

PHP 7: Real World

Application Development

RGYCSM

Use new features of PHP 7 to solve practical, real-

world problems faced by PHP developers like

yourself every day.

A course in three modules

BIRMINGHAM - MUMBAI

PHP 7: Real World Application Development

Copyright © 2016 Packt Publishing

All rights reserved. No part of this course may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this course to ensure the accuracy
of the information presented. However, the information contained in this course
is sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this course.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this course by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Published on: Month 2011

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78712-900-9

www.packtpub.com

http://www.packtpub.com/

Credits

Authors

Doug Bierer

Altaf Hussain

Sawrav

Reviewers

Salvatore Pappalardo

Vincenzo Provenza

Raul Mesa Ros

Tomislav Sudmak

Content Development Editor

Onkar Wani

Graphics

Abhinash Sahu

Production Coordinator

Shraddha Falebhai

Preface
PHP 7 has taken the open source community by storm, breaking records for speed,
which is, metaphorically, causing heads to turn. In its most fundamental sense,
the core engineering team has effected a major rewrite of the language but has
still managed to maintain backward compatibility to a high degree. PHP is a great
language for developing web applications. It is essentially a server-side scripting
language that is also used for general-purpose programming. PHP 7 is the latest
version, providing major backward-compatibility breaks and focusing on improved
performance and speed. This means you can maintain high traffic on your websites
with low-cost hardware and servers through a multithreading web server.

What this learning path covers
Module 1, PHP 7 Programming Cookbook, This module demonstrates intermediate
to advanced PHP techniques with a focus on PHP 7. Each recipe is designed to
solve practical, real-world problems faced by PHP developers like yourself every
day. It also cover new ways of writing PHP code made possible only in version
7. In addition, we discuss backward-compatibility breaks and give you plenty of
guidance on when and where PHP 5 code needs to be changed to produce the correct
results when running under PHP 7. This module also incorporates the latest PHP
7.x features.By the end of the module, you will be equipped with the tools and skills
required to deliver efficient applications for your websites and enterprises

[i]

Preface

Module 2, Learning PHP 7 High Performance, This module is fast-paced introduction
to PHP 7 will improve your productivity and coding skills. The concepts covered
will allow you, as a PHP programmer, to improve the performance standards of
your applications. We will introduce you to the new features in PHP 7 and then will
run through the concepts of object-oriented programming (OOP) in PHP 7. Next,
we will shed some light on how to improve your PHP 7 applications’ performance
and database performance. Through this module, you will be able to improve the
performance of your programs using the various benchmarking tools discussed in
the module. At the end,module discusses some best practices in PHP programming
to help you improve the quality of your code

Module 3, Modular Programming with PHP 7, This module will introduce you to
modular design technique which will help you build readable, manageable, reusable,
and more efficient codes. PHP 7, which is a popular open source scripting language,
is used to build modular functions for your software. With this module, you will
gain a deep insight into the modular programming paradigm and how to achieve
modularity in your PHP code.
This module will start with a brief introduction to the new features of PHP 7, some
of which open a door to new concepts used in modular development. With design
patterns being at the heart of all modular PHP code, you will learn about the GoF
design patterns and how to apply them. You will see how to write code that is easy
to maintain and extend over time with the help of the SOLID design principles.
Throughout the rest of the module , you will build different working modules of a
modern web shop application using the Symfony framework, which will give you a
deep understanding of modular application development using PHP 7.

What you need for this learning path
Module 1:

All you need, to successfully implement the recipes presented in this module
will be a computer, 100MB of extra disk space, and a text or code editor (not a
word processor!). The first chapter will cover how to set up a PHP 7 development
environment. Having a web server is optional as PHP 7 includes a development web
server. An Internet connection is not required, but it might be useful to download
code (such as the set of PSR-7 interfaces), and review PHP 7.x documentation.

[ii]

 Preface

Module 2:

Any hardware specification that is compliant to run the latest versions of the
following software should be enough to get through this module:

• Operating systems: Debian or Ubuntu

• Software: NGINX, PHP 7, MySQL, PerconaDB, Redis, Memcached, Xdebug,

Apache JMeter, ApacheBench, Siege, and Git

Module 3:

In order to successfully run all the examples provided in this book, you will need
either your own web server or a third-party web-hosting solution. The high-level
technology stack includes PHP 7.0 or greater, Apache/Nginx, and MySQL.
The Symfony framework itself comes with a detailed list of system requirements that
can be found at http://symfony.com/doc/current/reference/
requirements.html. This book assumes that the reader is familiar with setting up the
complete development environment.

Who this learning path is for
If you are an aspiring web developer, mobile developer, or back-end programmer,
who has basic experience in PHP programming and wants to develop performance-
critical applications, then this course is for you. It will take your PHP programming
skills to next level

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this course—what you liked or disliked. Reader feedback is important for us as it
helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the course’s title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a course, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt course, we have a number of things to
help you to get the most from your purchase.

[iii]

http://symfony.com/doc/current/reference/
mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Preface

Downloading the example code
You can download the example code files for this course from your account at
http://www.packtpub.com. If you purchased this course elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

You can download the code files by following these steps:

1. Log in or register to our website using your e-mail address and password.

2. Hover the mouse pointer on the SUPPORT tab at the top.

3. Click on Code Downloads & Errata.

4. Enter the name of the course in the Search box.

5. Select the course for which you’re looking to download the code files.

6. Choose from the drop-down menu where you purchased this course from.

7. Click on Code Download.

You can also download the code files by clicking on the Code Files button on the
course’s webpage at the Packt Publishing website. This page can be accessed by
entering the course’s name in the Search box. Please note that you need to be logged
in to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

• WinRAR / 7-Zip for Windows

• Zipeg / iZip / UnRarX for Mac

• 7-Zip / PeaZip for Linux

The code bundle for the course is also hosted on GitHub at https://github.com/
PacktPublishing/PHP-7-Real-World-Application-Development We also have
other code bundles from our rich catalog of books and videos available at https://
github.com/PacktPublishing/. Check them out!

[iv]

http://www.packtpub.com/
http://www.packtpub.com/support

 Preface

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our courses—maybe a mistake in the text
or the code—we would be grateful if you could report this to us. By doing so, you
can save other readers from frustration and help us improve subsequent versions
of this course. If you find any errata, please report them by visiting http://www.
packtpub.com/submit-errata, selecting your course, clicking on the Errata
Submission Form link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata will be uploaded to our
website or added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the course in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this course, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[v]

http://www/
http://www.packtpub.com/books/
mailto:copyright@packtpub.com
mailto:questions@packtpub.com

Module 1: PHP 7 Programming Cookbook

Chapter 1: Building a Foundation

3

Introduction 3

PHP 7 installation considerations 3

Using the built-in PHP web server 8

Defining a test MySQL database 9

Installing PHPUnit 10

Implementing class autoloading 11

Hoovering a website 14

Building a deep web scanner 17

Creating a PHP 5 to PHP 7 code converter 20

Chapter 2: Using PHP 7 High Performance Features 27

Introduction 27

Understanding the abstract syntax tree 28

Understanding differences in parsing 32

Understanding differences in foreach() handling 34

Improving performance using PHP 7 enhancements 38

Iterating through a massive file 43

Uploading a spreadsheet into a database 46

Recursive directory iterator 49

Chapter 3: Working with PHP Functions 55

Introduction 55

Developing functions 56

Hinting at data types 61

Using return value data typing 65

Using iterators 69

Writing your own iterator using generators 77

i

Table of Contents

Chapter 4: Working with PHP Object-Oriented Programming 83

Introduction 83

Developing classes 84

Extending classes 90

Using static properties and methods 98

Using namespaces 102

Defining visibility 107

Using interfaces 111

Using traits 117

Implementing anonymous classes 124

Chapter 5: Interacting with a Database 131

Introduction 131

Using PDO to connect to a database 132

Building an OOP SQL query builder 145

Handling pagination 148

Defining entities to match database tables 152

Tying entity classes to RDBMS queries 157

Embedding secondary lookups into query results 166

Implementing jQuery DataTables PHP lookups 170

Chapter 6: Building Scalable Websites 175

Introduction 175

Creating a generic form element generator 176

Creating an HTML radio element generator 183

Creating an HTML select element generator 187

Implementing a form factory 192

Chaining $_POST filters 198

Chaining $_POST validators 212

Tying validation to a form 217

Chapter 7: Accessing Web Services 225

Introduction 225

Converting between PHP and XML 225

Creating a simple REST client 229

Creating a simple REST server 239

Creating a simple SOAP client 249

Creating a simple SOAP server 252

Chapter 8: Working with Date/Time and International Aspects 259

Introduction 259

Using emoticons or emoji in a view script 260

Converting complex characters 262

ii

Table of Contents

Getting the locale from browser data 265

Formatting numbers by locale 268

Handling currency by locale 272

Formatting date/time by locale 278

Creating an HTML international calendar generator 282

Building a recurring events generator 291

Handling translation without gettext 299

Chapter 9: Developing Middleware 309

Introduction 309

Authenticating with middleware 310

Using middleware to implement access control 316

Improving performance using the cache 325

Implementing routing 338

Making inter-framework system calls 344

Using middleware to cross languages 352

Chapter 10: Looking at Advanced Algorithms 357

Introduction 357

Using getters and setters 358

Implementing a linked list 364

Building a bubble sort 370

Implementing a stack 373

Building a binary search class 375

Implementing a search engine 379

Displaying a multi-dimensional array and accumulating totals 386

Chapter 11: Implementing Software Design Patterns 393

Introduction 393

Creating an array to object hydrator 394

Building an object to array hydrator 397

Implementing a strategy pattern 399

Defining a mapper 409

Implementing object-relational mapping 420

Implementing the Pub/Sub design pattern 431

Chapter 12: Improving Web Security 437

Introduction 437

Filtering $_POST data 438

Validating $_POST data 442

Safeguarding the PHP session 445

Securing forms with a token 451

Building a secure password generator 457

iii

Table of Contents

Safeguarding forms with a CAPTCHA 463

Encrypting/decrypting without mcrypt 477

Chapter 13: Best Practices, Testing, and Debugging 485

Introduction 485

Using Traits and Interfaces 486

Universal exception handler 491

Universal error handler 495

Writing a simple test 499

Writing a test suite 517

Generating fake test data 520

Customizing sessions using session_start parameters 533

Chapter 14: Defining PSR-7 Classes 539

Introduction 539

Implementing PSR-7 value object classes 539

Developing a PSR-7 Request class 559

Defining a PSR-7 Response class 574

Module 2: Learning PHP 7 High Performance

Chapter 1: Setting Up the Environment 583

Setting up Windows 584

Setting up Debian or Ubuntu 586

Setting up CentOS 591

Setting up Vagrant 595

Summary 597

Chapter 2: New Features in PHP 7 599

OOP features 600

New operators 615

Uniform variable syntax 619

Miscellaneous features and changes 620

Summary 622

Chapter 3: Improving PHP 7 Application Performance 623

NGINX and Apache 623

HTTP server optimization 625

HTTP persistent connection 626

Content Delivery Network (CDN) 634

CSS and JavaScript optimization 636

Full page caching 644

iv

Table of Contents

Varnish 645

The infrastructure 648

Summary 654

Chapter 4: Improving Database Performance 655

The MySQL database 655

Storage engines 657

The Percona Server - a fork of MySQL 660

MySQL performance monitoring tools 661

Percona XtraDB Cluster (PXC) 669

Redis – the key-value cache store 671

Memcached key-value cache store 677

Summary 678

Chapter 5: Debugging and Profiling 679

Xdebug 679

Profiling with Xdebug 688

PHP DebugBar 689

Summary 694

Chapter 6: Stress/Load Testing PHP Applications 695

Apache JMeter 696

ApacheBench (ab) 702

Siege 704

Load testing real-world applications 706

Summary 710

Chapter 7: Best Practices in PHP Programming 711

Coding styles 712

Test-driven development (TDD) 715

Design patterns 718

Service-oriented architecture (SOA) 719

Being object-oriented and reusable always 719

PHP frameworks 720

Version control system (VCS) and Git 720

Deployment and Continuous Integration (CI) 720

Summary 722

Chapter 8: Tools to Make Life Easy 723

Composer – A dependency manager

for PHP 723

Git – A version control system 726

Grunt watch 733

Summary 736

v

Table of Contents

Chapter 9: MVC and Frameworks 737

The MVC design pattern 738

Laravel 740

Lumen 751

Apigility 751

Summary 758

Module 3: Modular Programming with PHP 7

Chapter 1: Ecosystem Overview 761

Getting ready for PHP 7 762

Summary 799

Chapter 2: GoF Design Patterns 801

Creational patterns 802

Structural patterns 809

Behavioral patterns 820

Summary 838

Chapter 3: SOLID Design Principles 839

Single responsibility principle 840

Open/closed principle 843

Liskov substitution principle 846

Interface Segregation Principle 849

Dependency inversion principle 850

Summary 851

Chapter 4: Requirement Specification for a Modular Web Shop App 853

Defining application requirements 854

Wireframing 855

Defining a technology stack 867

Summary 870

Chapter 5: Symfony at a Glance 871

Installing Symfony 871

Creating a blank project 873

Using Symfony console 875

Controller 881

Routing 882

Templates 884

Forms 887

Configuring Symfony 890

vi

 Table of Contents

The bundle system 892

Databases and Doctrine 895

Testing 897

Validation 899

Summary 901

Chapter 6: Building the Core Module 903
Requirements 903

Dependencies 904

Implementation 904

Unit testing 920

Functional testing 920

Summary 924

Chapter 7: Building the Catalog Module 925

Requirements 925

Dependencies 926

Implementation 926

Unit testing 945

Functional testing 946

Summary 948

Chapter 8: Building the Customer Module 949
Requirements 949

Dependencies 950

Implementation 950

Unit testing 969

Functional testing 971

Summary 974

Chapter 9: Building the Payment Module 975
Requirements 975

Dependencies 976

Implementation 977

Unit testing 985

Functional testing 988

Summary 991

Chapter 10: Building the Shipment Module 993
Requirements 993

Dependencies 994

Implementation 995

Unit testing 1001

vii

Table of Contents

Functional testing 1005

Summary 1007

Chapter 11: Building the Sales Module 1009

Requirements 1009

Dependencies 1011

Implementation 1011

Unit testing 1051

Functional testing 1052

Summary 1055

Chapter 12: Integrating and Distributing Modules 1057

Understanding Git 1057

Understanding GitHub 1058

Understanding Composer 1061

Understanding Packagist 1062

Summary 1067

Bibliography 1069

viii

Module 1

PHP 7 Programming Cookbook

Over 80 recipes that will take your PHP 7 web development skills to the next level!

1
Building a Foundation

In this chapter, we will cover the following topics:

f PHP 7 installation considerations

f Using the built-in PHP web server

f Defining a test MySQL database

f Installing PHPUnit

f Implementing class autoloading

f Hoovering a website

f Building a deep web scanner

f Creating a PHP 5 to PHP 7 code converter

 Introduction

This chapter is designed as a quick start that will get you up and running on PHP 7 so that you

can start implementing the recipes right away. The underlying assumption for this book is that

you already have a good knowledge of PHP and programming. Although this book will not go

into detail about the actual installation of PHP, given that PHP 7 is relatively new, we will do

our best to point out the quirks and gotchas you might encounter during a PHP 7 installation.

 PHP 7 installation considerations

There are three primary means of acquiring PHP 7:

f Downloading and installing directly from the source code

f Installing pre-compiled binaries

f Installing a *AMP package (that is, XAMPP, WAMP, LAMP, MAMP, and so on)

3

Building a Foundation

 How to do it…

The three methods are listed in order of difficulty. However, the first approach, although

tedious, will give you the most finite control over extensions and options.

Installing directly from source

In order to utilize this approach, you will need to have a C compiler available. If you are

running Windows, MinGW is a free compiler that has proven popular. It is based on the GNU

Compiler Collection (GCC) compiler provided by the GNU project. Non-free compilers include

the classic Turbo C compiler from Borland, and, of course, the compiler that is preferred

by Windows developers is Visual Studio. The latter, however, is designed mainly for C++

development, so when you compile PHP, you will need to specify C mode.

When working on an Apple Mac, the best solution is to install the Apple Developer Tools.

You can use the Xcode IDE to compile PHP 7, or run gcc from a terminal window. In a Linux

environment, from a terminal window, run gcc.

When compiling from a terminal window or command line, the normal procedure is as follows:

f configure

f make

f make test

f make install

For information on configuration options (that is, when running configure), use the help

option:

configure --help

Errors you might encounter during the configuration stage are mentioned in the following

table:

Error Fix

configure: error: xml2-

config not found. Please

check your libxml2

installation

You just need to install libxml2. For this error,
please refer to the following link:

http://superuser.com/

questions/740399/how-to-fix-php-

installation-when-xml2-config-is-

missing

configure: error: Please

reinstall readline - I

cannot find readline.h

Install libreadline-dev

4

http://superuser.com/

Chapter 1

Error Fix

configure: WARNING:

unrecognized options:

--enable-spl, --enable-

reflection, --with-libxml

Not a big deal. These options are defaults and don't

need to be included. For more details, please refer to

the following link:

http://jcutrer.com/howto/linux/how-

to-compile-php7-on-ubuntu-14-04

Installing PHP 7 from pre-compiled binaries

As the title implies, pre-compiled binaries are a set of binary files that somebody else has

kindly compiled from PHP 7 source code and has made available.

In the case of Windows, go to http://windows.php.net/. You will find a good set of tips

in the left column that pertain to which version to choose, thread safe versus non-read safe,

and so forth. You can then click on Downloads and look for the ZIP file that applies to your

environment. Once the ZIP file has been downloaded, extract the files into the folder of your

choice, add php.exe to your path, and configure PHP 7 using the php.ini file.

To install the pre-compiled binaries on a Mac OS X system, it is best to involve a package

management system. The ones recommended for PHP include the following:

f MacPorts

f Liip

f Fink

f Homebrew

In the case of Linux, the packaging system used depends on which Linux distribution you are

using. The following table, organized by Linux distribution, summarizes where to look for the

PHP 7 package.

Distribution Where to find PHP 7 Notes

Debian packages.debian.org/stable/php

repos-source.zend.com/zend-

server/early-access/php7/php-

7*DEB*

Use this command:

sudo apt-get install

php7

Alternatively, you can

use a graphical package

management tool such as

Synaptic.

Make sure you select php7

(and not php5).

5

http://jcutrer.com/howto/linux/how-
http://windows.php.net/

Building a Foundation

Distribution Where to find PHP 7 Notes

Ubuntu packages.ubuntu.com

repos-source.zend.com/zend-

server/early-access/php7/php-

7*DEB*

Use this command:

sudo apt-get install

php7

Be sure to choose the right

version of Ubuntu.

Alternatively, you can

use a graphical package

management tool such as

Synaptic.

Fedora / Red

Hat

admin.fedoraproject.org/pkgdb/

packages

repos-source.zend.com/zend-

server/early-access/php7/php-

7*RHEL*

Make sure you are the root

user:

su

Use this command:

dnf install php7

Alternatively, you can

use a graphical package

management tool such

as the GNOME Package

Manager.

OpenSUSE software.opensuse.org/package/

php7

Use this command:

yast -i php7

Alternatively, you can run

zypper, or use YaST as a

graphical tool.

Installing a *AMP package

AMP refers to Apache, MySQL, and PHP (also Perl and Python). The * refers to Linux,

Windows, Mac, and so on (that is, LAMP, WAMP, and MAMP). This approach is often the

easiest, but gives you less control over the initial PHP installation. On the other hand, you can

always modify the php.ini file and install additional extensions to customize your installation

as needed. The following table summarizes a number of popular *AMP packages:

Package Where is it found Free? Supports*

XAMPP www.apachefriends.org/download.

html

Y WML

AMPPS www.ampps.com/downloads Y WML

MAMP www.mamp.info/en Y WM

WampServer sourceforge.net/projects/

wampserver

Y W

6

http://www.apachefriends.org/download
http://www.ampps.com/downloads
http://www.mamp.info/en

Chapter 1

Package Where is it found Free? Supports*

EasyPHP www.easyphp.org Y W

Zend Server www.zend.com/en/products/zend_

server

N WML

In the preceding table, we've enlisted the *AMP packages where * is replaced by W for

Windows, M for Mac OS X, and L for Linux.

 There's more…

When you install a pre-compiled binary from a package, only core extensions are installed.

Non-core PHP extensions must be installed separately.

It's worth noting that PHP 7 installation on cloud computing platforms will often follow the

installation procedure outlined for pre-compiled binaries. Find out if your cloud environment

uses Linux, Mac, or Windows virtual machines, and then follow the appropriate procedure as

mentioned in this recipe.

It's possible that PHP 7 hasn't yet reached your favorite repository for pre-compiled binaries.

You can always install from source, or consider installing one of the *AMP packages (see the

next section). An alternative for Linux-based systems is to use the Personal Package Archive

(PPA) approach. Because PPAs have not undergone a rigorous screening process, however,

security could be a concern. A good discussion on security considerations for PPAs is found

at http://askubuntu.com/questions/35629/are-ppas-safe-to-add-to-my-

system-and-what-are-some-red-flags-to-watch-out-fo.

 See also

General installation considerations, as well as instructions for each of the three major OS

platforms (Windows, Mac OS X, and Linux), can be found at http://php.net/manual/en/

install.general.php.

The website for MinGW is http://www.mingw.org/.

Instructions on how to compile a C program using Visual Studio can be found at

https://msdn.microsoft.com/en-us/library/bb384838.

Another possible way to test PHP 7 is by using a virtual machine. Here are a couple of tools

with their links, which might prove useful:

f Vagrant: https://github.com/rlerdorf/php7dev (php7dev is a Debian 8

Vagrant image that is preconfigured for testing PHP apps and developing extensions

across many versions of PHP)

f Docker: https://hub.docker.com/r/coderstephen/php7/ (it contains a

PHP7 Docker container)

7

http://www.easyphp.org/
http://www.zend.com/en/products/zend_
http://askubuntu.com/questions/35629/are-ppas-safe-to-add-to-my-
http://php.net/manual/en/
http://www.mingw.org/

Building a Foundation

 Using the built-in PHP web server

Aside from unit testing and running PHP directly from the command line, the obvious way to

test your applications is to use a web server. For long-term projects, it would be beneficial to

develop a virtual host definition for a web server that most closely mirrors the one used by

your customer. Creating such definitions for the various web servers (that is, Apache, NGINX,

and so on) is beyond the scope of this book. Another quick and easy-to-use alternative (which

we have room to discuss here) is to use the built-in PHP 7 web server.

 How to do it…

1. To activate the PHP web server, first change to the directory that will serve as the

base for your code.

2. You then need to supply the hostname or IP address and, optionally, a port. Here is

an example you can use to run the recipes supplied with this book:

cd /path/to/recipes

php -S localhost:8080

You will see output on your screen that looks something like this:

8

Chapter 1

3. As the built-in web server continues to service requests, you will also see access

information, HTTP status codes, and request information.

4. If you need to set the web server document root to a directory other than the current

one, you can use the -t flag. The flag must then be followed by a valid directory path.

The built-in web server will treat this directory as if it were the web document root,

which is useful for security reasons. For security reasons, some frameworks, such as

Zend Framework, require that the web document root is different from where your

actual source code resides.

Here is an example using the -t flag:

php -S localhost:8080 -t source/chapter01

Here is an example of the output:

Defining a test MySQL database

For test purposes, along with the source code for the book, we've provided an SQL file with

sample data at https://github.com/dbierer/php7cookbook. The name of the

database used in the recipes for this book is php7cookbook.

9

Building a Foundation

 How to do it…

1. Define a MySQL database, php7cookbook. Also assign rights to the new database

to a user called cook with the password book. The following table summarizes these

settings:

Item Notes

Database name php7cookbook

Database user cook

Database user password book

2. Here is an example of SQL needed to create the database:

CREATE DATABASE IF NOT EXISTS dbname DEFAULT CHARACTER SET utf8

COLLATE utf8_general_ci;

CREATE USER 'user'@'%' IDENTIFIED WITH mysql_native_password;

SET PASSWORD FOR 'user'@'%' = PASSWORD('userPassword');

GRANT ALL PRIVILEGES ON dbname.* to 'user'@'%';

GRANT ALL PRIVILEGES ON dbname.* to 'user'@'localhost';

FLUSH PRIVILEGES;

3. Import the sample values into the new database. The import file, php7cookbook.

sql, is located at https://github.com/dbierer/php7cookbook/blob/

master/php7cookbook.sql.

 Installing PHPUnit

Unit testing is arguably the most popular means of testing PHP code. Most developers will

agree that a solid suite of tests is a requirement for any properly developed project. Few

developers actually write these tests. A lucky few have an independent testing group that

writes the tests for them! After months of skirmishing with the testing group, however, the

remains of the lucky few tend to grumble and complain. In any event, any book on PHP would

not be complete without at least a nod and a wink towards testing.

The place to find the latest version of PHPUnit is https://phpunit.de/. PHPUnit5.1

and above support PHP 7. Click on the link for the desired version, and you will download

a phpunit.phar file. You can then execute commands using the archive, as follows:

php phpunit.phar <command>

The phar command stands for PHP Archive. The technology is based on

tar, which itself was used in UNIX. A phar file is a collection of PHP files

that are packed together into a single file for convenience.

10

Chapter 1

 Implementing class autoloading

When developing PHP using an object-oriented programming (OOP) approach, the

recommendation is to place each class in its own file. The advantage of following this

recommendation is the ease of long-term maintenance and improved readability. The

disadvantage is that each class definition file must be included (that is, using include or its

variants). To address this issue, there is a mechanism built into the PHP language that will

autoload any class that has not already been specifically included.

 Getting ready

The minimum requirement for PHP autoloading is to define a global autoload() function.

This is a magic function called automatically by the PHP engine when a class is requested

but where said class has not been included. The name of the requested class will appear as

a parameter when autoload() is invoked (assuming that you have defined it!). If you are

using PHP namespaces, the full namespaced name of the class will be passed. Because

autoload() is a function, it must be in the global namespace; however, there are limitations

on its use. Accordingly, in this recipe, we will make use of the spl_autoload_register()

function, which gives us more flexibility.

 How to do it…

1. The class we will cover in this recipe is Application\Autoload\Loader. In order

to take advantage of the relationship between PHP namespaces and autoloading,

we name the file Loader.php and place it in the /path/to/cookbook/files/

Application/Autoload folder.

2. The first method we will present simply loads a file. We use file_exists() to

check before running require_once(). The reason for this is that if the file is not

found, require_once() will generate a fatal error that cannot be caught using PHP

7's new error handling capabilities:

protected static function loadFile($file)

{

if (file_exists($file)) {

require_once $file;

return TRUE;

}

return FALSE;

}

3. We can then test the return value of loadFile() in the calling program and loop

through a list of alternate directories before throwing an Exception if it's ultimately

unable to load the file.

11

Building a Foundation

You will notice that the methods and properties in this class are

static. This gives us greater flexibility when registering the autoloading

method, and also lets us treat the Loader class like a Singleton.

4. Next, we define the method that calls loadFile() and actually performs the logic

to locate the file based on the namespaced classname. This method derives a

filename by converting the PHP namespace separator \ into the directory separator

appropriate for this server and appending .php:

public static function autoLoad($class)

{

$success = FALSE;

$fn = str_replace('\\', DIRECTORY_SEPARATOR, $class)

. '.php';

foreach (self::$dirs as $start) {

$file = $start . DIRECTORY_SEPARATOR . $fn;

if (self::loadFile($file)) {

$success = TRUE;

break;

}

}

if (!$success) {

if (!self::loadFile(DIR

. DIRECTORY_SEPARATOR . $fn)) {

throw new \Exception(

self::UNABLE_TO_LOAD . ' ' . $class);

}

}

return $success;

}

5. Next, the method loops through an array of directories we call self::$dirs, using

each directory as a starting point for the derived filename. If not successful, as a last

resort, the method attempts to load the file from the current directory. If even that is

not successful, an Exception is thrown.

6. Next, we need a method that can add more directories to our list of directories to test.

Notice that if the value provided is an array, array_merge() is used. Otherwise, we

simply add the directory string to the self::$dirs array:

public static function addDirs($dirs)

{

if (is_array($dirs)) {

self::$dirs = array_merge(self::$dirs, $dirs);

} else {

12

Chapter 1

self::$dirs[] = $dirs;

}

}

7. Then, we come to the most important part; we need to register our autoload()

method as a Standard PHP Library (SPL) autoloader. This is accomplished using

spl_autoload_register() with the init() method:

public static function init($dirs = array())

{

if ($dirs) {

self::addDirs($dirs);

}

if (self::$registered == 0) {

spl_autoload_register(CLASS

self::$registered++;

. '::autoload');

}

}

8. At this point, we can define construct(), which calls self::init($dirs).

This allows us to also create an instance of Loader if desired:

public function construct($dirs = array())

{

self::init($dirs);

}

 How it works…

In order to use the autoloader class that we just defined, you will need to require Loader.

php. If your namespace files are located in a directory other than the current one, you should

also run Loader::init() and supply additional directory paths.

In order to make sure the autoloader works, we'll also need a test class. Here is a definition of

/path/to/cookbook/files/Application/Test/TestClass.php:

<?php

namespace Application\Test;

class TestClass

{

public function getTest()

{

return METHOD ;

}

}

13

Building a Foundation

Now create a sample chap_01_autoload_test.php code file to test the autoloader:

<?php

require DIR . '/../Application/Autoload/Loader.php';

Application\Autoload\Loader::init(DIR . '/..');

Next, get an instance of a class that has not already been loaded:

$test = new Application\Test\TestClass();

echo $test->getTest();

Finally, try to get a fake class that does not exist. Note that this will throw an error:

$fake = new Application\Test\FakeClass();

echo $fake->getTest();

 Hoovering a website

Very frequently, it is of interest to scan a website and extract information from specific tags.

This basic mechanism can be used to trawl the web in search of useful bits of information. At

other times you need to get a list of tags and the SRC attribute, or <A> tags and the

corresponding HREF attribute. The possibilities are endless.

 How to do it…

1. First of all, we need to grab the contents of the target website. At first glance it seems

that we should make a cURL request, or simply use file_get_contents().

The problem with these approaches is that we will end up having to do a massive

amount of string manipulation, most likely having to make inordinate use of the

dreaded regular expression. In order to avoid all of this, we'll simply take advantage

of an already existing PHP 7 class DOMDocument. So we create a DOMDocument

instance, setting it to UTF-8. We don't care about whitespace, and use the handy

loadHTMLFile() method to load the contents of the website into the object:

public function getContent($url)

{

if (!$this->content) {

if (stripos($url, 'http') !== 0) {

$url = 'http://' . $url;

}

$this->content = new DOMDocument('1.0', 'utf-8');

$this->content->preserveWhiteSpace = FALSE;

// @ used to suppress warnings generated from

// improperly configured web pages

@$this->content->loadHTMLFile($url);

}

14

Chapter 1

return $this->content;

}

Note that we precede the call to the loadHTMLFile() method with an @.

This is not done to obscure bad coding (!) as was often the case in PHP 5!

Rather, the @ suppresses notices generated when the parser encounters

poorly written HTML. Presumably, we could capture the notices and log

them, possibly giving our Hoover class a diagnostic capability as well.

2. Next, we need to extract the tags which are of interest. We use the

getElementsByTagName() method for this purpose. If we wish to extract

all tags, we can supply * as an argument:

public function getTags($url, $tag)

{

$count = 0;

$result = array();

$elements = $this->getContent($url)

->getElementsByTagName($tag);

foreach ($elements as $node) {

$result[$count]['value'] = trim(

preg_replace('/\s+/', ' ', $node->nodeValue));

if ($node->hasAttributes()) {

foreach ($node->attributes as $name => $attr)

{

$result[$count]['attributes'][$name] =

$attr->value;

}

}

$count++;

}

return $result;

}

3. It might also be of interest to extract certain attributes rather than tags. Accordingly,

we define another method for this purpose. In this case, we need to parse through all

tags and use getAttribute(). You'll notice that there is a parameter for the DNS

domain. We've added this in order to keep the scan within the same domain (if you're

building a web tree, for example):

public function getAttribute($url, $attr, $domain = NULL)

{

$result = array();

$elements = $this->getContent($url)

->getElementsByTagName('*');

foreach ($elements as $node) {

15

Building a Foundation

if ($node->hasAttribute($attr)) {

$value = $node->getAttribute($attr);

if ($domain) {

if (stripos($value, $domain) !== FALSE) {

$result[] = trim($value);

}

} else {

$result[] = trim($value);

}

}

}

return $result;

}

 How it works…

In order to use the new Hoover class, initialize the autoloader (described previously) and

create an instance of the Hoover class. You can then run the Hoover::getTags() method

to produce an array of tags from the URL you specify as an argument.

Here is a block of code from chap_01_vacuuming_website.php that uses the Hoover

class to scan the O'Reilly website for <A> tags:

<?php

// modify as needed

define('DEFAULT_URL', 'http://oreilly.com/');

define('DEFAULT_TAG', 'a');

require DIR . '/../Application/Autoload/Loader.php';

Application\Autoload\Loader::init(DIR . '/..');

// get "vacuum" class

$vac = new Application\Web\Hoover();

// NOTE: the PHP 7 null coalesce operator is used

$url = strip_tags($_GET['url'] ?? DEFAULT_URL);

$tag = strip_tags($_GET['tag'] ?? DEFAULT_TAG);

echo 'Dump of Tags: ' . PHP_EOL;

var_dump($vac->getTags($url, $tag));

16

http://oreilly.com/%27)%3B

Chapter 1

The output will look something like this:

 See also

For more information on DOM, see the PHP reference page at http://php.net/manual/

en/class.domdocument.php.

 Building a deep web scanner

Sometimes you need to scan a website, but go one level deeper. For example, you want to

build a web tree diagram of a website. This can be accomplished by looking for all <A> tags

and following the HREF attributes to the next web page. Once you have acquired the child

pages, you can then continue scanning in order to complete the tree.

17

http://php.net/manual/

Building a Foundation

 How to do it…

1. A core component of a deep web scanner is a basic Hoover class, as described

previously. The basic procedure presented in this recipe is to scan the target website

and hoover up all the HREF attributes. For this purpose, we define a Application\

Web\Deep class. We add a property that represents the DNS domain:

namespace Application\Web;

class Deep

{

protected $domain;

2. Next, we define a method that will hoover the tags for each website represented in

the scan list. In order to prevent the scanner from trawling the entire World Wide

Web (WWW), we've limited the scan to the target domain. The reason why yield

from has been added is because we need to yield the entire array produced by

Hoover::getTags(). The yield from syntax allows us to treat the array as a

sub-generator:

public function scan($url, $tag)

{

$vac = new Hoover();

$scan = $vac->getAttribute($url, 'href',

$this->getDomain($url));

$result = array();

foreach ($scan as $subSite) {

yield from $vac->getTags($subSite, $tag);

}

return count($scan);

}

The use of yield from turns the scan() method into a PHP 7

delegating generator. Normally, you would be inclined to store the results

of the scan into an array. The problem, in this case, is that the amount

 of information retrieved could potentially be massive. Thus, it's better to
immediately yield the results in order to conserve memory and to produce
immediate results. Otherwise, there would be a lengthy wait, which would

probably be followed by an out of memory error.

3. In order to keep within the same domain, we need a method that will return the

domain from the URL. We use the convenient parse_url() function for this

purpose:

public function getDomain($url)

{

if (!$this->domain) {

18

Chapter 1

$this->domain = parse_url($url, PHP_URL_HOST);

}

return $this->domain;

}

 How it works…

First of all, go ahead and define the Application\Web\Deep class defined previously,

as well as the Application\Web\Hoover class defined in the previous recipe.

Next, define a block of code from chap_01_deep_scan_website.php that sets up

autoloading (as described earlier in this chapter):

<?php

// modify as needed

define('DEFAULT_URL', 'unlikelysource.com');

define('DEFAULT_TAG', 'img');

require DIR . '/../../Application/Autoload/Loader.php';

Application\Autoload\Loader::init(DIR

Next, get an instance of our new class:

$deep = new Application\Web\Deep();

. '/../..');

At this point, you can retrieve URL and tag information from URL parameters. The PHP 7 null

coalesce operator is useful for establishing fallback values:

$url = strip_tags($_GET['url'] ?? DEFAULT_URL);

$tag = strip_tags($_GET['tag'] ?? DEFAULT_TAG);

Some simple HTML will display results:

foreach ($deep->scan($url, $tag) as $item) {

$src = $item['attributes']['src'] ?? NULL;

if ($src && (stripos($src, 'png') || stripos($src, 'jpg'))) {

printf('
', $src);

}

}

 See also

For more information on generators and yield from, please see the article at

http://php.net/manual/en/language.generators.syntax.php.

19

http://php.net/manual/en/language.generators.syntax.php

Building a Foundation

 Creating a PHP 5 to PHP 7 code converter

For the most part, PHP 5.x code can run unchanged on PHP 7. There are a few changes,

however, that are classified as backwards incompatible. What this means is that if your PHP

5 code is written in a certain way, or uses functions that have been removed, your code will

break, and you'll have a nasty error on your hands.

 Getting ready

The PHP 5 to PHP 7 Code Converter does two things:

f Scans your code file and converts PHP 5 functionality that has been removed to its

equivalent in PHP 7

f Adds comments with // WARNING where changes in language usage have occurred,

but where a re-write is not possible

Please note that after running the converter, your code is not guaranteed

to work in PHP 7. You will still have to review the // WARNING tags added.

At the least, this recipe will give you a good head start converting your PHP

5 code to work in PHP 7.

The core of this recipe is the new PHP 7 preg_replace_callback_array() function.

What this amazing function allows you to do is to present an array of regular expressions

as keys, with the value representing an independent callback. You can then pass the string

through a series of transformations. Not only that, the subject of the array of callbacks can

itself be an array.

 How to do it…

1. In a new class Application\Parse\Convert, we begin with a scan() method,

which accepts a filename as an argument. It checks to see if the file exists. If so, it

calls the PHP file() function, which loads the file into an array, with each array

element representing one line:

public function scan($filename)

{

if (!file_exists($filename)) {

throw new Exception(

self::EXCEPTION_FILE_NOT_EXISTS);

}

$contents = file($filename);

echo 'Processing: ' . $filename . PHP_EOL;

$result = preg_replace_callback_array([

20

Chapter 1

2. Next, we start passing a series of key/value pairs. The key is a regular expression,

which is processed against the string. Any matches are passed to the callback, which

is represented as the value part of the key/value pair. We check for opening and

closing tags that have been removed from PHP 7:

// replace no-longer-supported opening tags

'!^\<\%(\n|)!' =>

function ($match) {

return '<?php' . $match[1];

},

// replace no-longer-supported opening tags

'!^\<\%=(\n|)!' =>

function ($match) {

return '<?php echo ' . $match[1];

},

// replace no-longer-supported closing tag

'!\%\>!' =>

function ($match) {

return '?>';

},

3. Next is a series of warnings when certain operations are detected and there is a

potential code-break between how they're handled in PHP 5 versus PHP 7. In all these

cases, the code is not re-written. Instead, an inline comment with the word WARNING

is added:

// changes in how $$xxx interpretation is handled

'!(.*?)\$\$!' =>

function ($match) {

return '// WARNING: variable interpolation

. ' now occurs left-to-right' . PHP_EOL

. '// see: http://php.net/manual/en/'

. '// migration70.incompatible.php'

. $match[0];

},

// changes in how the list() operator is handled

'!(.*?)list(\s*?)?\(!' =>

function ($match) {

return '// WARNING: changes have been made '

. 'in list() operator handling.'

. 'See: http://php.net/manual/en/'

. 'migration70.incompatible.php'

. $match[0];

21

http://php.net/manual/en/%27
http://php.net/manual/en/%27

Building a Foundation

},

// instances of \u{

'!(.*?)\\\u\{!' =>

function ($match) {

return '// WARNING: \\u{xxx} is now considered '

. 'unicode escape syntax' . PHP_EOL

. '// see: http://php.net/manual/en/'

. 'migration70.new-features.php'

. '#migration70.new-features.unicode-'

. 'codepoint-escape-syntax' . PHP_EOL

. $match[0];

},

// relying upon set_error_handler()

'!(.*?)set_error_handler(\s*?)?.*\(!' =>

function ($match) {

return '// WARNING: might not '

. 'catch all errors'

. '// see: http://php.net/manual/en/'

. '// language.errors.php7.php'

. $match[0];

},

// session_set_save_handler(xxx)

'!(.*?)session_set_save_handler(\s*?)?\((.*?)\)!' =>

function ($match) {

if (isset($match[3])) {

return '// WARNING: a bug introduced in'

. 'PHP 5.4 which '

. 'affects the handler assigned by '

. 'session_set_save_handler() and '

. 'where ignore_user_abort() is TRUE

. 'has been fixed in PHP 7.'

. 'This could potentially break '

. 'your code under '

. 'certain circumstances.' . PHP_EOL

. 'See: http://php.net/manual/en/'

. 'migration70.incompatible.php'

. $match[0];

} else {

return $match[0];

}

},

22

http://php.net/manual/en/%27
http://php.net/manual/en/%27
http://php.net/manual/en/%27

Chapter 1

4. Any attempts to use << or >> with a negative operator, or beyond 64, is wrapped in a

try { xxx } catch() { xxx } block, looking for an ArithmeticError to be

thrown:

// wraps bit shift operations in try / catch

'!^(.*?)(\d+\s*(\<\<|\>\>)\s*-?\d+)(.*?)$!' =>

function ($match) {

return '// WARNING: negative and '

. 'out-of-range bitwise '

. 'shift operations will now

. 'throw an ArithmeticError' . PHP_EOL

. 'See: http://php.net/manual/en/'

. 'migration70.incompatible.php'

. 'try {' . PHP_EOL

. "\t" . $match[0] . PHP_EOL

. '} catch (\\ArithmeticError $e) {'

. "\t" . 'error_log("File:"

. $e->getFile()

. " Message:" . $e->getMessage());'

. '}' . PHP_EOL;

},

PHP 7 has changed how errors are handled. In some cases, errors are

moved into a similar classification as exceptions, and can be caught!

 Both the Error and the Exception class implement the Throwable
interface. If you want to catch either an Error or an Exception, catch

Throwable.

5. Next, the converter rewrites any usage of call_user_method*(), which has

been removed in PHP 7. These are replaced with the equivalent using call_user_

func*():

// replaces "call_user_method()" with

// "call_user_func()"

'!call_user_method\((.*?),(.*?)(,.*?)\)(\b|;)!' =>

function ($match) {

$params = $match[3] ?? '';

return '// WARNING: call_user_method() has '

. 'been removed from PHP 7' . PHP_EOL

. 'call_user_func(['. trim($match[2]) . ','

. trim($match[1]) . ']' . $params . ');';

},

// replaces "call_user_method_array()"

// with "call_user_func_array()"

'!call_user_method_array\((.*?),(.*?),(.*?)\)(\b|;)!' =>

23

http://php.net/manual/en/%27

Building a Foundation

function ($match) {

return '// WARNING: call_user_method_array()'

. 'has been removed from PHP 7'

. PHP_EOL

. 'call_user_func_array(['

. trim($match[2]) . ','

. trim($match[1]) . '], '

. $match[3] . ');';

},

6. Finally, any attempt to use preg_replace() with the /e modifier is rewritten using

a preg_replace_callback():

'!^(.*?)preg_replace.*?/e(.*?)$!' =>

function ($match) {

$last = strrchr($match[2], ',');

$arg2 = substr($match[2], 2, -1 * (strlen($last)));

$arg1 = substr($match[0],

strlen($match[1]) + 12,

-1 * (strlen($arg2) + strlen($last)));

$arg1 = trim($arg1, '(');

$arg1 = str_replace('/e', '/', $arg1);

$arg3 = '// WARNING: preg_replace() "/e" modifier

. 'has been removed from PHP 7'

. PHP_EOL

. $match[1]

. 'preg_replace_callback('

. $arg1

. 'function ($m) { return '

. str_replace('$1','$m', $match[1])

. trim($arg2, '"\'') . '; }, '

. trim($last, ',');

return str_replace('$1', '$m', $arg3);

},

// end array

],

// this is the target of the transformations

$contents

);

// return the result as a string

return implode('', $result);

}

24

 How it works…

Chapter 1

To use the converter, run the following code from the command line. You'll need to supply the

filename of the PHP 5 code to be scanned as an argument.

This block of code, chap_01_php5_to_php7_code_converter.php, run from the

command line, calls the converter:

<?php

// get filename to scan from command line

$filename = $argv[1] ?? '';

if (!$filename) {

echo 'No filename provided' . PHP_EOL;

echo 'Usage: ' . PHP_EOL;

echo FILE

exit;

}

. ' <filename>' . PHP_EOL;

// setup class autoloading

require DIR . '/../Application/Autoload/Loader.php';

// add current directory to the path

Application\Autoload\Loader::init(DIR

. '/..');

// get "deep scan" class

$convert = new Application\Parse\Convert();

echo $convert->scan($filename);

echo PHP_EOL;

 See also

For more information on backwards incompatible changes, please refer to http://php.

net/manual/en/migration70.incompatible.php.

25

http://php/

2
Using PHP 7 High

Performance Features

In this chapter we will discuss and understand the syntax differences between PHP 5 and

PHP 7, featuring the following recipes:

f Understanding the abstract syntax tree

f Understanding differences in parsing

f Understanding differences in foreach() handling

f Improving performance using PHP 7 enhancements

f Iterating through a massive file

f Uploading a spreadsheet into a database

f Recursive directory iterator

 Introduction

In this chapter we will move directly into PHP 7, presenting recipes that take advantage of

new high performance features. First, however, we will present a series of smaller recipes

that serve to illustrate the differences in how PHP 7 handles parameter parsing, syntax, a

foreach() loop, and other enhancements. Before we go into depth in this chapter, let's

discuss some basic differences between PHP 5 and PHP 7.

PHP 7 introduced a new layer referred to as the Abstract Syntax Tree (AST), which effectively

decouples the parsing process from the pseudo-compile process. Although the new layer has

little or no impact on performance, it gives the language a new uniformity of syntax, which was

not possible previously.

27

Using PHP 7 High Performance Features

Another benefit of AST is the process of dereferencing. Dereferencing, simply put, refers to

the ability to immediately acquire a property from, or run a method of, an object, immediately

access an array element, and immediately execute a callback. In PHP 5 such support was

inconsistent and incomplete. To execute a callback, for example, often you would first need

to assign the callback or anonymous function to a variable, and then execute it. In PHP 7 you

can execute it immediately.

 Understanding the abstract syntax tree

As a developer, it might be of interest for you to be free from certain syntax restrictions

imposed in PHP 5 and earlier. Aside from the uniformity of the syntax mentioned previously,

where you'll see the most improvement in syntax is the ability to call any return value, which

is callable by simply appending an extra set of parentheses. Also, you'll be able to directly

access any array element when the return value is an array.

 How to do it…

1. Any function or method that returns a callback can be immediately executed by

simply appending parentheses () (with or without parameters). An element can

be immediately dereferenced from any function or method that returns an array by

simply indicating the element using square brackets [];. In the short (but trivial)

example shown next, the function test() returns an array. The array contains six

anonymous functions. $a has a value of $t. $$a is interpreted as $test:

function test()

{

return [

1 => function () { return [

1 => function ($a) { return 'Level 1/1:' . ++$a; },

2 => function ($a) { return 'Level 1/2:' . ++$a; },

];},

2 => function () { return [

1 => function ($a) { return 'Level 2/1:' . ++$a; },

2 => function ($a) { return 'Level 2/2:' . ++$a; },

];}

];

}

$a = 't';

$t = 'test';

echo $$a()[1]()[2](100);

28

Chapter 2

2. AST allows us to issue the echo $$a()[1]()[2](100) command. This is parsed

left-to-right, which executes as follows:

 $$a() interprets as test(), which returns an array

 [1] dereferences array element 1, which returns a callback

 () executes this callback, which returns an array of two elements

 [2] dereferences array element 2, which returns a callback

 (100) executes this callback, supplying a value of 100, which returns

Level 1/2:101

Such a statement is not possible in PHP 5: a parse error

would be returned.

3. The following is a more substantive example that takes advantage of AST syntax to

define a data filtering and validating class. First of all, we define the Application\

Web\Securityclass. In the constructor, we build and define two arrays. The first

array consists of filter callbacks. The second array has validation callbacks:

public function construct()

{

$this->filter = [

'striptags' => function ($a) { return strip_tags($a); },

'digits' => function ($a) { return preg_replace(

'/[^0-9]/', '', $a); },

'alpha' => function ($a) { return preg_replace(

'/[^A-Z]/i', '', $a); }

];

$this->validate = [

'alnum' => function ($a) { return ctype_alnum($a); },

'digits' => function ($a) { return ctype_digit($a); },

'alpha' => function ($a) { return ctype_alpha($a); }

];

}

4. We want to be able to call this functionality in a developer-friendly manner. Thus,

if we want to filter digits, then it would be ideal to run a command such as this:

$security->filterDigits($item));

5. To accomplish this we define the magic method call(), which gives us access to

non-existent methods:

public function call($method, $params)

{

29

Using PHP 7 High Performance Features

preg_match('/^(filter|validate)(.*?)$/i', $method, $matches);

$prefix = $matches[1] ?? '';

$function = strtolower($matches[2] ?? '');

if ($prefix && $function) {

return $this->$prefix[$function]($params[0]);

}

return $value;

}

We use preg_match() to match the $method param against filter or validate. The

second sub-match will then be converted into an array key in either $this->filter or

$this->validate. If both sub-patterns produce a sub-match, we assign the first sub-match

to $prefix, and the second sub-match $function. These end up as variable parameters

when executing the appropriate callback.

Don't go too crazy with this stuff!

As you revel in your new found freedom of expression, made possible by

AST, be sure to keep in mind that the code you end up writing could, in

the long run, be extremely cryptic. This will ultimately cause long-term

maintenance problems.

 How it works…

First of all, we create a sample file, chap_02_web_filtering_ast_example.php, to

take advantage of the autoloading class defined in Chapter 1, Building the Foundation, to

obtain an instance of Application\Web\Security:

require DIR . '/../Application/Autoload/Loader.php';

Application\Autoload\Loader::init(DIR . '/..');

$security = new Application\Web\Security();

Next, we define a block of test data:

$data = [

'LotsofTags',

12345,

'This is a string',

'String with number 12345',

];

Finally, we call each filter and validator for each item of test data:

foreach ($data as $item) {

echo 'ORIGINAL: ' . $item . PHP_EOL;

echo 'FILTERING' . PHP_EOL;

30

Chapter 2

printf('%12s : %s' . PHP_EOL,'Strip Tags',

$security->filterStripTags($item));

printf('%12s : %s' . PHP_EOL, 'Digits',

$security->filterDigits($item));

printf('%12s : %s' . PHP_EOL, 'Alpha',

$security->filterAlpha($item));

echo 'VALIDATORS' . PHP_EOL;

printf('%12s : %s' . PHP_EOL, 'Alnum',

($security->validateAlnum($item)) ? 'T' : 'F');

printf('%12s : %s' . PHP_EOL, 'Digits',

($security->validateDigits($item)) ? 'T' : 'F');

printf('%12s : %s' . PHP_EOL, 'Alpha',

($security->validateAlpha($item)) ? 'T' : 'F');

}

Here is the output of some input strings:

31

Using PHP 7 High Performance Features

 See also

For more information on AST, please consult the RFC that addresses the Abstract Syntax

Tree, which can be viewed at https://wiki.php.net/rfc/abstract_syntax_tree.

 Understanding differences in parsing

In PHP 5, expressions on the right side of an assignment operation were parsed right-to-left.

In PHP 7, parsing is consistently left-to-right.

 How to do it…

1. A variable-variable is a way of indirectly referencing a value. In the following example,

first $$foo is interpreted as ${$bar}. The final return value is thus the value of

$bar instead of the direct value of $foo (which would be bar):

$foo = 'bar';

$bar = 'baz';

echo $$foo; // returns 'baz';

2. In the next example we have a variable-variable $$foo, which references a multi-

dimensional array with a bar key and a baz sub-key:

$foo = 'bar';

$bar = ['bar' => ['baz' => 'bat']];

// returns 'bat'

echo $$foo['bar']['baz'];

3. In PHP 5, parsing occurs right-to-left, which means the PHP engine would be looking

for an $foo array, with a bar key and a baz. sub-key The return value of the

element would then be interpreted to obtain the final value ${$foo['bar']

['baz']}.

4. In PHP 7, however, parsing is consistently left-to-right, which means that $foo is

interpreted first ($$foo)['bar']['baz'].

5. In the next example you can see that $foo->$bar['bada'] is interpreted quite

differently in PHP 5, compared with PHP 7. In the following example, PHP 5 would

first interpret $bar['bada'], and reference this return value against a $foo

object instance. In PHP 7, on the other hand, parsing is consistently left-to-

right, which means that $foo->$bar is interpreted first, and expects an array with

a bada element. You will also note, incidentally, that this example uses the PHP 7

anonymous class feature:

// PHP 5: $foo->{$bar['bada']}

// PHP 7: ($foo->$bar)['bada']

$bar = 'baz';

// $foo = new class

32

Chapter 2

{

public $baz = ['bada' => 'boom'];

};

// returns 'boom'

echo $foo->$bar['bada'];

6. The last example is the same as the one immediately above, except that the return

value is expected to be a callback, which is then immediately executed as follows:

// PHP 5: $foo->{$bar['bada']}()

// PHP 7: ($foo->$bar)['bada']()

$bar = 'baz';

// NOTE: this example uses the new PHP 7 anonymous class feature

$foo = new class

{

public function construct()

{

$this->baz = ['bada' => function () { return 'boom'; }];

}

};

// returns 'boom'

echo $foo->$bar['bada']();

 How it works…

Place the code examples illustrated in 1 and 2 into a single PHP file that you can call

chap_02_understanding_diffs_in_parsing.php. Execute the script first using

PHP 5, and you will notice that a series of errors will result, as follows:

33

Using PHP 7 High Performance Features

The reason for the errors is that PHP 5 parses inconsistently, and arrives at the wrong

conclusion regarding the state of the variable variables requested (as previously mentioned).

Now you can go ahead and add the remaining examples, as shown in steps 5 and 6. If you

then run this script in PHP 7, the results described will appear, as shown here:

 See also

For more information on parsing, please consult the RFC, which addresses Uniform Variable

Syntax, and can be viewed at https://wiki.php.net/rfc/uniform_variable_

syntax.

Understanding differences in foreach()

 handling

In certain relatively obscure circumstances, the behavior of code inside a foreach()

loop will vary between PHP 5 and PHP 7. First of all, there have been massive internal

improvements, which means that in terms of sheer speed, processing inside the foreach()

loop will be much faster running under PHP 7, compared with PHP 5. Problems that are

noticed in PHP 5 include the use of current(), and unset() on the array inside the

foreach() loop. Other problems have to do with passing values by reference while

manipulating the array itself.

