
	Timer1:
	Private Sub Command1_Click() Timer1.Enabled = Not (Timer1.Enabled) End Sub
	Private Sub Timer1_Timer() Static PicNum As Integer PicNum = PicNum + 1
	Image2.Move Image2.Left + 150
	Random Numbers (Revisited) and Games
	Randomly Sorting N Integers
	Form1: (2)
	Command1: (2)
	Command2:
	Timer1: (1)
	Timer2:
	Label1: (1)
	Label2:
	Image1: (3)
	Image1(1): (1)
	Image1(2): (1)
	Image1(3): (1)
	Image2: (3)
	Option Explicit (1)
	Private Sub Form_Load() Randomize Timer
	Private Sub cmdExit_Click()
	Private Sub cmdSpin_Click() If Bankroll = 0 Then
	Private Sub timSpin_Timer()
	Private Sub timDone_Timer()
	User-Defined Coordinates
	Simple Function Plotting (Line Charts)
	Simple Bar Charts
	Caption Name (1)
	Form1: (3)
	Picture1: (1)
	Option Explicit Dim N As Integer
	Private Sub form_Load() Dim I As Integer
	Private Sub mnuPlotLine_Click() Call LineChart(picPlot, N, X, Y)
	Private Sub mnuPlotBar_Click() Call BarChart(picPlot, N, X, Y) End Sub
	Private Sub mnuPlotSpiral_Click() Call LineChart(picPlot, N, Y, YD) End Sub
	Private Sub mnuPlotExit_Click() End
	My Solution:

	8-1
	8. Database Access and Management
	Review and Preview
	Database Structure and Terminology
	Titles Publishers
	ADO Data Control
	Data Links
	Assigning Tables
	SELECT * FROM TableName
	ConnectionString RecordSource
	Bound Data Tools
	DataSource
	Form1:
	Adodc1:
	Label1:
	Label2:
	Text1:
	Text2:
	Creating a Virtual Table
	Quick Example: Forming a Virtual Table
	Label3:
	Text1: (1)
	Finding Specific Records
	Private Sub Form_Load()
	Private Sub cmdLetter_Click(Index As Integer)
	Data Manager
	Database Management
	Label1: (1)
	Label2: (1)
	Label3: (1)
	Command1:
	Command2:
	Command3:
	Private Sub cmdLetter_Click(Index As Integer) (1)
	Private Sub cmdAdd_Click() cmdAdd.Enabled = False cmdSave.Enabled = True cmdDelete.Enabled = False dtaPhone.Recordset.AddNew txtName.SetFocus
	Private Sub cmdSave_Click() dtaPhone.Recordset.Update dtaPhone.Refresh cmdAdd.Enabled = True cmdSave.Enabled = False cmdDelete.Enabled = True txtName.SetFocus
	Private Sub cmdDelete_Click() dtaPhone.Recordset.Delete dtaPhone.Recordset.MoveNext
	Custom Data Aware Controls
	Creating a Data Report
	Creating a Data Environment
	Creating a Data Report (1)
	Accessing the Data Report
	Private Sub cmdReport_Click() rptPhone.Show
	My Solution:
	Field Name Field Type Field Length

	9-1
	9. Dynamic Link Libraries and the Windows API
	Review and Preview
	Dynamic Link Libraries (DLL)
	Accessing the Windows API With DLL
	Timing with DLL Calls
	Quick Example 1: Using GetTickCount to Build a Stopwatch
	Option Explicit
	Private Declare Function GetTickCount Lib "kernel32" () As Long
	lblStart.Caption = Format(StartTime, "#########0.000")

	Private Sub cmdEnd_Click()
	EndTime = GetTickCount() / 1000

	Quick Example 2: Using GetTickCount to Implement a Delay
	Private Sub Command1_Click() Beep
	Private Sub Delay(DelaySeconds As Single) Dim T1 As Long
	Drawing Ellipses
	Quick Example 3 - Drawing Ellipses
	Option Explicit (1)
	Private Sub Form_Resize() Dim RtnValue As Long Form1.Cls
	Drawing Lines
	Quick Example 4 - Drawing Lines
	Option Explicit Private Type POINTAPI X As Long
	Private Sub Form_MouseDown(Button As Integer, Shift As Integer, X As Single, Y As Single)
	Private Sub Command1_Click() Dim RtnValue As Integer Form1.Cls
	Drawing Polygons
	Quick Example 5 - Drawing Polygons
	Option Explicit Private Type POINTAPI X As Long (1)
	Private Sub Command1_Click() Dim I As Integer
	Private Sub Draw_Shape(PBox As Control, PNum As Integer) Dim V(1 To 8) As POINTAPI, Rtn As Long
	Sounds with DLL Calls - Other Beeps
	Quick Example 6 - Adding Beeps to Message Box Displays
	Private Declare Function MessageBeep Lib "user32" (ByVal wType As Long) As Long
	Private Sub Command1_Click()
	More Elaborate Sounds
	Quick Example 7 - Playing WAV Files
	Private Declare Function sndPlaySound Lib "winmm.dll" Alias "sndPlaySoundA" (ByVal lpszSoundName As String, ByVal uFlags As Long) As Long
	Private Sub Command1_Click() (1)
	Playing Sounds Quickly
	Quick Example 8 - Playing Sounds Quickly
	Dim BongSound As String Private Const SND_MEMORY = &H4
	Private Function StoreSound(ByVal FileName) As String '---
	Private Sub Form_Load()
	Private Sub Command1_Click() (2)
	Fun With Graphics
	Quick Example 9 - Bouncing Ball With Sound!
	Option Explicit (2)
	Private Sub Form_Load() BallY = 0
	Private Sub Command1_Click() Timer1.Enabled = Not (Timer1.Enabled) End Sub
	Private Sub Timer1_Timer() Static BallY As Long
	Flicker Free Animation
	Quick Example 10 - Flicker Free Animation
	Load Picture1(1) Picture1(1).AutoRedraw = True
	Private Sub Timer1_Timer() Static BallY As Long (1)
	Picture1(1).Cls