 How to do it…

1. Consider the following block of code:

$a = [1, 2, 3];

foreach ($a as $v) {

printf("%2d\n", $v);

unset($a[1]);

}

34

Chapter 2

2. In both PHP 5 and 7, the output would appear as follows:

1

2

3

3. If you add an assignment before the loop, however, the behavior changes:

$a = [1, 2, 3];

$b = &$a;

foreach ($a as $v) {

printf("%2d\n", $v);

unset($a[1]);

}

4. Compare the output of PHP 5 and 7:

PHP 5 PHP 7

1

3

1

2

3

5. Working with functions that reference the internal array pointer also caused

inconsistent behavior in PHP 5. Take the following code example:

$a = [1,2,3];

foreach($a as &$v) {

printf("%2d - %2d\n", $v, current($a));

}

Every array has an internal pointer to its current element starting

from 1, current() returns the current element in an array.

6. Notice that the output running in PHP 7 is normalized and consistent:

PHP 5 PHP 7

1 - 2

2 - 3

3 - 0

1 - 1

2 - 1

3 - 1

35

Using PHP 7 High Performance Features

7. Adding a new element inside the foreach() loop, once the array iteration by

reference is complete, is also problematic in PHP 5. This behavior has been made

consistent in PHP 7. The following code example demonstrates this:

$a = [1];

foreach($a as &$v) {

printf("%2d -\n", $v);

$a[1]=2;

}

8. We will observe the following output:

PHP 5 PHP 7

1 - 1 -

2 -

9. Another example of bad PHP 5 behavior addressed in PHP 7, during array iteration

by reference, is the use of functions that modify the array, such as array_push(),

array_pop(), array_shift(), and array_unshift().

Have a look at this example:

$a=[1,2,3,4];

foreach($a as &$v) {

echo "$v\n";

array_pop($a);

}

10. You will observe the following output:

PHP 5 PHP 7

1

2

1

1

1

2

11. Finally, we have a case where you are iterating through an array by reference, with a

nested foreach() loop, which itself iterates on the same array by reference. In PHP

5 this construct simply did not work. In PHP 7 this has been fixed. The following block

of code demonstrates this behavior:

$a = [0, 1, 2, 3];

foreach ($a as &$x) {

foreach ($a as &$y) {

echo "$x - $y\n";

if ($x == 0 && $y == 1) {

unset($a[1]);

36

Chapter 2

unset($a[2]);

}

}

}

12. And here is the output:

PHP 5 PHP 7

0 - 0

0 - 1

0 - 3

0 - 0

0 - 1

0 - 3

3 - 0

3 -3

 How it works…

Add these code examples to a single PHP file, chap_02_foreach.php. Run the script under

PHP 5 from the command line. The expected output is as follows:

37

Using PHP 7 High Performance Features

Run the same script under PHP 7 and notice the difference:

 See also

For more information, consult the RFC addressing this issue, which was accepted. A write-up

on this RFC can be found at: https://wiki.php.net/rfc/php7_foreach.

Improving performance using PHP 7

 enhancements

One trend that developers are taking advantage of is the use of anonymous functions. One

classic problem, when dealing with anonymous functions, is to write them in such a way that

any object can be bound to $this and the function will still work. The approach used in

PHP 5 code is to use bindTo(). In PHP 7, a new method, call(), was added, which offers

similar functionality, but vastly improved performance.

 How to do it…

To take advantage of call(), execute an anonymous function in a lengthy loop. In this

example, we will demonstrate an anonymous function, that scans through a log file, identifying

IP addresses sorted by how frequently they appear:

38

Chapter 2

1. First, we define a Application\Web\Access class. In the constructor,

we accept a filename as an argument. The log file is opened as an SplFileObject

and assigned to $this->log:

Namespace Application\Web;

use Exception;

use SplFileObject;

class Access

{

const ERROR_UNABLE = 'ERROR: unable to open file';

protected $log;

public $frequency = array();

public function construct($filename)

{

if (!file_exists($filename)) {

$message = METHOD . ' : ' . self::ERROR_UNABLE . PHP_EOL;

$message .= strip_tags($filename) . PHP_EOL;

throw new Exception($message);

}

$this->log = new SplFileObject($filename, 'r');

}

2. Next, we define a generator that iterates through the file, line by line:

public function fileIteratorByLine()

{

$count = 0;

while (!$this->log->eof()) {

yield $this->log->fgets();

$count++;

}

return $count;

}

3. Finally, we define a method that looks for, and extracts as a sub-match, an IP

address:

public function getIp($line)

{

preg_match('/(\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3})/',

$line, $match);

return $match[1] ?? '';

}

}

39

Using PHP 7 High Performance Features

 How it works…

First of all, we define a calling program, chap_02_performance_using_php7_

enchancement_call.php, that takes advantage of the autoloading class defined in

Chapter 1 , Building a Foundation, to obtain an instance of Application\Web\Access:

define('LOG_FILES', '/var/log/apache2/*access*.log');

require DIR . '/../Application/Autoload/Loader.php';

Application\Autoload\Loader::init(DIR . '/..');

Next we define the anonymous function, which processes one line in the log file. If an IP

address is detected, it becomes a key in the $frequency array, and the current value for

this key is incremented:

// define functions

$freq = function ($line) {

$ip = $this->getIp($line);

if ($ip) {

echo '.';

$this->frequency[$ip] =

(isset($this->frequency[$ip])) ? $this->frequency[$ip] + 1 : 1;

}

};

We then loop through the iteration of lines in each log file found, processing IP addresses:

foreach (glob(LOG_FILES) as $filename) {

echo PHP_EOL . $filename . PHP_EOL;

// access class

$access = new Application\Web\Access($filename);

foreach ($access->fileIteratorByLine() as $line) {

$freq->call($access, $line);

}

}

40

Chapter 2

You can actually do the same thing in PHP 5. Two lines of code are

required, however:

$func = $freq->bindTo($access);

$func($line);

Performance is 20% to 50% slower than using call() in PHP 7.

Finally, we reverse-sort the array, but maintain the keys. The output is produced in a simple

foreach() loop:

arsort($access->frequency);

foreach ($access->frequency as $key => $value) {

printf('%16s : %6d' . PHP_EOL, $key, $value);

}

The output will vary depending on which access.log you process. Here is a sample:

41

Using PHP 7 High Performance Features

 There's more…

Many of the PHP 7 performance improvements have nothing to do with new features and

functions. Rather, they take the form of internal improvements, which are invisible until you

start running your programs. Here is a short list of improvements that fall into this category:

Feature More info: Notes

Fast

parameter

parsing

https://wiki.php.net/rfc/fast_zpp In PHP 5, parameters

provided to functions have

to be parsed for every

single function call. The

parameters were passed

in as a string, and parsed

in a manner similar to

the scanf() function.

In PHP 7 this process

has been optimized

and made much more

efficient, resulting in a

significant performance

improvement. The

improvement is difficult to

measure, but seems to be

in the region of 6%.

PHP NG https://wiki.php.net/rfc/phpng The PHP NG (Next

Generation) initiative

represents a rewrite

of most of the PHP

language. It retains

existing functionality, but

involves any and all time-

savings and efficiency

measures imaginable.

Data structures have been

compacted, and memory

is used more efficiently.

Just one change, which

affects array handling, for

example, has resulted in

a significant performance

increase, while at the

same time greatly

reducing memory usage.

42

Chapter 2

Feature More info: Notes

Removing

dead

weight

https://wiki.php.net/rfc/removal_of_

dead_sapis_and_exts

There were approximately

two dozen extensions

that fell into one of these

categories: deprecated,

no longer maintained,

unmaintained

dependencies, or not

ported to PHP 7. A vote

by the group of core

developers determined

to remove about 2/3 or

the extensions on the

"short list". This results

in reduced overhead

and faster overall future

development of the PHP

language.

Iterating through a massive file

Functions such as file_get_contents() and file() are quick and easy to use however,

owing to memory limitations, they quickly cause problems when dealing with massive files.

The default setting for the php.ini memory_limit setting is 128 megabytes. Accordingly,

any file larger than this will not be loaded.

Another consideration when parsing through massive files is how quickly does your function

or class method produce output? When producing user output, for example, although it might

at first glance seem better to accumulate output in an array. You would then output it all at

once for improved efficiency. Unfortunately, this might have an adverse impact on the user

experience. It might be better to create a generator, and use the yield keyword to produce

immediate results.

 How to do it…

As mentioned before, the file* functions (that is, file_get_contents()), are not

suitable for large files. The simple reason is that these functions, at one point, have the entire

contents of the file represented in memory. Accordingly, the focus of this recipe will be on the

f* functions (that is, fopen()).

43

Using PHP 7 High Performance Features

In a slight twist, however, instead of using the f* functions directly, instead we will use the

SplFileObject class, which is included in the SPL (Standard PHP Library):

1. First, we define a Application\Iterator\LargeFile class with the appropriate

properties and constants:

namespace Application\Iterator;

use Exception;

use InvalidArgumentException;

use SplFileObject;

use NoRewindIterator;

class LargeFile

{

const ERROR_UNABLE = 'ERROR: Unable to open file';

const ERROR_TYPE = 'ERROR: Type must be "ByLength",

"ByLine" or "Csv"';

protected $file;

protected $allowedTypes = ['ByLine', 'ByLength', 'Csv'];

2. We then define a construct() method that accepts a filename as an argument

and populates the $file property with an SplFileObject instance. This is also a

good place to throw an exception if the file does not exist:

public function construct($filename, $mode = 'r')

{

if (!file_exists($filename)) {

$message = METHOD . ' : ' . self::ERROR_UNABLE . PHP_EOL;

$message .= strip_tags($filename) . PHP_EOL;

throw new Exception($message);

}

$this->file = new SplFileObject($filename, $mode);

}

3. Next we define a method fileIteratorByLine()method which uses fgets()

to read one line of the file at a time. It's not a bad idea to create a complimentary

fileIteratorByLength()method that does the same thing but uses fread()

instead. The method that uses fgets() would be suitable for text files that include

linefeeds. The other method could be used if parsing a large binary file:

protected function fileIteratorByLine()

{

$count = 0;

while (!$this->file->eof()) {

yield $this->file->fgets();

$count++;

44

Chapter 2

}

return $count;

}

protected function fileIteratorByLength($numBytes = 1024)

{

$count = 0;

while (!$this->file->eof()) {

yield $this->file->fread($numBytes);

$count++;

}

return $count;

}

4. Finally, we define a getIterator()method that returns a NoRewindIterator()

instance. This method accepts as arguments either ByLine or ByLength,

which refer to the two methods defined in the previous step. This method also

needs to accept $numBytes in case ByLength is called. The reason we need a

NoRewindIterator() instance is to enforce the fact that we're reading through the

file only in one direction in this example:

public function getIterator($type = 'ByLine', $numBytes = NULL)

{

if(!in_array($type, $this->allowedTypes)) {

$message = METHOD . ' : ' . self::ERROR_TYPE . PHP_EOL;

throw new InvalidArgumentException($message);

}

$iterator = 'fileIterator' . $type;

return new NoRewindIterator($this->$iterator($numBytes));

}

 How it works…

First of all, we take advantage of the autoloading class defined in Chapter 1, Building a

Foundation, to obtain an instance of Application\Iterator\LargeFile in a calling

program, chap_02_iterating_through_a_massive_file.php:

define('MASSIVE_FILE', '/../data/files/war_and_peace.txt');

require DIR . '/../Application/Autoload/Loader.php';

Application\Autoload\Loader::init(DIR . '/..');

45

Using PHP 7 High Performance Features

Next, inside a try {...} catch () {...} block, we get an instance of a ByLine iterator:

try {

$largeFile = new Application\Iterator\LargeFile(DIR

FILE);

$iterator = $largeFile->getIterator('ByLine');

. MASSIVE_

We then provide an example of something useful to do, in this case, defining an average of

words per line:

$words = 0;

foreach ($iterator as $line) {

echo $line;

$words += str_word_count($line);

}

echo str_repeat('-', 52) . PHP_EOL;

printf("%-40s : %8d\n", 'Total Words', $words);

printf("%-40s : %8d\n", 'Average Words Per Line',

($words / $iterator->getReturn()));

echo str_repeat('-', 52) . PHP_EOL;

We then end the catch block:

} catch (Throwable $e) {

echo $e->getMessage();

}

The expected output (too large to show here!) shows us that there are 566,095 words in the

project Gutenberg version of War and Peace. Also, we find the average number of words per

line is eight.

 Uploading a spreadsheet into a database

Although PHP does not have any direct capability to read a specific spreadsheet format (that

is, XLSX, ODS, and so on), it does have the ability to read (CSV Comma Separated Values)

files. Accordingly, in order to process customer spreadsheets, you will need to either ask them

to furnish their files in CSV format, or you will need to perform the conversion yourself.

 Getting ready…

When uploading a spreadsheet (that is, a CSV file) into a database, there are three major

considerations:

f Iterating through a (potentially) massive file

f Extracting each spreadsheet row into a PHP array

f Inserting the PHP array into the database

46

Chapter 2

Massive file iteration will be handled using the preceding recipe. We will use the fgetcsv()

function to convert a CSV row into a PHP array. Finally, we will use the (PDO PHP Data

Objects) class to make a database connection and perform the insert.

 How to do it…

1. First, we define a Application\Database\Connection class that creates a PDO

instance based on a set of parameters supplied to the constructor:

<?php

namespace Application\Database;

use Exception;

use PDO;

class Connection

{

const ERROR_UNABLE = 'ERROR: Unable to create database

connection';

public $pdo;

public function construct(array $config)

{

if (!isset($config['driver'])) {

$message = METHOD

. PHP_EOL;

. ' : ' . self::ERROR_UNABLE

throw new Exception($message);

}

$dsn = $config['driver']

. ':host=' . $config['host']

. ';dbname=' . $config['dbname'];

try {

$this->pdo = new PDO($dsn,

$config['user'],

$config['password'],

[PDO::ATTR_ERRMODE => $config['errmode']]);

} catch (PDOException $e) {

error_log($e->getMessage());

}

}

}

47

Using PHP 7 High Performance Features

2. We then incorporate an instance of Application\Iterator\LargeFile. We add

a new method to this class that is designed to iterate through CSV files:

protected function fileIteratorCsv()

{

$count = 0;

while (!$this->file->eof()) {

yield $this->file->fgetcsv();

$count++;

}

return $count;

}

3. We also need to add Csv to the list of allowed iterator methods:

const ERROR_UNABLE = 'ERROR: Unable to open file';

const ERROR_TYPE = 'ERROR: Type must be "ByLength",

"ByLine" or "Csv"';

protected $file;

protected $allowedTypes = ['ByLine', 'ByLength', 'Csv'];

 How it works…

First we define a config file,/path/to/source/config/db.config.php, that contains

database connection parameters:

<?php

return [

'driver' => 'mysql',

'host' => 'localhost',

'dbname' => 'php7cookbook',

'user' => 'cook',

'password' => 'book',

'errmode' => PDO::ERRMODE_EXCEPTION,

];

Next, we take advantage of the autoloading class defined in Chapter 1, Building a Foundation,

to obtain an instance of Application\Database\Connection and Application\

Iterator\LargeFile, defining a calling program, chap_02_uploading_csv_to_

database.php:

define('DB_CONFIG_FILE', '/../data/config/db.config.php');

define('CSV_FILE', '/../data/files/prospects.csv');

require DIR . '/../../Application/Autoload/Loader.php';

Application\Autoload\Loader::init(DIR . '/..');

48

Chapter 2

After that, we set up a try {...} catch () {...} block, which catches Throwable.

This allows us to catch both exceptions and errors:

try {

// code goes here

} catch (Throwable $e) {

echo $e->getMessage();

}

Inside the try {...} catch () {...} block we get an instance of the connection and

large file iterator classes:

$connection = new Application\Database\Connection(

include DIR . DB_CONFIG_FILE);

$iterator = (new Application\Iterator\LargeFile(DIR

->getIterator('Csv');

. CSV_FILE))

We then take advantage of the PDO prepare/execute functionality. The SQL for the prepared

statement uses ? to represent values that are supplied in a loop:

$sql = 'INSERT INTO `prospects` '

. '(`id`,`first_name`,`last_name`,`address`,`city`,`state_

province`,'

. '`postal_code`,`phone`,`country`,`email`,`status`,`budget`,

`last_updated`) '

. ' VALUES (?,?,?,?,?,?,?,?,?,?,?,?,?)';

$statement = $connection->pdo->prepare($sql);

We then use foreach() to loop through the file iterator. Each yield statement produces

an array of values that represents a row in the database. We can then use these values with

PDOStatement::execute() to execute the prepared statement, inserting the row of values

into the database:

foreach ($iterator as $row) {

echo implode(',', $row) . PHP_EOL;

$statement->execute($row);

}

You can then examine the database to verify that the data was successfully inserted.

 Recursive directory iterator

Getting a list of files in a directory is extremely easy. Traditionally, developers have used the

glob() function for this purpose. To recursively get a list of all files and directories from

a specific point in a directory tree is more problematic. This recipe takes advantage of an

(SPL Standard PHP Library) class RecursiveDirectoryIterator, which will serve this

purpose admirably.

49

Using PHP 7 High Performance Features

What this class does is to parse the directory tree, finding the first child, then it follows the

branches, until there are no more children, and then it stops! Unfortunately this is not what

we want. Somehow we need to get the RecursiveDirectoryIterator to continue

parsing every tree and branch, from a given starting point, until there are no more files or

directories. It so happens there is a marvelous class, RecursiveIteratorIterator,

that does exactly that. By wrapping RecursiveDirectoryIterator inside

RecursiveIteratorIterator, we accomplish a complete traversal of any directory tree.

Warning!

Be very careful where you start the filesystem traversal. If you start at

the root directory, you could end up crashing your server as the recursion

process will not stop until all files and directories have been located!

 How to do it…

1. First, we define a Application\Iterator\Directory class that defines the

appropriate properties and constants and uses external classes:

namespace Application\Iterator;

use Exception;

use RecursiveDirectoryIterator;

use RecursiveIteratorIterator;

use RecursiveRegexIterator;

use RegexIterator;

class Directory

{

const ERROR_UNABLE = 'ERROR: Unable to read directory';

protected $path;

protected $rdi;

// recursive directory iterator

2. The constructor creates a RecursiveDirectoryIterator instance inside

RecursiveIteratorIterator based on a directory path:

public function construct($path)

{

try {

$this->rdi = new RecursiveIteratorIterator(

new RecursiveDirectoryIterator($path),

50

RecursiveIteratorIterator::SELF_FIRST);

} catch (\Throwable $e) {

Chapter 2

$message = METHOD . ' : ' . self::ERROR_UNABLE . PHP_EOL;

$message .= strip_tags($path) . PHP_EOL;

echo $message;

exit;

}

}

3. Next, we decide what to do with the iteration. One possibility is to mimic the output of

the Linux ls -l -R command. Notice that we use the yield keyword, effectively

making this method into a Generator, which can then be called from the outside.

Each object produced by the directory iteration is an SPL FileInfo object, which

can give us useful information on the file. Here is how this method might look:

public function ls($pattern = NULL)

{

$outerIterator = ($pattern)

? $this->regex($this->rdi, $pattern)

: $this->rdi;

foreach($outerIterator as $obj){

if ($obj->isDir()) {

if ($obj->getFileName() == '..') {

continue;

}

$line = $obj->getPath() . PHP_EOL;

} else {

$line = sprintf('%4s %1d %4s %4s %10d %12s %-40s' . PHP_EOL,

substr(sprintf('%o', $obj->getPerms()), -4),

($obj->getType() == 'file') ? 1 : 2,

$obj->getOwner(),

$obj->getGroup(),

$obj->getSize(),

date('M d Y H:i', $obj->getATime()),

$obj->getFileName());

}

yield $line;

}

}

51

Using PHP 7 High Performance Features

4. You may have noticed that the method call includes a file pattern. We need a way

of filtering the recursion to only include files that match. There is another iterator

available from the SPL that perfectly suits this need: the RegexIterator class:

protected function regex($iterator, $pattern)

{

$pattern = '!^.' . str_replace('.', '\\.', $pattern) . '$!';

return new RegexIterator($iterator, $pattern);

}

5. Finally, here is another method, but this time we will mimic the dir /s command:

public function dir($pattern = NULL)

{

$outerIterator = ($pattern)

? $this->regex($this->rdi, $pattern)

: $this->rdi;

foreach($outerIterator as $name => $obj){

yield $name . PHP_EOL;

}

}

}

 How it works…

First of all, we take advantage of the autoloading class defined in Chapter 1, Building a

Foundation, to obtain an instance of Application\Iterator\Directory, defining a

calling program, chap_02_recursive_directory_iterator.php:

define('EXAMPLE_PATH', realpath(DIR . '/../'));

require DIR . '/../Application/Autoload/Loader.php';

Application\Autoload\Loader::init(DIR . '/..');

$directory = new Application\Iterator\Directory(EXAMPLE_PATH);

Then, in a try {...} catch () {...} block, we make a call to our two methods, using

an example directory path:

try {

echo 'Mimics "ls -l -R" ' . PHP_EOL;

foreach ($directory->ls('*.php') as $info) {

echo $info;

}

echo 'Mimics "dir /s" ' . PHP_EOL;

foreach ($directory->dir('*.php') as $info) {

echo $info;

52

Chapter 2

}

} catch (Throwable $e) {

echo $e->getMessage();

}

The output for ls() will look something like this:

The output for dir() will appear as follows:

53

3
Working with PHP

Functions

In this chapter we will cover the following topics:

f Developing functions

f Hinting at data types

f Using return value data typing

f Using iterators

f Writing your own iterator using generators

 Introduction

In this chapter we will consider recipes that take advantage of PHP's functional programming

capabilities. Functional, or procedural, programming is the traditional way PHP code was written

prior to the introduction of the first implementation of object-oriented programming (OOP)

in PHP version 4. Functional programming is a programming paradigm—a style of building the

structure and elements of computer programs—that treats computation as the evaluation of

mathematical functions and avoids changing-state and mutable data. This file can then be

included in any future scripts, allowing the functions that are defined to be called at will.

55

Working with PHP Functions

 Developing functions

The most difficult aspect is deciding how to break up programming logic into functions. The

mechanics of developing a function in PHP, on the other hand, are quite easy. Just use the

function keyword, give it a name, and follow it with parentheses.

 How to do it…

1. The code itself goes inside curly braces as follows:

function someName ($parameter)

{

$result = 'INIT';

// one or more statements which do something

// to affect $result

$result .= ' and also ' . $parameter;

return $result;

}

2. You can define one or more parameters. To make one of them optional, simply assign

a default value. If you are not sure what default value to assign, use NULL:

function someOtherName ($requiredParam, $optionalParam = NULL)

{

$result = 0;

$result += $requiredParam;

$result += $optionalParam ?? 0;

return $result;

}

You cannot redefine functions. The only exception is when duplicate functions

are defined in separate namespaces. This definition would generate an error:

function someTest()

{

return 'TEST';

}

function someTest($a)

{

return 'TEST:' . $a;

}

56

Chapter 3

3. If you don't know how many parameters will be supplied to your function, or if you

want to allow for an infinite number of parameters, use ... followed by a variable

name. All parameters supplied will appear as an array in the variable:

function someInfinite(...$params)

{

// any params passed go into an array $params

return var_export($params, TRUE);

}

4. A function can call itself. This is referred to as recursion. The following function

performs a recursive directory scan:

function someDirScan($dir)

{

// uses "static" to retain value of $list

static $list = array();

// get a list of files and directories for this path

$list = glob($dir . DIRECTORY_SEPARATOR . '*');

// loop through

foreach ($list as $item) {

if (is_dir($item)) {

$list = array_merge($list, someDirScan($item));

}

}

return $list;

}

Usage of the static keyword inside functions has been in the language

for more than 12 years. What static does is to initialize the variable once

(that is, at the time static is declared), and then retain the value between

function calls within the same request.

If you need to retain the value of a variable between HTTP requests, make

sure the PHP session has been started and store the value in $_SESSION.

5. Functions are constrained when defined within a PHP namespace. This characteristic

can be used to your advantage to provide additional logical separation between

libraries of functions. In order to anchor the namespace, you need to add the use

keyword. The following examples are placed in separate namespaces. Notice that

even though the function name is the same, there is no conflict as they are not visible

to each other.

57

Working with PHP Functions

6. We define someFunction() in namespace Alpha. We save this to a separate PHP

file, chap_03_developing_functions_namespace_alpha.php:

<?php

namespace Alpha;

function someFunction()

{

echo NAMESPACE

}

. ':' . FUNCTION . PHP_EOL;

7. We then define someFunction() in namespace Beta. We save this to a separate

PHP file, chap_03_developing_functions_namespace_beta.php:

<?php

namespace Beta;

function someFunction()

{

echo NAMESPACE

}

. ':' . FUNCTION . PHP_EOL;

8. We can then call someFunction() by prefixing the function name with the

namespace name:

include (DIR . DIRECTORY_SEPARATOR

. 'chap_03_developing_functions_namespace_alpha.php');

include (DIR . DIRECTORY_SEPARATOR

. 'chap_03_developing_functions_namespace_beta.php');

echo Alpha\someFunction();

echo Beta\someFunction();

Best practice

It is considered best practice to place function libraries (and classes

too!) into separate files: one file per namespace, and one class or

function library per file.

It is possible to define many classes or function libraries in a single

namespace. The only reason you would develop into a separate

namespace is if you want to foster logical separation of functionality.

58

 How it works…

Chapter 3

It is considered best practice to place all logically related functions into a separate PHP file.

Create a file called chap_03_developing_functions_library.php and place these

functions (described previously) inside:

f someName()

f someOtherName()

f someInfinite()

f someDirScan()

f someTypeHint()

This file is then included in the code that uses these functions.

include (DIR . DIRECTORY_SEPARATOR . 'chap_03_developing_

functions_library.php');

To call the someName() function, use the name and supply the parameter.

echo someName('TEST'); // returns "INIT and also TEST"

You can call the someOtherName() function using one or two parameters, as shown here:

echo someOtherName(1); // returns 1

echo someOtherName(1, 1); // returns 2

The someInfinite() function accepts an infinite (or variable) number of parameters.

Here are a couple of examples calling this function:

echo someInfinite(1, 2, 3);

echo PHP_EOL;

echo someInfinite(22.22, 'A', ['a' => 1, 'b' => 2]);

59

Working with PHP Functions

The output looks like this:

We can call someInfinite() as follows:

foreach (someDirScan(DIR

echo $item . PHP_EOL;

. DIRECTORY_SEPARATOR . '..') as $item) {

}

The output looks like this:

60

Chapter 3

 Hinting at data types

In many cases when developing functions, you might reuse the same library of functions in

other projects. Also, if you work with a team, your code might be used by other developers. In

order to control the use of your code, it might be appropriate to make use of a type hint. This

involves specifying the data type your function expects for that particular parameter.

 How to do it…

1. Parameters in functions can be prefixed by a type hint. The following type hints are

available in both PHP 5 and PHP 7:

 Array

 Class

 Callable

2. If a call to the function is made, and the wrong parameter type is passed, a

TypeError is thrown. The following example requires an array, an instance of

DateTime, and an anonymous function:

function someTypeHint(Array $a, DateTime $t, Callable $c)

{

$message = '';

$message .= 'Array Count: ' . count($a) . PHP_EOL;

$message .= 'Date: ' . $t->format('Y-m-d') . PHP_EOL;

$message .= 'Callable Return: ' . $c() . PHP_EOL;

return $message;

}

You don't have to provide a type hint for every single parameter. Use this

technique only where supplying a different data type would have a negative

effect on the processing of your function. As an example, if your function

uses a foreach() loop, if you do not supply an array, or something which

implements Traversable, an error will be generated.

3. In PHP 7, presuming the appropriate declare() directive is made, scalar (that

is, integer, float, boolean, and string) type hints are allowed. Another function

demonstrates how this is accomplished. At the top of the code library file which

contains the function in which you wish to use scalar type hinting, add this

declare() directive just after the opening PHP tag:

declare(strict_types=1);

61

Working with PHP Functions

4. Now you can define a function that includes scalar type hints:

function someScalarHint(bool $b, int $i, float $f, string $s)

{

return sprintf("\n%20s : %5s\n%20s : %5d\n%20s " .

": %5.2f\n%20s : %20s\n\n",

'Boolean', ($b ? 'TRUE' : 'FALSE'),

'Integer', $i,

'Float', $f,

'String', $s);

}

5. In PHP 7, assuming strict type hinting has been declared, boolean type hinting

works a bit differently from the other three scalar types (that is, integer, float, and

string). You can supply any scalar as an argument and no TypeError will be thrown!

However, the incoming value will automatically be converted to the boolean data

type once passed into the function. If you pass any data type other than scalar (that

is, array or object) a TypeError will be thrown. Here is an example of a function

that defines a boolean data type. Note that the return value will be automatically

converted to a boolean:

function someBoolHint(bool $b)

{

return $b;

}

 How it works…

First of all, you can place the three functions, someTypeHint(), someScalarHint(), and

someBoolHint(), into a separate file to be included. For this example, we will name the

file chap_03_developing_functions_type_hints_library.php. Don't forget to add

declare(strict_types=1) at the top!

In our calling code, you would then include the file:

include (DIR . DIRECTORY_SEPARATOR . 'chap_03_developing_

functions_type_hints_library.php');

To test someTypeHint(), call the function twice, once with the correct data types, and the

second time with incorrect types. This will throw a TypeError, however, so you will need to

wrap the function calls in a try { ... } catch () { ...} block:

try {

$callable = function () { return 'Callback Return'; };

echo someTypeHint([1,2,3], new DateTime(), $callable);

echo someTypeHint('A', 'B', 'C');

62

Chapter 3

} catch (TypeError $e) {

echo $e->getMessage();

echo PHP_EOL;

}

As you can see from the output shown at the end of this sub-section, when passing the correct

data types there is no problem. When passing the incorrect types, a TypeError is thrown.

In PHP 7, certain errors have been converted into an Error class, which

is processed in a somewhat similar manner to an Exception. This

means you can catch an Error. TypeError is a specific descendant of

 Error that is thrown when incorrect data types are passed to functions.
All PHP 7 Error classes implement the Throwable interface, as does

the Exception class. If you are not sure if you need to catch an Error

or an Exception, you can add a block which catches Throwable.

Next you can test someScalarHint(), calling it twice with correct and incorrect values,

wrapping the calls in a try { ... } catch () { ...} block:

try {

echo someScalarHint(TRUE, 11, 22.22, 'This is a

string'); echo someScalarHint('A', 'B', 'C', 'D');

} catch (TypeError $e) {

echo $e->getMessage();

}

As expected, the first call to the function works, and the second throws a TypeError.

When type hinting for boolean values, any scalar value passed will not cause a TypeError

to be thrown! Instead, the value will be interpreted into its boolean equivalent. If you

subsequently return this value, the data type will be changed to boolean.

To test this, call the someBoolHint() function defined previously, and pass any scalar value

in as an argument. The var_dump() method reveals that the data type is always boolean:

try {

// positive results

$b = someBooleanHint(TRUE);

$i = someBooleanHint(11);

$f = someBooleanHint(22.22);

$s = someBooleanHint('X');

var_dump($b, $i, $f, $s);

// negative results

$b = someBooleanHint(FALSE);

$i = someBooleanHint(0);

63

Working with PHP Functions

$f = someBooleanHint(0.0);

$s = someBooleanHint('');

var_dump($b, $i, $f, $s);

} catch (TypeError $e) {

echo $e->getMessage();

}

If you now try the same function call, but pass in a non-scalar data type, a TypeError

is thrown:

try {

$a = someBoolHint([1,2,3]);

var_dump($a);

} catch (TypeError $e) {

echo $e->getMessage();

}

try {

$o = someBoolHint(new stdClass());

var_dump($o);

} catch (TypeError $e) {

echo $e->getMessage();

}

Here is the overall output:

64

Chapter 3

 See also

PHP 7.1 introduced a new type hint iterable which allows arrays, Iterators or

Generators as arguments. See this for more information:

f https://wiki.php.net/rfc/iterable

For a background discussion on the rationale behind the implementation of scalar type

hinting, have a look at this article:

f https://wiki.php.net/rfc/scalar_type_hints_v5

 Using return value data typing

PHP 7 allows you to specify a data type for the return value of a function. Unlike scalar type

hinting, however, you don't need to add any special declarations.

 How to do it…

1. This example shows you how to assign a data type to a function return value. To

assign a return data type, first define the function as you would normally. After the

closing parenthesis, add a space, followed by the data type and a colon:

function returnsString(DateTime $date, $format) : string

{

return $date->format($format);

}

PHP 7.1 introduced a variation on return data typing called nullable types.

 All you need to do is to change string to ?string. This allows the
function to return either string or NULL.

2. Anything returned by the function, regardless of its data type inside the function, will

be converted to the declared data type as a return value. Notice, in this example,

the values of $a, $b, and $c are added together to produce a single sum, which is

returned. Normally you would expect the return value to be a numeric data type.

In this case, however, the return data type is declared as string, which overrides

PHP's type-juggling process:

function convertsToString($a, $b, $c) : string

return $a + $b + $c;

}

65

Working with PHP Functions

3. You can also assign classes as a return data type. In this example, we assign a return

type of DateTime, part of the PHP DateTime extension:

function makesDateTime($year, $month, $day) : DateTime

{

$date = new DateTime();

$date->setDate($year, $month, $day);

return $date;

}

The makesDateTime() function would be a potential candidate for

scalar type hinting. If $year, $month, or $day are not integers, a

Warning is generated when setDate() is called. If you use scalar type

 hinting, and the wrong data types are passed, a TypeError is thrown.
Although it really doesn't matter whether a warning is generated or a

TypeError is thrown, at least the TypeError will cause the errant

developer who is misusing your code to sit up and take notice!

4. If a function has a return data type, and you return the wrong data type in your

function code, a TypeError will be thrown at runtime. This function assigns a return

type of DateTime, but returns a string instead. A TypeError will be thrown, but not

until runtime, when the PHP engine detects the discrepancy:

function wrongDateTime($year, $month, $day) : DateTime

{

return date($year . '-' . $month . '-' . $day);

}

If the return data type class is not one of the built-in PHP classes (that is,

 a class that is part of the SPL), you will need to make sure the class has

been auto-loaded, or included.

 How it works…

First, place the functions mentioned previously into a library file called

chap_03_developing_functions_return_types_library.php. This file needs to be

included in the chap_03_developing_functions_return_types.php script that calls

these functions:

include (DIR

library.php');

. '/chap_03_developing_functions_return_types_

 66

Chapter 3

Now you can call returnsString(), supplying a DateTime instance and a format string:

$date = new DateTime();

$format = 'l, d M Y';

$now = returnsString($date, $format);

echo $now . PHP_EOL;

var_dump($now);

As expected, the output is a string:

Now you can call convertsToString() and supply three integers as arguments.

Notice that the return type is string:

echo "\nconvertsToString()\n";

var_dump(convertsToString(2, 3, 4));

To demonstrate that, you can assign a class as a return value, call makesDateTime() with

three integer parameters:

echo "\nmakesDateTime()\n";

$d = makesDateTime(2015, 11, 21);

var_dump($d);

67

Working with PHP Functions

Finally, call wrongDateTime() with three integer parameters:

try {

$e = wrongDateTime(2015, 11, 21);

var_dump($e);

} catch (TypeError $e) {

echo $e->getMessage();

}

Notice that a TypeError is thrown at runtime:

 There's more…

PHP 7.1 adds a new return value type, void. This is used when you do not wish to return any

value from the function. For more information, please refer to https://wiki.php.net/

rfc/void_return_type.

 See also

For more information on return type declarations, see the following articles:

f http://php.net/manual/en/functions.arguments.php#functions.

arguments.type-declaration.strict

f https://wiki.php.net/rfc/return_types

68

http://php.net/manual/en/functions.arguments.php#functions

Chapter 3

For information on nullable types, please refer to this article:

f https://wiki.php.net/rfc/nullable_types

 Using iterators

An iterator is a special type of class that allows you to traverse a container or list. The

keyword here is traverse. What this means is that the iterator provides the means to go

through a list, but it does not perform the traversal itself.

The SPL provides a rich assortment of generic and specialized iterators designed for different

contexts. The ArrayIterator, for example, is designed to allow object-oriented traversal of

arrays. The DirectoryIterator is designed for filesystem scanning.

Certain SPL iterators are designed to work with others, and add value. Examples include

FilterIterator and LimitIterator. The former gives you the ability to remove unwanted

values from the parent iterator. The latter provides a pagination capability whereby you can

designate how many items to traverse along with an offset that determines where to start.

Finally, there are a series of recursive iterators, which allow you to repeatedly call the parent

iterator. An example would be RecursiveDirectoryIterator which scans a directory tree

all the way from a starting point to the last possible subdirectory.

 How to do it…

1. We first examine the ArrayIterator class. It's extremely easy to use. All you need

to do is to supply an array as an argument to the constructor. After that you can use

any of the methods that are standard to all SPL-based iterators, such as current(),

next(), and so on.

$iterator = new ArrayIterator($array);

Using ArrayIterator converts a standard PHP array into an

 iterator. In a certain sense, this provides a bridge between procedural

programming and OOP.

2. As an example of a practical use for the iterator, have a look at this example. It takes

an iterator and produces a series of HTML and tags:

function htmlList($iterator)

{

$output = '';

while ($value = $iterator->current()) {

$output .= '' . $value . '';

$iterator->next();

69

Working with PHP Functions

}

$output .= '';

return $output;

}

3. Alternatively, you can simply wrap the ArrayIterator instance into a simple

foreach() loop:

function htmlList($iterator)

{

$output = '';

foreach($iterator as $value) {

$output .= '' . $value . '';

}

$output .= '';

return $output;

}

4. CallbackFilterIterator is a great way to add value to any existing iterator you

might be using. It allows you to wrap any existing iterator and screen the output. In

this example we'll define fetchCountryName(), which iterates through a database

query which produces a list of country names. First, we define an ArrayIterator

instance from a query that uses the Application\Database\Connection class

defined in Chapter 1, Building a Foundation:

function fetchCountryName($sql, $connection)

{

$iterator = new ArrayIterator();

$stmt = $connection->pdo->query($sql);

while($row = $stmt->fetch(PDO::FETCH_ASSOC)) {

$iterator->append($row['name']);

}

return $iterator;

}

5. Next, we define a filter method, nameFilterIterator(), which accepts a partial

country name as an argument along with the ArrayIterator instance:

function nameFilterIterator($innerIterator, $name)

{

if (!$name) return $innerIterator;

$name = trim($name);

$iterator = new CallbackFilterIterator($innerIterator,

function($current, $key, $iterator) use ($name) {

$pattern = '/' . $name . '/i';

70

Chapter 3

return (bool) preg_match($pattern, $current);

}

);

return $iterator;

}

6. LimitIterator adds a basic pagination aspect to your applications. To use

this iterator, you only need to supply the parent iterator, an offset, and a limit.

LimitIterator will then only produce a subset of the entire data set starting at the

offset. Taking the same example mentioned in step 2, we'll paginate the results coming

from our database query. We can do this quite simply by wrapping the iterator produced

by the fetchCountryName() method inside a LimitIterator instance:

$pagination = new LimitIterator(fetchCountryName(

$sql, $connection), $offset, $limit);

Be careful when using LimitIterator. It needs to have the entire data

 set in memory in order to effect a limit. Accordingly, this would not be a

good tool to use when iterating through large data sets.

7. Iterators can be stacked. In this simple example, an ArrayIterator is processed

by a FilterIterator, which in turn is limited by a LimitIterator. First we set

up an instance of ArrayIterator:

$i = new ArrayIterator($a);

8. Next, we plug the ArrayIterator into a FilterIterator instance. Note that

we are using the new PHP 7 anonymous class feature. In this case the anonymous

class extends FilterIterator and overrides the accept() method, allowing only

letters with even-numbered ASCII codes:

$f = new class ($i) extends FilterIterator {

public function accept()

{

$current = $this->current();

return !(ord($current) & 1);

}

};

9. Finally, we supply the FilterIterator instance as an argument to LimitIterator,

and provide an offset (2 in this example) and a limit (6 in this example):

$l = new LimitIterator($f, 2, 6);

71

Working with PHP Functions

10. We could then define a simple function to display output, and call each iterator in turn

to see the results on a simple array produced by range('A', 'Z'):

function showElements($iterator)

{

foreach($iterator as $item) echo $item . ' ';

echo PHP_EOL;

}

$a = range('A', 'Z');

$i = new ArrayIterator($a);

showElements($i);

11. Here is a variation that produces every other letter by stacking a FilterIterator

on top of an ArrayIterator:

$f = new class ($i) extends FilterIterator {

public function accept()

{

$current = $this->current();

return !(ord($current) & 1);

}

};

showElements($f);

12. And here's yet another variation that only produces F H J L N P, which

demonstrates a LimitIterator that consumes a FilterIterator, which in turn

consumes an ArrayIterator. The output of these three examples is as follows:

$l = new LimitIterator($f, 2, 6);

showElements($l);

72

Chapter 3

13. Returning to our example that produces a list of country names, suppose, instead

of only the country name, we wished to iterate through a multi-dimensional array

consisting of country names and ISO codes. The simple iterators mentioned so far

would not be sufficient. Instead, we will use what are known as recursive iterators.

14. First of all, we need to define a method that uses the database connection class

mentioned previously to pull all columns from the database. As before, we return an

ArrayIterator instance populated with data from the query:

function fetchAllAssoc($sql, $connection)

{

$iterator = new ArrayIterator();

$stmt = $connection->pdo->query($sql);

while($row = $stmt->fetch(PDO::FETCH_ASSOC)) {

$iterator->append($row);

}

return $iterator;

}

15. At first glance one would be tempted to simply wrap a standard ArrayIterator

instance inside RecursiveArrayIterator. Unfortunately, this approach only

performs a shallow iteration, and doesn't give us what we want: an iteration through

all elements of the multi-dimensional array that is returned from a database query:

$iterator = fetchAllAssoc($sql, $connection);

$shallow = new RecursiveArrayIterator($iterator);

16. Although this returns an iteration where each item represents a row from the

database query, in this case we wish to provide an iteration that will iterate through

all columns of all rows returned by the query. In order to accomplish this, we'll need to

roll out the big brass by way of a RecursiveIteratorIterator.

17. Monty Python fans will revel in the rich irony of this class name as it brings back fond

memories of the The Department of Redundancy Department. Fittingly, this class

causes our old friend the RecursiveArrayIterator class to work overtime and

perform a deep iteration through all levels of the array:

$deep = new RecursiveIteratorIterator($shallow);

 How it works…

As a practical example, you can develop a test script which implements filtering and

pagination using iterators. For this illustration, you could call the chap_03_developing_

functions_filtered_and_paginated.php test code file.

First of all, following best practices, place the functions described above into an include file

called chap_03_developing_functions_iterators_library.php. In the test script,

be sure to include this file.

73

Working with PHP Functions

The data source is a table called iso_country_codes, which contains ISO2, ISO3, and

country names. The database connection could be in a config/db.config.php file. You

could also include the Application\Database\Connection class discussed in the

previous chapter:

define('DB_CONFIG_FILE', '/../config/db.config.php');

define('ITEMS_PER_PAGE', [5, 10, 15, 20]);

include (DIR

php');

include (DIR

. '/chap_03_developing_functions_iterators_library.

. '/../Application/Database/Connection.php');

In PHP 7 you can define constants as arrays. In this example,

 ITEMS_PER_PAGE was defined as an array, and used to generate

an HTML SELECT element.

Next, you can process input parameters for the country name and the number of items

per page. The current page number will start at 0 and can be incremented (next page) or

decremented (previous page):

$name = strip_tags($_GET['name'] ?? '');

$limit = (int) ($_GET['limit'] ?? 10);

$page = (int) ($_GET['page'] ?? 0);

$offset = $page * $limit;

$prev = ($page > 0) ? $page - 1 : 0;

$next = $page + 1;

Now you're ready to fire up the database connection and run a simple SELECT query. This

should be placed in a try {} catch {} block. You can then place the iterators to be

stacked inside the try {} block:

try {

$connection = new Application\Database\Connection(

include DIR . DB_CONFIG_FILE);

$sql = 'SELECT * FROM iso_country_codes';

$arrayIterator = fetchCountryName($sql, $connection);

$filteredIterator = nameFilterIterator($arrayIterator, $name);

$limitIterator = pagination(

$filteredIterator, $offset, $limit);

} catch (Throwable $e) {

echo $e->getMessage();

}

Now we're ready for the HTML. In this simple example we present a form that lets the user

select the number of items per page and the country name:

<form>

Country Name:

74

Chapter 3

<input type="text" name="name"

value="<?= htmlspecialchars($name) ?>">

Items Per Page:

<select name="limit">

<?php foreach (ITEMS_PER_PAGE as $item) : ?>

<option<?= ($item == $limit) ? ' selected' : '' ?>>

<?= $item ?></option>

<?php endforeach; ?>

</select>

<input type="submit" />

</form>

<a href="?name=<?= $name ?>&limit=<?= $limit ?>

&page=<?= $prev ?>">

<< PREV

<a href="?name=<?= $name ?>&limit=<?= $limit ?>

&page=<?= $next ?>">

NEXT >>

<?= htmlList($limitIterator); ?>

The output will look something like this:

Finally, in order to test the recursive iteration of the country database lookup, you will need

to include the iterator's library file, as well as the Application\Database\Connection

class:

define('DB_CONFIG_FILE', '/../config/db.config.php');

include (DIR

php');

include (DIR

. '/chap_03_developing_functions_iterators_library.

. '/../Application/Database/Connection.php');

 75

Working with PHP Functions

As before, you should wrap your database query in a try {} catch {} block. You can then

place the code to test the recursive iteration inside the try {} block:

try {

$connection = new Application\Database\Connection(

include DIR . DB_CONFIG_FILE);

$sql = 'SELECT * FROM iso_country_codes';

$iterator = fetchAllAssoc($sql, $connection);

$shallow = new RecursiveArrayIterator($iterator);

foreach ($shallow as $item) var_dump($item);

$deep = new RecursiveIteratorIterator($shallow);

foreach ($deep as $item) var_dump($item);

} catch (Throwable $e) {

echo $e->getMessage();

}

Here is what you can expect to see in terms of output from RecursiveArrayIterator:

76

Chapter 3

Here is the output after using RecursiveIteratorIterator:

 Writing your own iterator using generators

In the preceding set of recipes we demonstrated the use of iterators provided in the PHP 7

SPL. But what if this set doesn't provide you with what is needed for a given project? One

solution would be to develop a function that, instead of building an array that is then returned,

uses the yield keyword to return values progressively by way of iteration. Such a function

is referred to as a generator. In fact, in the background, the PHP engine will automatically

convert your function into a special built-in class called Generator.

There are several advantages to this approach. The main benefit is seen when you have

a large container to traverse (that is, parsing a massive file). The traditional approach has

been to build up an array, and then return that array. The problem with this is that you are

effectively doubling the amount of memory required! Also, performance is affected in

that results are only achieved once the final array has been returned.

77

Working with PHP Functions

 How to do it…

1. In this example we build on the library of iterator-based functions, adding a

generator of our own design. In this case we will duplicate the functionality

described in the section above on iterators where we stacked an ArrayIterator,

FilterIterator, and LimitIterator.

2. Because we need access to the source array, the desired filter, page number, and

number of items per page, we include the appropriate parameters into a single

filteredResultsGenerator() function. We then calculate the offset based

on the page number and limit (that is, number of items per page). Next, we loop

through the array, apply the filter, and continue the loop if the offset has not yet been

reached, or break if the limit has been reached:

function filteredResultsGenerator(array $array, $filter,

$limit = 10, $page = 0)

{

$max = count($array);

$offset = $page * $limit;

foreach ($array as $key => $value) {

if (!stripos($value, $filter) !== FALSE) continue;

if (--$offset >= 0) continue;

if (--$limit <= 0) break;

yield $value;

}

}

3. You'll notice the primary difference between this function and others is the yield

keyword. The effect of this keyword is to signal the PHP engine to produce a

Generator instance and encapsulate the code.

 How it works…

To demonstrate the use of the filteredResultsGenerator() function we'll have you

implement a web application that scans a web page and produces a filtered and paginated list

of URLs hoovered from HREF attributes.

First you need to add the code for the filteredResultsGenerator() function to the

library file used in the previous recipe, then place the functions described previously into an

include file, chap_03_developing_functions_iterators_library.php.

Next, define a test script, chap_03_developing_functions_using_generator.php,

that includes both the function library as well as the file that defines Application\Web\

Hoover, described in Chapter 1, Building a Foundation:

78

include (DIR

. DIRECTORY_SEPARATOR . 'chap_03_developing_

Chapter 3

functions_iterators_library.php');

include (DIR . '/../Application/Web/Hoover.php');

You will then need to gather input from the user regarding which URL to scan, what string to

use as a filter, how many items per page, and the current page number.

The null coalesce operator (??) is ideal for getting input from the Web.

 It does not generate any notices if not defined. If the parameter is not

received from user input, you can supply a default.

$url = trim(strip_tags($_GET['url'] ?? ''));

$filter = trim(strip_tags($_GET['filter'] ?? ''));

$limit = (int) ($_GET['limit'] ?? 10);

$page = (int) ($_GET['page'] ?? 0);

Best practice

Web security should always be a priority consideration. In this example you

can use strip_tags() and also force the data type to integer (int) as

measures to sanitize user input.

You are then in a position to define variables used in links for previous and next pages in

the paginated list. Note that you could also apply a sanity check to make sure the next page

doesn't go off the end of the result set. For the sake of brevity, such a sanity check was not

applied in this example:

$next = $page + 1;

$prev = $page - 1;

$base = '?url=' . htmlspecialchars($url)

. '&filter=' . htmlspecialchars($filter)

. '&limit=' . $limit

. '&page=';

We then need to create an Application\Web\Hoover instance and grab HREF attributes

from the target URL:

$vac = new Application\Web\Hoover();

$list = $vac->getAttribute($url, 'href');

79

Working with PHP Functions

Finally, we define HTML output that renders an input form and runs our generator through the

htmlList() function described previously:

<form>

<table>

<tr>

<th>URL</th>

<td>

<input type="text" name="url"

value="<?= htmlspecialchars($url) ?>"/>

</td>

</tr>

<tr>

<th>Filter</th>

<td>

<input type="text" name="filter"

value="<?= htmlspecialchars($filter) ?>"/></td>

</tr>

<tr>

<th>Limit</th>

<td><input type="text" name="limit" value="<?= $limit ?>"/></td>

</tr>

<tr>

<th> </th><td><input type="submit" /></td>

</tr>

<tr>

<td> </td>

<td>

<a href="<?= $base . $prev ?>"><-- PREV |

<a href="<?= $base . $next ?>">NEXT --></td>

</tr>

</table>

</form>

<hr>

<?= htmlList(filteredResultsGenerator(

$list, $filter, $limit, $page)); ?>

80

Chapter 3

Here is an example of the output:

81

4
Working with PHP

Object-Oriented

Programming

In this chapter we will cover:

f Developing classes

f Extending classes

f Using static properties and methods

f Using namespaces

f Defining visibility

f Using interfaces

f Using traits

f Implementing anonymous classes

 Introduction

In this chapter, we will consider recipes that take advantage of the object-oriented

programming (OOP) capabilities available in PHP 7.0, 7.1, and above. Most of the OOP

functionality available in PHP 7.x is also available in PHP 5.6. A new feature introduced in

PHP 7 is support for anonymous classes. In PHP 7.1, you can modify the visibility of class

constants.

83

Working with PHP Object-Oriented Programming

Another radically new feature is the ability to catch certain types of error.

 This is discussed in greater detail in Chapter 13, Best Practices, Testing,

and Debugging.

 Developing classes

The traditional development approach is to place the class into its own file. Typically, classes

contain logic that implements a single purpose. Classes are further broken down into

self-contained functions which are referred to as methods. Variables defined inside classes

are referred to as properties. It is recommended to develop a test class at the same time, a

topic discussed in more detail in Chapter 13, Best Practices, Testing, and Debugging.

 How to do it...

1. Create a file to contain the class definition. For the purposes of autoloading it is

recommended that the filename match the classname. At the top of the file, before

the keyword class, add a DocBlock. You can then define properties and methods.

In this example, we define a class Test. It has a property $test, and a method

getTest():

<?php

declare(strict_types=1);

/**

* This is a demonstration class.

*

* The purpose of this class is to get and set

* a protected property $test

*

*/

class Test

{

protected $test = 'TEST';

/**

* This method returns the current value of $test

*

* @return string $test

*/

public function getTest() : string

{

return $this->test;

}

84

Chapter 4

/**

* This method sets the value of $test

*

* @param string $test

* @return Test $this

*/

public function setTest(string $test)

{

$this->test = $test;

return $this;

}

}

Best practice

It is considered best practice to name the file after the class. Although class

names in PHP are not case sensitive, it is further considered best practice

to use an uppercase letter for the first name of a class. You should not put

executable code in a class definition file.

Each class should contain a DocBlock before the keyword class. In the

DocBlock you should include a short description of the purpose of the class.

Skip a line, and then include a more detailed description. You can also

include @ tags such as @author, @license and so on. Each method should

likewise be preceded by a DocBlock that identifies the purpose of the method,

as well as its incoming parameters and return value.

2. It's possible to define more than one class per file, but is not considered best

practice. In this example we create a file, NameAddress.php, which defines two

classes, Name and Address:

<?php

declare(strict_types=1);

class Name

{

protected $name = '';

public function getName() : string

{

return $this->name;

}

public function setName(string $name)

{

85

Working with PHP Object-Oriented Programming

$this->name = $name;

return $this;

}

}

class Address

{

protected $address = '';

public function getAddress() : string

{

return $this->address;

}

public function setAddress(string $address)

{

$this->address = $address;

return $this;

}

}

Although you can define more than one class in a single file, as shown

 in the preceding code snippet, it is not considered best practice.

Not only does this negate the logical purity of the file, but it makes
autoloading more difficult.

3. Class names are case-insensitive. Duplications will be flagged as errors. In this

example, in a file TwoClass.php, we define two classes, TwoClass and twoclass:

<?php

class TwoClass

{

public function showOne()

{

return 'ONE';

}

}

// a fatal error will occur when the second class definition is

parsed

class twoclass

{

86

Chapter 4

public function showTwo()

{

return 'TWO';

}

}

4. PHP 7.1 has addressed inconsistent behavior in the use of the keyword $this.

Although permitted in PHP 7.0 and PHP 5.x, any of the following uses of $this will

now generate an error as of PHP 7.1, if $this is used as:

 A parameter

 A static variable

 A global variable

 A variable used in try…catch blocks

 A variable used in foreach()

 As an argument to unset()

 As a variable (that is, $a = 'this'; echo $$a)

 Indirectly via reference

5. If you need to create an object instance but don't care to define a discreet class,

you can use the generic stdClass which is built into PHP. stdClass allows you

to define properties on the fly without having to define a discreet class that extends

stdClass:

$obj = new stdClass();

6. This facility is used in a number of different places in PHP. As an example, when

you use PHP Data Objects (PDO) to do a database query, one of the fetch modes is

PDO::FETCH_OBJ. This mode returns instances of stdClass where the properties

represent database table columns:

$stmt = $connection->pdo->query($sql);

$row = $stmt->fetch(PDO::FETCH_OBJ);

 How it works...

Take the example for the Test class shown in the preceding code snippet, and place the code

in a file named Test.php. Create another file called chap_04_oop_defining_class_

test.php. Add the following code:

require DIR . '/Test.php';

$test = new Test();

echo $test->getTest();

echo PHP_EOL;

87

Working with PHP Object-Oriented Programming

$test->setTest('ABC');

echo $test->getTest();

echo PHP_EOL;

The output will show the initial value of the $test property, followed by the new value

modified by calling setTest():

The next example has you define two classes, Name and Address in a single file

NameAddress.php. You can call and use these two classes with the following code:

require DIR . '/NameAddress.php';

$name = new Name();

$name->setName('TEST');

$addr = new Address();

$addr->setAddress('123 Main Street');

echo $name->getName() . ' lives at ' . $addr->getAddress();

Although no errors are generated by the PHP interpreter, by defining

multiple classes, the logical purity of the file is compromised. Also, the

filename doesn't match the classname, which could impact the ability to

autoload.

88

Chapter 4

The output from this example is shown next:

Step 3 also shows two class definitions in one file. In this case, however, the objective is

to demonstrate that classnames in PHP are case-insensitive. Place the code into a file,

TwoClass.php. When you try to include the file, an error is generated:

To demonstrate the direct use of stdClass, create an instance, assign a value to a property,

and use var_dump()to display the results. To see how stdClass is used internally, use

var_dump() to display the results of a PDO query where the fetch mode is set to FETCH_OBJ.

89

Working with PHP Object-Oriented Programming

Enter the following code:

$obj = new stdClass();

$obj->test = 'TEST';

echo $obj->test;

echo PHP_EOL;

include (DIR . '/../Application/Database/Connection.php');

$connection = new Application\Database\Connection(

include DIR . DB_CONFIG_FILE);

$sql = 'SELECT * FROM iso_country_codes';

$stmt = $connection->pdo->query($sql);

$row = $stmt->fetch(PDO::FETCH_OBJ);

var_dump($row);

Here is the output:

 See also…

For more information on refinements in PHP 7.1 on the keyword $this, please see

https://wiki.php.net/rfc/this_var.

 Extending classes

One of the primary reasons developers use OOP is because of its ability to re-use existing

code, yet, at the same time, add or override functionality. In PHP, the keyword extends is

used to establish a parent/child relationship between classes.

90

 How to do it...

Chapter 4

1. In the child class, use the keyword extends to set up inheritance. In the example

that follows, the Customer class extends the Base class. Any instance of Customer

will inherit visible methods and properties, in this case, $id, getId() and setId():

class Base

{

protected $id;

public function getId()

{

return $this->id;

}

public function setId($id)

{

$this->id = $id;

}

}

class Customer extends Base

{

protected $name;

public function getName()

{

return $this->name;

}

public function setName($name)

{

$this->name = $name;

}

}

2. You can force any developer using your class to define a method by marking it

abstract. In this example, the Base class defines as abstract the validate()

method. The reason why it must be abstract is because it would be impossible to

determine exactly how a child class would be validated from the perspective of the

parent Base class:

abstract class Base

{

protected $id;

public function getId()

{

return $this->id;

}

91

Working with PHP Object-Oriented Programming

public function setId($id)

{

$this->id = $id;

}

public function validate();

}

If a class contains an abstract method, the class itself must be declared as

abstract.

3. PHP only supports a single line of inheritance. The next example shows a class,

Member, which inherits from Customer. Customer, in turn, inherits from Base:

class Base

{

protected $id;

public function getId()

{

return $this->id;

}

public function setId($id)

{

$this->id = $id;

}

}

class Customer extends Base

{

protected $name;

public function getName()

{

return $this->name;

}

public function setName($name)

{

$this->name = $name;

}

}

class Member extends Customer

{

protected $membership;

public function getMembership()

{

92

Chapter 4

return $this->membership;

}

public function setMembership($memberId)

{

$this->membership = $memberId;

}

}

4. To satisfy a type-hint, any child of the target class can be used. The test() function,

shown in the following code snippet, requires an instance of the Base class as an

argument. Any class within the line of inheritance can be accepted as an argument.

Anything else passed to test() throws a TypeError:

function test(Base $object)

{

return $object->getId();

}

 How it works...

In the first bullet point, a Base class and a Customer class were defined. For the sake of

demonstration, place these two class definitions in a single file, chap_04_oop_extends.

php, and add the following code:

$customer = new Customer();

$customer->setId(100);

$customer->setName('Fred');

var_dump($customer);

Note that the $id property and the getId() and setId() methods are inherited from the

parent Base class into the child Customer class:

93

Working with PHP Object-Oriented Programming

To illustrate the use of an abstract method, imagine that you wish to add some sort of

validation capability to any class that extends Base. The problem is that there is no way to

know what might be validated in the inherited classes. The only thing that is certain is that

you must have a validation capability.

Take the same Base class mentioned in the preceding explanation and add a new method,

validate(). Label the method as abstract, and do not define any code. Notice what

happens when the child Customer class extends Base.

If you then label the Base class as abstract, but fail to define a validate() method

in the child class, the same error will be generated. Finally, go ahead and implement the

validate() method in a child Customer class:

class Customer extends Base

{

protected $name;

public function getName()

{

return $this->name;

}

public function setName($name)

{

$this->name = $name;

}

public function validate()

{

$valid = 0;

$count = count(get_object_vars($this));

94

Chapter 4

if (!empty($this->id) &&is_int($this->id)) $valid++;

if (!empty($this->name)

&&preg_match('/[a-z0-9]/i', $this->name)) $valid++;

return ($valid == $count);

}

}

You can then add the following procedural code to test the results:

$customer = new Customer();

$customer->setId(100);

$customer->setName('Fred');

echo "Customer [id]: {$customer->getName()}" .

. "[{$customer->getId()}]\n";

echo ($customer->validate()) ? 'VALID' : 'NOT VALID';

$customer->setId('XXX');

$customer->setName('$%£&*()');

echo "Customer [id]: {$customer->getName()}"

. "[{$customer->getId()}]\n";

echo ($customer->validate()) ? 'VALID' : 'NOT VALID';

Here is the output:

To show a single line of inheritance, add a new Member class to the first example of Base and

Customer shown in the preceding step 1:

class Member extends Customer

{

protected $membership;

public function getMembership()

95

Working with PHP Object-Oriented Programming

{

return $this->membership;

}

public function setMembership($memberId)

{

$this->membership = $memberId;

}

}

Create an instance of Member, and notice, in the following code, that all properties and

methods are available from every inherited class, even if not directly inherited:

$member = new Member();

$member->setId(100);

$member->setName('Fred');

$member->setMembership('A299F322');

var_dump($member);

Here is the output:

Now define a function, test(), which takes an instance of Base as an argument:

function test(Base $object)

{

return $object->getId();

}

Notice that instances of Base, Customer, and Member are all acceptable as arguments:

$base = new Base();

$base->setId(100);

96

Chapter 4

$customer = new Customer();

$customer->setId(101);

$member = new Member();

$member->setId(102);

// all 3 classes work in test()

echo test($base) . PHP_EOL;

echo test($customer) . PHP_EOL;

echo test($member) . PHP_EOL;

Here is the output:

However, if you try to run test() with an object instance that is not in the line of inheritance,

a TypeError is thrown:

class Orphan

{

protected $id;

public function getId()

{

return $this->id;

}

public function setId($id)

{

$this->id = $id;

}

}

try {

97

Working with PHP Object-Oriented Programming

$orphan = new Orphan();

$orphan->setId(103);

echo test($orphan) . PHP_EOL;

} catch (TypeError $e) {

echo 'Does not work!' . PHP_EOL;

echo $e->getMessage();

}

We can observe this in the following image:

 Using static properties and methods

PHP lets you access properties or methods without having to create an instance of the class.

The keyword used for this purpose is static.

 How to do it...

1. At its simplest, simply add the static keyword after stating the visibility level when

declaring an ordinary property or method. Use the self keyword to reference the

property internally:

class Test

{

public static $test = 'TEST';

public static function getTest()

{

98

Chapter 4

return self::$test;

}

}

2. The self keyword will bind early, which will cause problems when accessing static

information in child classes. If you absolutely need to access information from the

child class, use the static keyword in place of self. This process is referred to as

Late Static Binding.

3. In the following example, if you echo Child::getEarlyTest(), the output will be

TEST. If, on the other hand, you run Child::getLateTest(), the output will be

CHILD. The reason is that PHP will bind to the earliest definition when using self,

whereas the latest binding is used for the static keyword:

class Test2

{

public static $test = 'TEST2';

public static function getEarlyTest()

{

return self::$test;

}

public static function getLateTest()

{

return static::$test;

}

}

class Child extends Test2

{

public static $test = 'CHILD';

}

4. In many cases, the Factory design pattern is used in conjunction with static methods

to produce instances of objects given different parameters. In this example, a static

method factory() is defined which returns a PDO connection:

public static function factory(

$driver,$dbname,$host,$user,$pwd,array $options = [])

{

$dsn = sprintf('%s:dbname=%s;host=%s',

$driver, $dbname, $host);

try {

return new PDO($dsn, $user, $pwd, $options);

} catch (PDOException $e) {

error_log($e->getMessage);

}

}

99

Working with PHP Object-Oriented Programming

 How it works...

You can reference static properties and methods using the class resolution operator "::".

Given the Test class shown previously, if you run this code:

echo Test::$test;

echo PHP_EOL;

echo Test::getTest();

echo PHP_EOL;

You will see this output:

To illustrate Late Static Binding, based on the classes Test2 and Child shown previously, try

this code:

echo Test2::$test;

echo Child::$test;

echo Child::getEarlyTest();

echo Child::getLateTest();

The output illustrates the difference between self and static:

100

Chapter 4

Finally, to test the factory() method shown previously, save the code into the

Application\Database\Connection class in a Connection.php file in the

Application\Database folder. You can then try this:

include DIR . '/../Application/Database/Connection.php';

use Application\Database\Connection;

$connection = Connection::factory(

'mysql', 'php7cookbook', 'localhost', 'test', 'password');

$stmt = $connection->query('SELECT name FROM iso_country_codes');

while ($country = $stmt->fetch(PDO::FETCH_COLUMN))

echo $country . '';

You will see a list of countries pulled from the sample database:

101

Working with PHP Object-Oriented Programming

 See also

For more information on Late Static Binding, see this explanation in the PHP documentation:

http://php.net/manual/en/language.oop5.late-static-bindings.php

 Using namespaces

An aspect that is critical to advanced PHP development is the use of namespaces. The

arbitrarily defined namespace becomes a prefix to the class name, thereby avoiding

the problem of accidental class duplication, and allowing you extraordinary freedom of

development. Another benefit to the use of a namespace, assuming it matches the directory

structure, is that it facilitates autoloading, as discussed in Chapter 1, Building a Foundation.

 How to do it...

1. To define a class within a namespace, simply add the keyword namespace at the top

of the code file:

namespace Application\Entity;

Best practice

 As with the recommendation to have only one class per file, likewise you

should have only one namespace per file.

2. The only PHP code that should precede the keyword namespace would be a

comment and/or the keyword declare:

<?php

declare(strict_types=1);

namespace Application\Entity;

/**

* Address

*

*/

class Address

{

// some code

}

102

http://php.net/manual/en/language.oop5.late-static-bindings.php

Chapter 4

3. In PHP 5, if you needed to access a class in an external namespace you could

prepend a use statement containing only the namespace. You would need to then

prefix any class reference within this namespace with the last component of the

namespace:

use Application\Entity;

$name = new Entity\Name();

$addr = new Entity\Address();

$prof = new Entity\Profile();

4. Alternatively, you could distinctly specify all three classes:

use Application\Entity\Name;

use Application\Entity\Address;

use Application\Entity\Profile;

$name = new Name();

$addr = new Address();

$prof = new Profile();

5. PHP 7 has introduced a syntactical improvement referred to as group use which

greatly improves code readability:

use Application\Entity\ {

Name,

Address,

Profile

};

$name = new Name();

$addr = new Address();

$prof = new Profile();

6. As mentioned in Chapter 1, Building a Foundation, namespaces form an integral

part of the autoloading process. This example shows a demonstration autoloader

which echoes the argument passed, and then attempts to include a file based on the

namespace and class name. This assumes that the directory structure matches the

namespace:

function autoload($class)

{

echo "Argument Passed to Autoloader = $class\n";

include DIR

}

. '/../' . str_replace(

'\\', DIRECTORY_SEPARATOR, $class) . '.php';

 103

Working with PHP Object-Oriented Programming

 How it works...

For illustration purposes, define a directory structure that matches the Application*

namespace. Create a base folder Application, and a sub-folder Entity. You can also

include any sub-folders as desired, such as Database and Generic, used in other chapters:

Next, create three entity classes, each in their own file, under the Application/Entity

folder: Name.php, Address.php, and Profile.php. We only show Application\

Entity\Name here. Application\Entity\Address and Application\Entity\

Profile will be the same, except that Address has an $address property, and Profile

has a $profile property, each with an appropriate get and set method:

<?php

declare(strict_types=1);

namespace Application\Entity;

/**

* Name

*

*/

class Name

{

protected $name = '';

/**

* This method returns the current value of $name

*

* @return string $name

*/

public function getName() : string

{

return $this->name;

}

/**

104

Chapter 4

* This method sets the value of $name

*

* @param string $name

* @return name $this

*/

public function setName(string $name)

{

$this->name = $name;

return $this;

}

}

You can then either use the autoloader defined in Chapter 1, Building a Foundation, or use

the simple autoloader mentioned previously. Place the commands to set up autoloading in

a file, chap_04_oop_namespace_example_1.php. In this file, you can then specify a use

statement which only references the namespace, not the class names. Create instances of

the three entity classes Name, Address and Profile, by prefixing the class name with the

last part of the namespace, Entity:

use Application\Entity;

$name = new Entity\Name();

$addr = new Entity\Address();

$prof = new Entity\Profile();

var_dump($name);

var_dump($addr);

var_dump($prof);

Here is the output:

105

Working with PHP Object-Oriented Programming

Next, use Save as to copy the file to a new one named chap_04_oop_namespace_

example_2.php. Change the use statement to the following:

use Application\Entity\Name;

use Application\Entity\Address;

use Application\Entity\Profile;

You can now create class instances using only the class name:

$name = new Name();

$addr = new Address();

$prof = new Profile();

When you run this script, here is the output:

Finally, again run Save as and create a new file, chap_04_oop_namespace_example_3.

php. You can now test the group use feature introduced in PHP 7:

use Application\Entity\ {

Name,

Address,

Profile

};

$name = new Name();

$addr = new Address();

$prof = new Profile();

106

Chapter 4

Again, when you run this block of code, the output will be the same as the preceding output:

Defining visibility

Deceptively, the word visibility has nothing to do with application security! Instead it is simply a

mechanism to control the use of your code. It can be used to steer an inexperienced developer

away from the public use of methods that should only be called inside the class definition.

 How to do it...

1. Indicate the visibility level by prepending the public, protected, or private

keyword in front of any property or method definition. You can label properties

as protected or private to enforce access only through public getters and

setters.

2. In this example, a Base class is defined with a protected property $id. In order to

access this property, the getId() and setId() public methods are defined. The

protected method generateRandId() can be used internally, and is inherited in

the Customer child class. This method cannot be called directly outside of class

definitions. Note the use of the new PHP 7 random_bytes() function to create a

random ID.

class Base

{

protected $id;

private $key = 12345;

107

Working with PHP Object-Oriented Programming

public function getId()

{

return $this->id;

}

public function setId()

{

$this->id = $this->generateRandId();

}

protected function generateRandId()

{

return unpack('H*', random_bytes(8))[1];

}

}

class Customer extends Base

{

protected $name;

public function getName()

{

return $this->name;

}

public function setName($name)

{

$this->name = $name;

}

}

Best practice

Mark properties as protected, and define the

 public getNameOfProperty() and setNameOfProperty() methods to control

access to the property. Such methods are referred to as getters and

setters.

3. Mark a property or method as private to prevent it from being inherited or visible

from outside the class definition. This is a good way to create a class as a singleton.

4. The next code example shows a class Registry, of which there can only be one

instance. Because the constructor is marked as private, the only way an instance

can be created is through the static method getInstance():

class Registry

{

protected static $instance = NULL;

protected $registry = array();

private function construct()

108

Chapter 4

{

// nobody can create an instance of this class

}

public static function getInstance()

{

if (!self::$instance) {

self::$instance = new self();

}

return self::$instance;

}

public function get($key)

{

return $this->registry[$key] ?? NULL;

}

public function set($key, $value)

{

$this->registry[$key] = $value;

}

}

You can mark a method as final to prevent it from being overridden. Mark a

class as final to prevent it from being extended.

5. Normally, class constants are considered to have a visibility level of public. As

of PHP 7.1, you can declare class constants to be protected or private. In the

following example, the TEST_WHOLE_WORLD class constant behaves exactly as in

PHP 5. The next two constants, TEST_INHERITED and TEST_LOCAL, follow the

same rules as any protected or private property or method:

class Test

{

public const TEST_WHOLE_WORLD = 'visible.everywhere';

// NOTE: only works in PHP 7.1 and above

protected const TEST_INHERITED = 'visible.in.child.classes';

// NOTE: only works in PHP 7.1 and above

private const TEST_LOCAL= 'local.to.class.Test.only';

public static function getTestInherited()

{

return static::TEST_INHERITED;

109

Working with PHP Object-Oriented Programming

}

public static function getTestLocal()

{

return static::TEST_LOCAL;

}

}

 How it works...

Create a file chap_04_basic_visibility.php and define two classes: Base and

Customer. Next, write code to create instances of each:

$base = new Base();

$customer = new Customer();

Notice that the following code works OK, and is in fact considered the best practice:

$customer->setId();

$customer->setName('Test');

echo 'Welcome ' . $customer->getName() . PHP_EOL;

echo 'Your new ID number is: ' . $customer->getId() . PHP_EOL;

Even though $id is protected, the corresponding methods, getId() and setId(), are

both public, and therefore accessible from outside the class definition. Here is the output:

110

Chapter 4

The following lines of code will not work, however, as private and protected properties

are not accessible from outside the class definition:

echo 'Key (does not work): ' . $base->key;

echo 'Key (does not work): ' . $customer->key;

echo 'Name (does not work): ' . $customer->name;

echo 'Random ID (does not work): ' . $customer->generateRandId();

The following output shows the expected errors:

 See also

For more information on getters and setters, see the recipe in this chapter entitled Using

getters and setters. For more information on PHP 7.1 class constant visibility settings, please

see https://wiki.php.net/rfc/class_const_visibility.

 Using interfaces

Interfaces are useful tools for systems architects and are often used to prototype an

Application Programming Interface (API). Interfaces don't contain actual code, but can

contain names of methods as well as method signatures.

All methods identified in the Interface have a visibility level of public.

111

Working with PHP Object-Oriented Programming

 How to do it...

1. Methods identified by the interface cannot contain actual code implementations. You

can, however, specify the data types of method arguments.

2. In this example, ConnectionAwareInterface identifies a method,

setConnection(), which requires an instance of Connection as an argument:

interface ConnectionAwareInterface

{

public function setConnection(Connection $connection);

}

3. To use the interface, add the keyword implements after the open line that defines

the class. We have defined two classes, CountryList and CustomerList,

both of which require access to the Connection class via a method,

setConnection(). In order to identify this dependency, both classes implement

ConnectionAwareInterface:

class CountryList implements ConnectionAwareInterface

{

protected $connection;

public function setConnection(Connection $connection)

{

$this->connection = $connection;

}

public function list()

{

$list = [];

$stmt = $this->connection->pdo->query(

'SELECT iso3, name FROM iso_country_codes');

while ($country = $stmt->fetch(PDO::FETCH_ASSOC)) {

$list[$country['iso3']] = $country['name'];

}

return $list;

}

}

class CustomerList implements ConnectionAwareInterface

{

protected $connection;

public function setConnection(Connection $connection)

{

$this->connection = $connection;

}

public function list()

{

112

Chapter 4

$list = [];

$stmt = $this->connection->pdo->query(

'SELECT id, name FROM customer');

while ($customer = $stmt->fetch(PDO::FETCH_ASSOC)) {

$list[$customer['id']] = $customer['name'];

}

return $list;

}

}

4. Interfaces can be used to satisfy a type hint. The following class, ListFactory,

contains a factory() method, which initializes any class that implements

ConnectionAwareInterface. The interface is a guarantee that the

setConnection() method is defined. Setting the type hint to the interface instead

of a specific class instance makes the factory method more generically useful:

namespace Application\Generic;

use PDO;

use Exception;

use Application\Database\Connection;

use Application\Database\ConnectionAwareInterface;

class ListFactory

{

const ERROR_AWARE = 'Class must be Connection Aware';

public static function factory(

ConnectionAwareInterface $class, $dbParams)

{

if ($class instanceof ConnectionAwareInterface) {

$class->setConnection(new Connection($dbParams));

return $class;

} else {

throw new Exception(self::ERROR_AWARE);

}

return FALSE;

}

}

113

Working with PHP Object-Oriented Programming

5. If a class implements multiple interfaces, a naming collision occurs if method

signatures do not match. In this example, there are two interfaces, DateAware and

TimeAware. In addition to defining the setDate() and setTime() methods, they

both define setBoth(). Having duplicate method names is not an issue, although

it is not considered best practice. The problem lies in the fact that the method

signatures differ:

interface DateAware

{

public function setDate($date);

public function setBoth(DateTime $dateTime);

}

interface TimeAware

{

public function setTime($time);

public function setBoth($date, $time);

}

class DateTimeHandler implements DateAware, TimeAware

{

protected $date;

protected $time;

public function setDate($date)

{

$this->date = $date;

}

public function setTime($time)

{

$this->time = $time;

}

public function setBoth(DateTime $dateTime)

{

$this->date = $date;

}

}

114

Chapter 4

6. As the code block stands, a fatal error will be generated (which cannot be caught!).

To resolve the problem, the preferred approach would be to remove the definition

of setBoth() from one or the other interface. Alternatively, you could adjust the

method signatures to match.

 Best practice

Do not define interfaces with duplicate or overlapping method definitions.

 How it works...

In the Application/Database folder, create a file, ConnectionAwareInterface.php.

Insert the code discussed in the preceding step 2.

Next, in the Application/Generic folder, create two files, CountryList.php and

CustomerList.php. Insert the code discussed in step 3.

Next, in a directory parallel to the Application directory, create a source code file,

chap_04_oop_simple_interfaces_example.php, which initializes the autoloader and

includes the database parameters:

<?php

define('DB_CONFIG_FILE', '/../config/db.config.php');

require DIR . '/../Application/Autoload/Loader.php';

Application\Autoload\Loader::init(DIR . '/..');

$params = include DIR . DB_CONFIG_FILE;

The database parameters in this example are assumed to be in a database configuration file

indicated by the DB_CONFIG_FILE constant.

You are now in a position to use ListFactory::factory() to generate

CountryList and CustomerList objects. Note that if these classes did not implement

ConnectionAwareInterface, an error would be thrown:

$list = Application\Generic\ListFactory::factory(

new Application\Generic\CountryList(), $params);

foreach ($list->list() as $item) echo $item . '';

115

Working with PHP Object-Oriented Programming

Here is the output for country list:

You can also use the factory method to generate a CustomerList object and use it:

$list = Application\Generic\ListFactory::factory(

new Application\Generic\CustomerList(), $params);

foreach ($list->list() as $item) echo $item . '';

Here is the output for CustomerList:

116

Chapter 4

If you want to examine what happens when multiple interfaces are implemented, but where

the method signature differs, enter the code shown in the preceding step 4 into a file,

chap_04_oop_interfaces_collisions.php. When you try to run the file, an error is

generated, as shown here:

If you make the following adjustment in the TimeAware interface, no errors will result:

interface TimeAware

{

public function setTime($time);

// this will cause a problem

public function setBoth(DateTime $dateTime);

}

 Using traits

If you have ever done any C programming, you are perhaps familiar with macros. A macro is

a predefined block of code that expands at the line indicated. In a similar manner, traits can

contain blocks of code that are copied and pasted into a class at the line indicated by the

PHP interpreter.

117

Working with PHP Object-Oriented Programming

 How to do it...

1. Traits are identified with the keyword trait, and can contain properties and/or

methods. You may have noticed duplication of code when examining the previous

recipe featuring the CountryList and CustomerList classes. In this example, we

will re-factor the two classes, and move the functionality of the list() method into a

Trait. Notice that the list() method is the same in both classes.

2. Traits are used in situations where there is duplication of code between classes.

Please note, however, that the conventional approach to creating an abstract class

and extending it might have certain advantages over using traits. Traits cannot be

used to identify a line of inheritance, whereas abstract parent classes can be used

for this purpose.

3. We will now copy list() into a trait called ListTrait:

trait ListTrait

{

public function list()

{

$list = [];

$sql = sprintf('SELECT %s, %s FROM %s',

$this->key, $this->value, $this->table);

$stmt = $this->connection->pdo->query($sql);

while ($item = $stmt->fetch(PDO::FETCH_ASSOC)) {

$list[$item[$this->key]] =

$item[$this->value];

}

return $list;

}

}

4. We can then insert the code from ListTrait into a new class,

CountryListUsingTrait, as shown in the following code snippet. The entire

list() method can now be removed from this class:

class CountryListUsingTrait implements ConnectionAwareInterface

{

use ListTrait;

protected $connection;

protected $key = 'iso3';

protected $value = 'name';

protected $table = 'iso_country_codes';

public function setConnection(Connection $connection)

118

Chapter 4

{

$this->connection = $connection;

}

}

Any time you have duplication of code, a potential problem arises when

you need to make a change. You might find yourself having to do too many

global search and replace operations, or cutting and pasting of code, often

with disastrous results. Traits are a great way to avoid this maintenance

nightmare.

5. Traits are affected by namespaces. In the example shown in step 1, if our new

CountryListUsingTrait class is placed into a namespace, Application\

Generic, we will also need to move ListTrait into that namespace as well:

namespace Application\Generic;

use PDO;

trait ListTrait

{

public function list()

{

// code as shown above

}

}

6. Methods in traits override inherited methods.

7. In the following example, you will notice that the return value for the setId()

method differs between the Base parent class and the Test trait. The Customer

class inherits from Base, but also uses Test. In this case, the method defined in the

trait will override the method defined in the Base parent class:

trait Test

{

public function setId($id)

{

$obj = new stdClass();

$obj->id = $id;

$this->id = $obj;

}

}

class Base

119

Working with PHP Object-Oriented Programming

{

protected $id;

public function getId()

{

return $this->id;

}

public function setId($id)

{

$this->id = $id;

}

}

class Customer extends Base

{

use Test;

protected $name;

public function getName()

{

return $this->name;

}

public function setName($name)

{

$this->name = $name;

}

}

In PHP 5, traits could also override properties. In PHP 7, if the property in a

 trait is initialized to a different value than in the parent class, a fatal error is
generated.

8. Methods directly defined in the class that use the trait override duplicate methods

defined in the trait.

9. In this example, the Test trait defines a property $id along with the getId()

methods and setId(). The trait also defines setName(), which conflicts with the

same method defined in the Customer class. In this case, the directly defined

setName() method from Customer will override the setName() defined in the trait:

trait Test

{

protected $id;

public function getId()

{

return $this->id;

}

120

Chapter 4

public function setId($id)

{

$this->id = $id;

}

public function setName($name)

{

$obj = new stdClass();

$obj->name = $name;

$this->name = $obj;

}

}

class Customer

{

use Test;

protected $name;

public function getName()

{

return $this->name;

}

public function setName($name)

{

$this->name = $name;

}

}

10. Use the insteadof keywords to resolve method name conflicts when using multiple

traits. In conjunction, use the as keyword to alias method names.

11. In this example, there are two traits, IdTrait and NameTrait. Both traits define a

setKey() method, but express the key in different ways. The Test class uses both

traits. Note the insteadof keyword, which allows us to distinguish between the

conflicting methods. Thus, when setKey() is called from the Test class, the source

will be drawn from NameTrait. In addition, setKey() from IdTrait will still be

available, but under an alias, setKeyDate():

trait IdTrait

{

protected $id;

public $key;

public function setId($id)

{

$this->id = $id;

}

public function setKey()

{

121

Working with PHP Object-Oriented Programming

$this->key = date('YmdHis')

. sprintf('%04d', rand(0,9999));

}

}

trait NameTrait

{

protected $name;

public $key;

public function setName($name)

{

$this->name = $name;

}

public function setKey()

{

$this->key = unpack('H*', random_bytes(18))[1];

}

}

class Test

{

use IdTrait, NameTrait {

NameTrait::setKeyinsteadofIdTrait;

IdTrait::setKey as setKeyDate;

}

}

 How it works...

From step 1, you learned that traits are used in situations where there is duplication of

code. You need to gauge whether or not you could simply define a base class and extend it,

or whether using a trait better serves your purposes. Traits are especially useful where the

duplication of code is seen in logically unrelated classes.

To illustrate how trait methods override inherited methods, copy the block of code mentioned

in step 7 into a separate file, chap_04_oop_traits_override_inherited.php. Add

these lines of code:

$customer = new Customer();

$customer->setId(100);

$customer->setName('Fred');

var_dump($customer);

As you can see from the output (shown next), the property $id is stored as an instance of

stdClass(), which is the behavior defined in the trait:

122

Chapter 4

To illustrate how directly defined class methods override trait methods, copy the block of

code mentioned in step 9 into a separate file, chap_04_oop_trait_methods_do_not_

override_class_methods.php. Add these lines of code:

$customer = new Customer();

$customer->setId(100);

$customer->setName('Fred');

var_dump($customer);

As you can see from the following output, the $id property is stored as an integer, as defined

in the Customer class, whereas the trait defines $id as an instance of stdClass:

123

Working with PHP Object-Oriented Programming

In step 10, you learned how to resolve duplicate method name conflicts when using multiple

traits. Copy the block of code shown in step 11 into a separate file, chap_04_oop_trait_

multiple.php. Add the following code:

$a = new Test();

$a->setId(100);

$a->setName('Fred');

$a->setKey();

var_dump($a);

$a->setKeyDate();

var_dump($a);

Notice in the following output that setKey() yields the output produced from the new PHP 7

function, random_bytes() (defined in NameTrait), whereas setKeyDate() produces a

key using the date() and rand() functions (defined in IdTrait):

 Implementing anonymous classes

PHP 7 introduced a new feature, anonymous classes. Much like anonymous functions,

anonymous classes can be defined as part of an expression, creating a class that has no

name. Anonymous classes are used in situations where you need to create an object on the

fly, which is used and then discarded.

124

Chapter 4

 How to do it...

1. An alternative to stdClass is to define an anonymous class.

In the definition, you can define any properties and methods (including magic

methods). In this example, we define an anonymous class with two properties and a

magic method, construct():

$a = new class (123.45, 'TEST') {

public $total = 0;

public $test = '';

public function construct($total, $test)

{

$this->total = $total;

$this->test = $test;

}

};

2. An anonymous class can extend any class.

In this example, an anonymous class extends FilterIterator, and overrides

both the construct() and accept() methods. As an argument, it accepts

ArrayIterator $b, which represents an array of 10 to 100 in increments of 10.

The second argument serves as a limit on the output:

$b = new ArrayIterator(range(10,100,10));

$f = new class ($b, 50) extends FilterIterator {

public $limit = 0;

public function construct($iterator, $limit)

{

$this->limit = $limit;

parent:: construct($iterator);

}

public function accept()

{

return ($this->current() <= $this->limit);

}

};

3. An anonymous class can implement an interface.

In this example, an anonymous class is used to generate an HTML color code chart.

The class implements the built-in PHP Countable interface. A count() method

is defined, which is called when this class is used with a method or function that

requires Countable:

define('MAX_COLORS', 256 ** 3);

$d = new class () implements Countable {

125

Working with PHP Object-Oriented Programming

public $current = 0;

public $maxRows = 16;

public $maxCols = 64;

public function cycle()

{

$row = '';

$max = $this->maxRows * $this->maxCols;

for ($x = 0; $x < $this->maxRows; $x++) {

$row .= '<tr>';

for ($y = 0; $y < $this->maxCols; $y++) {

$row .= sprintf(

'<td style="background-color: #%06X;"',

$this->current);

$row .= sprintf(

'title="#%06X"> </td>',

$this->current);

$this->current++;

$this->current = ($this->current >MAX_COLORS) ? 0

: $this->current;

}

$row .= '</tr>';

}

return $row;

}

public function count()

{

return MAX_COLORS;

}

};

4. Anonymous classes can use traits.

5. This last example is a modification from the preceding one defined immediately.

Instead of defining a class Test, we define an anonymous class instead:

$a = new class() {

use IdTrait, NameTrait {

NameTrait::setKeyinsteadofIdTrait;

IdTrait::setKey as setKeyDate;

}

};

126

 How it works...

Chapter 4

In an anonymous class you can define any properties or methods. Using the preceding

example, you could define an anonymous class that accepts constructor arguments, and

where you can access properties. Place the code described in step 2 into a test script

chap_04_oop_anonymous_class.php. Add these echo statements:

echo "\nAnonymous Class\n";

echo $a->total .PHP_EOL;

echo $a->test . PHP_EOL;

Here is the output from the anonymous class:

In order to use FilterIterator you must override the accept() method. In this method,

you define criteria for which elements of the iteration are to be included as output. Go ahead

now and add the code shown in step 4 to the test script. You can then add these echo

statements to test the anonymous class:

echo "\nAnonymous Class Extends FilterIterator\n";

foreach ($f as $item) echo $item . '';

echo PHP_EOL;

127

Working with PHP Object-Oriented Programming

In this example, a limit of 50 is established. The original ArrayIterator contains an array

of values, 10 to 100, in increments of 10, as seen in the following output:

To have a look at an anonymous class that implements an interface, consider the example

shown in steps 5 and 6. Place this code in a file, chap_04_oop_anonymous_class_

interfaces.php.

Next, add code that lets you paginate through the HTML color chart:

$d->current = $_GET['current'] ?? 0;

$d->current = hexdec($d->current);

$factor = ($d->maxRows * $d->maxCols);

$next = $d->current + $factor;

$prev = $d->current - $factor;

$next = ($next <MAX_COLORS) ? $next : MAX_COLORS - $factor;

$prev = ($prev>= 0) ? $prev : 0;

$next = sprintf('%06X', $next);

$prev = sprintf('%06X', $prev);

?>

Finally, go ahead and present the HTML color chart as a web page:

<h1>Total Possible Color Combinations: <?= count($d); ?></h1>

<hr>

<table>

<?= $d->cycle(); ?>

</table>

<a href="?current=<?= $prev ?>"><<PREV

<a href="?current=<?= $next ?>">NEXT >>

128

Chapter 4

Notice that you can take advantage of the Countable interface by passing the instance of

the anonymous class into the count() function (shown between <H1> tags). Here is the

output shown in a browser window:

Lastly, to illustrate the use of traits in anonymous classes, copy the chap_04_oop_trait_

multiple.php file mentioned in the previous recipe to a new file, chap_04_oop_trait_

anonymous_class.php. Remove the definition of the Test class, and replace it with an

anonymous class:

$a = new class() {

use IdTrait, NameTrait {

NameTrait::setKeyinsteadofIdTrait;

IdTrait::setKey as setKeyDate;

}

};

Remove this line:

$a = new Test();

129

Working with PHP Object-Oriented Programming

When you run the code, you will see exactly the same output as shown in the preceding

screenshot, except that the class reference will be anonymous:

130

5
Interacting with

a Database

In this chapter, we will cover the following topics:

f Using PDO to connect to a database

f Building an OOP SQL query builder

f Handling pagination

f Defining entities to match database tables

f Tying entity classes to RDBMS queries

f Embedding secondary lookups into query results

f Implementing jQuery DataTables PHP lookups

 Introduction

In this chapter, we will cover a series of database connectivity recipes that take advantage of

the PHP Data Objects (PDO) extension. Common programming problems such as Structured

Query Language (SQL) generation, pagination, and tying objects to database tables, will be

addressed. Finally, at the end, we will present code that processes secondary lookups in the

form of embedded anonymous functions, and using jQuery DataTables to make AJAX requests.

131

Interacting with a Database

 Using PDO to connect to a database

PDO is a highly performant and actively maintained database extension that has a unique

advantage over vendor-specific extensions. It has a common Application Programming

Interface (API) that is compatible with almost a dozen different Relational Database

Management Systems (RDBMS). Learning how to use this extension will save you hours

of time trying to master the command subsets of the equivalent individual vendor-specific

database extensions.

PDO is subdivided into four main classes, as summarized in the following table:

Class Functionality

PDO Maintains the actual connection to the database, and also

handles low-level functionality such as transaction support

PDOStatement Processes results

PDOException Database-specific exceptions

PDODriver Communicates with the actual vendor-specific database

 How to do it…

1. Set up the database connection by creating a PDO instance.

2. You need to construct a Data Source Name (DSN). The information contained in the

DSN varies according to the database driver used. As an example, here is a DSN used

to connect to a MySQL database:

$params = [

'host' => 'localhost',

'user' => 'test',

'pwd' => 'password',

'db' => 'php7cookbook'

];

try {

$dsn = sprintf('mysql:host=%s;dbname=%s',

$params['host'], $params['db']);

$pdo = new PDO($dsn, $params['user'], $params['pwd']);

} catch (PDOException $e) {

echo $e->getMessage();

} catch (Throwable $e) {

echo $e->getMessage();

}

132

Chapter 5

3. On the other hand, SQlite, a simpler extension, only requires the following command:

$params = [

'db' => DIR

];

. '/../data/db/php7cookbook.db.sqlite'

$dsn = sprintf('sqlite:' . $params['db']);

4. PostgreSQL, on the other hand, includes the username and password directly in the

DSN:

$params = [

'host' => 'localhost',

'user' => 'test',

'pwd' => 'password',

'db' => 'php7cookbook'

];

$dsn = sprintf('pgsql:host=%s;dbname=%s;user=%s;password=%s',

$params['host'],

$params['db'],

$params['user'],

$params['pwd']);

5. The DSN could also include server-specific directives, such as unix_socket, as

shown in the following example:

$params = [

'host' => 'localhost',

'user' => 'test',

'pwd' => 'password',

'db' => 'php7cookbook',

'sock' => '/var/run/mysqld/mysqld.sock'

];

try {

$dsn = sprintf('mysql:host=%s;dbname=%s;unix_socket=%s',

$params['host'], $params['db'], $params['sock']);

$opts = [PDO::ATTR_ERRMODE => PDO::ERRMODE_EXCEPTION];

$pdo = new PDO($dsn, $params['user'], $params['pwd'], $opts);

} catch (PDOException $e) {

echo $e->getMessage();

} catch (Throwable $e) {

echo $e->getMessage();

}

133

Interacting with a Database

Best practice

Wrap the statement that creates the PDO instance in a try {} catch

{} block. Catch a PDOException for database-specific information in

case of failure. Catch Throwable for errors or any other exceptions. Set

the PDO error mode to PDO::ERRMODE_EXCEPTION for best results. See

step 8 for more details about error modes.

In PHP 5, if the PDO object cannot be constructed (for example, when

invalid parameters are used), the instance is assigned a value of NULL. In

PHP 7, an Exception is thrown. If you wrap the construction of the PDO

object in a try {} catch {} block, and the PDO::ATTR_ERRMODE is

set to PDO::ERRMODE_EXCEPTION, you can catch and log such errors

without having to test for NULL.

6. Send an SQL command using PDO::query(). A PDOStatement instance is

returned, against which you can fetch results. In this example, we are looking for the

first 20 customers sorted by ID:

$stmt = $pdo->query(

'SELECT * FROM customer ORDER BY id LIMIT 20');

PDO also provides a convenience method, PDO::exec(), which does

not return a result iteration, just the number of rows affected. This method

is best used for administrative operations such as ALTER TABLE, DROP

TABLE, and so on.

7. Iterate through the PDOStatement instance to process results. Set the fetch mode

to either PDO::FETCH_NUM or PDO::FETCH_ASSOC to return results in the form of

a numeric or associative array. In this example we use a while() loop to process

results. When the last result has been fetched, the result is a boolean FALSE, ending

the loop:

while ($row = $stmt->fetch(PDO::FETCH_ASSOC)) {

printf('%4d | %20s | %5s' . PHP_EOL, $row['id'],

$row['name'], $row['level']);

}

PDO fetch operations involve a cursor that defines the direction
(that is, forward or reverse) of the iteration. The second argument to

 PDOStatement::fetch() can be any of the PDO::FETCH_ORI_*
constants. Cursor orientations include prior, first, last, absolute, and

relative. The default cursor orientation is PDO::FETCH_ORI_NEXT.

134

Chapter 5

8. Set the fetch mode to PDO::FETCH_OBJ to return results as a stdClass instance.

Here you will note that the while() loop takes advantage of the fetch mode,

PDO::FETCH_OBJ. Notice that the printf() statement refers to object properties,

in contrast with the preceding example, which references array elements:

while ($row = $stmt->fetch(PDO::FETCH_OBJ)) {

printf('%4d | %20s | %5s' . PHP_EOL,

$row->id, $row->name, $row->level);

}

9. If you want to create an instance of a specific class while processing a query, set

the fetch mode to PDO::FETCH_CLASS. You must also have the class definition

available, and PDO::query() should set the class name. As you can see in the

following code snippet, we have defined a class called Customer, with public

properties $id, $name, and $level. Properties need to be public for the fetch

injection to work properly:

class Customer

{

public $id;

public $name;

public $level;

}

$stmt = $pdo->query($sql, PDO::FETCH_CLASS, 'Customer');

10. When fetching objects, a simpler alternative to the technique shown in step 5 is to

use PDOStatement::fetchObject():

while ($row = $stmt->fetchObject('Customer')) {

printf('%4d | %20s | %5s' . PHP_EOL,

$row->id, $row->name, $row->level);

}

11. You could also use PDO::FETCH_INTO, which is essentially the same as

PDO::FETCH_CLASS, but you need an active object instance instead of a class

reference. Each iteration through the loop re-populates the same object instance with

the current information set. This example assumes the same class Customer as in

step 5, with the same database parameters and PDO connections as defined in step

1:

$cust = new Customer();

while ($stmt->fetch(PDO::FETCH_INTO)) {

printf('%4d | %20s | %5s' . PHP_EOL,

$cust->id, $cust->name, $cust->level);

}

135

Interacting with a Database

12. If you do not specify an error mode, the default PDO error mode is PDO::ERRMODE_

SILENT. You can set the error mode using the PDO::ATTR_ERRMODE key, and either

the PDO::ERRMODE_WARNING or the PDO::ERRMODE_EXCEPTION value. The error

mode can be specified as the fourth argument to the PDO constructor in the form

of an associative array. Alternatively, you can use PDO::setAttribute() on an

existing instance.

13. Let us assume you have the following DSN and SQL (before you start thinking that

this is a new form of SQL, please be assured: this SQL statement will not work!):

$params = [

'host' => 'localhost',

'user' => 'test',

'pwd' => 'password',

'db' => 'php7cookbook'

];

$dsn = sprintf('mysql:host=%s;dbname=%s', $params['host'],

$params['db']);

$sql = 'THIS SQL STATEMENT WILL NOT WORK';

14. If you then formulate your PDO connection using the default error mode, the only clue

that something is wrong is that instead of producing a PDOStatement instance, the

PDO::query() will return a boolean FALSE:

$pdo1 = new PDO($dsn, $params['user'], $params['pwd']);

$stmt = $pdo1->query($sql);

$row = ($stmt) ? $stmt->fetch(PDO::FETCH_ASSOC) : 'No Good';

15. The next example shows setting the error mode to WARNING using the constructor

approach:

$pdo2 = new PDO(

$dsn,

$params['user'],

$params['pwd'],

[PDO::ATTR_ERRMODE => PDO::ERRMODE_WARNING]);

16. If you need full separation of the prepare and execute phases, use

PDO::prepare() and PDOStatement::execute() instead. The statement

is then sent to the database server to be pre-compiled. You can then execute the

statement as many times as is warranted, most likely in a loop.

17. The first argument to PDO::prepare() can be an SQL statement with

placeholders in place of actual values. An array of values can then be supplied to

PDOStatement::execute(). PDO automatically provides database quoting, which

helps safeguard against SQL Injection.

136

Chapter 5

Best practice

Any application in which external input (that is, from a form posting) is

combined with an SQL statement is subject to an SQL injection attack.

All external input must first be properly filtered, validated, and otherwise

sanitized. Do not put external input directly into the SQL statement.

Instead, use placeholders, and provide the actual (sanitized) values

during the execution phase.

18. To iterate through the results in reverse, you can change the orientation of the

scrollable cursor. Alternatively, and probably more easily, just reverse the ORDER BY

from ASC to DESC. This line of code sets up a PDOStatement object requesting a

scrollable cursor:

$dsn = sprintf('pgsql:charset=UTF8;host=%s;dbname=%s',

$params['host'], $params['db']);

$opts = [PDO::ATTR_ERRMODE => PDO::ERRMODE_EXCEPTION];

$pdo = new PDO($dsn, $params['user'], $params['pwd'], $opts);

$sql = 'SELECT * FROM customer '

. 'WHERE balance > :min AND balance < :max '

. 'ORDER BY id LIMIT 20';

$stmt = $pdo->prepare($sql, [PDO::ATTR_CURSOR =>

PDO::CURSOR_SCROLL]);

19. You also need to specify cursor instructions during the fetch operation. This example

gets the last row in the result set, and then scrolls backwards:

$stmt->execute(['min' => $min, 'max' => $max]);

$row = $stmt->fetch(PDO::FETCH_ASSOC, PDO::FETCH_ORI_LAST);

do {

printf('%4d | %20s | %5s | %8.2f' . PHP_EOL,

$row['id'],

$row['name'],

$row['level'],

$row['balance']);

} while ($row = $stmt->fetch(PDO::FETCH_ASSOC,

PDO::FETCH_ORI_PRIOR));

20. Neither MySQL nor SQLite support scrollable cursors! To achieve the same results, try

the following modifications to the preceding code:

$dsn = sprintf('mysql:charset=UTF8;host=%s;dbname=%s',

$params['host'], $params['db']);

$opts = [PDO::ATTR_ERRMODE => PDO::ERRMODE_EXCEPTION];

$pdo = new PDO($dsn, $params['user'], $params['pwd'], $opts);

$sql = 'SELECT * FROM customer '

. 'WHERE balance > :min AND balance < :max '

137

Interacting with a Database

. 'ORDER BY id DESC

. 'LIMIT 20';

$stmt = $pdo->prepare($sql);

while ($row = $stmt->fetch(PDO::FETCH_ASSOC));

printf('%4d | %20s | %5s | %8.2f' . PHP_EOL,

$row['id'],

$row['name'],

$row['level'],

$row['balance']);

}

21. PDO provides support for transactions. Borrowing the code from step 9, we can wrap

the INSERT series of commands into a transactional block:

try {

$pdo->beginTransaction();

$sql = "INSERT INTO customer ('"

. implode("','", $fields) . "') VALUES (?,?,?,?,?,?)";

$stmt = $pdo->prepare($sql);

foreach ($data as $row) $stmt->execute($row);

$pdo->commit();

} catch (PDOException $e) {

error_log($e->getMessage());

$pdo->rollBack();

}

22. Finally, to keep everything modular and re-usable, we can wrap the PDO connection

into a separate class Application\Database\Connection. Here, we build

a connection through the constructor. Alternatively, there is a static factory()

method that lets us generate a series of PDO instances:

namespace Application\Database;

use Exception;

use PDO;

class Connection

{

const ERROR_UNABLE = 'ERROR: no database connection';

public $pdo;

public function construct(array $config)

{

if (!isset($config['driver'])) {

$message = METHOD . ' : '

. self::ERROR_UNABLE . PHP_EOL;

throw new Exception($message);

}

$dsn = $this->makeDsn($config);

138

Chapter 5

try {

$this->pdo = new PDO(

$dsn,

$config['user'],

$config['password'],

[PDO::ATTR_ERRMODE => $config['errmode']]);

return TRUE;

} catch (PDOException $e) {

error_log($e->getMessage());

return FALSE;

}

}

public static function factory(

$driver, $dbname, $host, $user,

$pwd, array $options = array())

{

$dsn = $this->makeDsn($config);

try {

return new PDO($dsn, $user, $pwd, $options);

} catch (PDOException $e) {

error_log($e->getMessage);

}

}

23. An important component of this Connection class is a generic method that can be

used to construct a DSN. All we need for this to work is to establish the PDODriver

as a prefix, followed by ":". After that, we simply append key/value pairs from our

configuration array. Each key/value pair is separated by a semi-colon. We also need

to strip off the trailing semi-colon, using substr() with a negative limit for that

purpose:

public function makeDsn($config)

{

$dsn = $config['driver'] . ':';

unset($config['driver']);

foreach ($config as $key => $value) {

$dsn .= $key . '=' . $value . ';';

}

return substr($dsn, 0, -1);

}

}

139

Interacting with a Database

 How it works...

First of all, you can copy the initial connection code from step 1 into a chap_05_pdo_

connect_mysql.php file. For the purposes of this illustration, we will assume you have

created a MySQL database called php7cookbook, with a username of cook and a password

of book. Next, we send a simple SQL statement to the database using the PDO::query()

method. Finally, we use the resulting statement object to fetch results in the form of an

associative array. Don't forget to wrap your code in a try {} catch {} block:

<?php

$params = [

'host' => 'localhost',

'user' => 'test',

'pwd' => 'password',

'db' => 'php7cookbook'

];

try {

$dsn = sprintf('mysql:charset=UTF8;host=%s;dbname=%s',

$params['host'], $params['db']);

$pdo = new PDO($dsn, $params['user'], $params['pwd']);

$stmt = $pdo->query(

'SELECT * FROM customer ORDER BY id LIMIT 20');

printf('%4s | %20s | %5s | %7s' . PHP_EOL,

'ID', 'NAME', 'LEVEL', 'BALANCE');

printf('%4s | %20s | %5s | %7s' . PHP_EOL,

'----', str_repeat('-', 20), '-----', ' ------ ');

while ($row = $stmt->fetch(PDO::FETCH_ASSOC)) {

printf('%4d | %20s | %5s | %7.2f' . PHP_EOL,

$row['id'], $row['name'], $row['level'], $row['balance']);

}

} catch (PDOException $e) {

error_log($e->getMessage());

} catch (Throwable $e) {

error_log($e->getMessage());

}

140

Chapter 5

Here is the resulting output:

Add the option to the PDO constructor, which sets the error mode to EXCEPTION. Now alter

the SQL statement and observe the resulting error message:

$opts = [PDO::ATTR_ERRMODE => PDO::ERRMODE_EXCEPTION];

$pdo = new PDO($dsn, $params['user'], $params['pwd'], $opts);

$stmt = $pdo->query('THIS SQL STATEMENT WILL NOT WORK');

You will observe something like this:

Placeholders can be named or positional. Named placeholders are preceded by a colon (:)

in the prepared SQL statement, and are references as keys in an associative array provided to

execute(). Positional placeholders are represented as question marks (?) in the prepared

SQL statement.

141

Interacting with a Database

In the following example, named placeholders are used to represent values in a WHERE

clause:

try {

$dsn = sprintf('mysql:host=%s;dbname=%s',

$params['host'], $params['db']);

$pdo = new PDO($dsn,

$params['user'],

$params['pwd'],

[PDO::ATTR_ERRMODE => PDO::ERRMODE_EXCEPTION]);

$sql = 'SELECT * FROM customer '

. 'WHERE balance < :val AND level = :level '

. 'ORDER BY id LIMIT 20'; echo $sql . PHP_EOL;

$stmt = $pdo->prepare($sql);

$stmt->execute(['val' => 100, 'level' => 'BEG']);

while ($row = $stmt->fetch(PDO::FETCH_ASSOC)) {

printf('%4d | %20s | %5s | %5.2f' . PHP_EOL,

$row['id'], $row['name'], $row['level'], $row['balance']);

}

} catch (PDOException $e) {

echo $e->getMessage();

} catch (Throwable $e) {

echo $e->getMessage();

}

This example shows using positional placeholders in an INSERT operation. Notice that the

data to be inserted as the fourth customer includes a potential SQL injection attack. You will

also notice that some awareness of the SQL syntax for the database being used is required. In

this case, MySQL column names are quoted using back-ticks ('):

$fields = ['name', 'balance', 'email',

'password', 'status', 'level'];

$data = [

['Saleen',0,'saleen@test.com', 'password',0,'BEG'],

['Lada',55.55,'lada@test.com', 'password',0,'INT'],

['Tonsoi',999.99,'tongsoi@test.com','password',1,'ADV'],

['SQL Injection',0.00,'bad','bad',1,

'BEG\';DELETE FROM customer;--'],

];

try {

$dsn = sprintf('mysql:host=%s;dbname=%s',

$params['host'], $params['db']);

$pdo = new PDO($dsn,

$params['user'],

142

$params['pwd'],

Chapter 5

[PDO::ATTR_ERRMODE => PDO::ERRMODE_EXCEPTION]);

$sql = "INSERT INTO customer ('"

. implode("','", $fields)

. "') VALUES (?,?,?,?,?,?)";

$stmt = $pdo->prepare($sql);

foreach ($data as $row) $stmt->execute($row);

} catch (PDOException $e) {

echo $e->getMessage();

} catch (Throwable $e) {

echo $e->getMessage();

}

To test the use of a prepared statement with named parameters, modify the SQL statement

to add a WHERE clause that checks for customers with a balance less than a certain amount,

and a level equal to either BEG, INT, or ADV (that is, beginning, intermediate, or advanced).

Instead of using PDO::query(), use PDO::prepare(). Before fetching results, you must

then perform PDOStatement::execute(), supplying the values for balance and level:

$sql = 'SELECT * FROM customer '

. 'WHERE balance < :val AND level = :level '

. 'ORDER BY id LIMIT 20';

$stmt = $pdo->prepare($sql);

$stmt->execute(['val' => 100, 'level' => 'BEG']);

Here is the resulting output:

Instead of providing parameters when calling PDOStatement::execute(), you could

alternatively bind parameters. This allows you to assign variables to placeholders. At the time

of execution, the current value of the variable is used.