	BallY, CLng(Picture2.ScaleWidth), CLng(Picture2.ScaleHeight), Picture2.hDC, CLng(0), CLng(0), SRCCOPY)
	RtnValue = BitBlt(Picture1(0).hDC, CLng(0), CLng(0), CLng(Picture1(1).ScaleWidth), CLng(Picture1(1).ScaleHeight), Picture1(1).hDC, CLng(0), CLng(0), SRCCOPY)

	Quick Example 11 - Horizontally Scrolling Background
	Private Sub Timer1_Timer() Static x As Long
	A Bit of Multimedia
	Quick Example 12 - Multimedia Sound and Video
	Private Declare Function mciExecute Lib "winmm.dll" (ByVal lpstrCommand As String) As Long
	Private Sub Command1_Click() (3)
	My Solution:

	10-1
	10. Other Visual Basic Topics
	Review and Preview
	Custom Controls
	Masked Edit Control
	(###)-### -####
	Chart Control
	Multimedia Control
	Private Sub Form_Load() 'Set initial properties
	Rich Textbox Control
	Private Sub Form_Load() Dim I As Integer
	Private Sub Combo1_Click() RichTextBox1.SelFontName = Combo1.Text End Sub
	Slider Control
	Private Sub Slider1_MouseDown(Button As Integer, Shift As Integer, x As Single, y As Single)
	Private Sub Slider1_MouseUp(Button As Integer, Shift As Integer, x As Single, y As Single)
	Tabbed Dialog Control
	UpDown Control
	Private Sub UpDown1_Change() Label1.Caption = UpDown1.Value End Sub
	Toolbar Control
	Using the Windows Clipboard
	Printing with Visual Basic
	Private Sub Form_Click() PrintForm
	Private Sub Form_Click() Printer.Scale (0, 0)-(850, 1100)
	Multiple Form Visual Basic Applications
	Keyword Task
	Examples
	Private Sub Command1_Click() Form2.Show vbModeless
	Private Sub Command1_Click() Form2.Hide
	Private Sub Command1_Click() Form3.Hide
	Visual Basic Multiple Document Interface (MDI)
	Private Sub mnuFileNew_Click() Dim NewDoc As New frmChild NewDoc.Show
	Private Sub mnuArrangeItem_Click(Index As Integer)
	Form1:
	Text1:
	Private Sub Form_Resize() Text1.Height = ScaleHeight Text1.Width = ScaleWidth End Sub
	Creating a Help File
	c:\Program Files\DevStudio\vb\hc\hc SIMPLE.HPJ
	Class Summary
	My Solution:

	I-1
	Border Property Constants
	Validate Event Action Constants
	Constant Value Description
	Constant Value Description (1)
	Return Values

	DBGrid Control Constants
	Dir, GetAttr, and SetAttr Constants
	DragOver Event
	Drag Method (Controls)
	DragMode Property

	Drawing Constants
	DrawMode Property
	DrawStyle Property

	Form Constants
	Show Parameters
	Arrange Method for MDI Forms
	WindowState Property
	KeyA Through KeyZ Are the Same as Their ASCII Equivalents: 'A' Through 'Z'

	Menu Accelerator Constants (continued)
	Menu Accelerator Constants (continued) (1)
	PopupMenu Method Alignment
	PopupMenu Mouse Button Recognition

	Miscellaneous Constants
	ZOrder Method
	QueryUnload Method
	Shift Parameter Masks

	Mouse Pointer Constants
	Constant Value Description

	OLE Container Control Constants
	VBTranslateColor/OLETranslateColor Constants

	Picture Object Constants
	Constant Value Description
	PaperBin Property (continued)
	PaperSize Property
	PaperSize Property (continued)

	RasterOp Constants
	Constant Value Description

	RasterOp Constants (continued)
	II-1
	File Open/Save Dialog Box Flags
	Fonts Dialog Box Flags (continued)