143

Interacting with a Database

In this example, we bind the variables $min, $max, and $level to the prepared statement:

$min = 0;

$max = 0;

$level = '';

try {

$dsn = sprintf('mysql:host=%s;dbname=%s', $params['host'],

$params['db']);

$opts = [PDO::ATTR_ERRMODE => PDO::ERRMODE_EXCEPTION];

$pdo = new PDO($dsn, $params['user'], $params['pwd'], $opts);

$sql = 'SELECT * FROM customer '

. 'WHERE balance > :min '

. 'AND balance < :max AND level = :level '

. 'ORDER BY id LIMIT 20';

$stmt = $pdo->prepare($sql);

$stmt->bindParam('min', $min);

$stmt->bindParam('max', $max);

$stmt->bindParam('level', $level);

$min = 5000;

$max = 10000;

$level = 'ADV';

$stmt->execute();

showResults($stmt, $min, $max, $level);

$min = 0;

$max = 100;

$level = 'BEG';

$stmt->execute();

showResults($stmt, $min, $max, $level);

} catch (PDOException $e) {

echo $e->getMessage();

} catch (Throwable $e) {

echo $e->getMessage();

}

When the values of these variables change, the next execution will reflect the modified

criteria.

Best practice

Use PDO::query() for one-time database commands. Use

PDO::prepare() and PDOStatement::execute() when you

need to process the same statement multiple times but using different

values.

144

 See also

Chapter 5

For information on the syntax and unique behavior associated with different vendor-specific

PDO drivers, have a look this article:

f http://php.net/manual/en/pdo.drivers.php

For a summary of PDO predefined constants, including fetch modes, cursor orientation, and

attributes, see the following article:

f http://php.net/manual/en/pdo.constants.php

Building an OOP SQL query builder

PHP 7 implements something called a context sensitive lexer. What this means is that words

that are normally reserved can be used if the context allows. Thus, when building an object-

oriented SQL builder, we can get away with using methods named and, or, not, and so on.

 How to do it…

1. We define a Application\Database\Finder class. In the class, we define

methods that match our favorite SQL operations:

namespace Application\Database;

class Finder

{

public static $sql = '';

public static $instance = NULL;

public static $prefix = '';

public static $where = array();

public static $control = ['', ''];

// $a == name of table

// $cols = column names

public static function select($a, $cols = NULL)

{

self::$instance = new Finder();

if ($cols) {

self::$prefix = 'SELECT ' . $cols . ' FROM ' . $a;

} else {

self::$prefix = 'SELECT * FROM ' . $a;

}

return self::$instance;

}

145

http://php.net/manual/en/pdo.drivers.php
http://php.net/manual/en/pdo.constants.php

Interacting with a Database

public static function where($a = NULL)

{

self::$where[0] = ' WHERE ' . $a;

return self::$instance;

}

public static function like($a, $b)

{

self::$where[] = trim($a . ' LIKE ' . $b);

return self::$instance;

}

public static function and($a = NULL)

{

self::$where[] = trim('AND ' . $a);

return self::$instance;

}

public static function or($a = NULL)

{

self::$where[] = trim('OR ' . $a);

return self::$instance;

}

public static function in(array $a)

{

self::$where[] = 'IN (' . implode(',', $a) . ')';

return self::$instance;

}

public static function not($a = NULL)

{

self::$where[] = trim('NOT ' . $a);

return self::$instance;

}

public static function limit($limit)

{

self::$control[0] = 'LIMIT ' . $limit;

return self::$instance;

}

public static function offset($offset)

{

146

Chapter 5

self::$control[1] = 'OFFSET ' . $offset;

return self::$instance;

}

public static function getSql()

{

self::$sql = self::$prefix

. implode(' ', self::$where)

. ' '

. self::$control[0]

. ' '

. self::$control[1];

preg_replace('/ /', ' ', self::$sql);

return trim(self::$sql);

}

}

2. Each function used to generate an SQL fragment returns the same property,

$instance. This allows us to represent the code using a fluent interface, such as this:

$sql = Finder::select('project')->where('priority > 9') … etc.

 How it works…

Copy the code defined precedingly into a Finder.php file in the Application\Database

folder. You can then create a chap_05_oop_query_builder.php calling program, which

initializes the autoloader defined in Chapter 1, Building a Foundation. You can then run

Finder::select() to generate an object from which the SQL string can be rendered:

<?php

require DIR . '/../Application/Autoload/Loader.php';

Application\Autoload\Loader::init(DIR

use Application\Database\Finder;

$sql = Finder::select('project')

->where()

->like('name', '%secret%')

->and('priority > 9')

->or('code')->in(['4', '5', '7'])

->and()->not('created_at')

->limit(10)

->offset(20);

echo Finder::getSql();

. '/..');

 147

Interacting with a Database

Here is the result of the precding code:

 See also

For more information on the context-sensitive lexer, have a look at this article:

https://wiki.php.net/rfc/context_sensitive_lexer

 Handling pagination

Pagination involves providing a limited subset of the results of a database query. This is

usually done for display purposes, but could easily apply to other situations. At first glance,

it would seem the LimitIterator class is ideally suited for the purposes of pagination.

In cases where the potential result set could be massive; however, LimitIterator is not

such an ideal candidate, as you would need to supply the entire result set as an inner iterator,

which would most likely exceed memory limitations. The second and third arguments to

the LimitIterator class constructor are offset and count. This suggests the pagination

solution we will adopt, which is native to SQL: adding LIMIT and OFFSET clauses to a given

SQL statement.

 How to do it…

1. First, we create a class called Application\Database\Paginate to hold the

pagination logic. We add properties to represent values associated with pagination,

$sql, $page, and $linesPerPage:

namespace Application\Database;

class Paginate

{

const DEFAULT_LIMIT = 20;

const DEFAULT_OFFSET = 0;

148

Chapter 5

protected $sql;

protected $page;

protected $linesPerPage;

}

2. Next, we define a construct() method that accepts a base SQL statement, the

current page number, and the number of lines per page as arguments. We then need

to refactor the SQL string modifying or adding the LIMIT and OFFSET clauses.

3. In the constructor, we need to calculate the offset using the current page number and

the number of lines per page. We also need to check to see if LIMIT and OFFSET are

already present in the SQL statement. Finally, we need to revise the statement using

lines per page as our LIMIT with the recalculated OFFSET:

public function construct($sql, $page, $linesPerPage)

{

$offset = $page * $linesPerPage;

switch (TRUE) {

case (stripos($sql, 'LIMIT') && strpos($sql, 'OFFSET')) :

// no action needed

break;

case (stripos($sql, 'LIMIT')) :

$sql .= ' LIMIT ' . self::DEFAULT_LIMIT;

break;

case (stripos($sql, 'OFFSET')) :

$sql .= ' OFFSET ' . self::DEFAULT_OFFSET;

break;

default :

$sql .= ' LIMIT ' . self::DEFAULT_LIMIT;

$sql .= ' OFFSET ' . self::DEFAULT_OFFSET;

break;

}

$this->sql = preg_replace('/LIMIT \d+.*OFFSET \d+/Ui',

'LIMIT ' . $linesPerPage . ' OFFSET ' . $offset,

$sql);

}

4. We are now ready to execute the query using the Application\Database\

Connection class discussed in the first recipe.

5. In our new pagination class, we add a paginate() method, which takes a

Connection instance as an argument. We also need the PDO fetch mode, and

optional prepared statement parameters:

use PDOException;

public function paginate(

Connection $connection,

149

Interacting with a Database

$fetchMode,

$params = array())

{

try {

$stmt = $connection->pdo->prepare($this->sql);

if (!$stmt) return FALSE;

if ($params) {

$stmt->execute($params);

} else {

$stmt->execute();

}

while ($result = $stmt->fetch($fetchMode)) yield $result;

} catch (PDOException $e) {

error_log($e->getMessage());

return FALSE;

} catch (Throwable $e) {

error_log($e->getMessage());

return FALSE;

}

}

6. It might not be a bad idea to provide support for the query builder class mentioned in

the previous recipe. This will make updating LIMIT and OFFSET much easier. All we

need to do to provide support for Application\Database\Finder is to use the

class and modify the construct() method to check to see if the incoming SQL is

an instance of this class:

if ($sql instanceof Finder) {

$sql->limit($linesPerPage);

$sql->offset($offset);

$this->sql = $sql::getSql();

} elseif (is_string($sql)) {

switch (TRUE) {

case (stripos($sql, 'LIMIT')

&& strpos($sql, 'OFFSET')) :

// remaining code as shown in bullet #3 above

}

}

7. Now all that remains to be done is to add a getSql() method in case we need to

confirm that the SQL statement was correctly formed:

public function getSql()

{

return $this->sql;

}

150

 How it works…

Chapter 5

Copy the preceding code into a Paginate.php file in the Application/Database folder.

You can then create a chap_05_pagination.php calling program, which initializes the

autoloader defined in Chapter 1, Building a Foundation:

<?php

define('DB_CONFIG_FILE', '/../config/db.config.php');

define('LINES_PER_PAGE', 10);

define('DEFAULT_BALANCE', 1000);

require DIR . '/../Application/Autoload/Loader.php';

Application\Autoload\Loader::init(DIR . '/..');

Next, use the Application\Database\Finder, Connection, and Paginate classes,

create an instance of Application\Database\Connection, and use Finder to generate

SQL:

use Application\Database\ { Finder, Connection, Paginate};

$conn = new Connection(include DIR . DB_CONFIG_FILE);

$sql = Finder::select('customer')->where('balance < :bal');

We can now get the page number and balance from $_GET parameters, and create the

Paginate object, ending the PHP block:

$page = (int) ($_GET['page'] ?? 0);

$bal = (float) ($_GET['balance'] ?? DEFAULT_BALANCE);

$paginate = new Paginate($sql::getSql(), $page, LINES_PER_PAGE);

?>

In the output portion of the script, we simply iterate through the pagination using a simple

foreach() loop:

<h3><?= $paginate->getSql(); ?></h3>

<hr>

<pre>

<?php

printf('%4s | %20s | %5s | %7s' . PHP_EOL,

'ID', 'NAME', 'LEVEL', 'BALANCE');

printf('%4s | %20s | %5s | %7s' . PHP_EOL,

'----', str_repeat('-', 20), '-----', ' ------ ');

foreach ($paginate->paginate($conn, PDO::FETCH_ASSOC,

['bal' => $bal]) as $row) {

printf('%4d | %20s | %5s | %7.2f' . PHP_EOL,

$row['id'],$row['name'],$row['level'],$row['balance']);

}

printf('%4s | %20s | %5s | %7s' . PHP_EOL,

151

Interacting with a Database

'----', str_repeat('-', 20), '-----', ' ------ ');

?>

<a href="?page=<?= $page - 1; ?>&balance=<?= $bal ?>">

<< Prev

<a href="?page=<?= $page + 1; ?>&balance=<?= $bal ?>">

Next >>

</pre>

Here is page 3 of the output, where the balance is less than 1,000:

 See also

For more information on the LimitIterator class, refer to this article:

f http://php.net/manual/en/class.limititerator.php

Defining entities to match database tables

A very common practice among PHP developers is to create classes that represent database

tables. Such classes are often referred to as entity classes, and form the core of the domain

model software design pattern.

 How to do it…

1. First of all, we will establish some common features of a series of entity classes.

These might include common properties and common methods. We will put these

into a Application\Entity\Base class. All future entity classes will then extend

Base.

152

http://php.net/manual/en/class.limititerator.php

Chapter 5

2. For the purposes of this illustration, let's assume all entities will have two properties

in common: $mapping (discussed later), and $id (with its corresponding getter and

setter):

namespace Application\Entity;

class Base

{

protected $id = 0;

protected $mapping = ['id' => 'id'];

public function getId() : int

{

return $this->id;

}

public function setId($id)

{

$this->id = (int) $id;

}

}

3. It's not a bad idea to define a arrayToEntity() method, which converts an array to

an instance of the entity class, and vice versa (entityToArray()). These methods

implement a process often referred to as hydration. As these methods should be

generic, they are best placed in the Base class.

4. In the following methods, the $mapping property is used to translate between

database column names and object property names. arrayToEntity() populates

values of this object instance from an array. We can define this method as static in

case we need to call it outside of an active instance:

public static function arrayToEntity($data, Base $instance)

{

if ($data && is_array($data)) {

foreach ($instance->mapping as $dbColumn => $propertyName) {

$method = 'set' . ucfirst($propertyName);

$instance->$method($data[$dbColumn]);

}

return $instance;

}

return FALSE;

}

153

Interacting with a Database

5. The entityToArray() produces an array from current instance property values:

public function entityToArray()

{

$data = array();

foreach ($this->mapping as $dbColumn => $propertyName) {

$method = 'get' . ucfirst($propertyName);

$data[$dbColumn] = $this->$method() ?? NULL;

}

return $data;

}

6. To build the specific entity, you need to have the structure of the database table you

plan to model at hand. Create properties that map to the database columns. The

initial values assigned should reflect the ultimate data-type of the database column.

7. In this example we'll use the customer table. Here is the CREATE statement from a

MySQL data dump, which illustrates its data structure:

CREATE TABLE 'customer' (

'id' int(11) NOT NULL AUTO_INCREMENT,

'name' varchar(256) CHARACTER SET latin1 COLLATE

latin1_general_cs NOT NULL,

'balance' decimal(10,2) NOT NULL,

'email' varchar(250) NOT NULL,

'password' char(16) NOT NULL,

'status' int(10) unsigned NOT NULL DEFAULT '0',

'security_question' varchar(250) DEFAULT NULL,

'confirm_code' varchar(32) DEFAULT NULL,

'profile_id' int(11) DEFAULT NULL,

'level' char(3) NOT NULL,

PRIMARY KEY ('id'),

UNIQUE KEY 'UNIQ_81398E09E7927C74' ('email')

);

8. We are now in a position to flesh out the class properties. This is also a good place

to identify the corresponding table. In this case, we will use a TABLE_NAME class

constant:

namespace Application\Entity;

class Customer extends Base

{

const TABLE_NAME = 'customer';

protected $name = '';

protected $balance = 0.0;

protected $email = '';

protected $password = '';

154

Chapter 5

protected $status = '';

protected $securityQuestion = '';

protected $confirmCode = '';

protected $profileId = 0;

protected $level = '';

}

9. It is considered a best practice to define the properties as protected. In order to

access these properties, you will need to design public methods that get and set

the properties. Here is a good place to put to use the PHP 7 ability to data-type to the

return value.

10. In the following block of code, we have defined getters and setters for $name and

$balance. You can imagine how the remainder of these methods will be defined:

public function getName() : string

{

return $this->name;

}

public function setName($name)

{

$this->name = $name;

}

public function getBalance() : float

{

return $this->balance;

}

public function setBalance($balance)

{

$this->balance = (float) $balance;

}

}

It is not a good idea to data type check the incoming values on the

setters. The reason is that the return values from a RDBMS database

query will all be a string data type.

11. If the property names do not exactly match the corresponding database column, you

should consider creating a mapping property, an array of key/value pairs where the

key represents the database column name and the value the property name.

155

Interacting with a Database

12. You will note that three properties, $securityQuestion, $confirmCode, and

$profileId, do not correspond to their equivalent column names, security_

question, confirm_code, and profile_id. The $mapping property will ensure

that the appropriate translation takes place:

protected $mapping = [

'id' => 'id',

'name' => 'name',

'balance' => 'balance',

'email' => 'email',

'password' => 'password',

'status' => 'status',

'security_question' => 'securityQuestion',

'confirm_code' => 'confirmCode',

'profile_id' => 'profileId',

'level' => 'level'

];

 How it works…

Copy the code from steps 2, 4, and 5 into a Base.php file in the Application/

Entity folder. Copy the code from steps 8 through 12 into a Customer.php file,

also in the Application/Entity folder. You will then need to create getters and

setters for the remaining properties not shown in step 10: email, password, status,

securityQuestion, confirmCode, profileId, and level.

You can then create a chap_05_matching_entity_to_table.php calling program,

which initializes the autoloader defined in Chapter 1, Building a Foundation, uses the

Application\Database\Connection, and the newly created Application\Entity\

Customer classes:

<?php

define('DB_CONFIG_FILE', '/../config/db.config.php');

require DIR . '/../Application/Autoload/Loader.php';

Application\Autoload\Loader::init(DIR

use Application\Database\Connection;

use Application\Entity\Customer;

. '/..');

Next, get a database connection, and use the connection to acquire an associative array of

data for one customer at random:

$conn = new Connection(include DIR

$id = rand(1,79);

$stmt = $conn->pdo->prepare(

. DB_CONFIG_FILE);

'SELECT * FROM customer WHERE id = :id');

$stmt->execute(['id' => $id]);

$result = $stmt->fetch(PDO::FETCH_ASSOC);

156

Chapter 5

Finally, you can create a new Customer entity instance from the array and use var_dump()

to view the result:

$cust = Customer::arrayToEntity($result, new

Customer()); var_dump($cust);

Here is the output of the preceding code:

 See also

There are many good works that describe the domain model. Probably the most influential

is Patterns of Enterprise Application Architecture by Martin Fowler (see http://

martinfowler.com/books/eaa.html). There is also a nice study, also available as a free

download, entitled Domain Driven Design Quickly by InfoQ (see http://www.infoq.com/

minibooks/domain-driven-design-quickly).

Tying entity classes to RDBMS queries

Most commercially viable RDBMS systems evolved at a time when procedural programming

was at the fore. Imagine the RDBMS world as two dimensional, square, and procedurally

oriented. In contrast, entities could be thought of as round, three dimensional, and object

oriented. This gives you a picture of what we want to accomplish by tying the results of an

RDBMS query into an iteration of entity instances.

157

http://www.infoq.com/

Interacting with a Database

The relational model, upon which modern RDBMS systems are based,

was first described by the mathematician Edgar F. Codd in 1969. The first

commercially viable systems evolved in the mid-to-late 1970s. So, in other

words, RDBMS technology is over 40 years old!

 How to do it…

1. First of all, we need to design a class which will house our query logic. If you are

following the Domain Model, this class might be called a repository. Alternatively, to

keep things simple and generic, we could simply call the new class Application\

Database\CustomerService. The class will accept an Application\

Database\Connection instance as an argument:

namespace Application\Database;

use Application\Entity\Customer;

class CustomerService

{

protected $connection;

public function construct(Connection $connection)

{

$this->connection = $connection;

}

}

2. Now we will define a fetchById() method, which takes a customer ID as an

argument, and returns a single Application\Entity\Customer instance or

boolean FALSE on failure. At first glance, it would seem a no-brainer to simply use

PDOStatement::fetchObject() and specify the entity class as an argument:

public function fetchById($id)

{

$stmt = $this->connection->pdo

->prepare(Finder::select('customer')

->where('id = :id')::getSql());

$stmt->execute(['id' => (int) $id]);

return $stmt->fetchObject('Application\Entity\Customer');

}

158

Chapter 5

The danger here, however, is that fetchObject() actually populates

the properties (even if they are protected) before the constructor is called!

Accordingly, there is a danger that the constructor could accidentally

overwrite values. If you don't define a constructor, or if you can live with

this danger, we're done. Otherwise, it starts to get tougher to properly

implement the tie between RDBMS query and OOP results.

3. Another approach for the fetchById() method is to create the object instance first,

thereby running its constructor, and setting the fetch mode to PDO::FETCH_INTO,

as shown in the following example:

public function fetchById($id)

{

$stmt = $this->connection->pdo

->prepare(Finder::select('customer')

->where('id = :id')::getSql());

$stmt->execute(['id' => (int) $id]);

$stmt->setFetchMode(PDO::FETCH_INTO, new Customer());

return $stmt->fetch();

}

4. Here again, however, we encounter a problem: fetch(), unlike fetchObject(), is

not able to overwrite protected properties; the following error message is generated if

it tries. This means we will either have to define all properties as public, or consider

another approach.

159

Interacting with a Database

5. The last approach we will consider will be to fetch the results in the form of an array,

and manually hydrate the entity. Even though this approach is slightly more costly in

terms of performance, it allows any potential entity constructor to run properly, and

keeps properties safely defined as private or protected:

public function fetchById($id)

{

$stmt = $this->connection->pdo

->prepare(Finder::select('customer')

->where('id = :id')::getSql());

$stmt->execute(['id' => (int) $id]);

return Customer::arrayToEntity(

$stmt->fetch(PDO::FETCH_ASSOC));

}

6. To process a query that produces multiple results, all we need to do is to

produce an iteration of populated entity objects. In this example, we implement a

fetchByLevel() method that returns all customers for a given level, in the form of

Application\Entity\Customer instances:

public function fetchByLevel($level)

{

$stmt = $this->connection->pdo->prepare(

Finder::select('customer')

->where('level = :level')::getSql());

$stmt->execute(['level' => $level]);

while ($row = $stmt->fetch(PDO::FETCH_ASSOC)) {

yield Customer::arrayToEntity($row, new Customer());

}

}

7. The next method we wish to implement is save(). Before we can proceed, however,

some thought must be given to what value will be returned if an INSERT takes place.

8. Normally, we would return the newly completed entity class after an INSERT. There

is a convenient PDO::lastInsertId() method which, at first glance, would seem

to do the trick. Further reading of the documentation reveals, however, that not all

database extensions support this feature, and the ones that do are not consistent in

their implementation. Accordingly, it would be a good idea to have a unique column

other than $id that can be used to uniquely identify the new customer.

9. In this example we have chosen the email column, and thus need to implement a

fetchByEmail() service method:

public function fetchByEmail($email)

{

$stmt = $this->connection->pdo->prepare(

Finder::select('customer')

160

Chapter 5

->where('email = :email')::getSql());

$stmt->execute(['email' => $email]);

return Customer::arrayToEntity(

$stmt->fetch(PDO::FETCH_ASSOC), new Customer());

}

10. Now we are ready to define the save() method. Rather than distinguish between

INSERT and UPDATE, we will architect this method to update if the ID already exists,

and otherwise do an insert.

11. First, we define a basic save() method, which accepts a Customer entity as an

argument, and uses fetchById() to determine if this entry already exists. If it

exists, we call an doUpdate() update method; otherwise, we call a doInsert()

insert method:

public function save(Customer $cust)

{

// check to see if customer ID > 0 and exists

if ($cust->getId() && $this->fetchById($cust->getId()))

{ return $this->doUpdate($cust);

} else {

return $this->doInsert($cust);

}

}

12. Next, we define doUpdate(), which pulls Customer entity object properties into an

array, builds an initial SQL statement, and calls a flush() method, which pushes

data to the database. We do not want the ID field updated, as it's the primary key.

Also we need to specify which row to update, which means appending a WHERE

clause:

protected function doUpdate($cust)

{

// get properties in the form of an array

$values = $cust->entityToArray();

// build the SQL statement

$update = 'UPDATE ' . $cust::TABLE_NAME;

$where = ' WHERE id = ' . $cust->getId();

// unset ID as we want do not want this to be updated

unset($values['id']);

return $this->flush($update, $values, $where);

}

161

Interacting with a Database

13. The doInsert() method is similar, except that the initial SQL needs to start with

INSERT INTO ... and the id array element needs to be unset. The reason for the

latter is that we want this property to be auto-generated by the database. If this is

successful, we use our newly defined fetchByEmail() method to look up the new

customer and return a completed instance:

protected function doInsert($cust)

{

$values = $cust->entityToArray();

$email = $cust->getEmail();

unset($values['id']);

$insert = 'INSERT INTO ' . $cust::TABLE_NAME . ' ';

if ($this->flush($insert, $values)) {

return $this->fetchByEmail($email);

} else {

return FALSE;

}

}

14. Finally, we are in a position to define flush(), which does the actual preparation

and execution:

protected function flush($sql, $values, $where = '')

{

$sql .= ' SET ';

foreach ($values as $column => $value) {

$sql .= $column . ' = :' . $column . ',';

}

// get rid of trailing ','

$sql = substr($sql, 0, -1) . $where;

$success = FALSE;

try {

$stmt = $this->connection->pdo->prepare($sql);

$stmt->execute($values);

$success = TRUE;

} catch (PDOException $e) {

error_log(METHOD

. $e->getMessage());

$success = FALSE;

. ':' . LINE . ':'

} catch (Throwable $e) {

error_log(METHOD

. $e->getMessage());

$success = FALSE;

}

. ':' . LINE . ':'

return $success;

}

162

Chapter 5

15. To round off the discussion, we need to define a remove() method, which deletes a

customer from the database. Again, as with the save() method defined previously,

we use fetchById() to ensure the operation was successful:

public function remove(Customer $cust)

{

$sql = 'DELETE FROM ' . $cust::TABLE_NAME . ' WHERE id = :id';

$stmt = $this->connection->pdo->prepare($sql);

$stmt->execute(['id' => $cust->getId()]);

return ($this->fetchById($cust->getId())) ? FALSE : TRUE;

}

 How it works…

Copy the code described in steps 1 to 5 into a CustomerService.php file in the

Application/Database folder. Define a chap_05_entity_to_query.php calling

program. Have the calling program initialize the autoloader, using the appropriate classes:

<?php

define('DB_CONFIG_FILE', '/../config/db.config.php');

require DIR . '/../Application/Autoload/Loader.php';

Application\Autoload\Loader::init(DIR

use Application\Database\Connection;

use Application\Database\CustomerService;

. '/..');

You can now create an instance of the service, and fetch a single customer at random. The

service will then return a customer entity as a result:

// get service instance

$service = new CustomerService(new Connection(

include DIR . DB_CONFIG_FILE));

echo "\nSingle Result\n";

var_dump($service->fetchById(rand(1,79)));

163

Interacting with a Database

Here is the output:

Now copy the code shown in steps 6 to 15 into the service class. Add the data to insert to the

chap_05_entity_to_query.php calling program. We then generate a Customer entity

instance using this data:

// sample data

$data = [

'name' => 'Doug Bierer',

'balance' => 326.33,

'email' => 'doug' . rand(0,999) . '@test.com',

'password' => 'password',

'status' => 1,

'security_question' => 'Who\'s on first?',

'confirm_code' => 12345,

'level' => 'ADV'

];

// create new Customer

$cust = Customer::arrayToEntity($data, new Customer());

We can then examine the ID before and after the call to save():

echo "\nCustomer ID BEFORE Insert: {$cust->getId()}\n";

$cust = $service->save($cust);

echo "Customer ID AFTER Insert: {$cust->getId()}\n";

164

Chapter 5

Finally, we modify the balance, and again call save(), viewing the results:

echo "Customer Balance BEFORE Update: {$cust->getBalance()}\n";

$cust->setBalance(999.99);

$service->save($cust);

echo "Customer Balance AFTER Update: {$cust->getBalance()}\n";

var_dump($cust);

Here is the output from the calling program:

 There's more…

For more information on the relational model, please refer to https://en.wikipedia.

org/wiki/Relational_model. For more information on RDBMS, please refer to

https://en.wikipedia.org/wiki/Relational_database_management_system.

For information on how PDOStatement::fetchObject() inserts property values even

before the constructor, have a look at the comment by "rasmus at mindplay dot dk" in the

php.net documentation reference on fetchObject() (http://php.net/manual/en/

pdostatement.fetchobject.php).

165

http://php.net/manual/en/

Interacting with a Database

Embedding secondary lookups into query

 results

On the road towards implementing relationships between entity classes, let us first take a look

at how we can embed the code needed to perform a secondary lookup. An example of such

a lookup is when displaying information on a customer, have the view logic perform a second

lookup that gets a list of purchases for that customer.

The advantage of this approach is that processing is deferred until

the actual view logic is executed. This will ultimately smooth the

performance curve, with the workload distributed more evenly

between the initial query for customer information, and the later query

for purchase information. Another benefit is that a massive JOIN is

avoided with its inherent redundant data.

 How to do it…

1. First of all, define a function that finds a customer based on their ID. For the purposes

of this illustration, we will simply fetch an array using the fetch mode PDO::FETCH_

ASSOC. We will also continue to use the Application\Database\Connection

class discussed in Chapter 1, Building a Foundation:

function findCustomerById($id, Connection $conn)

{

$stmt = $conn->pdo->query(

'SELECT * FROM customer WHERE id = ' . (int) $id);

$results = $stmt->fetch(PDO::FETCH_ASSOC);

return $results;

}

2. Next, we analyze the purchases table to see how the customer and product tables

are linked. As you can see from the CREATE statement for this table, the customer_

id and product_id foreign keys form the relationships:

CREATE TABLE 'purchases' (

'id' int(11) NOT NULL AUTO_INCREMENT,

'transaction' varchar(8) NOT NULL,

'date' datetime NOT NULL,

'quantity' int(10) unsigned NOT NULL,

'sale_price' decimal(8,2) NOT NULL,

'customer_id' int(11) DEFAULT NULL,

'product_id' int(11) DEFAULT NULL,

PRIMARY KEY ('id'),

166

Chapter 5

KEY 'IDX_C3F3' ('customer_id'),

KEY 'IDX_665A' ('product_id'),

CONSTRAINT 'FK_665A' FOREIGN KEY ('product_id')

REFERENCES 'products' ('id'),

CONSTRAINT 'FK_C3F3' FOREIGN KEY ('customer_id')

REFERENCES 'customer' ('id')

);

3. We now expand the original findCustomerById() function, defining the secondary

lookup in the form of an anonymous function, which can then be executed in a view

script. The anonymous function is assigned to the $results['purchases']

element:

function findCustomerById($id, Connection $conn)

{

$stmt = $conn->pdo->query(

'SELECT * FROM customer WHERE id = ' . (int) $id);

$results = $stmt->fetch(PDO::FETCH_ASSOC);

if ($results) {

$results['purchases'] =

// define secondary lookup

function ($id, $conn) {

$sql = 'SELECT * FROM purchases AS u '

. 'JOIN products AS r '

. 'ON u.product_id = r.id '

. 'WHERE u.customer_id = :id '

. 'ORDER BY u.date';

$stmt = $conn->pdo->prepare($sql);

$stmt->execute(['id' => $id]);

while ($row = $stmt->fetch(PDO::FETCH_ASSOC)) {

yield $row;

}

};

}

return $results;

}

4. Assuming we have successfully retrieved customer information into a $results

array, in the view logic, all we need to do is to loop through the return value of the

anonymous function. In this example, we retrieve customer information at random:

$result = findCustomerById(rand(1,79), $conn);

167

Interacting with a Database

5. In the view logic, we loop through the results returned by the secondary lookup.

The call to the embedded anonymous function is highlighted in the following code:

<table>

<tr>

<th>Transaction</th><th>Date</th><th>Qty</th>

<th>Price</th><th>Product</th>

</tr>

<?php

foreach ($result['purchases']($result['id'], $conn) as $purchase)

: ?>

<tr>

<td><?= $purchase['transaction'] ?></td>

<td><?= $purchase['date'] ?></td>

<td><?= $purchase['quantity'] ?></td>

<td><?= $purchase['sale_price'] ?></td>

<td><?= $purchase['title'] ?></td>

</tr>

<?php endforeach; ?>

</table>

 How it works…

Create a chap_05_secondary_lookups.php calling program and insert the code needed

to create an instance of Application\Database\Connection:

<?php

define('DB_CONFIG_FILE', '/../config/db.config.php');

include DIR . '/../Application/Database/Connection.php';

use Application\Database\Connection;

$conn = new Connection(include DIR

. DB_CONFIG_FILE);

Next, add the findCustomerById()function shown in step 3. You can then pull information

for a random customer, ending the PHP part of the calling program:

function findCustomerById($id, Connection $conn)

{

// code shown in bullet #3 above

}

$result = findCustomerById(rand(1,79), $conn);

?>

168

Chapter 5

For the view logic, you can display core customer information as shown in several of the

preceding recipes:

<h1><?= $result['name'] ?></h1>

<div class="row">

<div class="left">Balance</div>

<div class="right"><?= $result['balance']; ?></div>

</div>

<!-- etc.l -->

You can display information on purchases like so:

<table>

<tr><th>Transaction</th><th>Date</th><th>Qty</th>

<th>Price</th><th>Product</th></tr>

<?php

foreach ($result['purchases']($result['id'], $conn)

as $purchase) : ?>

<tr>

<td><?= $purchase['transaction'] ?></td>

<td><?= $purchase['date'] ?></td>

<td><?= $purchase['quantity'] ?></td>

<td><?= $purchase['sale_price'] ?></td>

<td><?= $purchase['title'] ?></td>

</tr>

<?php endforeach; ?>

</table>

The critical piece is that the secondary lookup is performed as part of the view logic by

calling the embedded anonymous function, $result['purchases']($result['id'],

$conn). Here is the output:

169

Interacting with a Database

Implementing jQuery DataTables PHP

 lookups

Another approach to secondary lookups is to have the frontend generate the request. In this

recipe, we will make a slight modification to the secondary lookup code presented in the

preceding recipe, Embedding secondary lookups into QueryResults. In the previous recipe,

even though the view logic is performing the lookup, all processing is still done on the server.

When using jQuery DataTables, however, the secondary lookup is actually performed directly

by the client, in the form of an Asynchronous JavaScript and XML (AJAX) request issued by

the browser.

 How to do it…

1. First we need to spin-off the secondary lookup logic (discussed in the recipe above)

into a separate PHP file. The purpose of this new script is to perform the secondary

lookup and return a JSON array.

2. The new script we will call chap_05_jquery_datatables_php_lookups_ajax.

php. It looks for a $_GET parameter, id. Notice that the SELECT statement is very

specific as to which columns are delivered. You will also note that the fetch mode has

been changed to PDO::FETCH_NUM. You might also notice that the last line takes

the results and assigns it to a data key in a JSON-encoded array.

It is extremely important when dealing with zero configuration jQuery

DataTables to only return the exact number of columns matching the

header.

$id = $_GET['id'] ?? 0;

sql = 'SELECT u.transaction,u.date,

u.quantity,u.sale_price,r.title '

. 'FROM purchases AS u '

. 'JOIN products AS r '

. 'ON u.product_id = r.id '

. 'WHERE u.customer_id = :id';

$stmt = $conn->pdo->prepare($sql);

$stmt->execute(['id' => (int) $id]);

$results = array();

while ($row = $stmt->fetch(PDO::FETCH_NUM)) {

$results[] = $row;

}

echo json_encode(['data' => $results]);

170

Chapter 5

3. Next, we need to modify the function that retrieves customer information by ID,

removing the secondary lookup embedded in the previous recipe:

function findCustomerById($id, Connection $conn)

{

$stmt = $conn->pdo->query(

'SELECT * FROM customer WHERE id = ' . (int) $id);

$results = $stmt->fetch(PDO::FETCH_ASSOC);

return $results;

}

4. After that, in the view logic, we import the minimum jQuery, DataTables, and

stylesheets for a zero configuration implementation. At a minimum, you will need

jQuery itself (in this example jquery-1.12.0.min.js) and DataTables (jquery.

dataTables.js). We've also added a convenient stylesheet associated with

DataTables, jquery.dataTables.css:

<!DOCTYPE html>

<head>

<script src="https://code.jquery.com/jquery-1.12.0.min.js">

</script>

<script type="text/javascript"

charset="utf8"

src="//cdn.datatables.net/1.10.11/js/jquery.dataTables.js">

</script>

<link rel="stylesheet"

type="text/css"

href="//cdn.datatables.net/1.10.11/css/jquery.dataTables.css">

</head>

5. We then define a jQuery document ready function, which associates a table with

DataTables. In this case, we assign an id attribute of customerTable to the table

element that will be assigned to DataTables. You'll also notice that we specify the

AJAX data source as the script defined in step 1, chap_05_jquery_datatables_

php_lookups_ajax.php. As we have the $id available, this is appended to the

data source URL:

<script>

$(document).ready(function() {

$('#customerTable').DataTable(

{ "ajax": '/chap_05_jquery_datatables_php_lookups_ajax.

php?id=<?= $id ?>'

});

});

</script>

171

Interacting with a Database

6. In the body of the view logic, we define the table, making sure the id attribute

matches the one specified in the preceding code. We also need to define headers

that will match the data presented in response to the AJAX request:

<table id="customerTable" class="display"

cellspacing="0" width="100%">

<thead>

<tr>

<th>Transaction</th>

<th>Date</th>

<th>Qty</th>

<th>Price</th>

<th>Product</th>

</tr>

</thead>

</table>

7. Now, all that remains to do is to load the page, choose the customer ID (in this case,

at random), and let jQuery make the request for the secondary lookup.

 How it works…

Create a chap_05_jquery_datatables_php_lookups_ajax.php script, which will

respond to an AJAX request. Inside, place the code to initialize auto-loading and create a

Connection instance. You can then append the code shown in step 2 of the preceding

recipe:

<?php

define('DB_CONFIG_FILE', '/../config/db.config.php');

include DIR . '/../Application/Database/Connection.php';

use Application\Database\Connection;

$conn = new Connection(include DIR

. DB_CONFIG_FILE);

Next, create a chap_05_jquery_datatables_php_lookups.php calling program that

will pull information on a random customer. Add the function described in step 3 of the

preceding code:

<?php

define('DB_CONFIG_FILE', '/../config/db.config.php');

include DIR . '/../Application/Database/Connection.php';

use Application\Database\Connection;

$conn = new Connection(include DIR

. DB_CONFIG_FILE);

// add function findCustomerById() here

$id = random_int(1,79);

$result = findCustomerById($id, $conn);

?>

172

Chapter 5

The calling program will also contain the view logic that imports the minimum JavaScript to

implement jQuery DataTables. You can add the code shown in step 3 of the preceding code.

Then, add the document ready function and the display logic shown in steps 5 and 6.

Here is the output:

 There's more…

For more information on jQuery, please visit their website at https://jquery.

com/. To read about the DataTables plugin to jQuery, refer to this article at https://

www.datatables.net/. Zero configuration data tables are discussed at https://

datatables.net/examples/basic_init/zero_configuration.html. For more

information on AJAX sourced data, have a look at https://datatables.net/examples/

data_sources/ajax.html.

173

http://www.datatables.net/

6
Building Scalable

Websites

In this chapter, we will cover the following topics:

f Creating a generic form element generator

f Creating an HTML radio element generator

f Creating an HTML select element generator

f Implementing a form factory

f Chaining $_POST filters

f Chaining $_POST validators

f Tying validation to a form

 Introduction

In this chapter, we will show you how to build classes that generate HTML form elements. The

generic element generator can be used for text, text areas, passwords, and similar HTML input

types. After that, we will show variations that allow you to pre-configure the element with an

array of values. The form factory recipe will bring all these generators together, allowing you

to render an entire form using a single configuration array. Finally, we introduce recipes that

allow filtering and the validation of incoming $_POST data.

175

Building Scalable Websites

 Creating a generic form element generator

It's pretty easy to create a function that simply outputs a form input tag such as <input

type="text" name="whatever" >. In order to make a form generator generically useful,

however, we need to think about the bigger picture. Here are some other considerations over

and above the basic input tag:

f The form input tag and its associated HTML attributes

f A label that tells the user what information they are entering

f The ability to display entry errors following validation (more on that later!)

f Some sort of wrapper, such as a <div> tag, or an HTML table <td> tag

 How to do it…

1. First, we define a Application\Form\Generic class. This will also later serve as

a base class for specialized form elements:

namespace Application\Form;

class Generic

{

// some code ...

}

2. Next, we define some class constants, which will be generally useful in form element

generation.

3. The first three will become keys associated with the major components of a single

form element. We then define supported input types and defaults:

const ROW = 'row';

const FORM = 'form';

const INPUT = 'input';

const LABEL = 'label';

const ERRORS = 'errors';

const TYPE_FORM = 'form';

const TYPE_TEXT = 'text';

const TYPE_EMAIL = 'email';

const TYPE_RADIO = 'radio';

const TYPE_SUBMIT = 'submit';

const TYPE_SELECT = 'select';

const TYPE_PASSWORD = 'password';

const TYPE_CHECKBOX = 'checkbox';

const DEFAULT_TYPE = self::TYPE_TEXT;

const DEFAULT_WRAPPER = 'div';

176

Chapter 6

4. Next, we can define properties and a constructor that sets them.

5. In this example, we require two properties, $name and $type, as we cannot

effectively use the element without these attributes. The other constructor arguments

are optional. Furthermore, in order to base one form element on another, we include

a provision whereby the second argument, $type, can alternatively be an instance of

Application\Form\Generic, in which case we simply run the getters (discussed

later) to populate properties:

protected $name;

protected $type = self::DEFAULT_TYPE;

protected $label = '';

protected $errors = array();

protected $wrappers;

protected $attributes;// HTML form attributes protected

$pattern = '<input type="%s" name="%s" %s>';

public function construct($name,

$type,

$label = '',

array $wrappers = array(),

array $attributes = array(),

array $errors = array())

{

$this->name = $name;

if ($type instanceof Generic) {

$this->type = $type->getType();

$this->label = $type->getLabelValue();

$this->errors = $type->getErrorsArray();

$this->wrappers = $type->getWrappers();

$this->attributes = $type->getAttributes();

} else {

$this->type = $type ?? self::DEFAULT_TYPE;

$this->label = $label;

$this->errors = $errors;

$this->attributes = $attributes;

if ($wrappers) {

$this->wrappers = $wrappers;

} else {

$this->wrappers[self::INPUT]['type'] =

self::DEFAULT_WRAPPER;

$this->wrappers[self::LABEL]['type'] =

self::DEFAULT_WRAPPER;

$this->wrappers[self::ERRORS]['type'] =

self::DEFAULT_WRAPPER;

}

177

Building Scalable Websites

}

$this->attributes['id'] = $name;

}

Note that $wrappers has three primary subkeys: INPUT, LABEL, and

 ERRORS. This allows us to define separate wrappers for labels, the input

tag, and errors.

6. Before defining the core methods that will produce HTML for the label, input tag, and

errors, we should define a getWrapperPattern() method, which will produce the

appropriate wrapping tags for the label, input, and error display.

7. If, for example, the wrapper is defined as <div>, and its attributes include ['class'

=> 'label'], this method will return a sprintf() format pattern that looks like

this: <div class="label">%s</div>. The final HTML produced for the label, for

example, would then replace %s.

8. Here is how the getWrapperPattern() method might look:

public function getWrapperPattern($type)

{

$pattern = '<' . $this->wrappers[$type]['type'];

foreach ($this->wrappers[$type] as $key => $value) {

if ($key != 'type') {

$pattern .= ' ' . $key . '="' . $value . '"';

}

}

$pattern .= '>%s</' . $this->wrappers[$type]['type'] . '>';

return $pattern;

}

9. We are now ready to define the getLabel() method. All this method needs to do is

to plug the label into the wrapper using sprintf():

public function getLabel()

{

return sprintf($this->getWrapperPattern(self::LABEL),

$this->label);

}

10. In order to produce the core input tag, we need a way to assemble the attributes.

Fortunately, this is easily accomplished as long as they are supplied to the

constructor in the form of an associative array. All we need to do, in this case, is to

define a getAttribs() method that produces a string of key-value pairs separated

by a space. We return the final value using trim() to remove excess spaces.

178

Chapter 6

11. If the element includes either the value or href attribute, for security reasons we

should escape the values on the assumption that they are, or could be, user-supplied

(and therefore suspect). Accordingly, we need to add an if statement that checks

and then uses htmlspecialchars() or urlencode():

public function getAttribs()

{

foreach ($this->attributes as $key => $value) {

$key = strtolower($key);

if ($value) {

if ($key == 'value') {

if (is_array($value)) {

foreach ($value as $k => $i)

$value[$k] = htmlspecialchars($i);

} else {

$value = htmlspecialchars($value);

}

} elseif ($key == 'href') {

$value = urlencode($value);

}

$attribs .= $key . '="' . $value . '" ';

} else {

$attribs .= $key . ' ';

}

}

return trim($attribs);

}

12. For the core input tag, we split the logic into two separate methods. The primary

method, getInputOnly(), produces only the HTML input tag. The second method,

getInputWithWrapper(), produces the input embedded in a wrapper. The reason

for the split is that when creating spin-off classes, such as a class to generate radio

buttons, we will not need the wrapper:

public function getInputOnly()

{

return sprintf($this->pattern, $this->type, $this->name,

$this->getAttribs());

}

public function getInputWithWrapper()

{

return sprintf($this->getWrapperPattern(self::INPUT),

$this->getInputOnly());

}

179

Building Scalable Websites

13. We now define a method that displays element validation errors. We will assume

that the errors will be supplied in the form of an array. If there are no errors, we

return an empty string. Otherwise, errors are rendered as error 1</

li>error 2 and so on:

public function getErrors()

{

if (!$this->errors || count($this->errors == 0)) return '';

$html = '';

$pattern = '%s';

$html .= '';

foreach ($this->errors as $error)

$html .= sprintf($pattern, $error);

$html .= '';

return sprintf($this->getWrapperPattern(self::ERRORS), $html);

}

14. For certain attributes, we might need more finite control over various aspects of the

property. As an example, we might need to add a single error to the already existing

array of errors. Also, it might be useful to set a single attribute:

public function setSingleAttribute($key, $value)

{

$this->attributes[$key] = $value;

}

public function addSingleError($error)

{

$this->errors[] = $error;

}

15. Finally, we define getters and setters that allow us to retrieve or set the values of

properties. For example, you might have noticed that the default value for $pattern

is <input type="%s" name="%s" %s>. For certain tags (for example, select

and form tags), we will need to set this property to a different value:

public function setPattern($pattern)

{

$this->pattern = $pattern;

}

public function setType($type)

{

$this->type = $type;

}

public function getType()

{

180

Chapter 6

return $this->type;

}

public function addSingleError($error)

{

$this->errors[] = $error;

}

// define similar get and set methods

// for name, label, wrappers, errors and attributes

16. We also need to add methods that will give the label value (not the HTML), as well as

the errors array:

public function getLabelValue()

{

return $this->label;

}

public function getErrorsArray()

{

return $this->errors;

}

 How it works…

Be sure to copy all the preceding code into a single Application\Form\Generic class.

You can then define a chap_06_form_element_generator.php calling script that sets up

autoloading and anchors the new class:

<?php

require DIR . '/../Application/Autoload/Loader.php';

Application\Autoload\Loader::init(DIR

use Application\Form\Generic;

. '/..');

Next, define the wrappers. For illustration, we'll use HTML table data and header tags. Note

that the label uses TH, whereas input and errors use TD:

$wrappers = [

Generic::INPUT => ['type' => 'td', 'class' =>

'content'], Generic::LABEL => ['type' => 'th', 'class'

=> 'label'], Generic::ERRORS => ['type' => 'td', 'class'

=> 'error']

];

You can now define an email element by passing parameters to the constructor:

$email = new Generic('email', Generic::TYPE_EMAIL, 'Email', $wrappers,

['id' => 'email',

'maxLength' => 128,

'title' => 'Enter address',

'required' => '']);

181

Building Scalable Websites

Alternatively, define the password element using setters:

$password = new Generic('password', $email);

$password->setType(Generic::TYPE_PASSWORD);

$password->setLabel('Password');

$password->setAttributes(['id' => 'password',

'title' => 'Enter your password',

'required' => '']);

Lastly, be sure to define a submit button:

$submit = new Generic('submit',

Generic::TYPE_SUBMIT,

'Login',

$wrappers,

['id' => 'submit','title' => 'Click to login','value' =>

'Click Here']);

The actual display logic might look like this:

<div class="container">

<!-- Login Form -->

<h1>Login</h1>

<form name="login" method="post">

<table id="login" class="display"

cellspacing="0" width="100%">

<tr><?= $email->render(); ?></tr>

<tr><?= $password->render(); ?></tr>

<tr><?= $submit->render(); ?></tr>

<tr>

<td colspan=2>

<?php var_dump($_POST); ?>

</td>

</tr>

</table>

</form>

</div>

182

Chapter 6

Here is the actual output:

Creating an HTML radio element generator

A radio button element generator will share similarities with the generic HTML form element

generator. As with any generic element, a set of radio buttons needs the ability to display an

overall label and errors. There are two major differences, however:

f Typically, you will want two or more radio buttons

f Each button needs to have its own label

 How to do it…

1. First of all, create a new Application\Form\Element\Radio class that extends

Application\Form\Generic:

namespace Application\Form\Element;

use Application\Form\Generic;

class Radio extends Generic

{

// code

}

2. Next, we define class constants and properties that pertain to the special needs

of a set of radio buttons.

183

Building Scalable Websites

3. In this illustration, we will need a spacer, which will be placed between the radio

button and its label. We also need to decide whether to place the radio button

label before or after the actual button, thus, we use the $after flag. If we need a

default, or if we are re-displaying existing form data, we need a way of designating the

selected key. Finally, we need an array of options from which we will populate the list

of buttons:

const DEFAULT_AFTER = TRUE;

const DEFAULT_SPACER = '&nbps;';

const DEFAULT_OPTION_KEY = 0;

const DEFAULT_OPTION_VALUE = 'Choose';

protected $after = self::DEFAULT_AFTER;

protected $spacer = self::DEFAULT_SPACER;

protected $options = array();

protected $selectedKey = DEFAULT_OPTION_KEY;

4. Given that we are extending Application\Form\Generic, we have the option of

expanding the construct() method, or, alternatively, simply defining a method

that can be used to set specific options. For this illustration, we have chosen the

latter course.

5. To ensure the property $this->options is populated, the first parameter

($options) is defined as mandatory (without a default). All other parameters are

optional.

public function setOptions(array $options,

$selectedKey = self::DEFAULT_OPTION_KEY,

$spacer = self::DEFAULT_SPACER,

$after = TRUE)

{

$this->after = $after;

$this->spacer = $spacer;

$this->options = $options;

$this->selectedKey = $selectedKey;

}

6. Finally, we are ready to override the core getInputOnly() method.

7. We save the id attribute into an independent variable, $baseId, and later combine

it with $count so that each id attribute is unique. If the option associated with the

selected key is defined, it is assigned as the value; otherwise, we use the default:

public function getInputOnly()

{

$count = 1;

$baseId = $this->attributes['id'];

184

Chapter 6

8. Inside the foreach() loop we check to see if the key is the one selected. If so,

the checked attribute is added for that radio button. We then call the parent class

getInputOnly() method to return the HTML for each button. Note that the value

attribute of the input element is the options array key. The button label is the options

array element value:

foreach ($this->options as $key => $value) {

$this->attributes['id'] = $baseId . $count++;

$this->attributes['value'] = $key;

if ($key == $this->selectedKey) {

$this->attributes['checked'] = '';

} elseif (isset($this->attributes['checked'])) {

unset($this->attributes['checked']);

}

if ($this->after) {

$html = parent::getInputOnly() . $value;

} else {

$html = $value . parent::getInputOnly();

}

$output .= $this->spacer . $html;

}

return $output;

}

 How it works…

Copy the preceding code into a new Radio.php file in the Application/Form/Element

folder. You can then define a chap_06_form_element_radio.php calling script that sets

up autoloading and anchors the new class:

<?php

require DIR . '/../Application/Autoload/Loader.php';

Application\Autoload\Loader::init(DIR

use Application\Form\Generic;

use Application\Form\Element\Radio;

. '/..');

Next, define the wrappers using the $wrappers array defined in the previous recipe.

Then you can define a $status array and create an element instance by passing parameters

to the constructor:

$statusList = [

'U' => 'Unconfirmed',

'P' => 'Pending',

'T' => 'Temporary Approval',

'A' => 'Approved'

185

Building Scalable Websites

];

$status = new Radio('status',

Generic::TYPE_RADIO,

'Status',

$wrappers,

['id' => 'status']);

Now you can see if there is any status input from $_GET and set the options. Any input will

become the selected key. Otherwise, the selected key is the default:

$checked = $_GET['status'] ?? 'U';

$status->setOptions($statusList, $checked, '
', TRUE);

Lastly, don't forget to define a submit button:

$submit = new Generic('submit',

Generic::TYPE_SUBMIT,

'Process',

$wrappers,

['id' => 'submit','title' =>

'Click to process','value' => 'Click Here']);

The display logic might look like this:

<form name="status" method="get">

<table id="status" class="display" cellspacing="0" width="100%">

<tr><?= $status->render(); ?></tr>

<tr><?= $submit->render(); ?></tr>

<tr>

<td colspan=2>

<pre><?php var_dump($_GET); ?></pre>

</td>

</tr>

</table>

</form>

186

Chapter 6

Here is the actual output:

 There's more…

A checkbox element generator would be almost identical to the HTML radio button generator.

The main difference is that a set of checkboxes can have more than one value checked.

Accordingly, you would use PHP array notation for the element names. The element type

should be Generic::TYPE_CHECKBOX.

Creating an HTML select element generator

Generating an HTML single select element is similar to the process of generating radio

buttons. The tags are structured differently, however, in that both a SELECT tag and a series

of OPTION tags need to be generated.

 How to do it…

1. First of all, create a new Application\Form\Element\Select class that extends

Application\Form\Generic.

2. The reason why we extend Generic rather than Radio is because the structuring of

the element is entirely different:

namespace Application\Form\Element;

use Application\Form\Generic;

class Select extends Generic

187

Building Scalable Websites

{

// code

}

3. The class constants and properties will only need to add slightly to Application\

Form\Generic. Unlike radio buttons or checkboxes, there is no need to account for

spacers or the placement of the selected text:

const DEFAULT_OPTION_KEY = 0;

const DEFAULT_OPTION_VALUE = 'Choose';

protected $options;

protected $selectedKey = DEFAULT_OPTION_KEY;

4. Now we turn our attention to setting options. As an HTML select element can select

single or multiple values, the $selectedKey property could be either a string or an

array. Accordingly, we do not add a type hint for this property. It is important, however,

that we identify whether or not the multiple attribute has been set. This can be

obtained from a $this->attributes property via inheritance from the parent

class.

5. If the multiple attribute has been set, it's important to formulate the name

attribute as an array. Accordingly, we would append [] to the name if this were the

case:

public function setOptions(array $options, $selectedKey =

self::DEFAULT_OPTION_KEY)

{

$this->options = $options;

$this->selectedKey = $selectedKey;

if (isset($this->attributes['multiple'])) {

$this->name .= '[]';

}

}

In PHP, if the HTML select multiple attribute has been set, and the name

attribute is not specified as an array, only a single value will be returned!

6. Before we can define the core getInputOnly() method, we need to define

a method to generate the select tag. We then return the final HTML using

sprintf(), using $pattern, $name, and the return value of getAttribs() as

arguments.

188

Chapter 6

7. We replace the default value for $pattern with <select name="%s" %s>. We

then loop through the attributes, adding them as key-value pairs with spaces in

between:

protected function getSelect()

{

$this->pattern = '<select name="%s" %s> ' . PHP_EOL;

return sprintf($this->pattern, $this->name,

$this->getAttribs());

}

8. Next, we define a method to obtain the option tags that will be associated with the

select tag.

9. As you will recall, the key from the $this->options array represents the return

value, whereas the value part of the array represents the text that will appear on

screen. If $this->selectedKey is in array form, we check to see if the value is in

the array. Otherwise, we assume $this-> selectedKey is a string and we simply

determine if it is equal to the key. If the selected key matches, we add the selected

attribute:

protected function getOptions()

{

$output = '';

foreach ($this->options as $key => $value) {

if (is_array($this->selectedKey)) {

$selected = (in_array($key, $this->selectedKey))

? ' selected' : '';

} else {

$selected = ($key == $this->selectedKey)

? ' selected' : '';

}

$output .= '<option value="' . $key . '"'

. $selected . '>'

. $value

. '</option>';

}

return $output;

}

10. Finally we are ready to override the core getInputOnly() method.

11. You will note that the logic for this method only needs to capture the return values

from the getSelect() and getOptions() methods described in the preceding

code. We also need to add the closing </select> tag:

public function getInputOnly()

{

$output = $this->getSelect();

$output .= $this->getOptions();

189

Building Scalable Websites

$output .= '</' . $this->getType() . '>';

return $output;

}

 How it works…

Copy the code described above into a new Select.php file in the Application/Form/

Element folder. Then define a chap_06_form_element_select.php calling script that

sets up autoloading and anchors the new class:

<?php

require DIR . '/../Application/Autoload/Loader.php';

Application\Autoload\Loader::init(DIR

use Application\Form\Generic;

use Application\Form\Element\Select;

. '/..');

Next, define the wrappers using the array $wrappers defined in the first recipe. You can also

use the $statusList array defined in the Creating an HTML radio element generator recipe.

You can then create instances of SELECT elements. The first instance is single select, and the

second is multiple:

$status1 = new Select('status1',

Generic::TYPE_SELECT,

'Status 1',

$wrappers,

['id' => 'status1']);

$status2 = new Select('status2',

Generic::TYPE_SELECT,

'Status 2',

$wrappers,

['id' => 'status2',

'multiple' => '',

'size' => '4']);

See if there is any status input from $_GET and set the options. Any input will become the

selected key. Otherwise, the selected key is the default. As you will recall, the second instance

is multiple select, so the value obtained from $_GET and the default setting should both be in

the form of an array:

$checked1 = $_GET['status1'] ?? 'U';

$checked2 = $_GET['status2'] ?? ['U'];

$status1->setOptions($statusList, $checked1);

$status2->setOptions($statusList, $checked2);

Lastly, be sure to define a submit button (as shown in the Creating a generic form element

generator recipe of this chapter).

190

Chapter 6

The actual display logic is identical to the radio button recipe, except that we need to render

two separate HTML select instances:

<form name="status" method="get">

<table id="status" class="display" cellspacing="0" width="100%">

<tr><?= $status1->render(); ?></tr>

<tr><?= $status2->render(); ?></tr>

<tr><?= $submit->render(); ?></tr>

<tr>

<td colspan=2>

<pre>

<?php var_dump($_GET); ?>

</pre>

</td>

</tr>

</table>

</form>

Here is the actual output:

191

Building Scalable Websites

Also, you can see how the elements appear in the view source page:

 Implementing a form factory

The purpose of a form factory is to generate a usable form object from a single configuration

array. The form object should have the ability to retrieve the individual elements it contains so

that output can be generated.

 How to do it…

1. First, let's create a class called Application\Form\Factory to contain the factory

code. It will have only one property, $elements, with a getter:

namespace Application\Form;

class Factory

{

protected $elements;

public function getElements()

{

return $this->elements;

}

// remaining code

}

192

Chapter 6

2. Before we define the primary form generation method, it's important to consider

what configuration format we plan to receive, and what exactly the form generation

will produce. For this illustration, we will assume that the generation will produce a

Factory instance, with an $elements property. This property would be an array of

Application\Form\Generic or Application\Form\Element classes.

3. We are now ready to tackle the generate() method. This will cycle through the

configuration array, creating the appropriate Application\Form\Generic

or Application\Form\Element* objects, which in turn will be stored in

the $elements array. The new method will accept the configuration array as an

argument. It is convenient to define this method as static so that we can generate as

many instances as are needed using different blocks of configuration.

4. We create an instance of Application\Form\Factory, and then we start looping

through the configuration array:

public static function generate(array $config)

{

$form = new self();

foreach ($config as $key => $p) {

5. Next, we check for parameters that are optional in the constructor for the

Application\Form\Generic class:

$p['errors'] = $p['errors'] ?? array();

$p['wrappers'] = $p['wrappers'] ?? array();

$p['attributes'] = $p['attributes'] ?? array();

6. Now that all the constructor parameters are in place, we can create the form element

instance, which is then stored in $elements:

$form->elements[$key] = new $p['class']

(

$key,

$p['type'],

$p['label'],

$p['wrappers'],

$p['attributes'],

$p['errors']

);

7. Next, we turn our attention to options. If the options parameter is set, we extract

the array values into variables using list(). We then test the element type using

switch() and run setOptions() with the appropriate number of parameters:

if (isset($p['options'])) {

list($a,$b,$c,$d) = $p['options'];

switch ($p['type']) {

case Generic::TYPE_RADIO :

case Generic::TYPE_CHECKBOX :

193

Building Scalable Websites

$form->elements[$key]->setOptions($a,$b,$c,$d);

break;

case Generic::TYPE_SELECT :

$form->elements[$key]->setOptions($a,$b);

break;

default :

$form->elements[$key]->setOptions($a,$b);

break;

}

}

}

8. Finally, we return the form object and close out the method:

return $form;

}

9. Theoretically, at this point, we could easily render the form in our view logic by simply

iterating through the array of elements and running the render() method. The view

logic might look like this:

<form name="status" method="get">

<table id="status" class="display" cellspacing="0" width="100%">

<?php foreach ($form->getElements() as $element) : ?>

<?php echo $element->render(); ?>

<?php endforeach; ?>

</table>

</form>

10. Finally, we return the form object and close out the method.

11. Next, we need to define a discrete Form class under Application\Form\

Element:

namespace Application\Form\Element;

class Form extends Generic

{

public function getInputOnly()

{

$this->pattern = '<form name="%s" %s> ' . PHP_EOL;

return sprintf($this->pattern, $this->name,

$this->getAttribs());

}

public function closeTag()

{

return '</' . $this->type . '>';

}

}

194

Chapter 6

12. Returning to the Application\Form\Factory class, we now need to define

a simple method that returns a sprintf() wrapper pattern that will serve as

an envelope for input. As an example, if the wrapper is div with an attribute

class="test" we would produce this pattern: <div class="test">%s</div>.

Our content would then be substituted in place of %s by the sprintf() function:

protected function getWrapperPattern($wrapper)

{

$type = $wrapper['type'];

unset($wrapper['type']);

$pattern = '<' . $type;

foreach ($wrapper as $key => $value) {

$pattern .= ' ' . $key . '="' . $value . '"';

}

$pattern .= '>%s</' . $type . '>';

return $pattern;

}

13. Finally, we are ready to define a method that does overall form rendering. We obtain

wrapper sprintf() patterns for each form row. We then loop through the elements,

render each one, and wrap the output in the row pattern. Next, we generate an

Application\Form\Element\Form instance. We then retrieve the form wrapper

sprintf() pattern and check the form_tag_inside_wrapper flag, which tells us

whether we need to place the form tag inside or outside the form wrapper:

public static function render($form, $formConfig)

{

$rowPattern = $form->getWrapperPattern(

$formConfig['row_wrapper']);

$contents = '';

foreach ($form->getElements() as $element) {

$contents .= sprintf($rowPattern, $element->render());

}

$formTag = new Form($formConfig['name'],

Generic::TYPE_FORM,

'',

array(),

$formConfig['attributes']);

$formPattern = $form->getWrapperPattern(

$formConfig['form_wrapper']);

if (isset($formConfig['form_tag_inside_wrapper'])

&& !$formConfig['form_tag_inside_wrapper']) {

$formPattern = '%s' . $formPattern . '%s';

return sprintf($formPattern, $formTag->getInputOnly(),

$contents, $formTag->closeTag());

195

Building Scalable Websites

} else {

return sprintf($formPattern, $formTag->getInputOnly()

. $contents . $formTag->closeTag());

}

}

 How it works…

Referring to the preceding code, create the Application\Form\Factory and

Application\Form\Element\Form classes.

Next, you can define a chap_06_form_factor.php calling script that sets up autoloading

and anchors the new class:

<?php

require DIR . '/../Application/Autoload/Loader.php';

Application\Autoload\Loader::init(DIR

use Application\Form\Generic;

use Application\Form\Factory;

. '/..');

Next, define the wrappers using the $wrappers array defined in the first recipe. You can also

use the $statusList array defined in the second recipe.

See if there is any status input from $_POST. Any input will become the selected key.

Otherwise, the selected key is the default.

$email = $_POST['email'] ?? '';

$checked0 = $_POST['status0'] ?? 'U';

$checked1 = $_POST['status1'] ?? 'U';

$checked2 = $_POST['status2'] ?? ['U'];

$checked3 = $_POST['status3'] ?? ['U'];

Now you can define the overall form configuration. The name and attributes parameters

are used to configure the form tag itself. The other two parameters represent form-level and

row-level wrappers. Lastly, we provide a form_tag_inside_wrapper flag to indicate that

the form tag should not appear inside the wrapper (that is, <table>). If the wrapper was

<div>, we would set this flag to TRUE:

$formConfig = [

'name' => 'status_form',

'attributes' => ['id'=>'statusForm','method'=>'post',

'action'=>'chap_06_form_factory.php'],

'row_wrapper' => ['type' => 'tr', 'class' => 'row'],

'form_wrapper' => ['type'=>'table','class'=>'table',

'id'=>'statusTable',

196

Chapter 6

'class'=>'display','cellspacing'=>'0'],

'form_tag_inside_wrapper' => FALSE,

];

Next, define an array that holds parameters for each form element to be created by the

factory. The array key becomes the name of the form element, and must be unique:

$config = [

'email' => [

'class' => 'Application\Form\Generic',

'type' => Generic::TYPE_EMAIL,

'label' => 'Email',

'wrappers' => $wrappers,

'attributes'=> ['id'=>'email','maxLength'=>128,

'title'=>'Enter address',

'required'=>'','value'=>strip_tags($email)]

],

'password' => [

'class' => 'Application\Form\Generic',

'type' => Generic::TYPE_PASSWORD,

'label' => 'Password',

'wrappers' => $wrappers,

'attributes' => ['id'=>'password',

'title' => 'Enter your password',

'required' => '']

],

// etc.

];

Lastly, be sure to generate the form:

$form = Factory::generate($config);

The actual display logic is extremely simple, as we simply call the form level render()

method:

<?= $form->render($form, $formConfig); ?>

197

Building Scalable Websites

Here is the actual output:

Chaining $_POST filters

Proper filtering and validation is a common problem when processing data submitted by users

from an online form. It is arguably also the number one security vulnerability for a website.

Furthermore, it can be quite awkward to have the filters and validators scattered all over the

application. A chaining mechanism would resolve these issues neatly, and would also allow

you to exert control over the order in which the filters and validators are processed.

 How to do it…

1. There is a little-known PHP function, filter_input_array(), that, at first glance,

seems well suited for this task. Looking more deeply into its functionality, however, it

soon becomes apparent that this function was designed in the early days, and is not

up to modern requirements for protection against attack and flexibility. Accordingly,

we will instead present a much more flexible mechanism based on an array of

callbacks performing filtering and validation.

198

Chapter 6

The difference between filtering and validation is that filtering can

potentially remove or transform values. Validation, on the other

hand, tests data using criteria appropriate to the nature of the

data, and returns a boolean result.

2. In order to increase flexibility, we will make our base filter and validation classes

relatively light. By this, we mean not defining any specific filters or validation methods.

Instead, we will operate entirely on the basis of a configuration array of callbacks. In

order to ensure compatibility in filtering and validation results, we will also define a

specific result object, Application\Filter\Result.

3. The primary function of the Result class will be to hold a $item value, which would

be the filtered value or a boolean result of validation. Another property, $messages,

will hold an array of messages populated during the filtering or validation operation.

In the constructor, the value supplied for $messages is formulated as an array. You

might observe that both properties are defined public. This is to facilitate ease of

access:

namespace Application\Filter;

class Result

{

public $item; // (mixed) filtered data | (bool) result

of validation

public $messages = array(); // [(string) message,

(string) message]

public function construct($item, $messages)

{

$this->item = $item;

if (is_array($messages)) {

$this->messages = $messages;

} else {

$this->messages = [$messages];

}

}

4. We also define a method that allows us to merge this Result instance with another.

This is important as at some point we will be processing the same value through

a chain of filters. In such a case, we want the newly filtered value to overwrite the

existing one, but we want the messages to be merged:

public function mergeResults(Result $result)

{

$this->item = $result->item;

$this->mergeMessages($result);

199

Building Scalable Websites

}

public function mergeMessages(Result $result)

{

if (isset($result->messages) && is_array($result->messages)) {

$this->messages = array_merge($this->messages,

$result->messages);

}

}

5. Finally, to finish the methods for this class, we add a method that merges validation

results. The important consideration here is that any value of FALSE, up or down the

validation chain, must cause the entire result to be FALSE:

public function mergeValidationResults(Result $result)

{

if ($this->item === TRUE) {

$this->item = (bool) $result->item;

}

$this->mergeMessages($result);

}

}

6. Next, to make sure that the callbacks produce compatible results, we will define an

Application\Filter\CallbackInterface interface. You will note that we are

taking advantage of the PHP 7 ability to data type the return value to ensure that we

are getting a Result instance in return:

namespace Application\Filter;

interface CallbackInterface

{

public function invoke ($item, $params) : Result;

}

7. Each callback should reference the same set of messages. Accordingly, we define

a Application\Filter\Messages class with a series of static properties. We

provide methods to set all messages, or just one message. The $messages property

has been made public for easier access:

namespace Application\Filter;

class Messages

{

const MESSAGE_UNKNOWN = 'Unknown';

public static $messages;

public static function setMessages(array $messages)

{

200

Chapter 6

self::$messages = $messages;

}

public static function setMessage($key, $message)

{

self::$messages[$key] = $message;

}

public static function getMessage($key)

{

return self::$messages[$key] ?? self::MESSAGE_UNKNOWN;

}

}

8. We are now in a position to define a Application\Web\AbstractFilter

class that implements core functionality. As mentioned previously, this class

will be relatively lightweight and we do not need to worry about specific

filters or validators as they will be supplied through configuration. We use the

UnexpectedValueException class, provided as part of the PHP 7 Standard PHP

Library (SPL), in order to throw a descriptive exception in case one of the callbacks

does not implement CallbackInterface:

namespace Application\Filter;

use UnexpectedValueException;

abstract class AbstractFilter

{

// code described in the next several bullets

9. First, we define useful class constants that hold various housekeeping values. The

last four shown here control the format of messages to be displayed, and how to

describe missing data:

const BAD_CALLBACK = 'Must implement CallbackInterface';

const DEFAULT_SEPARATOR = '
' . PHP_EOL;

const MISSING_MESSAGE_KEY = 'item.missing';

const DEFAULT_MESSAGE_FORMAT = '%20s : %60s';

const DEFAULT_MISSING_MESSAGE = 'Item Missing';

10. Next, we define core properties. $separator is used in conjunction with filtering and

validation messages. $callbacks represents the array of callbacks that perform

filtering and validation. $assignments map data fields to filters and/or validators.

$missingMessage is represented as a property so that it can be overwritten (that

is, for multi-language websites). Finally, $results is an array of Application\

Filter\Result objects and is populated by the filtering or validation operation:

protected $separator; // used for message display

protected $callbacks;

protected $assignments;

protected $missingMessage;

protected $results = array();

201

Building Scalable Websites

11. At this point, we can build the construct() method. Its main function is to set

the array of callbacks and assignments. It also either sets values or accepts defaults

for the separator (used in message display), and the missing message:

public function construct(array $callbacks, array $assignments,

$separator = NULL, $message = NULL)

{

$this->setCallbacks($callbacks);

$this->setAssignments($assignments);

$this->setSeparator($separator ?? self::DEFAULT_SEPARATOR);

$this->setMissingMessage($message

?? self::DEFAULT_MISSING_MESSAGE);

}

12. Next, we define a series of methods that allow us to set or remove callbacks. Notice

that we allow the getting and setting of a single callback. This is useful if you have

a generic set of callbacks, and need to modify just one. You will also note that

setOneCall() checks to see if the callback implements CallbackInterface. If it

does not, an UnexpectedValueException is thrown:

public function getCallbacks()

{

return $this->callbacks;

}

public function getOneCallback($key)

{

return $this->callbacks[$key] ?? NULL;

}

public function setCallbacks(array $callbacks)

{

foreach ($callbacks as $key => $item) {

$this->setOneCallback($key, $item);

}

}

public function setOneCallback($key, $item)

{

if ($item instanceof CallbackInterface) {

$this->callbacks[$key] = $item;

} else {

throw new UnexpectedValueException(self::BAD_CALLBACK);

}

202

Chapter 6

}

public function removeOneCallback($key)

{

if (isset($this->callbacks[$key]))

unset($this->callbacks[$key]);

}

13. Methods for results processing are quite simple. For convenience, we added

getItemsAsArray(), otherwise getResults() will return an array of Result

objects:

public function getResults()

{

return $this->results;

}

public function getItemsAsArray()

{

$return = array();

if ($this->results) {

foreach ($this->results as $key => $item)

$return[$key] = $item->item;

}

return $return;

}

14. Retrieving messages is just a matter of looping through the array of $this

->results and extracting the $messages property. For convenience, we also added

getMessageString() with some formatting options. To easily produce an array

of messages, we use the PHP 7 yield from syntax. This has the effect of turning

getMessages() into a delegating generator. The array of messages becomes a

sub-generator:

public function getMessages()

{

if ($this->results) {

foreach ($this->results as $key => $item)

if ($item->messages) yield from $item->messages;

} else {

return array();

}

}

public function getMessageString($width = 80, $format = NULL)

{

203

Building Scalable Websites

if (!$format)

$format = self::DEFAULT_MESSAGE_FORMAT . $this->separator;

$output = '';

if ($this->results) {

foreach ($this->results as $key => $value) {

if ($value->messages) {

foreach ($value->messages as $message) {

$output .= sprintf(

$format, $key, trim($message));

}

}

}

}

return $output;

}

15. Lastly, we define a mixed group of useful getters and setters:

public function setMissingMessage($message)

{

$this->missingMessage = $message;

}

public function setSeparator($separator)

{

$this->separator = $separator;

}

public function getSeparator()

{

return $this->separator;

}

public function getAssignments()

{

return $this->assignments;

}

public function setAssignments(array $assignments)

{

$this->assignments = $assignments;

}

// closing bracket for class AbstractFilter

}

16. Filtering and validation, although often performed together, are just as often

performed separately. Accordingly, we define discrete classes for each. We'll start with

Application\Filter\Filter. We make this class extend AbstractFilter in

order to provide the core functionality described previously:

204

Chapter 6

namespace Application\Filter;

class Filter extends AbstractFilter

{

// code

}

17. Within this class we define a core process() method that scans an array of data

and applies filters as per the array of assignments. If there are no assigned filters for

this data set, we simply return NULL:

public function process(array $data)

{

if (!(isset($this->assignments)

&& count($this->assignments))) {

return NULL;

}

18. Otherwise, we initialize $this->results to an array of Result objects where the

$item property is the original value from $data, and the $messages property is an

empty array:

foreach ($data as $key => $value) {

$this->results[$key] = new Result($value, array());

}

19. We then make a copy of $this->assignments and check to see if there are any

global filters (identified by the '*' key. If so, we run processGlobal() and then

unset the '*' key:

$toDo = $this->assignments;

if (isset($toDo['*'])) {

$this->processGlobalAssignment($toDo['*'], $data);

unset($toDo['*']);

}

20. Finally, we loop through any remaining assignments, calling

processAssignment():

foreach ($toDo as $key => $assignment) {

$this->processAssignment($assignment, $key);

}

21. As you will recall, each assignment is keyed to the data field, and represents an array

of callbacks for that field. Thus, in processGlobalAssignment() we need to loop

through the array of callbacks. In this case, however, because these assignments are

global, we also need to loop through the entire data set, and apply each global filter in

turn:

protected function processGlobalAssignment($assignment, $data)

{

foreach ($assignment as $callback) {

205

Building Scalable Websites

if ($callback === NULL) continue;

foreach ($data as $k => $value) {

$result = $this->callbacks[$callback['key']]

($this->results[$k]->item,

$callback['params']);

$this->results[$k]->mergeResults($result);

}

}

}

The tricky bit is this line of code:

$result = $this->callbacks[$callback['key']]($this

->results[$k]->item, $callback['params']);

Remember, each callback is actually an anonymous class that defines the

PHP magic invoke() method. The arguments supplied are the actual

data item to be filtered, and an array of parameters. By running $this-

>callbacks[$callback['key']]() we are in fact magically calling

 invoke().

22. When we define processAssignment(), in a manner akin to

processGlobalAssignment(), we need to execute each remaining callback

assigned to each data key:

protected function processAssignment($assignment, $key)

{

foreach ($assignment as $callback) {

if ($callback === NULL) continue;

$result = $this->callbacks[$callback['key']]

($this->results[$key]->item,

$callback['params']);

$this->results[$key]->mergeResults($result);

}

}

} // closing brace for Application\Filter\Filter

It is important that any filtering operation that alters the original user-supplied

data should display a message indicating that a change was made. This can

become part of an audit trail to safeguard you against potential legal liability

when a change is made without user knowledge or consent.

206

 How it works…

Chapter 6

Create an Application\Filter folder. In this folder, create the following class files, using

code from the preceding steps:

Application\Filter* class file Code described in these steps

Result.php 3 - 5

CallbackInterface.php 6

Messages.php 7

AbstractFilter.php 8 – 15

Filter.php 16 - 22

Next, take the code discussed in step 5, and use it to configure an array of messages in

a chap_06_post_data_config_messages.php file. Each callback references the

Messages::$messages property. Here is a sample configuration:

<?php

use Application\Filter\Messages;

Messages::setMessages(

[

'length_too_short' => 'Length must be at least %d',

'length_too_long' => 'Length must be no more than %d',

'required' => 'Please be sure to enter a value',

'alnum' => 'Only letters and numbers allowed',

'float' => 'Only numbers or decimal point',

'email' => 'Invalid email address',

'in_array' => 'Not found in the list',

'trim' => 'Item was trimmed',

'strip_tags' => 'Tags were removed from this item',

'filter_float' => 'Converted to a decimal number',

'phone' => 'Phone number is [+n] nnn-nnn-nnnn',

'test' => 'TEST',

'filter_length' => 'Reduced to specified length',

]

);

Next, create a chap_06_post_data_config_callbacks.php callback configuration file

that contains configuration for filtering callbacks, as described in step 4. Each callback should

follow this generic template:

'callback_key' => new class () implements CallbackInterface

{

public function invoke($item, $params) : Result

207

Building Scalable Websites

{

$changed = array();

$filtered = /* perform filtering operation on $item */

if ($filtered !== $item)

$changed = Messages::$messages['callback_key'];

return new Result($filtered, $changed);

}

}

The callbacks themselves must implement the interface and return a Result instance. We

can take advantage of the PHP 7 anonymous class capability by having our callbacks return

an anonymous class that implements CallbackInterface. Here is how an array of filtering

callbacks might look:

use Application\Filter\ { Result, Messages, CallbackInterface };

$config = ['filters' => [

'trim' => new class () implements CallbackInterface

{

public function invoke($item, $params) : Result

{

$changed = array();

$filtered = trim($item);

if ($filtered !== $item)

$changed = Messages::$messages['trim'];

return new Result($filtered, $changed);

}

},

'strip_tags' => new class ()

implements CallbackInterface

{

public function invoke($item, $params) : Result

{

$changed = array();

$filtered = strip_tags($item);

if ($filtered !== $item)

$changed = Messages::$messages['strip_tags'];

return new Result($filtered, $changed);

}

},

// etc.

]

];

208

Chapter 6

For test purposes, we will use the prospects table as a target. Instead of providing data from

$_POST, we will construct an array of good and bad data:

You can now create a chap_06_post_data_filtering.php script that sets up

autoloading, includes the messages and callbacks configuration files:

<?php

require DIR . '/../Application/Autoload/Loader.php';

Application\Autoload\Loader::init(DIR . '/..');

include DIR

include DIR

. '/chap_06_post_data_config_messages.php';

. '/chap_06_post_data_config_callbacks.php';

You then need to define assignments that represent a mapping between the data fields and

filter callbacks. Use the * key to define a global filter that applies to all data:

$assignments = [

'*' => [['key' => 'trim', 'params' => []],

['key' => 'strip_tags', 'params' => []]],

'first_name' => [['key' => 'length',

'params' => ['length' => 128]]],

'last_name' => [['key' => 'length',

'params' => ['length' => 128]]],

'city' => [['key' => 'length',

'params' => ['length' => 64]]],

'budget' => [['key' => 'filter_float', 'params' => []]],

];

209

Building Scalable Websites

Next, define good and bad test data:

$goodData = [

'first_name' => 'Your Full',

'last_name' => 'Name',

'address' => '123 Main Street',

'city' => 'San Francisco',

'state_province' => 'California',

'postal_code' => '94101',

'phone' => '+1 415-555-1212',

'country' => 'US',

'email' => 'your@email.address.com',

'budget' => '123.45',

];

$badData = [

'first_name' => 'This+Name<script>bad tag</script>Valid!',

'last_name' => 'ThisLastNameIsWayTooLong

Abcdefghijklmnopqrstuvwxyz0123456789

Abcdefghijklmnopqrstuvwxyz0123456789

Abcdefghijklmnopqrstuvwxyz0123456789

Abcdefghijklmnopqrstuvwxyz0123456789',

//'address' => '', // missing

'city' => '

ThisCityNameIsTooLong0123456789012345678901234

56789012345678901234567890123456789 ',

//'state_province'=> '', // missing

'postal_code' => '!"£$%^Non Alpha Chars',

'phone' => ' 12345 ',

'country' => 'XX',

'email' => 'this.is@not@an.email',

'budget' => 'XXX',

];

Finally, you can create an Application\Filter\Filter instance, and test the data:

$filter = new Application\Filter\Filter(

$config['filters'], $assignments);

$filter->setSeparator(PHP_EOL);

$filter->process($goodData);

echo $filter->getMessageString();

var_dump($filter->getItemsAsArray());

$filter->process($badData);

echo $filter->getMessageString();

var_dump($filter->getItemsAsArray());

210

Chapter 6

Processing good data produces no messages other than one indicating that the value for the

float field was converted from string to float. The bad data, on the other hand, produces the

following output:

You will also notice that tags were removed from first_name, and that both last_name

and city were truncated.

 There's more…

The filter_input_array() function takes two arguments: the input source (in the

form of a pre-defined constant used to indicate one of the $_* PHP super-globals, that is,

$_POST), and an array of matching field definitions as keys and filters or validators as values.

This function performs not only filtering operations, but validation as well. The flags labeled

sanitize are actually filters.

 See also

Documentation and examples of filter_input_array() can be found at http://php.

net/manual/en/function.filter-input-array.php. You might also have a look at

the different types of filters that are available on http://php.net/manual/en/filter.

filters.php.

211

http://php/
http://php.net/manual/en/filter

Building Scalable Websites

 Chaining $_POST validators

The heavy lifting for this recipe has already been accomplished in the preceding recipe. Core

functionality is defined by Application\Filter\AbstractFilter. The actual validation

is performed by an array of validating callbacks.

 How to do it…

1. Look over the preceding recipe, Chaining $_POST filters. We will be using all of the

classes and configuration files in this recipe, except where noted here.

2. To begin, we define a configuration array of validation callbacks. As with the

preceding recipe, each callback should implement Application\Filter\

CallbackInterface, and should return an instance of Application\Filter\

Result. Validators would take this generic form:

use Application\Filter\ { Result, Messages, CallbackInterface };

$config = [

// validator callbacks

'validators' => [

'key' => new class () implements CallbackInterface

{

public function invoke($item, $params) : Result

{

// validation logic goes here

return new Result($valid, $error);

}

},

// etc.

3. Next, we define a Application\Filter\Validator class, which loops through

the array of assignments, testing each data item against its assigned validator

callbacks. We make this class extend AbstractFilter in order to provide the core

functionality described previously:

namespace Application\Filter;

class Validator extends AbstractFilter

{

// code

}

212

Chapter 6

4. Within this class, we define a core process() method that scans an array of data

and applies validators as per the array of assignments. If there are no assigned

validators for this data set, we simply return the current status of $valid (which is

TRUE):

public function process(array $data)

{

$valid = TRUE;

if (!(isset($this->assignments)

&& count($this->assignments))) {

return $valid;

}

5. Otherwise, we initialize $this->results to an array of Result objects where the

$item property is set to TRUE, and the $messages property is an empty array:

foreach ($data as $key => $value) {

$this->results[$key] = new Result(TRUE, array());

}

6. We then make a copy of $this->assignments and check to see if there are any

global filters (identified by the '*' key). If so, we run processGlobal() and then

unset the '*' key:

$toDo = $this->assignments;

if (isset($toDo['*'])) {

$this->processGlobalAssignment($toDo['*'], $data);

unset($toDo['*']);

}

7. Finally, we loop through any remaining assignments, calling

processAssignment(). This is an ideal place to check to see if any fields present

in the assignments array is missing from the data. Note that we set $valid to FALSE

if any validation callback returns FALSE:

foreach ($toDo as $key => $assignment) {

if (!isset($data[$key])) {

$this->results[$key] =

new Result(FALSE, $this->missingMessage);

} else {

$this->processAssignment(

$assignment, $key, $data[$key]);

}

if (!$this->results[$key]->item) $valid = FALSE;

}

return $valid;

}

213

Building Scalable Websites

8. As you will recall, each assignment is keyed to the data field, and represents an array

of callbacks for that field. Thus, in processGlobalAssignment(), we need to loop

through the array of callbacks. In this case, however, because these assignments are

global, we also need to loop through the entire data set, and apply each global filter

in turn.

9. In contrast to the equivalent Application\Filter\Fiter::processGlobalAss

ignment() method, we need to call mergeValidationResults(). The reason for

this is that if the value of $result->item is already FALSE, we need to ensure that

it does not subsequently get overwritten by a value of TRUE. Any validator in the chain

that returns FALSE must overwrite any other validation result:

protected function processGlobalAssignment($assignment, $data)

{

foreach ($assignment as $callback) {

if ($callback === NULL) continue;

foreach ($data as $k => $value) {

$result = $this->callbacks[$callback['key']]

($value, $callback['params']);

$this->results[$k]->mergeValidationResults($result);

}

}

}

10. When we define processAssignment(), in a manner akin to

processGlobalAssignment(), we need to execute each remaining callback

assigned to each data key, again calling mergeValidationResults():

protected function processAssignment($assignment, $key, $value)

{

foreach ($assignment as $callback) {

if ($callback === NULL) continue;

$result = $this->callbacks[$callback['key']]

($value, $callback['params']);

$this->results[$key]->mergeValidationResults($result);

}

}

 How it works…

As with the preceding recipe, be sure to define the following classes:

f Application\Filter\Result

f Application\Filter\CallbackInterface

214

Chapter 6

f Application\Filter\Messages

f Application\Filter\AbstractFilter

You can use the chap_06_post_data_config_messages.php file, also described in the

previous recipe.

Next, create a Validator.php file in the Application\Filter folder. Place the code

described in step 3 to 10.

Next, create a chap_06_post_data_config_callbacks.php callback configuration file

that contains configurations for validation callbacks, as described in step 2. Each callback

should follow this generic template:

'validation_key' => new class () implements CallbackInterface

{

public function invoke($item, $params) : Result

{

$error = array();

$valid = /* perform validation operation on $item */

if (!$valid)

$error[] = Messages::$messages['validation_key'];

return new Result($valid, $error);

}

}

Now you can create a chap_06_post_data_validation.php calling script that initializes

autoloading and includes the configuration scripts:

<?php

require DIR . '/../Application/Autoload/Loader.php';

Application\Autoload\Loader::init(DIR . '/..');

include DIR

include DIR

. '/chap_06_post_data_config_messages.php';

. '/chap_06_post_data_config_callbacks.php';

Next, define an array of assignments, mapping data fields to validator callback keys:

$assignments = [

'first_name' => [['key' => 'length',

'params' => ['min' => 1, 'max' => 128]],

['key' => 'alnum',

'params' => ['allowWhiteSpace' => TRUE]],

['key' => 'required','params' => []]],

'last_name'=> [['key' => 'length',

'params' => ['min' => 1, 'max' => 128]],

['key' => 'alnum',

'params' => ['allowWhiteSpace' => TRUE]],

['key' => 'required','params' => []]],

215

Building Scalable Websites

'address' => [['key' => 'length',

'params' => ['max' => 256]]],

'city' => [['key' => 'length',

'params' => ['min' => 1, 'max' => 64]]],

'state_province'=> [['key' => 'length',

'params' => ['min' => 1, 'max' => 32]]],

'postal_code' => [['key' => 'length',

'params' => ['min' => 1, 'max' => 16]],

['key' => 'alnum',

'params' => ['allowWhiteSpace' => TRUE]],

['key' => 'required','params' => []]],

'phone' => [['key' => 'phone', 'params' => []]],

'country' => [['key' => 'in_array',

'params' => $countries],

['key' => 'required','params' => []]],

'email' => [['key' => 'email', 'params' => []],

['key' => 'length',

'params' => ['max' => 250]],

['key' => 'required','params' => []]],

'budget' => [['key' => 'float', 'params' => []]]

];

For test data, use the same good and bad data defined in the chap_06_post_data_

filtering.php file described in the previous recipe. After that, you are in a position to

create an Application\Filter\Validator instance, and test the data:

$validator = new Application\Filter\Validator($config['validators'],

$assignments);

$validator->setSeparator(PHP_EOL);

$validator->process($badData);

echo $validator->getMessageString(40, '%14s : %-26s' . PHP_EOL);

var_dump($validator->getItemsAsArray());

$validator->process($goodData);

echo $validator->getMessageString(40, '%14s : %-26s' . PHP_EOL);

var_dump($validator->getItemsAsArray());

As expected, the good data does not produce any validation errors. The bad data, on the other

hand, generates the following output:

216

Chapter 6

Notice that the missing fields, address and state_province validate FALSE, and return

the missing item message.

 Tying validation to a form

When a form is first rendered, there is little value in having a form class (such as

Application\Form\Factory, described in the previous recipe) tied to a class that can

perform filtering or validation (such as the Application\Filter* described in the

previous recipe). Once the form data has been submitted, however, interest grows. If the

form data fails validation, the values can be filtered, and then re-displayed. Validation error

messages can be tied to form elements, and rendered next to form fields.

 How to do it…

1. First of all, be sure to implement the classes defined in the Implementing a Form

Factory, Chaining $_POST Filters, and Chaining $_POST Validators recipes.

2. We will now turn our attention to the Application\Form\Factory class, and add

properties and setters that allow us to attach instances of Application\Filter\

Filter and Application\Filter\Validator. We also need define $data,

which will be used to retain the filtered and/or validated data:

const DATA_NOT_FOUND = 'Data not found. Run setData()';

const FILTER_NOT_FOUND = 'Filter not found. Run setFilter()';

217

Building Scalable Websites

const VALIDATOR_NOT_FOUND = 'Validator not found.

Run setValidator()';

protected $filter;

protected $validator;

protected $data;

public function setFilter(Filter $filter)

{

$this->filter = $filter;

}

public function setValidator(Validator $validator)

{

$this->validator = $validator;

}

public function setData($data)

{

$this->data = $data;

}

3. Next, we define a validate() method that calls the process() method of the

embedded Application\Filter\Validator instance. We check to see if

$data and $validator exist. If not, the appropriate exceptions are thrown with

instructions on which method needs to be run first:

public function validate()

{

if (!$this->data)

throw new RuntimeException(self::DATA_NOT_FOUND);

if (!$this->validator)

throw new RuntimeException(self::VALIDATOR_NOT_FOUND);

4. After calling the process() method, we associate validation result messages

with form element messages. Note that the process() method returns a boolean

value that represents the overall validation status of the data set. When the form

is re-displayed following failed validation, error messages will appear next to each

element:

$valid = $this->validator->process($this->data);

foreach ($this->elements as $element) {

if (isset($this->validator->getResults()

[$element->getName()])) {

$element->setErrors($this->validator->getResults()

218

Chapter 6

[$element->getName()]->messages);

}

}

return $valid;

}

5. In a similar manner, we define a filter() method that calls the process()

method of the embedded Application\Filter\Filter instance. As with the

validate() method described in step 3, we need to check for the existence of

$data and $filter. If either is missing, we throw a RuntimeException with the

appropriate message:

public function filter()

{

if (!$this->data)

throw new RuntimeException(self::DATA_NOT_FOUND);

if (!$this->filter)

throw new RuntimeException(self::FILTER_NOT_FOUND);

6. We then run the process() method, which produces an array of Result objects

where the $item property represents the end result of the filter chain. We then loop

through the results, and, if the corresponding $element key matches, set the value

attribute to the filtered value. We also add any messages resulting from the filtering

process. When the form is then re-displayed, all value attributes will display filtered

results:

$this->filter->process($this->data);

foreach ($this->filter->getResults() as $key => $result) {

if (isset($this->elements[$key])) {

$this->elements[$key]

->setSingleAttribute('value', $result->item);

if (isset($result->messages)

&& count($result->messages)) {

foreach ($result->messages as $message) {

$this->elements[$key]->addSingleError($message);

}

}

}

}

}

219

Building Scalable Websites

 How it works…

You can start by making the changes to Application\Form\Factory as described above.

For a test target you can use the prospects database table shown in the How it works…

section of the Chaining $_POST filters recipe. The various column settings should give you an

idea of which form elements, filters, and validators to define.

As an example, you can define a chap_06_tying_filters_to_form_definitions.php

file, which will contain definitions for form wrappers, elements, and filter assignments. Here

are some examples:

<?php

use Application\Form\Generic;

define('VALIDATE_SUCCESS', 'SUCCESS: form submitted ok!');

define('VALIDATE_FAILURE', 'ERROR: validation errors detected');

$wrappers = [

Generic::INPUT => ['type' => 'td', 'class' => 'content'],

Generic::LABEL => ['type' => 'th', 'class' => 'label'],

Generic::ERRORS => ['type' => 'td', 'class' => 'error']

];

$elements = [

'first_name' => [

'class' => 'Application\Form\Generic',

'type' => Generic::TYPE_TEXT,

'label' => 'First Name',

'wrappers' => $wrappers,

'attributes'=> ['maxLength'=>128,'required'=>'']

],

'last_name' => [

'class' => 'Application\Form\Generic',

'type' => Generic::TYPE_TEXT,

'label' => 'Last Name',

'wrappers' => $wrappers,

'attributes'=> ['maxLength'=>128,'required'=>'']

],

// etc.

];

// overall form config

$formConfig = [

'name' => 'prospectsForm',

'attributes' => [

220

Chapter 6

'method'=>'post',

'action'=>'chap_06_tying_filters_to_form.php'

],

'row_wrapper' => ['type' => 'tr', 'class' => 'row'],

'form_wrapper' => [

'type'=>'table',

'class'=>'table',

'id'=>'prospectsTable',

'class'=>'display','cellspacing'=>'0'

],

'form_tag_inside_wrapper' => FALSE,

];

$assignments = [

'first_name' => [['key' => 'length',

'params' => ['min' => 1, 'max' => 128]],

['key' => 'alnum',

'params' => ['allowWhiteSpace' => TRUE]],

['key' => 'required','params' => []]],

'last_name' => [['key' => 'length',

'params' => ['min' => 1, 'max' => 128]],

['key' => 'alnum',

'params' => ['allowWhiteSpace' => TRUE]],

['key' => 'required','params' => []]],

'address' => [['key' => 'length',

'params' => ['max' => 256]]],

'city' => [['key' => 'length',

'params' => ['min' => 1, 'max' => 64]]],

'state_province'=> [['key' => 'length',

'params' => ['min' => 1, 'max' => 32]]],

'postal_code' => [['key' => 'length',

'params' => ['min' => 1, 'max' => 16]],

['key' => 'alnum',

'params' => ['allowWhiteSpace' => TRUE]],

['key' => 'required','params' => []]],

'phone' => [['key' => 'phone', 'params' => []]],

'country' => [['key' => 'in_array',

'params' => $countries],

['key' => 'required','params' => []]],

'email' => [['key' => 'email', 'params' => []],

['key' => 'length',

'params' => ['max' => 250]],

['key' => 'required','params' => []]],

'budget' => [['key' => 'float', 'params' => []]]

];

221

Building Scalable Websites

You can use the already existing chap_06_post_data_config_callbacks.php and

chap_06_post_data_config_messages.php files described in the previous recipes.

Finally, define a chap_06_tying_filters_to_form.php file that sets up autoloading and

includes these three configuration files:

<?php

require DIR . '/../Application/Autoload/Loader.php';

Application\Autoload\Loader::init(DIR . '/..');

include DIR

include DIR

include DIR

. '/chap_06_post_data_config_messages.php';

. '/chap_06_post_data_config_callbacks.php';

. '/chap_06_tying_filters_to_form_definitions.php';

Next, you can create instances of the form factory, filter, and validator classes:

use Application\Form\Factory;

use Application\Filter\ { Validator, Filter };

$form = Factory::generate($elements);

$form->setFilter(new Filter($callbacks['filters'],

$assignments['filters']));

$form->setValidator(new Validator($callbacks['validators'],

$assignments['validators']));

You can then check to see if there is any $_POST data. If so, perform validation and filtering:

$message = '';

if (isset($_POST['submit'])) {

$form->setData($_POST);

if ($form->validate()) {

$message = VALIDATE_SUCCESS;

} else {

$message = VALIDATE_FAILURE;

}

$form->filter();

}

?>

The view logic is extremely simple: just render the form. Any validation messages and values

for the various elements will be assigned as part of validation and filtering:

<?= $form->render($form, $formConfig); ?>

222

Chapter 6

Here is an example using bad form data:

Notice the filtering and validation messages. Also notice the bad tags:

223

7
Accessing Web

Services

In this chapter, we will cover the following topics:

f Converting between PHP and XML

f Creating a simple REST client

f Creating a simple REST server

f Creating a simple SOAP client

f Creating a simple SOAP server

 Introduction

Making background queries to external web services is becoming an ever-increasing part

of any PHP web practice. The ability to provide appropriate, timely, and plentiful data means

more business for your customers and the websites you develop. We start with a couple

of recipes aimed at data conversion between eXtensible Markup Language (XML) and native

PHP. Next, we show you how to implement a simple Representational State Transfer (REST)

client and server. After that, we turn our attention to SOAP clients and servers.

Converting between PHP and XML

When considering a conversion between PHP native data types and XML, we would normally

consider an array as the primary target. With this in mind, the process of converting from a

PHP array to XML differs radically from the approach needed to do the reverse.

225

Accessing Web Services

Objects could also be considered for conversion; however, it is difficult to

render object methods in XML. Properties can be represented, however, by

using the get_object_vars() function, which reads object properties

into an array.

 How to do it…

1. First, we define an Application\Parse\ConvertXml class. This class will hold

the methods that will convert from XML to a PHP array, and vice versa. We will need

both the SimpleXMLElement and SimpleXMLIterator classes from the SPL:

namespace Application\Parse;

use SimpleXMLIterator;

use SimpleXMLElement;

class ConvertXml

{

}

2. Next, we define a xmlToArray() method that will accept a SimpleXMLIterator

instance as an argument. It will be called recursively and will produce a PHP array

from an XML document. We take advantage of the SimpleXMLIterator ability to

advance through the XML document, using the key(), current(), next(), and

rewind() methods to navigate:

public function xmlToArray(SimpleXMLIterator $xml) : array

{

$a = array();

for($xml->rewind(); $xml->valid(); $xml->next()) {

if(!array_key_exists($xml->key(), $a)) {

$a[$xml->key()] = array();

}

if($xml->hasChildren()){

$a[$xml->key()][] = $this->xmlToArray($xml->current());

}

else{

$a[$xml->key()] = (array) $xml->current()->attributes();

$a[$xml->key()]['value'] = strval($xml->current());

}

}

return $a;

}

226

Chapter 7

3. For the reverse process, also called recursively, we define two methods. The first

method, arrayToXml(), sets up an initial SimpleXMLElement instance, and

then calls the second method, phpToXml():

public function arrayToXml(array $a)

{

$xml = new SimpleXMLElement(

'<?xml version="1.0" standalone="yes"?><root></root>');

$this->phpToXml($a, $xml);

return $xml->asXML();

}

4. Note that in the second method, we use get_object_vars() in case one of

the array elements is an object. You'll also note that numbers alone are not

allowed as XML tags, which means adding some text in front of the number:

protected function phpToXml($value, &$xml)

{

$node = $value;

if (is_object($node)) {

$node = get_object_vars($node);

}

if (is_array($node)) {

foreach ($node as $k => $v) {

if (is_numeric($k)) {

$k = 'number' . $k;

}

if (is_array($v)) {

$newNode = $xml->addChild($k);

$this->phpToXml($v, $newNode);

} elseif (is_object($v)) {

$newNode = $xml->addChild($k);

$this->phpToXml($v, $newNode);

} else {

$xml->addChild($k, $v);

}

}

} else {

$xml->addChild(self::UNKNOWN_KEY, $node);

}

}

227

Accessing Web Services

 How it works…

As a sample XML document, you can use the Web Services Definition Language (WSDL) for

the United States National Weather Service. This is an XML document that describes a SOAP

service, and can be found at http://graphical.weather.gov/xml/SOAP_server/

ndfdXMLserver.php?wsdl.

We will use the SimpleXMLIterator class to provide an iteration mechanism. You can then

configure autoloading, and get an instance of Application\Parse\ConvertXml, using

xmlToArray() to convert the WSDL to a PHP array:

require DIR . '/../Application/Autoload/Loader.php';

Application\Autoload\Loader::init(DIR

use Application\Parse\ConvertXml;

. '/..');

$wsdl = 'http://graphical.weather.gov/xml/'

. 'SOAP_server/ndfdXMLserver.php?wsdl';

$xml = new SimpleXMLIterator($wsdl, 0, TRUE);

$convert = new ConvertXml();

var_dump($convert->xmlToArray($xml));

The resulting array is shown here:

To do the reverse, use the arrayToXml() method described in this recipe. As a source

document, you can use a source/data/mongo.db.global.php file that contains an

outline for a training video on MongoDB available through O'Reilly Media (disclaimer: by this

author!). Using the same autoloader configuration and instance of Application\Parse\

ConvertXml, here is the sample code you could use:

228

http://graphical.weather.gov/xml/SOAP_server/
http://graphical.weather.gov/xml/%27

Chapter 7

$convert = new ConvertXml();

header('Content-Type: text/xml');

echo $convert->arrayToXml(include CONFIG_FILE);

Here is the output in a browser:

 Creating a simple REST client

REST clients use HyperText Transfer Protocol (HTTP) to generate requests to external

web services. By changing the HTTP method, we can cause the external service to perform

different operations. Although there are quite a few methods (or verbs) available, we will only

focus on GET and POST. In this recipe, we will use the Adapter software design pattern to

present two different ways of implementing a REST client.

 How to do it…

1. Before we can define REST client adapters, we need to define common classes to

represent request and response information. First, we will start with an abstract class

that has methods and properties needed for either a request or response:

namespace Application\Web;

class AbstractHttp

{

229

Accessing Web Services

2. Next, we define class constants that represent HTTP information:

const METHOD_GET = 'GET';

const METHOD_POST = 'POST';

const METHOD_PUT = 'PUT';

const METHOD_DELETE = 'DELETE';

const CONTENT_TYPE_HTML = 'text/html';

const CONTENT_TYPE_JSON = 'application/json';

const CONTENT_TYPE_FORM_URL_ENCODED =

'application/x-www-form-urlencoded';

const HEADER_CONTENT_TYPE = 'Content-Type';

const TRANSPORT_HTTP = 'http';

const TRANSPORT_HTTPS = 'https';

const STATUS_200 = '200';

const STATUS_401 = '401';

const STATUS_500 = '500';

3. We then define properties that are needed for either a request or a response:

protected $uri; // i.e. http://xxx.com/yyy

protected $method; // i.e. GET, PUT, POST, DELETE

protected $headers; // HTTP headers

protected $cookies; // cookies

protected $metaData; // information about the transmission

protected $transport; // i.e. http or https

protected $data = array();

4. It logically follows to define getters and setters for these properties:

public function setMethod($method)

{

$this->method = $method;

}

public function getMethod()

{

return $this->method ?? self::METHOD_GET;

}

// etc.

5. Some properties require access by key. For this purpose, we define getXxxByKey()

and setXxxByKey() methods:

public function setHeaderByKey($key, $value)

{

$this->headers[$key] = $value;

}

public function getHeaderByKey($key)

{

230

http://xxx.com/yyy

Chapter 7

return $this->headers[$key] ?? NULL;

}

public function getDataByKey($key)

{

return $this->data[$key] ?? NULL;

}

public function getMetaDataByKey($key)

{

return $this->metaData[$key] ?? NULL;

}

6. In some cases, the request will require parameters. We will assume that the

parameters will be in the form of a PHP array stored in the $data property. We

can then build the request URL using the http_build_query() function:

public function setUri($uri, array $params = NULL)

{

$this->uri = $uri;

$first = TRUE;

if ($params) {

$this->uri .= '?' . http_build_query($params);

}

}

public function getDataEncoded()

{

return http_build_query($this->getData());

}

7. Finally, we set $transport based on the original request:

public function setTransport($transport = NULL)

{

if ($transport) {

$this->transport = $transport;

} else {

if (substr($this->uri, 0, 5) == self::TRANSPORT_HTTPS) {

$this->transport = self::TRANSPORT_HTTPS;

} else {

$this->transport = self::TRANSPORT_HTTP;

}

}

}

231

Accessing Web Services

8. In this recipe, we will define a Application\Web\Request class that can

accept parameters when we wish to generate a request, or, alternatively,

populate properties with incoming request information when implementing

a server that accepts requests:

namespace Application\Web;

class Request extends AbstractHttp

{

public function construct(

$uri = NULL, $method = NULL, array $headers = NULL,

array $data = NULL, array $cookies = NULL)

{

if (!$headers) $this->headers = $_SERVER ?? array();

else $this->headers = $headers;

if (!$uri) $this->uri = $this->headers['PHP_SELF'] ??

''; else $this->uri = $uri;

if (!$method) $this->method =

$this->headers['REQUEST_METHOD'] ?? self::METHOD_GET;

else $this->method = $method;

if (!$data) $this->data = $_REQUEST ?? array();

else $this->data = $data;

if (!$cookies) $this->cookies = $_COOKIE ?? array();

else $this->cookies = $cookies;

$this->setTransport();

}

}

9. Now we can turn our attention to a response class. In this case, we will define an

Application\Web\Received class. The name reflects the fact that we are re-

packaging data received from the external web service:

namespace Application\Web;

class Received extends AbstractHttp

{

public function construct(

$uri = NULL, $method = NULL, array $headers = NULL,

array $data = NULL, array $cookies = NULL)

{

$this->uri = $uri;

$this->method = $method;

$this->headers = $headers;

$this->data = $data;

$this->cookies = $cookies;

$this->setTransport();

}

}

232

Creating a streams-based REST client

Chapter 7

We are now ready to consider two different ways to implement a REST client. The first

approach is to use an underlying PHP I/O layer referred to as Streams. This layer provides a

series of wrappers that provide access to external streaming resources. By default, any of the

PHP file commands will use the file wrapper, which gives access to the local filesystem. We will

use the http:// or https:// wrappers to implement the Application\Web\Client\

Streams adapter:

1. First, we define a Application\Web\Client\Streams class:

namespace Application\Web\Client;

use Application\Web\ { Request, Received };

class Streams

{

const BYTES_TO_READ = 4096;

2. Next, we define a method to send the request to the external web service. In the case

of GET, we add the parameters to the URI. In the case of POST, we create a stream

context that contains metadata instructing the remote service that we are supplying

data. Using PHP Streams, making a request is just a matter of composing the URI,

and, in the case of POST, setting the stream context. We then use a simple fopen():

public static function send(Request $request)

{

$data = $request->getDataEncoded();

$received = new Received();

switch ($request->getMethod()) {

case Request::METHOD_GET :

if ($data) {

$request->setUri($request->getUri() . '?' . $data);

}

$resource = fopen($request->getUri(), 'r');

break;

case Request::METHOD_POST :

$opts = [

$request->getTransport() =>

[

'method' => Request::METHOD_POST,

'header' => Request::HEADER_CONTENT_TYPE

. ': ' . Request::CONTENT_TYPE_FORM_URL_ENCODED,

'content' => $data

]

];

$resource = fopen($request->getUri(), 'w',

stream_context_create($opts));

break;

233

Accessing Web Services

}

return self::getResults($received, $resource);

}

3. Finally, we have a look at retrieving and packaging results into a Received object.

You will notice that we added a provision to decode data received in JSON format:

protected static function getResults(Received $received, $resource)

{

$received->setMetaData(stream_get_meta_data($resource));

$data = $received->getMetaDataByKey('wrapper_data');

if (!empty($data) && is_array($data)) {

foreach($data as $item) {

if (preg_match('!^HTTP/\d\.\d (\d+?) .*?$!',

$item, $matches)) {

$received->setHeaderByKey('status', $matches[1]);

} else {

list($key, $value) = explode(':', $item);

$received->setHeaderByKey($key, trim($value));

}

}

}

$payload = '';

while (!feof($resource)) {

$payload .= fread($resource, self::BYTES_TO_READ);

}

if ($received->getHeaderByKey(Received::HEADER_CONTENT_TYPE)) {

switch (TRUE) {

case stripos($received->getHeaderByKey(

Received::HEADER_CONTENT_TYPE),

Received::CONTENT_TYPE_JSON) !== FALSE:

$received->setData(json_decode($payload));

break;

default :

$received->setData($payload);

break;

}

}

return $received;

}

234

Defining a cURL-based REST client

Chapter 7

We will now have a look at our second approach for a REST client, one of which is based on

the cURL extension:

1. For this approach, we will assume the same request and response classes. The initial

class definition is much the same as for the Streams client discussed previously:

namespace Application\Web\Client;

use Application\Web\ { Request, Received };

class Curl

{

2. The send() method is quite a bit simpler than when using Streams. All we need to

do is to define an array of options, and let cURL do the rest:

public static function send(Request $request)

{

$data = $request->getDataEncoded();

$received = new Received();

switch ($request->getMethod()) {

case Request::METHOD_GET :

$uri = ($data)

? $request->getUri() . '?' . $data

: $request->getUri();

$options = [

CURLOPT_URL => $uri,

CURLOPT_HEADER => 0,

CURLOPT_RETURNTRANSFER => TRUE,

CURLOPT_TIMEOUT => 4

];

break;

3. POST requires slightly different cURL parameters:

case Request::METHOD_POST :

$options = [

CURLOPT_POST => 1,

CURLOPT_HEADER => 0,

CURLOPT_URL => $request->getUri(),

CURLOPT_FRESH_CONNECT => 1,

CURLOPT_RETURNTRANSFER => 1,

CURLOPT_FORBID_REUSE => 1,

CURLOPT_TIMEOUT => 4,

CURLOPT_POSTFIELDS => $data

];

break;

}

235

Accessing Web Services

4. We then execute a series of cURL functions and run the results through

getResults():

$ch = curl_init();

curl_setopt_array($ch, ($options));

if(! $result = curl_exec($ch))

{

trigger_error(curl_error($ch));

}

$received->setMetaData(curl_getinfo($ch));

curl_close($ch);

return self::getResults($received, $result);

}

5. The getResults() method packages results into a Received object:

protected static function getResults(Received $received, $payload)

{

$type = $received->getMetaDataByKey('content_type');

if ($type) {

switch (TRUE) {

case stripos($type,

Received::CONTENT_TYPE_JSON) !== FALSE):

$received->setData(json_decode($payload));

break;

default :

$received->setData($payload);

break;

}

}

return $received;

}

 How it works…

Be sure to copy all the preceding code into these classes:

f Application\Web\AbstractHttp

f Application\Web\Request

f Application\Web\Received

f Application\Web\Client\Streams

f Application\Web\Client\Curl

236

Chapter 7

For this illustration, you can make a REST request to the Google Maps API to obtain

driving directions between two points. You also need to create an API key for this purpose

by following the directions given at https://developers.google.com/maps/

documentation/directions/get-api-key.

You can then define a chap_07_simple_rest_client_google_maps_curl.php

calling script that issues a request using the Curl client. You might also consider define a

chap_07_simple_rest_client_google_maps_streams.php calling script that

issues a request using the Streams client:

<?php

define('DEFAULT_ORIGIN', 'New York City');

define('DEFAULT_DESTINATION', 'Redondo Beach');

define('DEFAULT_FORMAT', 'json');

$apiKey = include DIR . '/google_api_key.php';

require DIR . '/../Application/Autoload/Loader.php';

Application\Autoload\Loader::init(DIR

use Application\Web\Request;

use Application\Web\Client\Curl;

You can then get the origin and destination:

. '/..');

$start = $_GET['start'] ?? DEFAULT_ORIGIN;

$end = $_GET['end'] ?? DEFAULT_DESTINATION;

$start = strip_tags($start);

$end = strip_tags($end);

You are now in a position to populate the Request object, and use it to generate the request:

$request = new Request(

'https://maps.googleapis.com/maps/api/directions/json',

Request::METHOD_GET,

NULL,

['origin' => $start, 'destination' => $end, 'key' => $apiKey],

NULL

);

$received = Curl::send($request);

$routes = $received->getData()->routes[0];

include DIR

php';

. '/chap_07_simple_rest_client_google_maps_template.

For the purposes of illustration, you could also define a template that represents view

logic to display the results of the request:

<?php foreach ($routes->legs as $item) : ?>

<!-- Trip Info -->

237

Accessing Web Services

Distance: <?= $item->distance->text; ?>

Duration: <?= $item->duration->text; ?>

<!-- Driving Directions -->

<table>

<tr>

<th>Distance</th><th>Duration</th><th>Directions</th>

</tr>

<?php foreach ($item->steps as $step) : ?>

<?php $class = ($count++ & 01) ? 'color1' : 'color2'; ?>

<tr>

<td class="<?= $class ?>"><?= $step->distance->text ?></td>

<td class="<?= $class ?>"><?= $step->duration->text ?></td>

<td class="<?= $class ?>">

<?= $step->html_instructions ?></td>

</tr>

<?php endforeach; ?>

</table>

<?php endforeach; ?>

Here are the results of the request as seen in a browser:

238

 There's more…

Chapter 7

PHP Standards Recommendations (PSR-7) precisely defines request and response objects

to be used when making requests between PHP applications. This is covered extensively in

Appendix, Defining PSR-7 Classes.

 See also

For more information on Streams, see this PHP documentation page http://php.net/

manual/en/book.stream.php. An often asked question is "what is the difference between

HTTP PUT and POST?" for an excellent discussion on this topic please refer to http://
stackoverflow.com/questions/107390/whats-the-difference-between-a-

post-and-a-put-http-request. For more information on obtaining an API key from

Google, please refer to these web pages:

https://developers.google.com/maps/documentation/directions/get-api-

key

https://developers.google.com/maps/documentation/directions/

intro#Introduction

 Creating a simple REST server

There are several considerations when implementing a REST server. The answers to these

three questions will then let you define your REST service:

f How is the raw request captured?

f What Application Programming Interface (API) do you want to publish?

f How do you plan to map HTTP verbs (for example, GET, PUT, POST, and DELETE) to

API methods?

 How to do it…

1. We will implement our REST server by building onto the request and response classes

defined in the previous recipe, Creating a simple REST client. Review the classes

discussed in the previous recipe, including the following:

 Application\Web\AbstractHttp

 Application\Web\Request

 Application\Web\Received

239

http://php.net/

Accessing Web Services

2. We will also need to define a formal Application\Web\Response response class,

based on AbstractHttp. The primary difference between this class and the others

is that it accepts an instance of Application\Web\Request as an argument. The

primary work is accomplished in the construct() method. It's also important to

set the Content-Type header and status:

namespace Application\Web;

class Response extends AbstractHttp

{

public function construct(Request $request = NULL,

$status = NULL, $contentType = NULL)

{

if ($request) {

$this->uri = $request->getUri();

$this->data = $request->getData();

$this->method = $request->getMethod();

$this->cookies = $request->getCookies();

$this->setTransport();

}

$this->processHeaders($contentType);

if ($status) {

$this->setStatus($status);

}

}

protected function processHeaders($contentType)

{

if (!$contentType) {

$this->setHeaderByKey(self::HEADER_CONTENT_TYPE,

self::CONTENT_TYPE_JSON);

} else {

$this->setHeaderByKey(self::HEADER_CONTENT_TYPE,

$contentType);

}

}

public function setStatus($status)

{

$this->status = $status;

}

public function getStatus()

{

return $this->status;

}

}

240

Chapter 7

3. We are now in a position to define the Application\Web\Rest\Server class. You

may be surprised at how simple it is. The real work is done in the associated API class:

Note the use of the PHP 7 group use syntax:

use Application\Web\ { Request,Response,Received }

namespace Application\Web\Rest;

use Application\Web\ { Request, Response, Received };

class Server

{

protected $api;

public function construct(ApiInterface $api)

{

$this->api = $api;

}

4. Next, we define a listen() method that serves as a target for the request. The

heart of the server implementation is this line of code:

$jsonData = json_decode(file_get_contents('php://input'),true);

5. This captures raw input, which is assumed to be in JSON format:

public function listen()

{

$request = new Request();

$response = new Response($request);

$getPost = $_REQUEST ?? array();

$jsonData = json_decode(

file_get_contents('php://input'),true);

$jsonData = $jsonData ?? array();

$request->setData(array_merge($getPost,$jsonData));

We have also added a provision for authentication. Otherwise, anybody could

make requests and obtain potentially sensitive data. You will note that we do

not have the server class performing authentication; rather, we leave it to the

API class:

 if (!$this->api->authenticate($request)) {
$response->setStatus(Request::STATUS_401);

echo $this->api::ERROR;

exit;

}

241

Accessing Web Services

6. We then map API methods to the primary HTTP methods GET, PUT, POST,

and DELETE:

$id = $request->getData()[$this->api::ID_FIELD] ?? NULL;

switch (strtoupper($request->getMethod())) {

case Request::METHOD_POST :

$this->api->post($request, $response);

break;

case Request::METHOD_PUT :

$this->api->put($request, $response);

break;

case Request::METHOD_DELETE :

$this->api->delete($request, $response);

break;

case Request::METHOD_GET :

default :

// return all if no params

$this->api->get($request, $response);

}

7. Finally, we package the response and send it out, JSON-encoded:

$this->processResponse($response);

echo json_encode($response->getData());

}

8. The processResponse() method sets headers and makes sure the result

is packaged as an Application\Web\Response object:

protected function processResponse($response)

{

if ($response->getHeaders()) {

foreach ($response->getHeaders() as $key => $value) {

header($key . ': ' . $value, TRUE,

$response->getStatus());

}

}

header(Request::HEADER_CONTENT_TYPE

. ': ' . Request::CONTENT_TYPE_JSON, TRUE);

if ($response->getCookies()) {

foreach ($response->getCookies() as $key => $value) {

setcookie($key, $value);

}

}

}

242

Chapter 7

9. As mentioned earlier, the real work is done by the API class. We start by defining

an abstract class that ensures the primary methods get(), put(), and so on are

represented, and that all such methods accept request and response objects as

arguments. You might notice that we have added a generateToken() method

that uses the PHP 7 random_bytes() function to generate a truly random

series of 16 bytes:

namespace Application\Web\Rest;

use Application\Web\ { Request, Response };

abstract class AbstractApi implements ApiInterface

{

const TOKEN_BYTE_SIZE = 16;

protected $registeredKeys;

abstract public function get(Request $request,

Response $response);

abstract public function put(Request $request,

Response $response);

abstract public function post(Request $request,

Response $response);

abstract public function delete(Request $request,

Response $response);

abstract public function authenticate(Request $request);

public function construct($registeredKeys, $tokenField)

{

$this->registeredKeys = $registeredKeys;

}

public static function generateToken()

{

return bin2hex(random_bytes(self::TOKEN_BYTE_SIZE));

}

}

10. We also define a corresponding interface that can be used for architectural

and design purposes, as well as code development control:

namespace Application\Web\Rest;

use Application\Web\ { Request, Response };

interface ApiInterface

{

public function get(Request $request, Response $response);

public function put(Request $request, Response $response);

public function post(Request $request, Response $response);

public function delete(Request $request, Response $response);

public function authenticate(Request $request);

}

243

Accessing Web Services

11. Here, we present a sample API based on AbstractApi. This class leverages

database classes defined in Chapter 5, Interacting with a Database:

namespace Application\Web\Rest;

use Application\Web\ { Request, Response, Received };

use Application\Entity\Customer;

use Application\Database\ { Connection, CustomerService };

class CustomerApi extends AbstractApi

{

const ERROR = 'ERROR';

const ERROR_NOT_FOUND = 'ERROR: Not Found';

const SUCCESS_UPDATE = 'SUCCESS: update succeeded';

const SUCCESS_DELETE = 'SUCCESS: delete succeeded';

const ID_FIELD = 'id'; // field name of primary key

const TOKEN_FIELD = 'token'; // field used for authentication

const LIMIT_FIELD = 'limit';

const OFFSET_FIELD = 'offset';

const DEFAULT_LIMIT = 20;

const DEFAULT_OFFSET = 0;

protected $service;

public function construct($registeredKeys,

$dbparams, $tokenField = NULL)

{

parent:: construct($registeredKeys, $tokenField);

$this->service = new CustomerService(

new Connection($dbparams));

}

12. All methods receive request and response as arguments. You will notice the use

of getDataByKey() to retrieve data items. The actual database interaction is

performed by the service class. You might also notice that in all cases, we set an

HTTP status code to inform the client of success or failure. In the case of get(), we

look for an ID parameter. If received, we deliver information on a single customer

only. Otherwise, we deliver a list of all customers using limit and offset:

public function get(Request $request, Response $response)

{

$result = array();

$id = $request->getDataByKey(self::ID_FIELD) ?? 0;

if ($id > 0) {

$result = $this->service->

fetchById($id)->entityToArray();

} else {

244

Chapter 7

$limit = $request->getDataByKey(self::LIMIT_FIELD)

?? self::DEFAULT_LIMIT;

$offset = $request->getDataByKey(self::OFFSET_FIELD)

?? self::DEFAULT_OFFSET;

$result = [];

$fetch = $this->service->fetchAll($limit, $offset);

foreach ($fetch as $row) {

$result[] = $row;

}

}

if ($result) {

$response->setData($result);

$response->setStatus(Request::STATUS_200);

} else {

$response->setData([self::ERROR_NOT_FOUND]);

$response->setStatus(Request::STATUS_500);

}

}

13. The put() method is used to insert customer data:

public function put(Request $request, Response $response)

{

$cust = Customer::arrayToEntity($request->getData(),

new Customer());

if ($newCust = $this->service->save($cust)) {

$response->setData(['success' => self::SUCCESS_UPDATE,

'id' => $newCust->getId()]);

$response->setStatus(Request::STATUS_200);

} else {

$response->setData([self::ERROR]);

$response->setStatus(Request::STATUS_500);

}

}

14. The post() method is used to update existing customer entries:

public function post(Request $request, Response $response)

{

$id = $request->getDataByKey(self::ID_FIELD) ?? 0;

$reqData = $request->getData();

$custData = $this->service->

fetchById($id)->entityToArray();

$updateData = array_merge($custData, $reqData);

$updateCust = Customer::arrayToEntity($updateData,

245

Accessing Web Services

new Customer());

if ($this->service->save($updateCust)) {

$response->setData(['success' => self::SUCCESS_UPDATE,

'id' => $updateCust->getId()]);

$response->setStatus(Request::STATUS_200);

} else {

$response->setData([self::ERROR]);

$response->setStatus(Request::STATUS_500);

}

}

15. As the name implies, delete() removes a customer entry:

public function delete(Request $request, Response $response)

{

$id = $request->getDataByKey(self::ID_FIELD) ?? 0;

$cust = $this->service->fetchById($id);

if ($cust && $this->service->remove($cust)) {

$response->setData(['success' => self::SUCCESS_DELETE,

'id' => $id]);

$response->setStatus(Request::STATUS_200);

} else {

$response->setData([self::ERROR_NOT_FOUND]);

$response->setStatus(Request::STATUS_500);

}

}

16. Finally, we define authenticate() to provide, in this example, a low-level

mechanism to protect API usage:

public function authenticate(Request $request)

{

$authToken = $request->getDataByKey(self::TOKEN_FIELD)

?? FALSE;

if (in_array($authToken, $this->registeredKeys, TRUE)) {

return TRUE;

} else {

return FALSE;

}

}

}

246

Chapter 7

 How it works…

Define the following classes, which were discussed in the previous recipe:

f Application\Web\AbstractHttp

f Application\Web\Request

f Application\Web\Received

You can then define the following classes, described in this recipe, summarized in this table:

Class Application\Web* Discussed in these steps

Response 2

Rest\Server 3 – 8

Rest\AbstractApi 9

Rest\ApiInterface 10

Rest\CustomerApi 11 – 16

You are now free to develop your own API class. If you choose to follow the illustration

Application\Web\Rest\CustomerApi, however, you will need to also be sure to

implement these classes, covered in Chapter 5, Interacting with a Database:

f Application\Entity\Customer

f Application\Database\Connection

f Application\Database\CustomerService

You can now define a chap_07_simple_rest_server.php script that invokes

the REST server:

<?php

$dbParams = include DIR . '/../../config/db.config.php';

require DIR . '/../Application/Autoload/Loader.php';

Application\Autoload\Loader::init(DIR

use Application\Web\Rest\Server;

use Application\Web\Rest\CustomerApi;

. '/..');

$apiKey = include DIR . '/api_key.php';

$server = new Server(new CustomerApi([$apiKey], $dbParams, 'id'));

$server->listen();

You can then use the built-in PHP 7 development server to listen on port 8080

for REST requests:

php -S localhost:8080 chap_07_simple_rest_server.php

247

Accessing Web Services

To test your API, use the Application\Web\Rest\AbstractApi::generateToken()

method to generate an authentication token that you can place in an api_key.php file,

something like this:

<?php return '79e9b5211bbf2458a4085707ea378129';

You can then use a generic API client (such as the one described in the previous recipe),

or a browser plugin such as RESTClient by Chao Zhou (see http://restclient.net/

for more information) to generate sample requests. Make sure you include the token for your

request, otherwise the API as defined will reject the request.

Here is an example of a POST request for ID 1, which sets the balance field to a

value of 888888:

 There's more…

There are a number of libraries that help you implement a REST server. One of my favorites

is an example implementing a REST server in a single file: https://www.leaseweb.com/

labs/2015/10/creating-a-simple-rest-api-in-php/

Various frameworks, such as CodeIgniter and Zend Framework, also have REST

server implementations.

248

http://restclient.net/
http://www.leaseweb.com/

Chapter 7

 Creating a simple SOAP client

Using SOAP, in contrast to the process of implementing a REST client or server, is quite easy

as there is a PHP SOAP extension that provides both capabilities.

A frequently asked question is "what is the difference between SOAP and

REST?" SOAP uses XML internally as its data format. SOAP uses HTTP but

only for transport, and otherwise has no awareness of other HTTP methods.

REST directly operates HTTP, and can use anything for data formats, but JSON

is preferred. Another key difference is that SOAP can operate in conjunction

with a WSDL, which makes the service self-describing, thus more publicly

available. Thus, SOAP services are often offered by public institutions such as

national health organizations.

 How to do it…

For this example, we will make a SOAP request for an existing SOAP service offered by the

United States National Weather service:

1. The first consideration is to identify the WSDL document. The WSDL is an XML

document that describes the service:

$wsdl = 'http://graphical.weather.gov/xml/SOAP_server/'

. 'ndfdXMLserver.php?wsdl';

2. Next, we create a soap client instance using the WSDL:

$soap = new SoapClient($wsdl, array('trace' => TRUE));

3. We are then free to initialize some variables in anticipation of a weather forecast

request:

$units = 'm';

$params = '';

$numDays = 7;

$weather = '';

$format = '24 hourly';

$startTime = new DateTime();

4. We can then make a LatLonListCityNames() SOAP request, identified as an

operation in the WSDL, for a list of cities supported by the service. The request is

returned in XML format, which suggests creating a SimpleXLMElement instance:

$xml = new SimpleXMLElement($soap->LatLonListCityNames(1));

249

http://graphical.weather.gov/xml/SOAP_server/%27

Accessing Web Services

5. Unfortunately, the list of cities and their corresponding latitude and longitude are in

separate XML nodes. Accordingly, we use the array_combine() PHP function to

create an associative array where latitude/longitude is the key, and the city name

is the value. We can then later use this to present an HTML SELECT drop-down list,

using asort() to alphabetize the list:

$cityNames = explode('|', $xml->cityNameList);

$latLonCity = explode(' ', $xml->latLonList);

$cityLatLon = array_combine($latLonCity, $cityNames);

asort($cityLatLon);

6. We can then get city data from a web request as follows:

$currentLatLon = (isset($_GET['city'])) ? strip_tags(

urldecode($_GET['city'])) : '';

7. The SOAP call we wish to make is NDFDgenByDay(). We can determine the nature

of the parameters supplied to the SOAP server by examining the WSDL:

<message name="NDFDgenByDayRequest">

<part name="latitude" type="xsd:decimal"/>

<part name="longitude" type="xsd:decimal"/>

<part name="startDate" type="xsd:date"/>

<part name="numDays" type="xsd:integer"/>

<part name="Unit" type="xsd:string"/>

<part name="format" type="xsd:string"/>

</message>

8. If the value of $currentLatLon is set, we can process the request. We wrap the

request in a try {} catch {} block in case any exceptions are thrown:

if ($currentLatLon) {

list($lat, $lon) = explode(',', $currentLatLon);

try {

$weather = $soap->NDFDgenByDay($lat,$lon,

$startTime->format('Y-m-d'),$numDays,$unit,$format);

} catch (Exception $e) {

$weather .= PHP_EOL;

$weather .= 'Latitude: ' . $lat . ' | Longitude: ' . $lon;

$weather .= 'ERROR' . PHP_EOL;

$weather .= $e->getMessage() . PHP_EOL;

$weather .= $soap-> getLastResponse() . PHP_EOL;

}

}

?>

250

 How it works…

Chapter 7

Copy all the preceding code into a chap_07_simple_soap_client_weather_service.

php file. You can then add view logic that displays a form with the list of cities, as well as the

results:

<form method="get" name="forecast">

 City List:

<select name="city">

<?php foreach ($cityLatLon as $latLon => $city) : ?>

<?php $select = ($currentLatLon == $latLon) ? ' selected' : ''; ?>

<option value="<?= urlencode($latLon) ?>" <?= $select ?>>

<?= $city ?></option>

<?php endforeach; ?>

</select>

<input type="submit" value="OK"></td>

</form>

<pre>

<?php var_dump($weather); ?>

</pre>

Here is the result, in a browser, of requesting the weather forecast for Cleveland, Ohio:

251

Accessing Web Services

 See also

For a good discussion on the difference between SOAP and REST, refer to the article present

at http://stackoverflow.com/questions/209905/representational-state-

transfer-rest-and-simple-object-access-protocol-soap?lq=1.

 Creating a simple SOAP server

As with the SOAP client, we can use the PHP SOAP extension to implement a SOAP server.

The most difficult part of the implementation will be generating the WSDL from the API class.

We do not cover that process here as there are a number of good WSDL generators available.

 How to do it…

1. First, you need an API that will be handled by the SOAP server. For this example, we

define an Application\Web\Soap\ProspectsApi class that allows us to create,

read, update, and delete the prospects table:

namespace Application\Web\Soap;

use PDO;

class ProspectsApi

{

protected $registerKeys;

protected $pdo;

public function construct($pdo, $registeredKeys)

{

$this->pdo = $pdo;

$this->registeredKeys = $registeredKeys;

}

}

2. We then define methods that correspond to create, read, update, and delete.

In this example, the methods are named put(), get(), post(), and delete().

These, in turn, call methods that generate SQL requests that are executed from a

PDO instance. An example for get() is as follows:

public function get(array $request, array $response)

{

if (!$this->authenticate($request)) return FALSE;

$result = array();

$id = $request[self::ID_FIELD] ?? 0;

$email = $request[self::EMAIL_FIELD] ?? 0;

if ($id > 0) {

$result = $this->fetchById($id);

252

http://stackoverflow.com/questions/209905/representational-state-

Chapter 7

$response[self::ID_FIELD] = $id;

} elseif ($email) {

$result = $this->fetchByEmail($email);

$response[self::ID_FIELD] = $result[self::ID_FIELD] ?? 0;

} else {

$limit = $request[self::LIMIT_FIELD]

?? self::DEFAULT_LIMIT;

$offset = $request[self::OFFSET_FIELD]

?? self::DEFAULT_OFFSET;

$result = [];

foreach ($this->fetchAll($limit, $offset) as $row) {

$result[] = $row;

}

}

$response = $this->processResponse(

$result, $response, self::SUCCESS, self::ERROR);

return $response;

}

protected function processResponse($result, $response,

$success_code, $error_code)

{

if ($result) {

$response['data'] = $result;

$response['code'] = $success_code;

$response['status'] = self::STATUS_200;

} else {

$response['data'] = FALSE;

$response['code'] = self::ERROR_NOT_FOUND;

$response['status'] = self::STATUS_500;

}

return $response;

}

3. You can then generate a WSDL from your API. There are quite a few PHP-based WSDL

generators available (see the There's more… section). Most require that you add

phpDocumentor tags before the methods that will be published. In our example, the

two arguments are both arrays. Here is the full WSDL for the API discussed earlier:

<?xml version="1.0" encoding="UTF-8"?>

<wsdl:definitions xmlns:tns="php7cookbook"

targetNamespace="php7cookbook"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:s="http://www.w3.org/2001/XMLSchema"

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/">

253

http://schemas.xmlsoap.org/wsdl/soap/
http://www.w3.org/2001/XMLSchema
http://schemas.xmlsoap.org/wsdl/
http://schemas.xmlsoap.org/soap/encoding/

Accessing Web Services

<wsdl:message name="getSoapIn">

<wsdl:part name="request" type="tns:array" />

<wsdl:part name="response" type="tns:array" />

</wsdl:message>

<wsdl:message name="getSoapOut">

<wsdl:part name="return" type="tns:array" />

</wsdl:message>

<!—some nodes removed to conserve space -->

<wsdl:portType name="CustomerApiSoap">

<!—some nodes removed to conserve space -->

<wsdl:binding name="CustomerApiSoap" type="tns:CustomerApiSoap">

<soap:binding transport="http://schemas.xmlsoap.org/soap/http"

style="rpc" />

<wsdl:operation name="get">

<soap:operation soapAction="php7cookbook#get" />

<wsdl:input>

<soap:body use="encoded" encodingStyle=

"http://schemas.xmlsoap.org/soap/encoding/"

namespace="php7cookbook" parts="request response" />

</wsdl:input>

<wsdl:output>

<soap:body use="encoded" encodingStyle=

"http://schemas.xmlsoap.org/soap/encoding/"

namespace="php7cookbook" parts="return" />

</wsdl:output>

</wsdl:operation>

<!—some nodes removed to conserve space -->

</wsdl:binding>

<wsdl:service name="CustomerApi">

<wsdl:port name="CustomerApiSoap"

binding="tns:CustomerApiSoap">

<soap:address location="http://localhost:8080/" />

</wsdl:port>

</wsdl:service>

</wsdl:definitions>

4. Next, create a chap_07_simple_soap_server.php file, which will execute the

SOAP server. Start by defining the location of the WSDL and any other necessary files

(in this case, one for database configuration). If the wsdl parameter is set, deliver

the WSDL rather than attempting to process the request. In this example, we use

a simple API key to authenticate requests. We then create a SOAP server instance,

assign an instance of our API class, and run handle():

<?php

define('DB_CONFIG_FILE', '/../config/db.config.php');

254

http://schemas.xmlsoap.org/soap/http
http://schemas.xmlsoap.org/soap/encoding/
http://schemas.xmlsoap.org/soap/encoding/

define('WSDL_FILENAME', DIR

. '/chap_07_wsdl.xml');

Chapter 7

if (isset($_GET['wsdl'])) {

readfile(WSDL_FILENAME);

exit;

}

$apiKey = include DIR

. '/api_key.php';

require DIR

require DIR

. '/../Application/Web/Soap/ProspectsApi.php';

. '/../Application/Database/Connection.php';

use Application\Database\Connection;

use Application\Web\Soap\ProspectsApi;

$connection = new Application\Database\Connection(

include DIR . DB_CONFIG_FILE);

$api = new Application\Web\Soap\ProspectsApi(

$connection->pdo, [$apiKey]);

$server = new SoapServer(WSDL_FILENAME);

$server->setObject($api);

echo $server->handle();

Depending on the settings for your php.ini file, you may need to disable the

WSDL cache, as follows:

ini_set('soap.wsdl_cache_enabled', 0);

If you have problems with incoming POST data, you can adjust this parameter

as follows:

ini_set('always_populate_raw_post_data', -1);

 How it works…

You can easily test this recipe by first creating your target API class, and then generating

a WSDL. You can then use the built-in PHP webserver to deliver the SOAP service with this

command:

php -S localhost:8080 chap_07_simple_soap_server.php

You can then use the SOAP client discussed in the previous recipe to make a call to test the

SOAP service:

<?php

define('WSDL_URL', 'http://localhost:8080?wsdl=1');

$clientKey = include DIR

try {

. '/api_key.php';

$client = new SoapClient(WSDL_URL);

$response = [];

255

Accessing Web Services

$email = some_email_generated_by_test;

$email = 'test5393@unlikelysource.com';

echo "\nGet Prospect Info for Email: " . $email . "\n";

$request = ['token' => $clientKey, 'email' => $email];

$result = $client->get($request,$response);

var_dump($result);

} catch (SoapFault $e) {

echo 'ERROR' . PHP_EOL;

echo $e->getMessage() . PHP_EOL;

} catch (Throwable $e) {

echo 'ERROR' . PHP_EOL;

echo $e->getMessage() . PHP_EOL;

} finally {

echo $client-> getLastResponse() . PHP_EOL;

}

Here is the output for email address test5393@unlikelysource.com:

256

mailto:test5393@unlikelysource.com

 See also

Chapter 7

A simple Google search for WSDL generators for PHP came back with easily a dozen results.

The one used to generate the WSDL for the ProspectsApi class was based on https://

code.google.com/archive/p/php-wsdl-creator/. For more information on

phpDocumentor, refer to the page at https://www.phpdoc.org/.

257

http://www.phpdoc.org/

8
Working with

Date/Time and

International Aspects

In this chapter, we will cover the following topics:

f Using emoticons or emoji in a view script

f Converting complex characters

f Getting the locale from browser data

f Formatting numbers by locale

f Handling currency by locale

f Formatting date/time by locale

f Creating an HTML international calendar generator

f Building a recurring events generator

f Handling translation without gettext

 Introduction

We will start this chapter with two recipes that take advantage of a new Unicode escape

syntax introduced with PHP 7. After that, we will cover how to determine a web visitor's locale

from browser data. The next few recipes will cover the creation of a locale class, which will

allow you to represent numbers, currency, dates, and time in a format specific to a locale.

Finally, we will cover recipes that demonstrate how to generate an internationalized calendar,

handle recurring events, and perform translation without having to use gettext.

259

Working with Date/Time and International Aspects

 Using emoticons or emoji in a view script

The word emoticons is a composite of emotion and icon. Emoji, originating from Japan, is

another, larger, widely used set of icons. These icons are the little smiley faces, tiny ninjas,

and rolling-on-the-floor-laughing icons that are so popular on any website that has a social

networking aspect. Prior to PHP 7, however, producing these little beasties was an exercise in

frustration.

 How to do it...

1. First and foremost, you need to know the Unicode for the icon you wish to present.

A quick search on the Internet will direct you to any one of several excellent charts.

Here are the codes for the three hear-no-evil, see-no-evil, and speak-no-evil monkey

icons:

U+1F648, U+1F649, and U+1F64A

2. Any Unicode output to the browser must be properly identified. This is most often

done by way of a meta tag. You should set the character set to UTF-8. Here is an

example:

<head>

<title>PHP 7 Cookbook</title>

<meta http-equiv="content-type"

content="text/html;charset=utf-8" />

</head>

3. The traditional approach was to simply use HTML to display the icons. Thus, you could

do something like this:

<table>

<tr>

<td>🙈</td>

<td>🙉</td>

<td>🙊</td>

</tr>

</table>

260

Chapter 8

4. As of PHP 7, you can now construct full Unicode characters using this syntax:

"\u{xxx}". Here is an example with the same three icons as in the preceding bullet:

<table>

<tr>

<td><?php echo "\u{1F648}"; ?></td>

<td><?php echo "\u{1F649}"; ?></td>

<td><?php echo "\u{1F64A}"; ?></td>

</tr>

</table>

Your operating system and browser must both support Unicode and must also

 have the right set of fonts. In Ubuntu Linux, for example, you would need to

install the ttf-ancient-fonts package to see emoji in your browser.

 How it works...

In PHP 7, a new syntax was introduced that lets you render any Unicode character. Unlike

other languages, the new PHP syntax allows for a variable number of hex digits. The basic

format is this:

\u{xxxx}

The entire construct must be double quoted (or use heredoc). xxxx could be any combination

of hex digits, 2, 4, 6, and above.

Create a file called chap_08_emoji_using_html.php. Be sure to include the meta tag

that signals the browser that UTF-8 character encoding is being used:

<!DOCTYPE html>

<html>

<head>

<title>PHP 7 Cookbook</title>

<meta http-equiv="content-type"

content="text/html;charset=utf-8" />

</head>

Next, set up a basic HTML table, and display a row of emoticons/emoji:

<body>

<table>

<tr>

<td>🙈</td>

<td>🙉</td>

<td>🙊</td>

261

Working with Date/Time and International Aspects

</tr>

</table>

</body>

</html>

Now add a row using PHP to emit emoticons/emoji:

<tr>

<td><?php echo "\u{1F648}"; ?></td>

<td><?php echo "\u{1F649}"; ?></td>

<td><?php echo "\u{1F64A}"; ?></td>

</tr>

Here is the output seen from Firefox:

 See also

f For a list of emoji codes, see http://unicode.org/emoji/charts/full-

emoji-list.html

 Converting complex characters

The ability to access the entire Unicode character set opens up many new possibilities for

rendering complex characters, especially characters in alphabets other than Latin-1.

262

http://unicode.org/emoji/charts/full-

 How to do it...

Chapter 8

1. Some languages are read right-to-left instead of left-to-right. Examples include

Hebrew and Arabic. In this example, we show you how to present reverse text using

the U+202E Unicode character for right-to-left override. The following line of code

prints txet desreveR:

echo "\u{202E}Reversed text";

echo "\u{202D}"; // returns output to left-to-right

Don't forget to invoke the left-to-right override character, U+202D,

when finished!

2. Another consideration is the use of composed characters. One such example is ñ

(the letter n with a tilde ~ floating above). This is used in words such as mañana

(the Spanish word for morning or tomorrow, depending on the context). There is a

composed character available, represented by Unicode code U+00F1. Here is an

example of its use, which echoes mañana:

echo "ma\u{00F1}ana"; // shows mañana

3. This could potentially impact search possibilities, however. Imagine that your

customers do not have a keyboard with this composed character. If they start to type

man in an attempt to search for mañana, they will be unsuccessful.

4. Having access to the full Unicode set offers other possibilities. Instead of using the

composed character, you can use a combination of the original letter n along with

the Unicode combining code, which places a floating tilde on top of the letter. In

this echo command, the output is the same as previously. Only the way the word is

formed differs:

echo "man\u{0303}ana"; // also shows mañana

5. A similar application could be made for accents. Consider the French word élève

(student). You could render it using composed characters, or by using combining

codes to float the accents above the letter. Consider the two following examples.

Both examples produce the same output, but are rendered differently:

echo "\u{00E9}l\u{00E8}ve";

echo "e\u{0301}le\u{0300}ve";

263

Working with Date/Time and International Aspects

 How it works...

Create a file called chap_08_control_and_combining_unicode.php. Be sure to include

the meta tag that signals the browser that UTF-8 character encoding is being used:

<!DOCTYPE html>

<html>

<head>

<title>PHP 7 Cookbook</title>

<meta http-equiv="content-type"

content="text/html;charset=utf-8" />

</head>

Next, set up basic PHP and HTML to display the examples discussed previously:

<body>

<pre>

<?php

echo "\u{202E}Reversed text"; // reversed

//echo "\u{202D}"; // stops reverse

echo "mañana"; // using pre-composed characters

echo "ma\u{00F1}ana"; // pre-composed character

echo "man\u{0303}ana"; // "n" with combining ~ character

(U+0303)

echo "élève";

echo "\u{00E9}l\u{00E8}ve"; // pre-composed characters

echo "e\u{0301}le\u{0300}ve"; // e + combining

characters

?>

</pre>

</body>

</html>

Here is the output from a browser:

264

Chapter 8

 Getting the locale from browser data

In order to improve the user experience on a website, it's important to display information

in a format that is acceptable in the user's locale. Locale is a generic term used to indicate

an area of the world. An effort in the I.T. community has been made to codify locales using a

two-part designation consisting of codes for both language and country. But when a person

visits your website, how do you know their locale? Probably the most useful technique involves

examining the HTTP language header.

 How to do it...

1. In order to encapsulate locale functionality, we will assume a class, Application\

I18n\Locale. We will have this class extend an existing class, Locale, which is

part of the PHP Intl extension.

I18n is a common abbreviation for Internationalization. (Count the

number of letters!)

namespace Application\I18n;

use Locale as PhpLocale;

class Locale extends PhpLocale

{

const FALLBACK_LOCALE = 'en';

// some code

}

2. To get an idea of what an incoming request looks like, use phpinfo(INFO_

VARIABLES). Be sure to disable this function immediately after testing as it gives

away too much information to potential attackers:

<?php phpinfo(INFO_VARIABLES); ?>

265

Working with Date/Time and International Aspects

3. Locale information is stored in $_SERVER['HTTP_ACCEPT_LANGUAGE']. The value

will take this general form: ll-CC,rl;q=0.n, ll-CC,rl;q=0.n, as defined in

this table:

Abbreviation Meaning

ll Two-character lowercase code representing the language.

- Separates language from country in the locale code ll-CC.

CC Two-character uppercase code representing the country.

, Separates locale code from fallback root locale code (usually the

same as the language code).

rl Two-character lowercase code representing the suggested root

locale.

; Separates locale information from quality. If quality is missing,

default is q=1 (100%) probability; this is preferred.

q Quality.

0.n Some value between 0.00 and 1.0. Multiply this value by 100 to

get the percentage of probability that this is the actual language

preferred by this visitor.

4. There can easily be more than one locale listed. For example, the website visitor

could have multiple languages installed on their computer. It so happens that the

PHP Locale class has a method, acceptFromHttp(), which reads the Accept-

language header string and gives us the desired setting:

protected $localeCode;

public function setLocaleCode($acceptLangHeader)

{

$this->localeCode =

$this->acceptFromHttp($acceptLangHeader);

}

5. We can then define the appropriate getters. The get AcceptLanguage() method

returns the value from $_SERVER['HTTP_ACCEPT_LANGUAGE']:

public function getAcceptLanguage()

{

return $_SERVER['HTTP_ACCEPT_LANGUAGE'] ??

self::FALLBACK_LOCALE;

}

public function getLocaleCode()

{

return $this->localeCode;

}

266

Chapter 8

6. Next we define a constructor that allows us to "manually" set the locale. Otherwise,

the locale information is drawn from the browser:

public function construct($localeString = NULL)

{

if ($localeString) {

$this->setLocaleCode($localeString);

} else {

$this->setLocaleCode($this->getAcceptLanguage());

}

}

7. Now comes the big decision: what to do with this information! This is covered in the

next few recipes.

Even though a visitor appears to accept one or more languages, that

visitor does not necessarily want contents in the language/locale

 indicated by their browser. Accordingly, although you can certainly set the

locale given this information, you should also provide them with a static
list of alternative languages.

 How it works...

In this illustration, let's take three examples:

f information derived from the browser

f a preset locale fr-FR

f a string taken from RFC 2616: da, en-gb;q=0.8, en;q=0.7

Place the code from steps 1 to 6 into a file, Locale.php, which is in the Application\

I18n folder.

Next, create a file, chap_08_getting_locale_from_browser.php, which sets up

autoloading and uses the new class:

<?php

require DIR . '/../Application/Autoload/Loader.php';

Application\Autoload\Loader::init(DIR

use Application\I18n\Locale;

. '/..');

Now you can define an array with the three test locale strings:

$locale = [NULL, 'fr-FR', 'da, en-gb;q=0.8, en;q=0.7'];

267

Working with Date/Time and International Aspects

Finally, loop through the three locale strings, creating instances of the new class. Echo the

value returned from getLocaleCode() to see what choice was made:

echo '<table>';

foreach ($locale as $code) {

$locale = new Locale($code);

echo '<tr>

<td>' . htmlspecialchars($code) . '</td>

<td>' . $locale->getLocaleCode() . '</td>

</tr>';

}

echo '</table>';

Here is the result (with a little bit of styling):

 See also

f For information on the PHP Locale class, see http://php.net/manual/en/

class.locale.php

f For more information on the Accept-Language header, see section 14.4 of RFC

2616: https://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html

 Formatting numbers by locale

Numeric representations can vary by locale. As a simple example, in the UK one would see

the number three million, eighty thousand, five hundred and twelve, and ninety-two one

hundredths as follows:

3,080,512.92.

In France, however, the same number might appear like so:

3 080 512,92

268

http://php.net/manual/en/
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html

 How to do it...

Chapter 8

Before you can represent a number in a locale-specific manner, you need to determine the

locale. This can be accomplished using the Application\I18n\Locale class discussed in

the previous recipe. The locale can be set manually or from header information.

1. Next, we will make use of the format() method of the NumberFormatter class,

to both output and parse numbers in a locale-specific format. First we add a property

that will contain an instance of the NumberFormatter class:

use NumberFormatter;

protected $numberFormatter;

Our initial thought would be to consider using the PHP function

setlocale() to produce numbers formatted according to locale. The

problem with this legacy approach, however, is that everything will be

considered based on this locale. This could introduce problems dealing

 with data that is stored according to database specifications. Another
issue with setlocale() is that it is based on outdated standards,
including RFC 1766 and ISO 639. Finally, setlocale() is highly

dependent on operating system locale support, which will make our code

non-portable.

2. Normally, the next step would be to set $numberFormatter in the constructor.

The problem with this approach, in the case of our Application\I18n\

Locale class, is that we would end up with a top-heavy class, as we will also

need to perform currency and date formatting as well. Accordingly, we add a

getter that first checks to see whether an instance of NumberFormatter

has already been created. If not, an instance is created and returned. The first

argument in the new NumberFormatter is the locale code. The second argument,

NumberFormatter::DECIMAL, represents what type of formatting we need:

public function getNumberFormatter()

{

if (!$this->numberFormatter) {

$this->numberFormatter =

new NumberFormatter($this->getLocaleCode(),

NumberFormatter::DECIMAL);

}

return $this->numberFormatter;

}

3. We then add a method that, given any number, will produce a string that represents

that number formatted according to the locale:

public function formatNumber($number)

{

return $this->getNumberFormatter()->format($number);

}

269

Working with Date/Time and International Aspects

4. Next we add a method that can be used to parse numbers according to the locale,

producing a native PHP numeric value. Please note that the result might not return

FALSE on parse failure depending on the server's ICU version:

public function parseNumber($string)

{

$result = $this->getNumberFormatter()->parse($string);

return ($result) ? $result :

self::ERROR_UNABLE_TO_PARSE;

}

 How it works...

Make the additions to the Application\I18n\Locale class as discussed in the preceding

bullet points. You can then create a chap_08_formatting_numbers.php file, which sets

up autoloading and uses this class:

<?php

require DIR . '/../Application/Autoload/Loader.php';

Application\Autoload\Loader::init(DIR

use Application\I18n\Locale;

. '/..');

For this illustration, create two Locale instances, one for the UK, the other for France. You

can also designate a large number to be used for testing:

$localeFr = new Locale('fr_FR');

$localeUk = new Locale('en_GB');

$number = 1234567.89;

?>

Finally, you can wrap the formatNumber() and parseNumber() methods in the

appropriate HTML display logic and view the results:

<!DOCTYPE html>

<html>

<head>

<title>PHP 7 Cookbook</title>

<meta http-equiv="content-type"

content="text/html;charset=utf-8" />

<link rel="stylesheet" type="text/css"

href="php7cookbook_html_table.css">

</head>

<body>

<table>

<tr>

270

Chapter 8

<th>Number</th>

<td>1234567.89</td>

</tr>

<tr>

<th>French Format</th>

<td><?= $localeFr->formatNumber($number); ?></td>

</tr>

<tr>

<th>UK Format</th>

<td><?= $localeUk->formatNumber($number); ?></td>

</tr>

<tr>

<th>UK Parse French Number:

<?= $localeFr->formatNumber($number) ?></th>

<td><?= $localeUk->

parseNumber($localeFr->formatNumber($number)); ?></td>

</tr>

<tr>

<th>UK Parse UK Number:

<?= $localeUk->formatNumber($number) ?></th>

<td><?= $localeUk->

parseNumber($localeUk->formatNumber($number)); ?></td>

</tr>

<tr>

<th>FR Parse FR Number:

<?= $localeFr->formatNumber($number) ?></th>

<td><?= $localeFr->

parseNumber($localeFr->formatNumber($number)); ?></td>

</tr>

<tr>

<th>FR Parse UK Number:

<?= $localeUk->formatNumber($number) ?></th>

<td><?= $localeFr->

parseNumber($localeUk->formatNumber($number)); ?></td>

</tr>

</table>

</body>

</html>

271

Working with Date/Time and International Aspects

Here is the result as seen from a browser:

Note that if the locale is set to fr_FR, a UK formatted number, when parsed,

does not return the correct value. Likewise, when the locale is set to en_GB,

 a French formatted number does not return the correct value upon parsing.
Accordingly, you might want to consider adding a validation check before
attempting to parse the number.

 See also

f For more information on the use and abuse of setlocale() please refer to this

page: http://php.net/manual/en/function.setlocale.php.

f For a brief note on why number formatting will produce an error on some servers,

but not others, check the ICU (International Components for Unicode) version. See

the comments on this page: http://php.net/manual/en/numberformatter.

parse.php. For more info on ICU formatting, see http://userguide.icu-

project.org/formatparse.

 Handling currency by locale

The technique for handling currency is similar to that for numbers. We will even use the same

NumberFormatter class! There is one major difference, however, and it is a show stopper: in

order to properly format currency, you will need to have on hand the currency code.

272

http://php.net/manual/en/function.setlocale.php
http://php.net/manual/en/numberformatter
http://userguide.icu-/

 How to do it...

Chapter 8

1. The first order of business is to have the currency codes available in some format.

One possibility is to simply add the currency code as an Application\I18n\

Locale class constructor argument:

const FALLBACK_CURRENCY = 'GBP';

protected $currencyCode;

public function construct($localeString = NULL,

$currencyCode = NULL)

{

// add this to the existing code:

$this->currencyCode = $currencyCode ??

self::FALLBACK_CURRENCY;

}

This approach, although obviously solid and workable, tends to fall into the

category called halfway measures or the easy way out! This approach would

also tend to eliminate full automation as the currency code is not available

from the HTTP header. As you have probably gathered from other recipes

in this book, we do not shy away from a more complex solution so, as the

saying goes, strap on your seat belts!

2. We will first need to establish some sort of lookup mechanism, where, given a

country code, we can obtain its predominant currency code. For this illustration, we

will use the Adapter software design pattern. According to this pattern, we should be

able to create different classes, which could potentially operate in entirely different

ways, but which produce the same result. Accordingly, we need to define the desired

result. For this purpose, we introduce a class, Application\I18n\IsoCodes. As

you can see, this class has all the pertinent properties, along with a sort-of universal

constructor:

namespace Application\I18n;

class IsoCodes

{

public $name;

public $iso2;

public $iso3;

public $iso_numeric;

public $iso_3166;

public $currency_name;

public $currency_code;

public $currency_number;

public function construct(array $data)

{

273

Working with Date/Time and International Aspects

$vars = get_object_vars($this);

foreach ($vars as $key => $value) {

$this->$key = $data[$key] ?? NULL;

}

}

}

3. Next we define an interface that has the method we require to perform the country-

code-to-currency-code lookup. In this case, we introduce Application\I18n\

IsoCodesInterface:

namespace Application\I18n;

interface IsoCodesInterface

{

public function getCurrencyCodeFromIso2CountryCode($iso2)

: IsoCodes;

}

4. Now we are ready to build a lookup adapter class, which we will call Application\

I18n\IsoCodesDb. It implements the abovementioned interface, and accepts

an Application\Database\Connection instance (see Chapter 1, Building

a Foundation), which is used to perform the lookup. The constructor sets up the

required information, including the connection, the lookup table name, and the

column that represents the ISO2 code. The lookup method required by the interface

then issues an SQL statement and returns an array, which is then used to build an

IsoCodes instance:

namespace Application\I18n;

use PDO;

use Application\Database\Connection;

class IsoCodesDb implements IsoCodesInterface

{

protected $isoTableName;

protected $iso2FieldName;

protected $connection;

public function construct(Connection $connection,

$isoTableName, $iso2FieldName)

{

$this->connection = $connection;

$this->isoTableName = $isoTableName;

$this->iso2FieldName = $iso2FieldName;

}

public function getCurrencyCodeFromIso2CountryCode($iso2)

: IsoCodes

274

Chapter 8

{

$sql = sprintf('SELECT * FROM %s WHERE %s = ?',

$this->isoTableName,

$this->iso2FieldName);

$stmt = $this->connection->pdo->prepare($sql);

$stmt->execute([$iso2]);

return new IsoCodes($stmt->fetch(PDO::FETCH_ASSOC);

}

}

5. Now we turn our attention back to the Application\I18n\Locale class. We first

add a couple of new properties and class constants:

const ERROR_UNABLE_TO_PARSE = 'ERROR: Unable to parse';

const FALLBACK_CURRENCY = 'GBP';

protected $currencyFormatter;

protected $currencyLookup;

protected $currencyCode;

6. We add new method that retrieves the country code from the locale string. We can

leverage the getRegion() method, which comes from the PHP Locale class (which

we extend). Just in case it's needed, we also add a method, getCurrencyCode():

public function getCountryCode()

{

return $this->getRegion($this->getLocaleCode());

}

public function getCurrencyCode()

{

return $this->currencyCode;

}

7. As with formatting numbers, we define a getCurrencyFormatter(I),

much as we did getNumberFormatter() (shown previously). Notice that

$currencyFormatter is defined using NumberFormatter, but with a different

second parameter:

public function getCurrencyFormatter()

{

if (!$this->currencyFormatter) {

$this->currencyFormatter =

new NumberFormatter($this->getLocaleCode(),

NumberFormatter::CURRENCY);

}

return $this->currencyFormatter;

}

275

Working with Date/Time and International Aspects

8. We then add a currency code lookup to the class constructor if the lookup class has

been defined:

public function construct($localeString = NULL,

IsoCodesInterface $currencyLookup = NULL)

{

// add this to the existing code:

$this->currencyLookup = $currencyLookup;

if ($this->currencyLookup) {

$this->currencyCode =

$this->currencyLookup

->getCurrencyCodeFromIso2CountryCode($this

->getCountryCode())

->currency_code;

} else {

$this->currencyCode = self::FALLBACK_CURRENCY;

}

}

9. Then add the appropriate currency format and parse methods. Note that parsing

currency, unlike parsing numbers, will return FALSE if the parsing operation is not

successful:

public function formatCurrency($currency)

{

return $this->getCurrencyFormatter()

->formatCurrency($currency, $this->currencyCode);

}

public function parseCurrency($string)

{

$result = $this->getCurrencyFormatter()

->parseCurrency($string, $this->currencyCode);

return ($result) ? $result : self::ERROR_UNABLE_TO_PARSE;

}

 How it works...

Create the following classes, as covered in the first several bullet points:

Class Bullet point discussed

Application\I18n\IsoCodes 3

Application\I18n\IsoCodesInterface 4

Application\I18n\IsoCodesDb 5

276

Chapter 8

We will assume, for the purposes of this illustration, that we have a populated MySQL

database table, iso_country_codes, which has this structure:

CREATE TABLE `iso_country_codes` (

`name` varchar(128) NOT NULL,

`iso2` varchar(2) NOT NULL,

`iso3` varchar(3) NOT NULL,

`iso_numeric` int(11) NOT NULL AUTO_INCREMENT,

`iso_3166` varchar(32) NOT NULL,

`currency_name` varchar(32) DEFAULT NULL,

`currency_code` char(3) DEFAULT NULL,

`currency_number` int(4) DEFAULT NULL,

PRIMARY KEY (`iso_numeric`)

) ENGINE=InnoDB AUTO_INCREMENT=895 DEFAULT CHARSET=utf8;

Make the additions to the Application\I18n\Locale class, as discussed in bullet points

6 to 9 previously. You can then create a chap_08_formatting_currency.php file, which

sets up autoloading and uses the appropriate classes:

<?php

define('DB_CONFIG_FILE', DIR . '/../config/db.config.php');

require DIR . '/../Application/Autoload/Loader.php';

Application\Autoload\Loader::init(DIR

use Application\I18n\Locale;

use Application\I18n\IsoCodesDb;

use Application\Database\Connection;

use Application\I18n\Locale;

. '/..');

Next, we create instances of the Connection and IsoCodesDb classes:

$connection = new Connection(include DB_CONFIG_FILE);

$isoLookup = new IsoCodesDb($connection,

'iso_country_codes', 'iso2');

For this illustration, create two Locale instances, one for the UK, the other for France. You

can also designate a large number to be used for testing:

$localeFr = new Locale('fr-FR', $isoLookup);

$localeUk = new Locale('en_GB', $isoLookup);

$number = 1234567.89;

?>

277

Working with Date/Time and International Aspects

Finally, you can wrap the formatCurrency() and parseCurrency() methods in the

appropriate HTML display logic and view the results. Base your view logic on that presented

in the How it works… section of the previous recipe (not repeated here to save trees!). Here is

the final output:

 See also

f The most up-to-date list of currency codes is maintained by ISO (International

Standards Organization). You can obtain this list in either XML or XLS (that is,

Microsoft Excel spreadsheet format). Here is the page where these lists can be

found: http://www.currency-iso.org/en/home/tables/table-a1.html.

 Formatting date/time by locale

The formatting of date and time varies region to region. As a classic example, consider the

year 2016, month April, day 15 and a time in the evening. The format preferred by denizens

of the United States would be 7:23 PM, 4/15/2016, whereas in China you would most likely

see 2016-04-15 19:23. As mentioned with number and currency formatting, it would also be

important to display (and parse) dates in a format acceptable to your web visitors.

 How to do it...

1. First of all, we need to modify Application\I18n\Locale, adding statements to

use date formatting classes:

use IntlCalendar;

use IntlDateFormatter;

278

http://www.currency-iso.org/en/home/tables/table-a1.html

Chapter 8

2. Next, we add a property to represent an IntlDateFormatter instance, as well as a

series of predefined constants:

const DATE_TYPE_FULL = IntlDateFormatter::FULL;

const DATE_TYPE_LONG = IntlDateFormatter::LONG;

const DATE_TYPE_MEDIUM = IntlDateFormatter::MEDIUM;

const DATE_TYPE_SHORT = IntlDateFormatter::SHORT;

const ERROR_UNABLE_TO_PARSE = 'ERROR: Unable to parse';

const ERROR_UNABLE_TO_FORMAT = 'ERROR: Unable to format date';

const ERROR_ARGS_STRING_ARRAY =

'ERROR: Date must be string YYYY-mm-dd HH:ii:ss

or array(y,m,d,h,i,s)';

const ERROR_CREATE_INTL_DATE_FMT =

'ERROR: Unable to create international date formatter';

protected $dateFormatter;

3. After that, we are in a position to define a method, getDateFormatter(), which

returns an IntlDateFormatter instance. The value of $type matches one of the

DATE_TYPE_* constants defined previously:

public function getDateFormatter($type)

{

switch ($type) {

case self::DATE_TYPE_SHORT :

$formatter = new IntlDateFormatter($this

->getLocaleCode(),

IntlDateFormatter::SHORT,

IntlDateFormatter::SHORT);

break;

case self::DATE_TYPE_MEDIUM :

$formatter = new IntlDateFormatter($this

->getLocaleCode(),

IntlDateFormatter::MEDIUM,

IntlDateFormatter::MEDIUM);

break;

case self::DATE_TYPE_LONG :

$formatter = new IntlDateFormatter($this

->getLocaleCode(),

IntlDateFormatter::LONG,

IntlDateFormatter::LONG);

break;

case self::DATE_TYPE_FULL :

$formatter = new IntlDateFormatter($this

->getLocaleCode(),

IntlDateFormatter::FULL,

IntlDateFormatter::FULL);

279

Working with Date/Time and International Aspects

break;

default :

throw new

InvalidArgumentException(self::ERROR_CREATE_INTL_DATE_FMT);

}

$this->dateFormatter = $formatter;

return $this->dateFormatter;

}

4. Next we define a method that produces a locale formatted date. Defining the format

of the incoming $date is a bit tricky. It cannot be locale-specific, otherwise we will

need to parse it according to locale rules, with unpredictable results. A better strategy

would be to accept an array of values that represent year, month, day, and so on

as integers. As a fallback, we will accept a string but only in this format: YYYY-mm-

dd HH:ii:ss. Time zone is optional, and can be set separately. First we initialize

variables:

public function formatDate($date, $type, $timeZone = NULL)

{

$result = NULL;

$year = date('Y');

$month = date('m');

$day = date('d');

$hour = 0;

$minutes = 0;

$seconds = 0;

5. After that we produce a breakdown of values that represent year, month, day, and so

on:

if (is_string($date)) {

list($dateParts, $timeParts) = explode(' ', $date);

list($year,$month,$day) = explode('-',$dateParts);

list($hour,$minutes,$seconds) = explode(':',$timeParts);

} elseif (is_array($date)) {

list($year,$month,$day,$hour,$minutes,$seconds) = $date;

} else {

throw new InvalidArgumentException(self::ERROR_ARGS_STRING_

ARRAY);

}

6. Next we create an IntlCalendar instance, which will serve as an argument when

running format(). We set the date using the discreet integer values:

$intlDate = IntlCalendar::createInstance($timeZone,

$this->getLocaleCode());

$intlDate->set($year,$month,$day,$hour,$minutes,$seconds);

280

Chapter 8

7. Finally, we obtain the date formatter instance, and produce the result:

$formatter = $this->getDateFormatter($type);

if ($timeZone) {

$formatter->setTimeZone($timeZone);

}

$result = $formatter->format($intlDate);

return $result ?? self::ERROR_UNABLE_TO_FORMAT;

}

8. The parseDate() method is actually simpler than formatting. The only complication

is what to do if the type is not specified (which will be the most likely case). All we

need to do is to loop through all possible types (of which there are only four) until a

result is produced:

public function parseDate($string, $type = NULL)

{

if ($type) {

$result = $this->getDateFormatter($type)->parse($string);

} else {

$tryThese = [self::DATE_TYPE_FULL,

self::DATE_TYPE_LONG,

self::DATE_TYPE_MEDIUM,

self::DATE_TYPE_SHORT];

foreach ($tryThese as $type) {

$result = $this->getDateFormatter($type)-

>parse($string); if ($result) {

break;

}

}

}

return ($result) ? $result : self::ERROR_UNABLE_TO_PARSE;

}

 How it works...

Code the changes to Application\I18n\Locale, discussed previously. You can then

create a test file, chap_08_formatting_date.php, which sets up autoloading, and creates

two instances of the Locale class, one for the USA, the other for France:

<?php

require DIR . '/../Application/Autoload/Loader.php';

Application\Autoload\Loader::init(DIR

use Application\I18n\Locale;

$localeFr = new Locale('fr-FR');

$localeUs = new Locale('en_US');

$date = '2016-02-29 17:23:58';

?>

. '/..');

 281

Working with Date/Time and International Aspects

Next, with suitable styling, run a test of formatDate() and parseDate():

echo $localeFr->formatDate($date, Locale::DATE_TYPE_FULL);

echo $localeUs->formatDate($date, Locale::DATE_TYPE_MEDIUM);

$localeUs->parseDate($localeFr->formatDate($date, Locale::DATE_TYPE_

MEDIUM));

// etc.

An example of the output is shown here:

 See also

f ISO 8601 gives precise definitions for all aspects of date and time. There is also

an RFC that discusses the impact of ISO 8601 on the Internet. For reference, see

https://tools.ietf.org/html/rfc3339. For a good overview of date formats

by country, see https://en.wikipedia.org/wiki/Date_format_by_

country.

Creating an HTML international calendar

 generator

Creating a program to display a calendar is something you would most likely do as a student

at secondary school. A nested for() loop, where the inside loop generates a list of seven

days, will generally suffice. Even the problem of how many days there are in the month is

easily solved in the form of a simple array. Where it starts to get tricky is when you need

to figure out, for any given year, on what day of the week does the 1st of January fall. Also,

what if you want to represent the months and days of the week in a language and format

acceptable to a specific locale? As you have probably guessed, we will build a solution using

the previously discussed Application\I18n\Locale class.

282

 How to do it...

Chapter 8

1. First we need to create a generic class that will hold information for a single day.

Initially it will only hold an integer value, $dayOfMonth. Later, in the next recipe,

we'll expand it to include events. As the primary purpose of this class will be to yield

$dayOfMonth, we'll incorporate this value into its constructor, and define

 invoke() to return this value as well:

namespace Application\I18n;

class Day

{

public $dayOfMonth;

public function construct($dayOfMonth)

{

$this->dayOfMonth = $dayOfMonth;

}

public function invoke()

{

return $this->dayOfMonth ?? '';

}

}

2. Create a new class that will hold the appropriate calendar-generation methods. It

will accept an instance of Application\I18n\Locale, and will define a couple

of class constants and properties. The format codes, such as EEEEE and MMMM, are

drawn from ICU date formats:

namespace Application\I18n;

use IntlCalendar;

class Calendar

{

const DAY_1 = 'EEEEE'; // T

const DAY_2 = 'EEEEEE'; // Tu

const DAY_3 = 'EEE'; // Tue

const DAY_FULL = 'EEEE'; // Tuesday

const MONTH_1 = 'MMMMM'; // M

const MONTH_3 = 'MMM'; // Mar

const MONTH_FULL = 'MMMM'; // March

const DEFAULT_ACROSS = 3;

const HEIGHT_FULL = '150px';

const HEIGHT_SMALL = '60px';

283

Working with Date/Time and International Aspects

protected $locale;

protected $dateFormatter;

protected $yearArray;

protected $height;

public function construct(Locale $locale)

{

$this->locale = $locale;

}

// other methods are discussed in the following bullets

}

3. Then we define a method that returns an IntlDateFormatter instance from our

locale class. This is stored in a class property, as it will be used frequently:

protected function getDateFormatter()

{

if (!$this->dateFormatter) {

$this->dateFormatter =

$this->locale->getDateFormatter(Locale::DATE_TYPE_FULL);

}

return $this->dateFormatter;

}

4. Next we define a core method, buildMonthArray(), which creates a multi-

dimensional array where the outer key is the week of the year, and the inner array is

seven elements representing the days of the week. We accept the year, month, and

optional time zone as arguments. Note, as part of variable initialization, we subtract

1 from the month. This is because the IntlCalendar::set() method expects a

0-based value for the month, where 0 represents January, 1 is February, and so on:

public function buildMonthArray($year, $month, $timeZone =

NULL)

{

$month -= 1;

//IntlCalendar months are 0 based; Jan==0, Feb==1 and so on

$day = 1;

$first = TRUE;

$value = 0;

$monthArray = array();

284

Chapter 8

5. We then create an IntlCalendar instance, and use it to determine how many days

are in this month:

$cal = IntlCalendar::createInstance(

$timeZone, $this->locale->getLocaleCode());

$cal->set($year, $month, $day);

$maxDaysInMonth = $cal

->getActualMaximum(IntlCalendar::FIELD_DAY_OF_MONTH);

6. After that we use our IntlDateFormatter instance to determine what day of the

week equates to the 1st of this month. After that, we set the pattern to w, which will

subsequently give us the week number:

$formatter = $this->getDateFormatter();

$formatter->setPattern('e');

$firstDayIsWhatDow = $formatter->format($cal);

7. We are now ready to loop through all days in the month with nested loops. An

outer while() loop ensures we don't go past the end of the month. The inner

loop represents the days of the week. You will note that we take advantage of

IntlCalendar::get(), which allows us to retrieve values from a wide range of

predefined fields. We also adjust the week of the year value to 0 if it exceeds 52:

while ($day <= $maxDaysInMonth) {

for ($dow = 1; $dow <= 7; $dow++) {

$cal->set($year, $month, $day);

$weekOfYear = $cal

->get(IntlCalendar::FIELD_WEEK_OF_YEAR);

if ($weekOfYear > 52) $weekOfYear = 0;

8. We then check to see whether $first is still set TRUE. If so, we start adding day

numbers to the array. Otherwise, the array value is set to NULL. We then close all

open statements and return the array. Note that we also need to make sure the

inner loop doesn't go past the number of days in the month, hence the extra if()

statement in the outer else clause.

Note that instead of just storing the value for the day of the month, we

use the newly defined Application\I18n\Day class.

if ($first) {

if ($dow == $firstDayIsWhatDow) {

$first = FALSE;

$value = $day++;

} else {

$value = NULL;

}

} else {

285

Working with Date/Time and International Aspects

if ($day <= $maxDaysInMonth) {

$value = $day++;

} else {

$value = NULL;

}

}

$monthArray[$weekOfYear][$dow] = new Day($value);

}

}

return $monthArray;

}

Refining internationalized output

1. First, a series of small methods, starting with one that extracts the internationally

formatted day based on type. The type determines whether we deliver the full name

of the day, an abbreviation, or just a single letter, all appropriate for that locale:

protected function getDay($type, $cal)

{

$formatter = $this->getDateFormatter();

$formatter->setPattern($type);

return $formatter->format($cal);

}

2. Next we need a method that returns an HTML row of day names, calling the newly

defined getDay() method. As mentioned previous, the type dictates the appearance

of the days:

protected function getWeekHeaderRow($type, $cal, $year, $month,

$week)

{

$output = '<tr>';

$width = (int) (100/7);

foreach ($week as $day) {

$cal->set($year, $month, $day());

$output .= '<th style="vertical-align:top;"

width="' . $width . '%">'

. $this->getDay($type, $cal) . '</th>';

}

$output .= '</tr>' . PHP_EOL;

return $output;

}

286

Chapter 8

3. After that, we define a very simple method to return a row of week dates. Note that

we take advantage of Day:: invoke() using: $day():

protected function getWeekDaysRow($week)

{

$output = '<tr style="height:' . $this->height . ';">';

$width = (int) (100/7);

foreach ($week as $day) {

$output .= '<td style="vertical-align:top;"

width="' . $width . '%">'

. $day() . '</td>';

}

$output .= '</tr>' . PHP_EOL;

return $output;

}

4. And finally, a method that puts the smaller methods together to generate a calendar

for a single month. First we build the month array, but only if $yearArray is not

already available:

public function calendarForMonth($year,

$month,

$timeZone = NULL,

$dayType = self::DAY_3,

$monthType = self::MONTH_FULL,

$monthArray = NULL)

{

$first = 0;

if (!$monthArray)

$monthArray = $this->yearArray[$year][$month]

?? $this->buildMonthArray($year, $month, $timeZone);

5. The month needs to be decremented by 1 as IntlCalendar months are 0-based:

Jan = 0, Feb = 1, and so on. We then build an IntlCalendar instance using the

time zone (if any), and the locale. We next create a IntlDateFormatter instance

to retrieve the month name and other information according to locale:

$month--;

$cal = IntlCalendar::createInstance(

$timeZone, $this->locale->getLocaleCode());

$cal->set($year, $month, 1);

$formatter = $this->getDateFormatter();

$formatter->setPattern($monthType);

287

Working with Date/Time and International Aspects

6. We then loop through the month array, and call the smaller methods just mentioned

to build the final output:

$this->height = ($dayType == self::DAY_FULL)

? self::HEIGHT_FULL : self::HEIGHT_SMALL;

$html = '<h1>' . $formatter->format($cal) . '</h1>';

$header = '';

$body = '';

foreach ($monthArray as $weekNum => $week) {

if ($first++ == 1) {

$header .= $this->getWeekHeaderRow(

$dayType, $cal, $year, $month, $week);

}

$body .= $this->getWeekDaysRow($dayType, $week);

}

$html .= '<table>' . $header . $body .

'</table>' . PHP_EOL;

return $html;

}

7. In order to generate a calendar for the entire year, it's a simple matter of looping

through months 1 to 12. To facilitate outside access, we first define a method that

builds a year array:

public function buildYearArray($year, $timeZone = NULL)

{

$this->yearArray = array();

for ($month = 1; $month <= 12; $month++) {

$this->yearArray[$year][$month] =

$this->buildMonthArray($year, $month, $timeZone);

}

return $this->yearArray;

}

public function getYearArray()

{

return $this->yearArray;

}

8. To generate a calendar for a year, we define a method, calendarForYear().

If the year array has not been build, we call buildYearArray(). We take into

account how many monthly calendars we wish to display across and then call

calendarForMonth():

public function calendarForYear($year,

$timeZone = NULL,

$dayType = self::DAY_1,

288

Chapter 8

$monthType = self::MONTH_3,

$across = self::DEFAULT_ACROSS)

{

if (!$this->yearArray) $this->buildYearArray($year,

$timeZone);

$yMax = (int) (12 / $across);

$width = (int) (100 / $across);

$output = '<table>' . PHP_EOL;

$month = 1;

for ($y = 1; $y <= $yMax; $y++) {

$output .= '<tr>';

for ($x = 1; $x <= $across; $x++) {

$output .= '<td style="vertical-align:top;"

width="' . $width . '%">'

. $this->calendarForMonth($year, $month,

$timeZone, $dayType, $monthType,

$this->yearArray[$year][$month++]) . '</td>';

}

$output .= '</tr>' . PHP_EOL;

}

$output .= '</table>';

return $output;

}

 How it works...

First of all, make sure you build the Application\I18n\Locale class as defined in the

previous recipe. After that, create a new file, Calendar.php, in the Application\I18n

folder, with all the methods described in this recipe.

Next, define a calling program, chap_08_html_calendar.php, which sets up autoloading

and creates Locale and Calendar instances. Also be sure to define the year and month:

<?php

require DIR . '/../Application/Autoload/Loader.php';

Application\Autoload\Loader::init(DIR

use Application\I18n\Locale;

use Application\I18n\Calendar;

$localeFr = new Locale('fr-FR');

$localeUs = new Locale('en_US');

$localeTh = new Locale('th_TH');

$calendarFr = new Calendar($localeFr);

$calendarUs = new Calendar($localeUs);

$calendarTh = new Calendar($localeTh);

$year = 2016;

$month = 1;

?>

. '/..');

 289

Working with Date/Time and International Aspects

You can then develop appropriate view logic to display the different calendars. For example,

you can include parameters to display the full month and day names:

<!DOCTYPE html>

<html>

<head>

<title>PHP 7 Cookbook</title>

<meta http-equiv="content-type"

content="text/html;charset=utf-8" />

<link rel="stylesheet" type="text/css"

href="php7cookbook_html_table.css">

</head>

<body>

<h3>Year: <?= $year ?></h3>

<?= $calendarFr->calendarForMonth($year, $month, NULL,

Calendar::DAY_FULL); ?>

<?= $calendarUs->calendarForMonth($year, $month, NULL,

Calendar::DAY_FULL); ?>

<?= $calendarTh->calendarForMonth($year, $month, NULL,

Calendar::DAY_FULL); ?>

</body>

</html>

With a couple of modifications, you can also display a calendar for the entire year:

$localeTh = new Locale('th_TH');

$localeEs = new Locale('es_ES');

$calendarTh = new Calendar($localeTh);

290

Chapter 8

$calendarEs = new Calendar($localeEs);

$year = 2016;

echo $calendarTh->calendarForYear($year);

echo $calendarEs->calendarForYear($year);

Here is the browser output showing a full year calendar in Spanish:

 See also

f For more information on codes used by IntlDateFormatter::setPattern(),

see this article: http://userguide.icu-project.org/formatparse/

datetime

 Building a recurring events generator

A very common need related to generating a calendar is the scheduling of events. Events can

be in the form of one-off events, which take place on one day, or on a weekend. There is a

much greater need, however, to track events that are recurring. We need to account for the

start date, the recurring interval (daily, weekly, monthly), and the number of occurrences or a

specific end date.

291

http://userguide.icu-project.org/formatparse/

Working with Date/Time and International Aspects

 How to do it...

1. Before anything else, it would be an excellent idea to create a class that represents

an event. Ultimately you'll probably end up storing the data in such a class in a

database. For this illustration, however, we will simply define the class, and leave the

database aspect to your imagination. You will notice that we will use a number of

classes included in the DateTime extension admirably suited to event generation:

namespace Application\I18n;

use DateTime;

use DatePeriod;

use DateInterval;

use InvalidArgumentException;

class Event

{

// code

}

2. Next, we define a series of useful class constants and properties. You will notice that

we defined most of the properties public in order to economize on the number of

getters and setters needed. The intervals are defined as sprintf() format strings;

%d will be substituted for a value:

const INTERVAL_DAY = 'P%dD';

const INTERVAL_WEEK = 'P%dW';

const INTERVAL_MONTH = 'P%dM';

const FLAG_FIRST = 'FIRST'; // 1st of the month

const ERROR_INVALID_END = 'Need to supply either # occurrences or

an end date';

const ERROR_INVALID_DATE = 'String i.e. YYYY-mm-dd or DateTime

instance only';

const ERROR_INVALID_INTERVAL = 'Interval must take the form "P\

d+(D | W | M)"';

public $id;

public $flag;

public $value;

public $title;

public $locale;

public $interval;

public $description;

public $occurrences;

public $nextDate;

protected $endDate;

protected $startDate;

292

Chapter 8

3. Next we turn our attention to the constructor. We need to collect and set all

information pertinent to an event. The variable names are self-explanatory.

$value is not quite so clear. This parameter will ultimately be substituted

for the value in the interval format string. So, for example, if the user selects

$interval as INTERVAL_DAY, and $value as 2, the resulting interval

string will be P2D, which means every other day (or every 2nd day).

public function construct($title,

$description,

$startDate,

$interval,

$value,

$occurrences = NULL,

$endDate = NULL,

$flag = NULL)

{

4. We then initialize variables. Note that the ID is pseudo-randomly generated, but might

ultimately end up being the primary key in a database events table. Here we use

md5() not for security purposes, but rather to quickly generate a hash so that IDs

have a consistent appearance:

$this->id = md5($title . $interval . $value) . sprintf('%04d',

rand(0,9999));

$this->flag = $flag;

$this->value = $value;

$this->title = $title;

$this->description = $description;

$this->occurrences = $occurrences;

5. As mentioned previously, the interval parameter is a sprintf() pattern used to

construct a proper DateInterval instance:

try {

$this->interval = new DateInterval(sprintf($interval, $value));

} catch (Exception $e) {

error_log($e->getMessage());

throw new InvalidArgumentException(self::ERROR_INVALID_

INTERVAL);

}

293

Working with Date/Time and International Aspects

6. To initialize $startDate, we call stringOrDate(). We then attempt

to generate a value for $endDate by calling either stringOrDate() or

calcEndDateFromOccurrences(). If we have neither an end date nor a number

of occurrences, an exception is thrown:

$this->startDate = $this->stringOrDate($startDate);

if ($endDate) {

$this->endDate = $this->stringOrDate($endDate);

} elseif ($occurrences) {

$this->endDate = $this->calcEndDateFromOccurrences();

} else {

throw new InvalidArgumentException(self::ERROR_INVALID_END);

}

$this->nextDate = $this->startDate;

}

7. The stringOrDate() method consists of a few lines of code that check the data

type of the date variable, and return a DateTime instance or NULL:

protected function stringOrDate($date)

{

if ($date === NULL) {

$newDate = NULL;

} elseif ($date instanceof DateTime) {

$newDate = $date;

} elseif (is_string($date)) {

$newDate = new DateTime($date);

} else {

throw new InvalidArgumentException(self::ERROR_INVALID_END);

}

return $newDate;

}

8. We call the calcEndDateFromOccurrences() method from the constructor

if $occurrences is set so that we'll know the end date for this event. We take

advantage of the DatePeriod class, which provides an iteration based on a start

date, DateInterval, and number of occurrences:

protected function calcEndDateFromOccurrences()

{

$endDate = new DateTime('now');

$period = new DatePeriod(

$this->startDate, $this->interval, $this->occurrences);

foreach ($period as $date) {

$endDate = $date;

}

return $endDate;

}

294

Chapter 8

9. Next we throw in a toString() magic method, which simple echoes the title of

the event:

public function toString()

{

return $this->title;

}

10. The last method we need to define for our Event class is getNextDate(), which is

used when generating a calendar:

public function getNextDate(DateTime $today)

{

if ($today > $this->endDate) {

return FALSE;

}

$next = clone $today;

$next->add($this->interval);

return $next;

}

11. Next we turn our attention to the Application\I18n\Calendar class described in

the previous recipe. With a bit of minor surgery, we are ready to tie our newly defined

Event class into the calendar. First we add a new property, $events, and a method

to add events in the form of an array. We use the Event::$id property to make sure

events are merged and not overwritten:

protected $events = array();

public function addEvent(Event $event)

{

$this->events[$event->id] = $event;

}

12. Next we add a method, processEvents(), which adds an Event instance to a Day

object when building the year calendar. First we check to see whether there are any

events, and whether or not the Day object is NULL. As you may recall, it's likely that

the first day of the month doesn't fall on the first day of the week, and thus the need

to set the value of a Day object to NULL. We certainly do not want to add events to

a non-operative day! We then call Event::getNextDate() and see whether the

dates match. If so, we store the Event into Day::$events[] and set the next date

on the Event object:

protected function processEvents($dayObj, $cal)

{

if ($this->events && $dayObj()) {

$calDateTime = $cal->toDateTime();

foreach ($this->events as $id => $eventObj) {

$next = $eventObj->getNextDate($eventObj->nextDate);

295

Working with Date/Time and International Aspects

if ($next) {

if ($calDateTime->format('Y-m-d') ==

$eventObj->nextDate->format('Y-m-d')) {

$dayObj->events[$eventObj->id] = $eventObj;

$eventObj->nextDate = $next;

}

}

}

}

return $dayObj;

}

Note that we do not do a direct comparison of the two objects. Two

reasons for this: first of all, one is a DateTime instance, the other is

an IntlCalendar instance. The other, more compelling reason, is

that it's possible that hours:minutes:seconds were included when the

DateTime instance was obtained, resulting in actual value differences

between the two objects.

13. Now we need to add a call to processEvents() in the buildMonthArray()

method so that it looks like this:

while ($day <= $maxDaysInMonth) {

for ($dow = 1; $dow <= 7; $dow++) {

// add this to the existing code:

$dayObj = $this->processEvents(new Day($value), $cal);

$monthArray[$weekOfYear][$dow] = $dayObj;

}

}

14. Finally, we need to modify getWeekDaysRow(), adding the necessary code to

output event information inside the box along with the date:

protected function getWeekDaysRow($type, $week)

{

$output = '<tr style="height:' . $this->height . ';">';

$width = (int) (100/7);

foreach ($week as $day) {

$events = '';

if ($day->events) {

foreach ($day->events as $single) {

$events .= '
' . $single->title;

if ($type == self::DAY_FULL) {

$events .= '
<i>' . $single->description . '</i>';

}

296

Chapter 8

}

}

$output .= '<td style="vertical-align:top;"

width="' . $width . '%">'

. $day() . $events . '</td>';

}

$output .= '</tr>' . PHP_EOL;

return $output;

}

 How it works...

To tie events to the calendar, first code the Application\I18n\Event class described in

steps 1 to 10. Next, modify Application\I18n\Calendar as described in steps 11 to

14. You can then create a test script, chap_08_recurring_events.php, which sets up

autoloading and creates Locale and Calendar instances. For the purposes of illustration,

go ahead and use 'es_ES' as a locale:

<?php

require DIR . '/../Application/Autoload/Loader.php';

Application\Autoload\Loader::init(DIR . '/..');

use Application\I18n\ { Locale, Calendar, Event };

try {

$year = 2016;

$localeEs = new Locale('es_ES');

$calendarEs = new Calendar($localeEs);

Now we can start defining and adding events to the calendar. The first example adds an event

that lasts 3 days and starts on 8 January 2016:

// add event: 3 days

$title = 'Conf';

$description = 'Special 3 day symposium on eco-waste';

$startDate = '2016-01-08';

$event = new Event($title, $description, $startDate,

Event::INTERVAL_DAY, 1, 2);

$calendarEs->addEvent($event);

297

Working with Date/Time and International Aspects

Here is another example, an event that occurs on the first of every month until

September 2017:

$title = 'Pay Rent';

$description = 'Sent rent check to landlord';

$startDate = new DateTime('2016-02-01');

$event = new Event($title, $description, $startDate,

Event::INTERVAL_MONTH, 1, '2017-09-01', NULL, Event::FLAG_FIRST);

$calendarEs->addEvent($event);

You can then add sample weekly, bi-weekly, monthly, and so on events as desired. You can

then close the try…catch block, and produce suitable display logic:

} catch (Throwable $e) {

$message = $e->getMessage();

}

?>

<!DOCTYPE html>

<head>

<title>PHP 7 Cookbook</title>

<meta http-equiv="content-type" content="text/html;charset=utf-8" />

<link rel="stylesheet" type="text/css" href="php7cookbook_html_

table.css">

</head>

<body>

<h3>Year: <?= $year ?></h3>

<?= $calendarEs->calendarForYear($year, 'Europe/Berlin',

Calendar::DAY_3, Calendar::MONTH_FULL, 2); ?>

<?= $calendarEs->calendarForMonth($year, 1 , 'Europe/Berlin',

Calendar::DAY_FULL); ?>

</body>

</html>

298

Chapter 8

Here is the output showing the first few months of the year:

 See also

f For more information on IntlCalendar field constants that can be used with

get(), please refer to this page: http://php.net/manual/en/class.
intlcalendar.php#intlcalendar.constants

 Handling translation without gettext

Translation is an important part of making your website accessible to an international

customer base. One way this is accomplished it to use the PHP gettext functions, which are

based on the GNU gettext operating system tools installed on the local server. gettext

is well documented and well supported, but uses a legacy approach and has distinct

disadvantages. Accordingly, in this recipe, we present an alternative approach to translation

where you can build your own adapter.

299

http://php.net/manual/en/class

Working with Date/Time and International Aspects

Something important to recognize is that the programmatic translation tools available to PHP

are primarily designed to provide limited translation of a word or phrase, referred to as the

msgid (message ID). The translated equivalent is referred to as the msgstr (message string).

Accordingly, incorporating translation typically only involves relatively unchanging items such

as menus, forms, error or success messages, and so on. For the purposes of this recipe, we

will assume that you have the actual web page translations stored as blocks of text.

If you need to translate entire pages of content, you might consider using the

Google Translate API. This is, however, a paid service. Alternatively, you could

 outsource the translation to individuals with multi-lingual skills cheaply using

Amazon Mechanical Turk. See the See Also section at the end of this recipe

for the URLs.

 How to do it...

1. We will once again use the Adapter software design pattern, in this case to provide

alternatives to the translation source. In this recipe, we will demonstrate adapters for

.ini files, .csv files, and databases.

2. To begin, we will define an interface that will later be used to identify a translation

adapter. The requirements for a translation adapter are quite simple, we only need to

return a message string for a given message ID:

namespace Application\I18n\Translate\Adapter;

interface TranslateAdapterInterface

{

public function translate($msgid);

}

3. Next we define a trait that matches the interface. The trait will contain the actual

code required. Note that if we fail to find the message string, we simply return the

message ID:

namespace Application\I18n\Translate\Adapter;

trait TranslateAdapterTrait

{

protected $translation;

public function translate($msgid)

{

return $this->translation[$msgid] ?? $msgid;

}

}

300

Chapter 8

4. Now we're ready to define our first adapter. In this recipe, we'll start with an adapter

that uses an .ini file as the source of translations. The first thing you'll notice is

that we use the trait defined previously. The constructor method will vary between

adapters. In this case, we use parse_ini_file() to produce an array of key/

value pairs where the key is the message ID. Notice that we use the $filePattern

parameter to substitute the locale, which then allows us to load the appropriate

translation file:

namespace Application\I18n\Translate\Adapter;

use Exception;

use Application\I18n\Locale;

class Ini implements TranslateAdapterInterface

{

use TranslateAdapterTrait;

const ERROR_NOT_FOUND = 'Translation file not found';

public function construct(Locale $locale, $filePattern)

{

$translateFileName = sprintf($filePattern,

$locale->getLocaleCode());

if (!file_exists($translateFileName)) {

error_log(self::ERROR_NOT_FOUND . ':' . $translateFileName);

throw new Exception(self::ERROR_NOT_FOUND);

} else {

$this->translation = parse_ini_file($translateFileName);

}

}

}

5. The next adapter, Application\I18n\Translate\Adapter\Csv, is identical,

except that we open the translation file and loop through using fgetcsv() to

retrieve the message ID / message string key pairs. Here we show only the difference

in the constructor:

public function construct(Locale $locale, $filePattern)

{

$translateFileName = sprintf($filePattern,

$locale->getLocaleCode());

if (!file_exists($translateFileName)) {

error_log(self::ERROR_NOT_FOUND . ':' . $translateFileName);

throw new Exception(self::ERROR_NOT_FOUND);

} else {

$fileObj = new SplFileObject($translateFileName, 'r');

while ($row = $fileObj->fgetcsv()) {

$this->translation[$row[0]] = $row[1];

301

Working with Date/Time and International Aspects

}

}

}

The big disadvantage of both of these adapters is that we need to preload

the entire translation set, which puts a strain on memory if there is a large

number of translations. Also, the translation file needs to be opened and

parsed, which drags down performance.

6. We now present the third adapter, which performs a database lookup and avoids the

problems of the other two adapters. We use a PDO prepared statement which is sent

to the database in the beginning, and only one time. We then execute as many times

as needed, supplying the message ID as an argument. You will also notice that we

needed to override the translate() method defined in the trait. Finally, you might

have noticed the use of PDOStatement::fetchColumn() as we only need the one

value:

namespace Application\I18n\Translate\Adapter;

use Exception;

use Application\Database\Connection;

use Application\I18n\Locale;

class Database implements TranslateAdapterInterface

{

use TranslateAdapterTrait;

protected $connection;

protected $statement;

protected $defaultLocaleCode;

public function construct(Locale $locale,

Connection $connection,

$tableName)

{

$this->defaultLocaleCode = $locale->getLocaleCode();

$this->connection = $connection;

$sql = 'SELECT msgstr FROM ' . $tableName

. ' WHERE localeCode = ? AND msgid = ?';

$this->statement = $this->connection->pdo->prepare($sql);

}

public function translate($msgid, $localeCode = NULL)

{

if (!$localeCode) $localeCode = $this->defaultLocaleCode;

$this->statement->execute([$localeCode, $msgid]);

return $this->statement->fetchColumn();

}

}

302

Chapter 8

7. We are now ready to define the core Translation class, which is tied to one (or

more) adapters. We assign a class constant to represent the default locale, and

properties for the locale, adapter, and text file pattern (explained later):

namespace Application\I18n\Translate;

use Application\I18n\Locale;

use Application\I18n\Translate\Adapter\TranslateAdapterInterface;

class Translation

{

const DEFAULT_LOCALE_CODE = 'en_GB';

protected $defaultLocaleCode;

protected $adapter = array();

protected $textFilePattern = array();

8. In the constructor, we determine the locale, and set the initial adapter to this locale.

In this manner, we are able to host multiple adapters:

public function construct(TranslateAdapterInterface $adapter,

$defaultLocaleCode = NULL,

$textFilePattern = NULL)

{

if (!$defaultLocaleCode) {

$this->defaultLocaleCode = self::DEFAULT_LOCALE_CODE;

} else {

$this->defaultLocaleCode = $defaultLocaleCode;

}

$this->adapter[$this->defaultLocaleCode] = $adapter;

$this->textFilePattern[$this->defaultLocaleCode] =

$textFilePattern;

}

9. Next we define a series of setters, which gives us more flexibility:

public function setAdapter($localeCode, TranslateAdapterInterface

$adapter)

{

$this->adapter[$localeCode] = $adapter;

}

public function setDefaultLocaleCode($localeCode)

{

$this->defaultLocaleCode = $localeCode;

}

public function setTextFilePattern($localeCode, $pattern)

{

$this->textFilePattern[$localeCode] = $pattern;

}

303

Working with Date/Time and International Aspects

10. We then define the PHP magic method invoke(), which lets us make a direct call

to the translator instance, returning the message string given the message ID:

public function invoke($msgid, $locale = NULL)

{

if ($locale === NULL) $locale = $this-

>defaultLocaleCode; return $this->adapter[$locale]-

>translate($msgid);

}

11. Finally, we also add a method that can return translated blocks of text from text

files. Bear in mind that this could be modified to use a database instead. We did not

include this functionality in the adapter, as its purpose is completely different; we

just want to return large blocks of code given a key, which could conceivably be the

filename of the translated text file:

public function text($key, $localeCode = NULL)

{

if ($localeCode === NULL) $localeCode =

$this->defaultLocaleCode;

$contents = $key;

if (isset($this->textFilePattern[$localeCode])) {

$fn = sprintf($this->textFilePattern[$localeCode],

$localeCode, $key);

if (file_exists($fn)) {

$contents = file_get_contents($fn);

}

}

return $contents;

}

 How it works...

First you will need to define a directory structure to house the translation files. For the

purposes of this illustration, you can make a directory ,/path/to/project/files/data/

languages. Under this directory structure, create sub-directories that represent different

locales. For this illustration, you could use these: de_DE, fr_FR, en_GB, and es_ES,

representing German, French, English, and Spanish.

Next you will need to create the different translation files. As an example, here is a

representative data/languages/es_ES/translation.ini file in Spanish:

Welcome=Bienvenido

About Us=Sobre Nosotros

Contact Us=Contáctenos

Find Us=Encontrarnos

click=clic para más información

304

Chapter 8

Likewise, to demonstrate the CSV adapter, create the same thing as a CSV file, data/

languages/es_ES/translation.csv:

"Welcome","Bienvenido"

"About Us","Sobre Nosotros"

"Contact Us","Contáctenos"

"Find Us","Encontrarnos"

"click","clic para más información"

Finally, create a database table, translation, and populate it with the same data.

The main difference is that the database table will have three fields: msgid, msgstr,

and locale_code:

CREATE TABLE `translation` (

`msgid` varchar(255) NOT NULL,

`msgstr` varchar(255) NOT NULL,

`locale_code` char(6) NOT NULL DEFAULT '',

PRIMARY KEY (`msgid`,`locale_code`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1;

Next, define the classes mentioned previously, using the code shown in this recipe:

f Application\I18n\Translate\Adapter\TranslateAdapterInterface

f Application\I18n\Translate\Adapter\TranslateAdapterTrait

f Application\I18n\Translate\Adapter\Ini

f Application\I18n\Translate\Adapter\Csv

f Application\I18n\Translate\Adapter\Database

f Application\I18n\Translate\Translation

Now you can create a test file, chap_08_translation_database.php, to test the

database translation adapter. It should implement autoloading, use the appropriate classes,

and create a Locale and Connection instance. Note that the TEXT_FILE_PATTERN

constant is a sprintf() pattern in which the locale code and filename are substituted:

<?php

define('DB_CONFIG_FILE', '/../config/db.config.php');

define('TEXT_FILE_PATTERN', DIR . '/../data/languages/%s/%s.txt');

require DIR . '/../Application/Autoload/Loader.php';

Application\Autoload\Loader::init(DIR

use Application\I18n\Locale;

. '/..');

use Application\I18n\Translate\ { Translation, Adapter\Database };

use Application\Database\Connection;

$conn = new Connection(include DIR

$locale = new Locale('fr_FR');

. DB_CONFIG_FILE);

 305

Working with Date/Time and International Aspects

Next, create a translation adapter instance and use that to create a Translation instance:

$adapter = new Database($locale, $conn, 'translation');

$translate = new Translation($adapter, $locale->getLocaleCode(), TEXT_

FILE_PATTERN);

?>

Finally, create display logic that uses the $translate instance:

<!DOCTYPE html>

<head>

<title>PHP 7 Cookbook</title>

<meta http-equiv="content-type" content="text/html;charset=utf-8" />

<link rel="stylesheet" type="text/css" href="php7cookbook_html_

table.css">

</head>

<body>

<table>

<tr>

<th><h1 style="color:white;"><?= $translate('Welcome') ?></h1></th>

<td>

<div style="float:left;width:50%;vertical-align:middle;">

<h3 style="font-size:24pt;"><i>Some Company, Inc.</i></h3>

</div>

<div style="float:right;width:50%;">

</div>

</td>

</tr>

<tr>

<th>

<?= $translate('About Us') ?>

<?= $translate('Contact Us') ?>

<?= $translate('Find Us') ?>

</th>

<td>

<p>

<?= $translate->text('main_page'); ?>

</p>

<p>

<?= $translate('click') ?>

</p>

</td>

</tr>

</table>

</body>

</html>

306

Chapter 8

You can then perform additional similar tests, substituting a new locale to get a different

language, or using another adapter to test a different data source. Here is an example of

output using a locale of fr_FR and the database translation adapter:

 See also

f For more information on the Google Translation API, see https://cloud.google.

com/translate/v2/translating-text-with-rest.

f For more information on Amazon Mechanical Turk, see https://www.mturk.com/

mturk/welcome. For more information on gettext, see http://www.gnu.org/

software/gettext/manual/gettext.html.

307

http://www.mturk.com/
http://www.gnu.org/

9
Developing Middleware

In this chapter, we will cover the following topics:

f Authenticating with middleware

f Using middleware to implement access control

f Improving performance using the cache

f Implementing routing

f Making inter-framework system calls

f Using middleware to cross languages

 Introduction

As often happens in the IT industry, terms get invented, and then used and abused. The

term middleware is no exception. Arguably the first use of the term came out of the Internet

Engineering Task Force (IETF) in the year 2000. Originally, the term was applied to any

software which operates between the transport (that is, TCP/IP) and the application layer.

More recently, especially with the acceptance of PHP Standard Recommendation number 7

(PSR-7), middleware, specifically in the PHP world, has been applied to the web client-server

environment.

The recipes in this section will make use of the concrete classes defined in

Appendix, Defining PSR-7 Classes.

309

Developing Middleware

 Authenticating with middleware

One very important usage of middleware is to provide authentication. Most web-based

applications need the ability to verify a visitor via username and password. By incorporating

PSR-7 standards into an authentication class, you will make it generically useful across the

board, so to speak, being secure enough that it can be used in any framework that provides

PSR-7-compliant request and response objects.

 How to do it…

1. We begin by defining an Application\Acl\AuthenticateInterface class.

We use this interface to support the Adapter software design pattern, making our

Authenticate class more generically useful by allowing a variety of adapters, each

of which can draw authentication from a different source (for example, from a file,

using OAuth2, and so on). Note the use of the PHP 7 ability to define the return

value data type:

namespace Application\Acl;

use Psr\Http\Message\ { RequestInterface, ResponseInterface };

interface AuthenticateInterface

{

public function login(RequestInterface $request) :

ResponseInterface;

}

Note that by defining a method that requires a

PSR-7-compliant request, and produces a PSR-7-compliant

response, we have made this interface universally

applicable.

2. Next, we define the adapter that implements the login() method required by

the interface. We make sure to use the appropriate classes, and define fitting

constants and properties. The constructor makes use of Application\Database\

Connection, defined in Chapter 5, Interacting with a Database:

namespace Application\Acl;

use PDO;

use Application\Database\Connection;

use Psr\Http\Message\ { RequestInterface, ResponseInterface };

use Application\MiddleWare\ { Response, TextStream };

class DbTable implements AuthenticateInterface

310

Chapter 9

{

const ERROR_AUTH = 'ERROR: authentication error';

protected $conn;

protected $table;

public function construct(Connection $conn, $tableName)

{

$this->conn = $conn;

$this->table = $tableName;

}

3. The core login() method extracts the username and password from the request

object. We then do a straightforward database lookup. If there is a match, we store

user information in the response body, JSON-encoded:

public function login(RequestInterface $request) :

ResponseInterface

{

$code = 401;

$info = FALSE;

$body = new TextStream(self::ERROR_AUTH);

$params = json_decode($request->getBody()->getContents());

$response = new Response();

$username = $params->username ?? FALSE;

if ($username) {

$sql = 'SELECT * FROM ' . $this->table

. ' WHERE email = ?';

$stmt = $this->conn->pdo->prepare($sql);

$stmt->execute([$username]);

$row = $stmt->fetch(PDO::FETCH_ASSOC);

if ($row) {

if (password_verify($params->password,

$row['password'])) {

unset($row['password']);

$body =

new TextStream(json_encode($row));

$response->withBody($body);

$code = 202;

$info = $row;

}

}

}

return $response->withBody($body)->withStatus($code);

}

}

311

Developing Middleware

Best practice

Never store passwords in clear text. When you need to do

a password match, use password_verify(), which

negates the need to reproduce the password hash.

4. The Authenticate class is a wrapper for an adapter class that implements

AuthenticationInterface. Accordingly, the constructor takes an adapter class

as an argument, as well as a string that serves as the key, in which authentication

information is stored in $_SESSION:

namespace Application\Acl;

use Application\MiddleWare\ { Response, TextStream };

use Psr\Http\Message\ { RequestInterface, ResponseInterface };

class Authenticate

{

const ERROR_AUTH = 'ERROR: invalid token';

const DEFAULT_KEY = 'auth';

protected $adapter;

protected $token;

public function construct(

AuthenticateInterface $adapter, $key)

{

$this->key = $key;

$this->adapter = $adapter;

}

5. In addition, we provide a login form with a security token, which helps prevent Cross

Site Request Forgery (CSRF) attacks:

public function getToken()

{

$this->token = bin2hex(random_bytes(16));

$_SESSION['token'] = $this->token;

return $this->token;

}

public function matchToken($token)

{

$sessToken = $_SESSION['token'] ?? date('Ymd');

return ($token == $sessToken);

}

public function getLoginForm($action = NULL)

{

$action = ($action) ? 'action="' . $action . '" ' : '';

312

Chapter 9

$output = '<form method="post" ' . $action . '>';

$output .= '<table><tr><th>Username</th><td>';

$output .= '<input type="text" name="username" /></td>';

$output .= '</tr><tr><th>Password</th><td>';

$output .= '<input type="password" name="password" />';

$output .= '</td></tr><tr><th> </th>';

$output .= '<td><input type="submit" /></td>';

$output .= '</tr></table>';

$output .= '<input type="hidden" name="token" value="';

$output .= $this->getToken() . '" />';

$output .= '</form>';

return $output;

}

6. Finally, the login() method in this class checks whether the token is valid. If not, a

400 response is returned. Otherwise, the login() method of the adapter is called:

public function login(

RequestInterface $request) : ResponseInterface

{

$params = json_decode($request->getBody()->getContents());

$token = $params->token ?? FALSE;

if (!($token && $this->matchToken($token))) {

$code = 400;

$body = new TextStream(self::ERROR_AUTH);

$response = new Response($code, $body);

} else {

$response = $this->adapter->login($request);

}

if ($response->getStatusCode() >= 200

&& $response->getStatusCode() < 300) {

$_SESSION[$this->key] =

json_decode($response->getBody()->getContents());

} else {

$_SESSION[$this->key] = NULL;

}

return $response;

}

}

313

Developing Middleware

 How it works…

First of all, be sure to follow the recipes defined in Appendix, Defining PSR-7 Classes. Next,

go ahead and define the classes presented in this recipe, summarized in the following table:

Class Discussed in these steps

Application\Acl\AuthenticateInterface 1

Application\Acl\DbTable 2 - 3

Application\Acl\Authenticate 4 - 6

You can then define a chap_09_middleware_authenticate.php calling program that

sets up autoloading and uses the appropriate classes:

<?php

session_start();

define('DB_CONFIG_FILE', DIR . '/../config/db.config.php');

define('DB_TABLE', 'customer_09');

define('SESSION_KEY', 'auth');

require DIR . '/../Application/Autoload/Loader.php';

Application\Autoload\Loader::init(DIR . '/..');

use Application\Database\Connection;

use Application\Acl\ { DbTable, Authenticate };

use Application\MiddleWare\ { ServerRequest, Request, Constants,

TextStream };

You are now in a position to set up the authentication adapter and core class:

$conn = new Connection(include DB_CONFIG_FILE);

$dbAuth = new DbTable($conn, DB_TABLE);

$auth = new Authenticate($dbAuth, SESSION_KEY);

Be sure to initialize the incoming request, and set up the request to be made to the

authentication class:

$incoming = new ServerRequest();

$incoming->initialize();

$outbound = new Request();

Check the incoming class method to see if it is POST. If so, pass a request to the

authentication class:

if ($incoming->getMethod() == Constants::METHOD_POST) {

$body = new TextStream(json_encode(

314

Chapter 9

$incoming->getParsedBody()));

$response = $auth->login($outbound->withBody($body));

}

$action = $incoming->getServerParams()['PHP_SELF'];

?>

The display logic looks like this:

<?= $auth->getLoginForm($action) ?>

Here is the output from an invalid authentication attempt. Notice the 401 status code on the

right. In this illustration, you could add a var_dump() of the response object:

315

Developing Middleware

Here is a successful authentication:

 See also

For guidance on how to avoid CSRF and other attacks, please see Chapter 12, Improving

Web Security.

Using middleware to implement access

 control

As the name implies, middleware sits in the middle of a sequence of function or method calls.

Accordingly, middleware is well suited for the task of "gate keeper". You can easily implement

an Access Control List (ACL) mechanism with a middleware class that reads the ACL, and

allows or denies access to the next function or method call in the sequence.

316

 How to do it…

Chapter 9

1. Probably the most difficult part of the process is determining which factors to include

in the ACL. For the purposes of illustration, let's say that our users are all assigned a

level and a status. In this illustration, the level is defined as follows:

'levels' => [0, 'BEG', 'INT', 'ADV']

2. The status could indicate how far they are in the membership signup process.

For example, a status of 0 could indicate they've initiated the membership signup

process, but have not yet been confirmed. A status of 1 could indicate their e-mail

address is confirmed, but they have not paid the monthly fee, and so on.

3. Next, we need to define the resources we plan to control. In this case, we will assume

there is a need to control access to a series of web pages on the site. Accordingly, we

need to define an array of such resources. In the ACL, we can then refer to the key:

'pages' => [0 => 'sorry', 'logout' => 'logout',

'login' => 'auth',

1 => 'page1', 2 => 'page2', 3 => 'page3',

4 => 'page4', 5 => 'page5', 6 => 'page6',

7 => 'page7', 8 => 'page8', 9 => 'page9']

4. Finally, the most important piece of configuration is to make assignments to pages

according to level and status. The generic template used in the configuration

array might look like this:

status => ['inherits' => <key>, 'pages' => [level =>

[pages allowed], etc.]]

5. Now we are in a position to define the Acl class. As before, we use a few classes,

and define constants and properties appropriate for access control:

namespace Application\Acl;

use InvalidArgumentException;

use Psr\Http\Message\RequestInterface;

use Application\MiddleWare\ { Constants, Response, TextStream };

class Acl

{

const DEFAULT_STATUS = '';

const DEFAULT_LEVEL = 0;

const DEFAULT_PAGE = 0;

const ERROR_ACL = 'ERROR: authorization error';

const ERROR_APP = 'ERROR: requested page not listed';

317

Developing Middleware

const ERROR_DEF =

'ERROR: must assign keys "levels", "pages" and "allowed"';

protected $default;

protected $levels;

protected $pages;

protected $allowed;

6. In the construct() method, we break up the assignments array into $pages,

the resources to be controlled, $levels, and $allowed, which are the actual

assignments. If the array does not include one of these three sub-components, an

exception is thrown:

public function construct(array $assignments)

{

$this->default = $assignments['default']

?? self::DEFAULT_PAGE;

$this->pages = $assignments['pages'] ?? FALSE;

$this->levels = $assignments['levels'] ?? FALSE;

$this->allowed = $assignments['allowed'] ?? FALSE;

if (!($this->pages && $this->levels && $this->allowed))

{ throw new

InvalidArgumentException(self::ERROR_DEF);

}

}

7. You may have noticed that we allow inheritance. In $allowed, the inherits key

can be set to another key within the array. If so, we need to merge its values with

the values currently under examination. We iterate through $allowed in reverse,

merging any inherited values each time through the loop. This method, incidentally,

also only isolates rules that apply to a certain status and level:

protected function mergeInherited($status, $level)

{

$allowed = $this->allowed[$status]['pages'][$level]

?? array();

for ($x = $status; $x > 0; $x--) {

$inherits = $this->allowed[$x]['inherits'];

if ($inherits) {

$subArray =

$this->allowed[$inherits]['pages'][$level]

?? array();

$allowed = array_merge($allowed, $subArray);

}

}

return $allowed;

}

318

Chapter 9

8. When processing authorization, we initialize a few variables, and then extract the

page requested from the original request URI. If the page parameter doesn't exist, we

set a 400 code:

public function isAuthorized(RequestInterface $request)

{

$code = 401; // unauthorized

$text['page'] = $this->pages[$this->default];

$text['authorized'] = FALSE;

$page = $request->getUri()->getQueryParams()['page']

?? FALSE;

if ($page === FALSE) {

$code = 400; // bad request

9. Otherwise, we decode the request body contents, and acquire the status and

level. We are then in a position to call mergeInherited(), which returns an array

of pages accessible to this status and level:

} else {

$params = json_decode(

$request->getBody()->getContents());

$status = $params->status ?? self::DEFAULT_LEVEL;

$level = $params->level ?? '*';

$allowed = $this->mergeInherited($status, $level);

10. If the requested page is in the $allowed array, we set the status code to a happy

200, and return an authorized setting along with the web page that corresponds to

the page code requested:

if (in_array($page, $allowed)) {

$code = 200; // OK

$text['authorized'] = TRUE;

$text['page'] = $this->pages[$page];

} else {

$code = 401; }

}

11. We then return the response, JSON-encoded, and we are done:

$body = new TextStream(json_encode($text));

return (new Response())->withStatus($code)

->withBody($body);

}

}

319

Developing Middleware

 How it works…

After that, you will need to define Application\Acl\Acl, which is discussed in this recipe.

Now move to the /path/to/source/for/this/chapter folder and create two directories:

public and pages. In pages, create a series of PHP files, such as page1.php, page2.php,

and so on. Here is an example of how one of these pages might look:

<?php // page 1 ?>

<h1>Page 1</h1>

<hr>

<p>Lorem ipsum dolor sit amet, consectetur adipiscing elit. etc.</p>

You can also define a menu.php page, which could be included in the output:

<?php // menu ?>

Page 1

Page 2

Page 3

// etc.

The logout.php page should destroy the session:

<?php

$_SESSION['info'] = FALSE;

session_destroy();

?>

BACK

The auth.php page will display a login screen (as described in the previous recipe):

<?= $auth->getLoginForm($action) ?>

You can then create a configuration file that allows access to web pages depending on level

and status. For the sake of illustration, call it chap_09_middleware_acl_config.php and

return an array that might look like this:

<?php

$min = [0, 'logout'];

return [

'default' => 0, // default page

'levels' => [0, 'BEG', 'INT', 'ADV'],

'pages' => [0 => 'sorry',

'logout' => 'logout',

'login' => 'auth',

1 => 'page1', 2 => 'page2', 3 => 'page3',

4 => 'page4', 5 => 'page5', 6 => 'page6',

320

Chapter 9

7 => 'page7', 8 => 'page8', 9 => 'page9'],

'allowed' => [

0 => ['inherits' => FALSE,

'pages' => ['*' => $min, 'BEG' => $min,

'INT' => $min,'ADV' => $min]],

1 => ['inherits' => FALSE,

'pages' => ['*' => ['logout'],

'BEG' => [1, 'logout'],

'INT' => [1,2, 'logout'],

'ADV' => [1,2,3, 'logout']]],

2 => ['inherits' => 1,

'pages' => ['BEG' => [4],

'INT' => [4,5],

'ADV' => [4,5,6]]],

3 => ['inherits' => 2,

'pages' => ['BEG' => [7],

'INT' => [7,8],

'ADV' => [7,8,9]]]

]

];

Finally, in the public folder, define index.php, which sets up autoloading, and ultimately

calls up both the Authenticate and Acl classes. As with other recipes, define configuration

files, set up autoloading, and use certain classes. Also, don't forget to start

the session:

<?php

session_start();

session_regenerate_id();

define('DB_CONFIG_FILE', DIR . '/../../config/db.config.php');

define('DB_TABLE', 'customer_09');

define('PAGE_DIR', DIR . '/../pages');

define('SESSION_KEY', 'auth');

require DIR . '/../../Application/Autoload/Loader.php';

Application\Autoload\Loader::init(DIR . '/../..');

use Application\Database\Connection;

use Application\Acl\ { Authenticate, Acl };

use Application\MiddleWare\ { ServerRequest, Request, Constants,

TextStream };

321

Developing Middleware

Best practice

It is a best practice to protect your sessions. An easy way to help protect

a session is to use session_regenerate_id(), which invalidates

the existing PHP session identifier and generates a new one. Thus, if an

attacker were to obtain the session identifier through illegal means, the

window of time in which any given session identifier is valid is kept to a

minimum.

You can now pull in the ACL configuration, and create instances for Authenticate as well

as Acl:

$config = require DIR . '/../chap_09_middleware_acl_config.php';

$acl = new Acl($config);

$conn = new Connection(include DB_CONFIG_FILE);

$dbAuth = new DbTable($conn, DB_TABLE);

$auth = new Authenticate($dbAuth, SESSION_KEY);

Next, define incoming and outbound request instances:

$incoming = new ServerRequest();

$incoming->initialize();

$outbound = new Request();

If the incoming request method was post, process the authentication calling the login()

method:

if (strtolower($incoming->getMethod()) == Constants::METHOD_POST) {

$body = new TextStream(json_encode(

$incoming->getParsedBody()));

$response = $auth->login($outbound->withBody($body));

}

If the session key defined for authentication is populated, that means the user has been

successfully authenticated. If not, we program an anonymous function, called later, which

includes the authentication login page:

$info = $_SESSION[SESSION_KEY] ?? FALSE;

if (!$info) {

$execute = function () use ($auth) {

include PAGE_DIR . '/auth.php';

};

Otherwise, you can proceed with the ACL check. You first need to find, from the original query,

which web page the user wants to visit, however:

} else {

$query = $incoming->getServerParams()['QUERY_STRING'] ?? '';

322

Chapter 9

You can then reprogram the $outbound request to include this information:

$outbound->withBody(new TextStream(json_encode($info)));

$outbound->getUri()->withQuery($query);

Next, you'll be in a position to check authorization, supplying the outbound request as

an argument:

$response = $acl->isAuthorized($outbound);

You can then examine the return response for the authorized parameter, and program

an anonymous function to include the return page parameter if OK, and the sorry

page otherwise:

$params = json_decode($response->getBody()->getContents());

$isAllowed = $params->authorized ?? FALSE;

if ($isAllowed) {

$execute = function () use ($response, $params) {

include PAGE_DIR .'/' . $params->page . '.php';

echo '<pre>', var_dump($response), '</pre>';

echo '<pre>', var_dump($_SESSION[SESSION_KEY]);

echo '</pre>';

};

} else {

$execute = function () use ($response) {

include PAGE_DIR .'/sorry.php';

echo '<pre>', var_dump($response), '</pre>';

echo '<pre>', var_dump($_SESSION[SESSION_KEY]);

echo '</pre>';

};

}

}

Now all you need to do is to set the form action and wrap the anonymous function in HTML:

$action = $incoming->getServerParams()['PHP_SELF'];

?>

<!DOCTYPE html>

<head>

<title>PHP 7 Cookbook</title>

<meta http-equiv="content-type" content="text/html;charset=utf-8" />

</head>

<body>

<?php $execute(); ?>

</body>

</html>

323

Developing Middleware

To test it, you can use the built-in PHP web server, but you will need to use the -t flag to

indicate that the document root is public:

cd /path/to/source/for/this/chapter

php -S localhost:8080 -t public

From a browser, you can access the http://localhost:8080/ URL.

If you try to access any page, you will simply be redirected back to the login page. As per the

configuration, a user with status = 1, and level = BEG can only access page 1 and log out. If,

when logged in as this user, you try to access page 2, here is the output:

 See also

This example relies on $_SESSION as the sole means of user authentication once they have

logged in. For good examples of how you can protect PHP sessions, please see Chapter 12,

Improving Web Security, specifically the recipe entitled Safeguarding the PHP session.

324

Chapter 9

 Improving performance using the cache

The cache software design pattern is where you store a result that takes a long time to generate.

This could take the form of a lengthy view script or a complex database query. The storage

destination needs to be highly performant, of course, if you wish to improve the user experience

of website visitors. As different installations will have different potential storage targets, the

cache mechanism lends itself to the adapter pattern as well. Examples of potential storage

destinations include memory, a database, and the filesystem.

 How to do it…

1. As with a couple of other recipes in this chapter, as there are shared constants,

we define a discreet Application\Cache\Constants class:

<?php

namespace Application\Cache;

class Constants

{

const DEFAULT_GROUP = 'default';

const DEFAULT_PREFIX = 'CACHE_';

const DEFAULT_SUFFIX = '.cache';

const ERROR_GET = 'ERROR: unable to retrieve from cache';

// not all constants are shown to conserve space

}

2. Seeing as we are following the adapter design pattern, we define an interface next:

namespace Application\Cache;

interface CacheAdapterInterface

{

public function hasKey($key);

public function getFromCache($key, $group);

public function saveToCache($key, $data, $group);

public function removeByKey($key);

public function removeByGroup($group);

}

3. Now we are ready to define our first cache adapter, in this illustration, by using a

MySQL database. We need to define properties that will hold column names as well

as prepared statements:

namespace Application\Cache;

use PDO;

use Application\Database\Connection;

325

Developing Middleware

class Database implements CacheAdapterInterface

{

protected $sql;

protected $connection;

protected $table;

protected $dataColumnName;

protected $keyColumnName;

protected $groupColumnName;

protected $statementHasKey = NULL;

protected $statementGetFromCache = NULL;

protected $statementSaveToCache = NULL;

protected $statementRemoveByKey = NULL;

protected $statementRemoveByGroup= NULL;

4. The constructor allows us to provide key column names as well as an Application\

Database\Connection instance and the name of the table used for the cache:

public function construct(Connection $connection,

$table,

$idColumnName,

$keyColumnName,

$dataColumnName,

$groupColumnName = Constants::DEFAULT_GROUP)

{

$this->connection = $connection;

$this->setTable($table);

$this->setIdColumnName($idColumnName);

$this->setDataColumnName($dataColumnName);

$this->setKeyColumnName($keyColumnName);

$this->setGroupColumnName($groupColumnName);

}

5. The next few methods prepare statements, and are called when we access the

database. We do not show all the methods, but present enough to give you the idea:

public function prepareHasKey()

{

$sql = 'SELECT `' . $this->idColumnName . '` '

. 'FROM `' . $this->table . '` '

. 'WHERE `' . $this->keyColumnName . '` = :key ';

$this->sql[METHOD] = $sql;

$this->statementHasKey =

$this->connection->pdo->prepare($sql);

}

public function prepareGetFromCache()

326

Chapter 9

{

$sql = 'SELECT `' . $this->dataColumnName . '` '

. 'FROM `' . $this->table . '` '

. 'WHERE `' . $this->keyColumnName . '` = :key '

. 'AND `' . $this->groupColumnName . '` = :group';

$this->sql[METHOD] = $sql;

$this->statementGetFromCache =

$this->connection->pdo->prepare($sql);

}

6. Now we define a method that determines whether data for a given key exists:

public function hasKey($key)

{

$result = 0;

try {

if (!$this->statementHasKey) $this->prepareHasKey();

$this->statementHasKey->execute(['key' => $key]);

} catch (Throwable $e) {

error_log(METHOD . ':' . $e->getMessage());

throw new Exception(Constants::ERROR_REMOVE_KEY);

}

return (int) $this->statementHasKey

->fetch(PDO::FETCH_ASSOC)[$this->idColumnName];

}

7. The core methods are ones that read from and write to the cache. Here is the method

that retrieves from the cache. All we need to do is to execute the prepared statement,

which performs a SELECT, with a WHERE clause, which incorporates the key and group:

public function getFromCache(

$key, $group = Constants::DEFAULT_GROUP)

{

try {

if (!$this->statementGetFromCache)

$this->prepareGetFromCache();

$this->statementGetFromCache->execute(

['key' => $key, 'group' => $group]);

while ($row = $this->statementGetFromCache

->fetch(PDO::FETCH_ASSOC)) {

if ($row && count($row)) {

yield unserialize($row[$this->dataColumnName]);

}

}

327

Developing Middleware

} catch (Throwable $e) {

error_log(METHOD

. ':' . $e->getMessage());

throw new Exception(Constants::ERROR_GET);

}

}

8. When writing to the cache, we first determine whether an entry for this cache key

exists. If so, we perform an UPDATE; otherwise, we perform an INSERT:

public function saveToCache($key, $data,

$group = Constants::DEFAULT_GROUP)

{

$id = $this->hasKey($key);

$result = 0;

try {

if ($id) {

if (!$this->statementUpdateCache)

$this->prepareUpdateCache();

$result = $this->statementUpdateCache

->execute(['key' => $key,

'data' => serialize($data),

'group' => $group,

'id' => $id]);

} else {

if (!$this->statementSaveToCache)

$this->prepareSaveToCache();

$result = $this->statementSaveToCache

->execute(['key' => $key,

'data' => serialize($data),

'group' => $group]);

}

} catch (Throwable $e) {

error_log(METHOD

. ':' . $e->getMessage());

throw new Exception(Constants::ERROR_SAVE);

}

return $result;

}

9. We then define two methods that remove the cache either by key or by group.

Removal by group provides a convenient mechanism if there are a large number of

items that need to be deleted:

public function removeByKey($key)

{

$result = 0;

try {

328

if (!$this->statementRemoveByKey)

$this->prepareRemoveByKey();

$result = $this->statementRemoveByKey->execute(

['key' => $key]);

} catch (Throwable $e) {

Chapter 9

error_log(METHOD . ':' . $e->getMessage());

throw new Exception(Constants::ERROR_REMOVE_KEY);

}

return $result;

}

public function removeByGroup($group)

{

$result = 0;

try {

if (!$this->statementRemoveByGroup)

$this->prepareRemoveByGroup();

$result = $this->statementRemoveByGroup->execute(

['group' => $group]);

} catch (Throwable $e) {

error_log(METHOD . ':' . $e->getMessage());

throw new Exception(Constants::ERROR_REMOVE_GROUP);

}

return $result;

}

10. Lastly, we define getters and setters for each of the properties. Not all are shown here

to conserve space:

public function setTable($name)

{

$this->table = $name;

}

public function getTable()

{

return $this->table;

}

// etc.

}

11. The filesystem cache adapter defines the same methods as defined earlier. Note the

use of md5(), not for security, but as a way of quickly generating a text string from

the key:

namespace Application\Cache;

use RecursiveIteratorIterator;

329

Developing Middleware

use RecursiveDirectoryIterator;

class File implements CacheAdapterInterface

{

protected $dir;

protected $prefix;

protected $suffix;

public function construct(

$dir, $prefix = NULL, $suffix = NULL)

{

if (!file_exists($dir)) {

error_log(METHOD . ':' . Constants::ERROR_DIR_NOT);

throw new Exception(Constants::ERROR_DIR_NOT);

}

$this->dir = $dir;

$this->prefix = $prefix ?? Constants::DEFAULT_PREFIX;

$this->suffix = $suffix ?? Constants::DEFAULT_SUFFIX;

}

public function hasKey($key)

{

$action = function ($name, $md5Key, &$item) {

if (strpos($name, $md5Key) !== FALSE) {

$item ++;

}

};

return $this->findKey($key, $action);

}

public function getFromCache($key,

$group = Constants::DEFAULT_GROUP)

{

$fn = $this->dir . '/' . $group . '/'

. $this->prefix . md5($key) . $this->suffix;

if (file_exists($fn)) {

foreach (file($fn) as $line) { yield $line; }

} else {

return array();

}

}

public function saveToCache(

$key, $data, $group = Constants::DEFAULT_GROUP)

{

330

Chapter 9

$baseDir = $this->dir . '/' . $group;

if (!file_exists($baseDir)) mkdir($baseDir);

$fn = $baseDir . '/' . $this->prefix . md5($key)

. $this->suffix;

return file_put_contents($fn, json_encode($data));

}

protected function findKey($key, callable $action)

{

$md5Key = md5($key);

$iterator = new RecursiveIteratorIterator(

new RecursiveDirectoryIterator($this->dir),

RecursiveIteratorIterator::SELF_FIRST);

$item = 0;

foreach ($iterator as $name => $obj) {

$action($name, $md5Key, $item);

}

return $item;

}

public function removeByKey($key)

{

$action = function ($name, $md5Key, &$item) {

if (strpos($name, $md5Key) !== FALSE) {

unlink($name);

$item++;

}

};

return $this->findKey($key, $action);

}

public function removeByGroup($group)

{

$removed = 0;

$baseDir = $this->dir . '/' . $group;

$pattern = $baseDir . '/' . $this->prefix . '*'

. $this->suffix;

foreach (glob($pattern) as $file) {

unlink($file);

$removed++;

}

return $removed;

}

}

331

Developing Middleware

12. Now we are ready to present the core cache mechanism. In the constructor, we

accept a class that implements CacheAdapterInterface as an argument:

namespace Application\Cache;

use Psr\Http\Message\RequestInterface;

use Application\MiddleWare\ { Request, Response, TextStream };

class Core

{

public function construct(CacheAdapterInterface $adapter)

{

$this->adapter = $adapter;

}

13. Next are a series of wrapper methods that call methods of the same name from

the adapter, but accept a Psr\Http\Message\RequestInterface class an an

argument, and return a Psr\Http\Message\ResponseInterface as a response.

We start with a simple one: hasKey(). Note how we extract the key from the

request parameters:

public function hasKey(RequestInterface $request)

{

$key = $request->getUri()->getQueryParams()['key'] ?? '';

$result = $this->adapter->hasKey($key);

}

14. To retrieve information from the cache, we need to pull the key and group parameters

from the request object, and then call the same method from the adapter. If no results

are obtained, we set a 204 code, which indicates the request was a success, but no

content was produced. Otherwise, we set a 200 (success) code, and iterate through the

results. Everything is then stuffed into a response object, which is returned:

public function getFromCache(RequestInterface $request)

{

$text = array();

$key = $request->getUri()->getQueryParams()['key'] ?? '';

$group = $request->getUri()->getQueryParams()['group']

?? Constants::DEFAULT_GROUP;

$results = $this->adapter->getFromCache($key, $group);

if (!$results) {

$code = 204;

} else {

$code = 200;

foreach ($results as $line) $text[] = $line;

}

332

Chapter 9

if (!$text || count($text) == 0) $code = 204;

$body = new TextStream(json_encode($text));

return (new Response())->withStatus($code)

->withBody($body);

}

15. Strangely, writing to the cache is almost identical, except that the results are expected

to be either a number (that is, the number of rows affected), or a Boolean result:

public function saveToCache(RequestInterface $request)

{

$text = array();

$key = $request->getUri()->getQueryParams()['key'] ?? '';

$group = $request->getUri()->getQueryParams()['group']

?? Constants::DEFAULT_GROUP;

$data = $request->getBody()->getContents();

$results = $this->adapter->saveToCache($key, $data, $group);

if (!$results) {

$code = 204;

} else {

$code = 200;

$text[] = $results;

}

$body = new TextStream(json_encode($text));

return (new Response())->withStatus($code)

->withBody($body);

}

16. The remove methods are, as expected, quite similar to each other:

public function removeByKey(RequestInterface $request)

{

$text = array();

$key = $request->getUri()->getQueryParams()['key'] ?? '';

$results = $this->adapter->removeByKey($key);

if (!$results) {

$code = 204;

} else {

$code = 200;

$text[] = $results;

}

$body = new TextStream(json_encode($text));

return (new Response())->withStatus($code)

333

Developing Middleware

}

->withBody($body);

public function removeByGroup(RequestInterface $request)

{

$text = array();

$group = $request->getUri()->getQueryParams()['group']

?? Constants::DEFAULT_GROUP;

$results = $this->adapter->removeByGroup($group);

if (!$results) {

$code = 204;

} else {

$code = 200;

$text[] = $results;

}

$body = new TextStream(json_encode($text));

return (new Response())->withStatus($code)

->withBody($body);

}

} // closing brace for class Core

 How it works…

In order to demonstrate the use of the Acl class, you will need to define the classes

described in this recipe, summarized here:

Class Discussed in these steps

Application\Cache\Constants 1

Application\Cache\CacheAdapterInterface 2

Application\Cache\Database 3 - 10

Application\Cache\File 11

Application\Cache\Core 12 - 16

Next, define a test program, which you could call chap_09_middleware_cache_db.php.

In this program, as usual, define constants for necessary files, set up autoloading, use the

appropriate classes, oh... and write a function that produces prime numbers (you're probably

re-reading that last little bit at this point. Not to worry, we can help you with that!):

<?php

define('DB_CONFIG_FILE', DIR

define('DB_TABLE', 'cache');

. '/../config/db.config.php');

define('CACHE_DIR', DIR

define('MAX_NUM', 100000);

. '/cache');

 334

require DIR

. '/../Application/Autoload/Loader.php';

Chapter 9

Application\Autoload\Loader::init(DIR

use Application\Database\Connection;

. '/..');

use Application\Cache\{ Constants, Core, Database, File };

use Application\MiddleWare\ { Request, TextStream };

Well, a function that takes a long time to run is needed, so prime number generator, here

we go! The numbers 1, 2, and 3 are given as primes. We use the PHP 7 yield from syntax

to produce these first three. then, we skip right to 5, and proceed up to the maximum value

requested:

function generatePrimes($max)

{

yield from [1,2,3];

for ($x = 5; $x < $max; $x++)

{

if($x & 1) {

$prime = TRUE;

for($i = 3; $i < $x; $i++) {

if(($x % $i) === 0) {

$prime = FALSE;

break;

}

}

if ($prime) yield $x;

}

}

}

You can then set up a database cache adapter instance, which serves as an argument for

the core:

$conn = new Connection(include DB_CONFIG_FILE);

$dbCache = new Database(

$conn, DB_TABLE, 'id', 'key', 'data', 'group');

$core = new Core($dbCache);

Alternatively, if you wish to use the file cache adapter instead, here is the appropriate code:

$fileCache = new File(CACHE_DIR);

$core = new Core($fileCache);

If you wanted to clear the cache, here is how it might be done:

$uriString = '/?group=' . Constants::DEFAULT_GROUP;

$cacheRequest = new Request($uriString, 'get');

$response = $core->removeByGroup($cacheRequest);

335

Developing Middleware

You can use time() and microtime() to see how long this script runs with and without

the cache:

$start = time() + microtime(TRUE);

echo "\nTime: " . $start;

Next, generate a cache request. A status code of 200 indicates you were able to obtain a list

of primes from the cache:

$uriString = '/?key=Test1';

$cacheRequest = new Request($uriString, 'get');

$response = $core->getFromCache($cacheRequest);

$status = $response->getStatusCode();

if ($status == 200) {

$primes = json_decode($response->getBody()->getContents());

Otherwise, you can assume nothing was obtained from the cache, which means you need to

generate prime numbers, and save the results to the cache:

} else {

$primes = array();

foreach (generatePrimes(MAX_NUM) as $num) {

$primes[] = $num;

}

$body = new TextStream(json_encode($primes));

$response = $core->saveToCache(

$cacheRequest->withBody($body));

}

You can then check the stop time, calculate the difference, and have a look at your new list

of primes:

$time = time() + microtime(TRUE);

$diff = $time - $start;

echo "\nTime: $time";

echo "\nDifference: $diff";

var_dump($primes);

Here is the expected output before values were stored in the cache:

336

Chapter 9

You can now run the same program again, this time retrieving from the cache:

337

Developing Middleware

Allowing for the fact that our little prime number generator is not the world's most efficient,

and also that the demonstration was run on a laptop, the time went from over 30 seconds

down to milliseconds.

 There's more…

Another possible cache adapter could be built around commands that are part of the Alternate

PHP Cache (APC) extension. This extension includes such functions as apc_exists(),

apc_store(), apc_fetch(), and apc_clear_cache(). These functions are perfect for our

hasKey(), saveToCache(), getFromCache(), and removeBy*() functions.

 See also

You might consider making slight changes to the cache adapter classes described previously

following PSR-6, which is a standards recommendation directed towards the cache. There is

not the same level of acceptance of this standard as with PSR-7, however, so we decided to

not follow this standard exactly in the recipe presented here. For more information on PSR-6,

please refer to http://www.php-fig.org/psr/psr-6/.

 Implementing routing

Routing refers to the process of accepting user-friendly URLs, dissecting the URL into its

component parts, and then making a determination as to which class and method should

be dispatched. The advantage of such an implementation is that not only can you make your

URLs Search Engine Optimization (SEO)-friendly, but you can also create rules, incorporating

regular expression patterns, which can extract values of parameters.

 How to do it…

1. Probably the most popular approach is to take advantage of a web server that

supports URL rewriting. An example of this is an Apache web server configured to

use mod_rewrite. You then define rewriting rules that allow graphic file requests

and requests for CSS and JavaScript to pass untouched. Otherwise, the request

would be funneled through a routing method.

2. Another potential approach is to simply have your web server virtual host definition

point to a specific routing script, which then invokes the routing class, make routing

decisions, and redirect appropriately.

338

http://www.php-fig.org/psr/psr-6/

Chapter 9

3. The first code to consider is how to define routing configuration. The obvious answer

is to construct an array, where each key would point to a regular expression against

which the URI path would match, and some form of action. An example of such

configuration is shown in the following code snippet. In this example, we have three

routes defined: home, page, and the default. The default should be last as it will

match anything not matched previously. The action is in the form of an anonymous

function that will be executed if a route match occurs:

$config = [

'home' => [

'uri' => '!^/$!',

'exec' => function ($matches) {

include PAGE_DIR . '/page0.php'; }

],

'page' => [

'uri' => '!^/(page)/(\d+)$!',

'exec' => function ($matches) {

include PAGE_DIR . '/page' . $matches[2] . '.php'; }

],

Router::DEFAULT_MATCH => [

'uri' => '!.*!',

'exec' => function ($matches) {

include PAGE_DIR . '/sorry.php'; }

],

];

4. Next, we define our Router class. We first define constants and properties that will

be of use during the process of examining and matching a route:

namespace Application\Routing;

use InvalidArgumentException;

use Psr\Http\Message\ServerRequestInterface;

class Router

{

const DEFAULT_MATCH = 'default';

const ERROR_NO_DEF = 'ERROR: must supply a default match';

protected $request;

protected $requestUri;

protected $uriParts;

protected $docRoot;

protected $config;

protected $routeMatch;

339

Developing Middleware

5. The constructor accepts a ServerRequestInterface compliant class, the path to

the document root, and the configuration file mentioned earlier. Note that we throw

an exception if the default configuration is not supplied:

public function construct(ServerRequestInterface $request,

$docRoot, $config)

{

$this->config = $config;

$this->docRoot = $docRoot;

$this->request = $request;

$this->requestUri =

$request->getServerParams()['REQUEST_URI'];

$this->uriParts = explode('/', $this->requestUri);

if (!isset($config[self::DEFAULT_MATCH])) {

throw new InvalidArgumentException(

self::ERROR_NO_DEF);

}

}

6. Next, we have a series of getters that allow us to retrieve the original request,

document root, and final route match:

public function getRequest()

{

return $this->request;

}

public function getDocRoot()

{

return $this->docRoot;

}

public function getRouteMatch()

{

return $this->routeMatch;

}

7. The isFileOrDir() method is used to determine whether we are trying to match

against a CSS, JavaScript, or graphic request (among other possibilities):

public function isFileOrDir()

{

$fn = $this->docRoot . '/' . $this->requestUri;

$fn = str_replace('//', '/', $fn);

if (file_exists($fn)) {

return $fn;

} else {

return '';

}

}

340

Chapter 9

8. Finally we define match(), which iterates through the configuration array and runs

the uri parameter through preg_match(). If positive, the configuration key and

$matches array populated by preg_match() are stored in $routeMatch, and the

callback is returned. If there is no match, the default callback is returned:

public function match()

{

foreach ($this->config as $key => $route) {

if (preg_match($route['uri'],

$this->requestUri, $matches)) {

$this->routeMatch['key'] = $key;

$this->routeMatch['match'] = $matches;

return $route['exec'];

}

}

return $this->config[self::DEFAULT_MATCH]['exec'];

}

}

 How it works…

First, change to /path/to/source/for/this/chapter and create a directory called

routing. Next, define a file, index.php, which sets up autoloading and uses the right

classes. You can define a constant PAGE_DIR that points to the pages directory created in

the previous recipe:

<?php

define('DOC_ROOT', DIR);

define('PAGE_DIR', DOC_ROOT . '/../pages');

require_once DIR . '/../../Application/Autoload/Loader.php';

Application\Autoload\Loader::init(DIR

use Application\MiddleWare\ServerRequest;

use Application\Routing\Router;

. '/../..');

Next, add the configuration array discussed in step 3 of this recipe. Note that you could add

(/)? at the end of the pattern to account for an optional trailing slash. Also, for the home

route, you could offer two options: either / or /home:

$config = [

'home' => [

'uri' => '!^(/|/home)$!',

'exec' => function ($matches) {

include PAGE_DIR . '/page0.php'; }

341

Developing Middleware

],

'page' => [

'uri' => '!^/(page)/(\d+)(/)?$!',

'exec' => function ($matches) {

include PAGE_DIR . '/page' . $matches[2] . '.php'; }

],

Router::DEFAULT_MATCH => [

'uri' => '!.*!',

'exec' => function ($matches) {

include PAGE_DIR . '/sorry.php'; }

],

];

You can then define a router instance, supplying an initialized ServerRequest instance as

the first argument:

$router = new Router((new ServerRequest())

->initialize(), DOC_ROOT, $config);

$execute = $router->match();

$params = $router->getRouteMatch()['match'];

You then need to check to see whether the request is a file or directory, and also whether the

route match is /:

if ($fn = $router->isFileOrDir()

&& $router->getRequest()->getUri()->getPath() != '/') {

return FALSE;

} else {

include DOC_ROOT . '/main.php';

}

Next, define main.php, something like this:

<?php // demo using middleware for routing ?>

<!DOCTYPE html>

<head>

<title>PHP 7 Cookbook</title>

<meta http-equiv="content-type"

content="text/html;charset=utf-8" />

</head>

<body>

<?php include PAGE_DIR . '/route_menu.php'; ?>

<?php $execute($params); ?>

</body>

</html>

342

Chapter 9

And finally, a revised menu that uses user-friendly routing is required:

<?php // menu for routing ?>

Home

Page 1

Page 2

Page 3

<!-- etc. -->

To test the configuration using Apache, define a virtual host definition that points to

/path/to/source/for/this/chapter/routing. In addition, define a .htaccess file

that directs any request that is not a file, directory, or link to index.php. Alternatively, you

could just use the built-in PHP webserver. In a terminal window or command prompt, type

this command:

cd /path/to/source/for/this/chapter/routing

php -S localhost:8080

In a browser, the output when requesting http://localhost:8080/home is something

like this:

343

Developing Middleware

 See also

For information on rewriting using the NGINX web server, have a look at this article: http://

nginx.org/en/docs/http/ngx_http_rewrite_module.html. There are plenty of

sophisticated PHP routing libraries available that introduce far greater functionality than

the simple router presented here. These include Altorouter (http://altorouter.com/),

TreeRoute (https://github.com/baryshev/TreeRoute), FastRoute (https://

github.com/nikic/FastRoute), and Aura.Router. (https://github.com/auraphp/

Aura.Router). In addition, most frameworks (for example, Zend Framework 2 or CodeIgniter)

have their own routing capabilities.

 Making inter-framework system calls

One of the primary reasons for the development of PSR-7 (and middleware) was a growing

need to make calls between frameworks. It is of interest to note that the main documentation

for PSR-7 is hosted by PHP Framework Interop Group (PHP-FIG).

 How to do it…

1. The primary mechanism used in middleware inter-framework calls is to create a driver

program that executes framework calls in succession, maintaining a common request

and response object. The request and response objects are expected to represent

Psr\Http\Message\ServerRequestInterface and Psr\Http\Message\

ResponseInterface, respectively.

2. For the purposes of this illustration, we define a middleware session validator. The

constants and properties reflect the session thumbprint, which is a term we use

to incorporate factors such as the website visitor's IP address, browser, and

language settings:

namespace Application\MiddleWare\Session;

use InvalidArgumentException;

use Psr\Http\Message\ {

ServerRequestInterface, ResponseInterface };

use Application\MiddleWare\ { Constants, Response, TextStream };

class Validator

{

const KEY_TEXT = 'text';

const KEY_SESSION = 'thumbprint';

const KEY_STATUS_CODE = 'code';

const KEY_STATUS_REASON = 'reason';

344

http://altorouter.com/)

const KEY_STOP_TIME = 'stop_time';

Chapter 9

const ERROR_TIME = 'ERROR: session has exceeded stop time';

const ERROR_SESSION = 'ERROR: thumbprint does not match';

const SUCCESS_SESSION = 'SUCCESS: session validates OK';

protected $sessionKey;

protected $currentPrint;

protected $storedPrint;

protected $currentTime;

protected $storedTime;

3. The constructor takes a ServerRequestInterface instance and the session as

arguments. If the session is an array (such as $_SESSION), we wrap it in a class. The

reason why we do this is in case we are passed a session object, such as JSession

used in Joomla. We then create the thumbprint using the previously mentioned

factors. If the stored thumbprint is not available, we assume this is the first time, and

store the current print as well as stop time, if this parameter is set. We used md5()

because it's a fast hash, is not exposed externally, and is therefore useful to this

application:

public function construct(

ServerRequestInterface $request, $stopTime = NULL)

{

$this->currentTime = time();

$this->storedTime = $_SESSION[self::KEY_STOP_TIME] ?? 0;

$this->currentPrint =

md5($request->getServerParams()['REMOTE_ADDR']

. $request->getServerParams()['HTTP_USER_AGENT']

. $request->getServerParams()['HTTP_ACCEPT_LANGUAGE']);

$this->storedPrint = $_SESSION[self::KEY_SESSION]

?? NULL;

if (empty($this->storedPrint)) {

$this->storedPrint = $this->currentPrint;

$_SESSION[self::KEY_SESSION] = $this->storedPrint;

if ($stopTime) {

$this->storedTime = $stopTime;

$_SESSION[self::KEY_STOP_TIME] = $stopTime;

}

}

}

345

Developing Middleware

4. It's not required to define invoke(), but this magic method is quite

convenient for standalone middleware classes. As is the convention, we accept

ServerRequestInterface and ResponseInterface instances as arguments.

In this method, we simply check to see whether the current thumbprint matches the

one stored. The first time, of course, they will match. But on subsequent requests, the

chances are an attacker intent on session hijacking will be caught out. In addition, if

the session time exceeds the stop time (if set), likewise, a 401 code will be sent:

public function invoke(

ServerRequestInterface $request, Response $response)

{

$code = 401; // unauthorized

if ($this->currentPrint != $this->storedPrint) {

$text[self::KEY_TEXT] = self::ERROR_SESSION;

$text[self::KEY_STATUS_REASON] =

Constants::STATUS_CODES[401];

} elseif ($this->storedTime) {

if ($this->currentTime > $this->storedTime) {

$text[self::KEY_TEXT] = self::ERROR_TIME;

$text[self::KEY_STATUS_REASON] =

Constants::STATUS_CODES[401];

} else {

$code = 200; // success

}

}

if ($code == 200) {

$text[self::KEY_TEXT] = self::SUCCESS_SESSION;

$text[self::KEY_STATUS_REASON] =

Constants::STATUS_CODES[200];

}

$text[self::KEY_STATUS_CODE] = $code;

$body = new TextStream(json_encode($text));

return $response->withStatus($code)->withBody($body);

}

5. We can now put our new middleware class to use. The main problems with inter-

framework calls, at least at this point, are summarized here. Accordingly, how we

implement middleware depends heavily on the last point:

 Not all PHP frameworks are PSR-7-compliant

 Existing PSR-7 implementations are not complete

 All frameworks want to be the "boss"

346

Chapter 9

6. As an example, have a look at the configuration files for Zend Expressive, which is a

self-proclaimed PSR7 Middleware Microframework. Here is the file, middleware-

pipeline.global.php, which is located in the config/autoload folder in

a standard Expressive application. The dependencies key is used to identify the

middleware wrapper classes that will be activated in the pipeline:

<?php

use Zend\Expressive\Container\ApplicationFactory;

use Zend\Expressive\Helper;

return [

'dependencies' => [

'factories' => [

Helper\ServerUrlMiddleware::class =>

Helper\ServerUrlMiddlewareFactory::class,

Helper\UrlHelperMiddleware::class =>

Helper\UrlHelperMiddlewareFactory::class,

// insert your own class here

],

],

7. Under the middleware_pipline key, you can identify classes that will be executed

before or after the routing process occurs. Optional parameters include path, error,

and priority:

'middleware_pipeline' => [

'always' => [

'middleware' => [

Helper\ServerUrlMiddleware::class,

],

'priority' => 10000,

],

'routing' => [

'middleware' => [

ApplicationFactory::ROUTING_MIDDLEWARE,

Helper\UrlHelperMiddleware::class,

// insert reference to middleware here

ApplicationFactory::DISPATCH_MIDDLEWARE,

],

'priority' => 1,

],

'error' => [

'middleware' => [

// Add error middleware here.

],

'error' => true,

347

Developing Middleware

'priority' => -10000,

],

],

];

8. Another technique is to modify the source code of an existing framework module, and

make a request to a PSR-7-compliant middleware application. Here is an example

modifying a Joomla! installation to include a middleware session validator.

9. Next, add this code the end of the index.php file in the /path/to/joomla folder.

Since Joomla! uses Composer, we can leverage the Composer autoloader:

session_start(); // to support use of $_SESSION

$loader = include DIR . '/libraries/vendor/autoload.php';

$loader->add('Application', DIR . '/libraries/vendor');

$loader->add('Psr', DIR . '/libraries/vendor');

10. We can then create an instance of our middleware session validator, and make a

validation request just before $app = JFactory::getApplication('site');:

$session = JFactory::getSession();

$request =

(new Application\MiddleWare\ServerRequest())->initialize();

$response = new Application\MiddleWare\Response();

$validator = new Application\Security\Session\Validator(

$request, $session);

$response = $validator($request, $response);

if ($response->getStatusCode() != 200) {

// take some action

}

 How it works…

First, create the Application\MiddleWare\Session\Validator test middleware class

described in steps 2-5. Then you will need to go to https://getcomposer.org/ and follow

the directions to obtain Composer. Download it to the /path/to/source/for/this/

chapter folder. Next, build a basic Zend Expressive application, as shown next. Be sure to

select No when prompted for minimal skeleton:

cd /path/to/source/for/this/chapter

php composer.phar create-project zendframework/zend-expressive-skeleton

expressive

348

Chapter 9

This will create a folder /path/to/source/for/this/chapter/expressive. Change

to this directory. Modify public/index.php as follows:

<?php

if (php_sapi_name() === 'cli-server'

&& is_file(DIR . parse_url(

$_SERVER['REQUEST_URI'], PHP_URL_PATH))

) {

return false;

}

chdir(dirname(DIR));

session_start();

$_SESSION['time'] = time();

$appDir = realpath(DIR . '/../../..');

$loader = require 'vendor/autoload.php';

$loader->add('Application', $appDir);

$container = require 'config/container.php';

$app = $container->get(\Zend\Expressive\Application::class);

$app->run();

You will then need to create a wrapper class that invokes our session validator middleware.

Create a SessionValidateAction.php file that needs to go in the /path/to/source/

for/this/chapter/expressive/src/App/Action folder. For the purposes of this

illustration, set the stop time parameter to a short duration. In this case, time() + 10 gives

you 10 seconds:

namespace App\Action;

use Application\MiddleWare\Session\Validator;

use Zend\Diactoros\ { Request, Response };

use Psr\Http\Message\ResponseInterface;

use Psr\Http\Message\ServerRequestInterface;

class SessionValidateAction

{

public function invoke(ServerRequestInterface $request,

ResponseInterface $response, callable $next = null)

{

$inbound = new Response();

$validator = new Validator($request, time()+10);

$inbound = $validator($request, $response);

if ($inbound->getStatusCode() != 200) {

session_destroy();

setcookie('PHPSESSID', 0, time()-300);

$params = json_decode(

$inbound->getBody()->getContents(), TRUE);

349

Developing Middleware

echo '<h1>',$params[Validator::KEY_TEXT],'</h1>';

echo '<pre>',var_dump($inbound),'</pre>';

exit;

}

return $next($request,$response);

}

}

You will now need to add the new class to the middleware pipeline. Modify

config/autoload/middleware-pipeline.global.php as follows. Modifications are

shown in bold:

<?php

use Zend\Expressive\Container\ApplicationFactory;

use Zend\Expressive\Helper;

return [

'dependencies' => [

'invokables' => [

App\Action\SessionValidateAction::class =>

App\Action\SessionValidateAction::class,

],

'factories' => [

Helper\ServerUrlMiddleware::class =>

Helper\ServerUrlMiddlewareFactory::class,

Helper\UrlHelperMiddleware::class =>

Helper\UrlHelperMiddlewareFactory::class,

],

],

'middleware_pipeline' => [

'always' => [

'middleware' => [

Helper\ServerUrlMiddleware::class,

],

'priority' => 10000,

],

'routing' => [

'middleware' => [

ApplicationFactory::ROUTING_MIDDLEWARE,

Helper\UrlHelperMiddleware::class,

App\Action\SessionValidateAction::class,

ApplicationFactory::DISPATCH_MIDDLEWARE,

],

'priority' => 1,

],

350

Chapter 9

'error' => [

'middleware' => [

// Add error middleware here.

],

'error' => true,

'priority' => -10000,

],

],

];

You might also consider modifying the home page template to show the status of $_SESSION.

The file in question is /path/to/source/for/this/chapter/expressive/templates/

app/home-page.phtml. Simply adding var_dump($_SESSION) should suffice.

Initially, you should see something like this:

351

Developing Middleware

After 10 seconds, refresh the browser. You should now see this:

 Using middleware to cross languages

Except in cases where you are trying to communicate between different versions of PHP, PSR-

7 middleware will be of minimal use. Recall what the acronym stands for: PHP Standards

Recommendations. Accordingly, if you need to make a request to an application written in

another language, treat it as you would any other web service HTTP request.

 How to do it…

1. In the case of PHP 4, you actually have a chance in that there is limited support

for object-oriented programming. Accordingly, the best approach would be to

downgrade the basic PSR-7 classes described in the first three recipes. There is not

enough space to cover all the changes, but we present a potential PHP 4 version of

Application\MiddleWare\ServerRequest. The first thing to note is that there

are no namespaces! Accordingly, we use a classname with underscores, _, in place of

namespace separators:

class Application_MiddleWare_ServerRequest

extends Application_MiddleWare_Request

implements Psr_Http_Message_ServerRequestInterface

{

352

Chapter 9

2. All properties are identified in PHP 4 using the key word var:

var $serverParams;

var $cookies;

var $queryParams;

// not all properties are shown

3. The initialize() method is almost the same, except that syntax such as $this-

>getServerParams()['REQUEST_URI'] was not allowed in PHP 4. Accordingly,

we need to split this out into a separate variable:

function initialize()

{

$params = $this->getServerParams();

$this->getCookieParams();

$this->getQueryParams();

$this->getUploadedFiles;

$this->getRequestMethod();

$this->getContentType();

$this->getParsedBody();

return $this->withRequestTarget($params['REQUEST_URI']);

}

4. All of the $_XXX super-globals were present in later versions of PHP 4:

function getServerParams()

{

if (!$this->serverParams) {

$this->serverParams = $_SERVER;

}

return $this->serverParams;

}

// not all getXXX() methods are shown to conserve space

5. The null coalesce operator was only introduced in PHP 7. We need to use

isset(XXX) ? XXX : ''; instead:

function getRequestMethod()

{

$params = $this->getServerParams();

$method = isset($params['REQUEST_METHOD'])

? $params['REQUEST_METHOD'] : '';

$this->method = strtolower($method);

return $this->method;

}

353

Developing Middleware

6. The JSON extension was not introduced until PHP 5. Accordingly, we need

to be satisfied with raw input. We could also possibly use serialize() or

unserialize() in place of json_encode() and json_decode():

function getParsedBody()

{

if (!$this->parsedBody) {

if (($this->getContentType() ==

Constants::CONTENT_TYPE_FORM_ENCODED

|| $this->getContentType() ==

Constants::CONTENT_TYPE_MULTI_FORM)

&& $this->getRequestMethod() ==

Constants::METHOD_POST)

{

$this->parsedBody = $_POST;

} elseif ($this->getContentType() ==

Constants::CONTENT_TYPE_JSON

|| $this->getContentType() ==

Constants::CONTENT_TYPE_HAL_JSON)

{

ini_set("allow_url_fopen", true);

$this->parsedBody =

file_get_contents('php://stdin');

} elseif (!empty($_REQUEST)) {

$this->parsedBody = $_REQUEST;

} else {

ini_set("allow_url_fopen", true);

$this->parsedBody =

file_get_contents('php://stdin');

}

}

return $this->parsedBody;

}

7. The withXXX() methods work pretty much the same in PHP 4:

function withParsedBody($data)

{

$this->parsedBody = $data;

return $this;

}

354

Chapter 9

8. Likewise, the withoutXXX() methods work the same as well:

function withoutAttribute($name)

{

if (isset($this->attributes[$name])) {

unset($this->attributes[$name]);

}

return $this;

}

}

9. For websites using other languages, we could use the PSR-7 classes to formulate

requests and responses, but would then need to use an HTTP client to communicate

with the other website. As an example, recall the demonstration of a Request

discussed in the recipe Developing a PSR-7 request class from this chapter.

Here is the example from the How it works… section:

$request = new Request(

TARGET_WEBSITE_URL,

Constants::METHOD_POST,

new TextStream($contents),

[Constants::HEADER_CONTENT_TYPE =>

Constants::CONTENT_TYPE_FORM_ENCODED,

Constants::HEADER_CONTENT_LENGTH => $body->getSize()]

);

$data = http_build_query(['data' =>

$request->getBody()->getContents()]);

$defaults = array(

CURLOPT_URL => $request->getUri()->getUriString(),

CURLOPT_POST => true,

CURLOPT_POSTFIELDS => $data,

);

$ch = curl_init();

curl_setopt_array($ch, $defaults);

$response = curl_exec($ch);

curl_close($ch);

355

10
Looking at Advanced

Algorithms

In this chapter, we will cover:

f Using getters and setters

f Implementing a linked list

f Building a bubble sort

f Implementing a stack

f Building a binary search class

f Implementing a search engine

f Displaying a multi-dimensional array and accumulating totals

 Introduction

In this chapter, we cover recipes that implement various advanced algorithms such as linked

list, bubble sort, stacks, and binary search. In addition, we cover getters and setters, as well

as implementing a search engine and displaying values from a multi-dimensional array with

accumulated totals.

357

Looking at Advanced Algorithms

 Using getters and setters

At first glance, it would seemingly make sense to define classes with public properties,

which can then be directly read or written. It is considered a best practice, however, to make

properties protected, and to then define a getter and setter for each. As the name implies,

a getter retrieves the value of a property. A setter is used to set the value.

Best practice

Define properties as protected to prevent accidental outside access. Use

public get* and set* methods to provide access to these properties. In

this manner, not only can you more precisely control access, but you can

also make formatting and data type changes to the properties while getting

and setting them.

 How to do it…

1. Getters and setters provide additional flexibility when getting or setting values.

You are able to add an additional layer of logic if needed, something which would

not be possible if you were to directly read or write a public property. All you need

to do is to create a public method with a prefix of either get or set. The name of

the property becomes the suffix. It is a convention to make the first letter of the

variable uppercase. Thus, if the property is $testValue, the getter would be

getTestValue().

2. In this example, we define a class with a protected property, $date. Notice that

the get and set methods allow for treatment as either a DateTime object or as a

string. The value is actually stored in any event as a DateTime instance:

$a = new class() {

protected $date;

public function setDate($date)

{

if (is_string($date)) {

$this->date = new DateTime($date);

} else {

$this->date = $date;

}

}

public function getDate($asString = FALSE)

{

if ($asString) {

return $this->date->format('Y-m-d H:i:s');

} else {

return $this->date;

358

Chapter 10

}

}

};

3. Getters and setters allow you to filter or sanitize the data coming in or going out. In

the following example, there are two properties, $intVal and $arrVal, which are

set to a default initial value of NULL. Notice that not only are the return values for the

getters data-typed, but they also provide defaults. The setters also either enforce the

incoming data-type, or type-cast the incoming value to a certain data-type:

<?php

class GetSet

{

protected $intVal = NULL;

protected $arrVal = NULL;

// note the use of the null coalesce operator to return

a default value

public function getIntVal() : int

{

return $this->intVal ?? 0;

}

public function getArrVal() : array

{

return $this->arrVal ?? array();

}

public function setIntVal($val)

{

$this->intVal = (int) $val ?? 0;

}

public function setArrVal(array $val)

{

$this->arrVal = $val ?? array();

}

}

4. If you have a class with lots and lots of properties, it might become tedious to define

a distinct getter and setter for each property. In this case, you can define a kind

of fallback using the magic method call(). The following class defines nine

different properties. Instead of having to define nine getters and nine setters, we

define a single method, call(), which makes a determination whether or not the

usage is get or set. If get, it retrieves the key from an internal array. If set, it stores

the value in the internal array.

359

Looking at Advanced Algorithms

The call()method is a magic method which is executed if an

application makes a call to a non-existent method.

<?php

class LotsProps

{

protected $firstName = NULL;

protected $lastName = NULL;

protected $addr1 = NULL;

protected $addr2 = NULL;

protected $city = NULL;

protected $state = NULL;

protected $province = NULL;

protected $postalCode = NULL;

protected $country = NULL;

protected $values = array();

public function call($method, $params)

{

preg_match('/^(get|set)(.*?)$/i', $method, $matches);

$prefix = $matches[1] ?? '';

$key = $matches[2] ?? '';

$key = strtolower($key);

if ($prefix == 'get') {

return $this->values[$key] ?? '---';

} else {

$this->values[$key] = $params[0];

}

}

}

 How it works…

Copy the code mentioned in step 1 into a new file, chap_10_oop_using_getters_and_

setters.php. To test the class, add the following:

// set date using a string

$a->setDate('2015-01-01');

var_dump($a->getDate());

// retrieves the DateTime instance

var_dump($a->getDate(TRUE));

360

Chapter 10

// set date using a DateTime instance

$a->setDate(new DateTime('now'));

var_dump($a->getDate());

// retrieves the DateTime instance

var_dump($a->getDate(TRUE));

In the output (shown next), you can see that the $date property can be set using either a

string or an actual DateTime instance. When getDate() is executed, you can return

either a string or a DateTime instance, depending on the value of the $asString flag:

Next, have a look at the code defined in step 2. Copy this code into a file, chap_10_oop_

using_getters_and_setters_defaults.php, and add the following:

// create the instance

$a = new GetSet();

// set a "proper" value

$a->setIntVal(1234);

echo $a->getIntVal();

echo PHP_EOL;

// set a bogus value

$a->setIntVal('some bogus value');

361

Looking at Advanced Algorithms

echo $a->getIntVal();

echo PHP_EOL;

// NOTE: boolean TRUE == 1

$a->setIntVal(TRUE);

echo $a->getIntVal();

echo PHP_EOL;

// returns array() even though no value was set

var_dump($a->getArrVal());

echo PHP_EOL;

// sets a "proper" value

$a->setArrVal(['A','B','C']);

var_dump($a->getArrVal());

echo PHP_EOL;

try {

$a->setArrVal('this is not an array');

var_dump($a->getArrVal());

echo PHP_EOL;

} catch (TypeError $e) {

echo $e->getMessage();

}

echo PHP_EOL;

As you can see from the following output, setting a proper integer value works as expected. A

non-numeric value defaults to 0. Interestingly, if you supply a Boolean TRUE as an argument

to setIntVal(), it is interpolated to 1.

If you call getArrVal() without setting a value, the default is an empty array. Setting an

array value works as expected. However, if you supply a non-array value as an argument, the

type hint of the array causes a TypeError to be thrown, which can be caught as shown here:

362

Chapter 10

Finally, take the LotsProps class defined in step 3 and place it in a separate file, chap_10_

oop_using_getters_and_setters_magic_call.php. Now add code to set values.

What will happen, of course, is that the magic method call() is invoked. After running

preg_match(), the remainder of the non-existent property, after the letters set, will become

a key in the internal array $values:

$a = new LotsProps();

$a->setFirstName('Li\'l Abner');

$a->setLastName('Yokum');

$a->setAddr1('1 Dirt Street');

$a->setCity('Dogpatch');

$a->setState('Kentucky');

$a->setPostalCode('12345');

$a->setCountry('USA');

?>

You can then define HTML that displays the values using the corresponding get methods.

These will in turn return keys from the internal array:

<div class="container">

<div class="left blue1">Name</div>

<div class="right yellow1">

<?= $a->getFirstName() . ' ' . $a->getLastName() ?></div>

</div>

<div class="left blue2">Address</div>

<div class="right yellow2">

<?= $a->getAddr1() ?>

<?= $a->getAddr2() ?>

363

Looking at Advanced Algorithms

<?= $a->getCity() ?>

<?= $a->getState() ?>

<?= $a->getProvince() ?>

<?= $a->getPostalCode() ?>

<?= $a->getCountry() ?>

</div>

</div>

Here is the final output:

 Implementing a linked list

A linked list is where one list contains keys that point to keys in another list. An analogy, in

database terms, would be where you have a table that contains data, and a separate index

that points to the data. One index might produce a list of items by ID. Another index might

yield a list according to title and so on. The salient feature of the linked list is that you do not

have to touch the original list of items.

For example, in the diagram shown next, the primary list contains ID numbers and the names

of fruits. If you were to directly output the primary list, the fruit names would display in this

order: Apple, Grape, Banana, Orange, Cherry. If you were to use the linked list as an index, on

the other hand, the resulting output of fruit names would be Apple, Banana, Cherry, Grape,

and Orange:

364

 How to do it…

Chapter 10

1. One of the primary uses of a linked list is to produce a display of items in a different

order. One approach would be to create an iteration of key value pairs, where the key

represents the new order, and the value contains the value of the key in the primary

list. Such a function might look like this:

function buildLinkedList(array $primary,

callable $makeLink)

{

$linked = new ArrayIterator();

foreach ($primary as $key => $row) {

$linked->offsetSet($makeLink($row), $key);

}

$linked->ksort();

return $linked;

}

2. We use an anonymous function to generate the new key in order to provide extra

flexibility. You will also notice that we do a sort by key (ksort()) so that the linked

list iterates in key order.

3. All we need to do to use the linked list is to iterate through it, but produce results from

the primary list, $customer in this example:

foreach ($linked as $key => $link) {

$output .= printRow($customer[$link]);

}

4. Note that in no way do we touch the primary list. This allows us to generate multiple

linked lists, each representing a different order, while retaining our original set of

data.

5. Another important use of a linked list is for the purposes of filtering. The technique

is similar to that shown previously. The only difference is that we expand the

buildLinkedList() function, adding a filter column and filter value:

function buildLinkedList(array $primary,

callable $makeLink,

$filterCol = NULL,

$filterVal = NULL)

{

$linked = new ArrayIterator();

$filterVal = trim($filterVal);

foreach ($primary as $key => $row) {

if ($filterCol) {

if (trim($row[$filterCol]) == $filterVal) {

$linked->offsetSet($makeLink($row), $key);

365

Looking at Advanced Algorithms

}

} else {

$linked->offsetSet($makeLink($row), $key);

}

}

$linked->ksort();

return $linked;

}

6. We only include items in the linked list where the value represented by $filterCol

in the primary list matches $filterVal. The iteration logic is the same as that

shown in step 2.

7. Finally, another form of linked list is the doubly linked list. In this case, the list

is constructed in such a manner that the iteration can occur in either a forward

or reverse direction. In the case of PHP, we are fortunate to have an SPL class,

SplDoublyLinkedList, which neatly does the trick. Here is a function that builds a

doubly linked list:

function buildDoublyLinkedList(ArrayIterator $linked)

{

$double = new SplDoublyLinkedList();

foreach ($linked as $key => $value) {

$double->push($value);

}

return $double;

}

The terminology for SplDoublyLinkedList can be misleading.

 SplDoublyLinkedList::top() actually points to the end of the list,

whereas SplDoublyLinkedList::bottom() points to the beginning!

 How it works…

Copy the code shown in the first bullet into a file, chap_10_linked_list_include.

php. In order to demonstrate the use of a linked list, you will need a source of data. For

this illustration, you can make use of the customer.csv file that was mentioned in earlier

recipes. It is a CSV file with the following columns:

"id","name","balance","email","password","status","security_question",

"confirm_code","profile_id","level"

366

Chapter 10

You can add the following functions to the include file mentioned previously to generate a

primary list of customers, and to display information about them. Note that we use the first

column, id as the primary key:

function readCsv($fn, &$headers)

{

if (!file_exists($fn)) {

throw new Error('File Not Found');

}

$fileObj = new SplFileObject($fn, 'r');

$result = array();

$headers = array();

$firstRow = TRUE;

while ($row = $fileObj->fgetcsv()) {

// store 1st row as headers

if ($firstRow) {

$firstRow = FALSE;

$headers = $row;

} else {

if ($row && $row[0] !== NULL && $row[0] !== 0) {

$result[$row[0]] = $row;

}

}

}

return $result;

}

function printHeaders($headers)

{

return sprintf('%4s : %18s : %8s : %32s : %4s' . PHP_EOL,

ucfirst($headers[0]),

ucfirst($headers[1]),

ucfirst($headers[2]),

ucfirst($headers[3]),

ucfirst($headers[9]));

}

function printRow($row)

{

return sprintf('%4d : %18s : %8.2f : %32s : %4s' . PHP_EOL,

$row[0], $row[1], $row[2], $row[3], $row[9]);

}

367

Looking at Advanced Algorithms

function printCustomer($headers, $linked, $customer)

{

$output = '';

$output .= printHeaders($headers);

foreach ($linked as $key => $link) {

$output .= printRow($customer[$link]);

}

return $output;

}

You can then define a calling program, chap_10_linked_list_in_order.php, which

includes the file defined previously, and reads customer.csv:

<?php

define('CUSTOMER_FILE', DIR . '/../data/files/customer.csv');

include DIR . '/chap_10_linked_list_include.php';

$headers = array();

$customer = readCsv(CUSTOMER_FILE, $headers);

You can then define an anonymous function that will produce a key in the linked list. In this

illustration, define a function that breaks down column 1 (name) into first and last names:

$makeLink = function ($row) {

list($first, $last) = explode(' ', $row[1]);

return trim($last) . trim($first);

};

You can then call the function to build the linked list, and use printCustomer() to display

the results:

$linked = buildLinkedList($customer, $makeLink);

echo printCustomer($headers, $linked, $customer);

Here is how the output might appear:

368

Chapter 10

To produce a filtered result, modify buildLinkedList() as discussed in step 4. You can

then add logic that checks to see whether the value of the filter column matches the value in

the filter:

define('LEVEL_FILTER', 'INT');

$filterCol = 9;

$filterVal = LEVEL_FILTER;

$linked = buildLinkedList($customer, $makeLink, $filterCol,

$filterVal);

 There's more…

PHP 7.1 introduced the use of [] as an alternative to list(). If you look at the anonymous

function mentioned previously, you could rewrite this in PHP 7.1 as follows:

$makeLink = function ($row) {

[$first, $last] = explode(' ', $row[1]);

return trim($last) . trim($first);

};

For more information, see https://wiki.php.net/rfc/short_list_syntax.

369

Looking at Advanced Algorithms

 Building a bubble sort

The classic bubble sort is an exercise often assigned to university students. Nonetheless, it's

important to master this algorithm as there are many occasions where built-in PHP sorting

functions do not apply. An example would be sorting a multi-dimensional array where the sort

key is not the first column.

The way the bubble sort works is to recursively iterate through the list and swap the current

value with the next value. If you want items to be in ascending order, the swap occurs if the

next item is less than the current item. For descending order, the swap occurs if the reverse is

true. The sort is concluded when no more swaps occur.

In the following diagram, after the first pass, Grape and Banana are swapped, as are Orange

and Cherry. After the 2nd pass, Grape and Cherry are swapped. No more swaps occur on the

last pass, and the bubble sort ends:

 How to do it…

1. We do not want to actually move the values around in the array; that would be horribly

expensive in terms of resource usage. Instead, we will use a linked list, discussed in

the previous recipe.

2. First we build a linked list using the buildLinkedList() function discussed in the

previous recipe.

3. We then define a new function, bubbleSort(), which accepts the linked list by

reference, the primary list, a sort field, and a parameter that represents sort order

(ascending or descending):

function bubbleSort(&$linked, $primary, $sortField, $order = 'A')

{

4. The variables needed include one that represents the number of iterations, the

number of swaps, and an iterator based upon the linked list:

static $iterations = 0;

$swaps = 0;

$iterator = new ArrayIterator($linked);

370

Chapter 10

5. In the while() loop, we only proceed if the iteration is still valid, which is to say

still in progress. We then obtain the current key and value, and the next key and

value. Note the extra if() statement to ensure the iteration is still valid (that is, to

make sure we don't drop off the end of the list!):

while ($iterator->valid()) {

$currentLink = $iterator->current();

$currentKey = $iterator->key();

if (!$iterator->valid()) break;

$iterator->next();

$nextLink = $iterator->current();

$nextKey = $iterator->key();

6. Next we check to see whether the sort is to be ascending or descending. Depending

on the direction, we check to see whether the next value is greater than, or less than,

the current value. The result of the comparison is stored in $expr:

if ($order == 'A') {

$expr = $primary[$linked->offsetGet

($currentKey)][$sortField] >

$primary[$linked->offsetGet($nextKey)][$sortField];

} else {

$expr = $primary[$linked->offsetGet

($currentKey)][$sortField] <

$primary[$linked->offsetGet($nextKey)][$sortField];

}

7. If the value of $expr is TRUE, and we have valid current and next keys, the values

are swapped in the linked list. We also increment $swaps:

if ($expr && $currentKey && $nextKey

&& $linked->offsetExists($currentKey)

&& $linked->offsetExists($nextKey)) {

$tmp = $linked->offsetGet($currentKey);

$linked->offsetSet($currentKey,

$linked->offsetGet($nextKey));

$linked->offsetSet($nextKey, $tmp);

$swaps++;

}

}

8. Finally, if any swaps have occurred, we need to run through the iteration again, until

there are no more swaps. Accordingly, we make a recursive call to the same method:

if ($swaps) bubbleSort($linked, $primary, $sortField, $order);

9. The real return value is the re-organized linked list. We also return the number of

iterations just for reference:

return ++$iterations;

}

371

Looking at Advanced Algorithms

 How it works…

Add the bubbleSort() function discussed previously to the include file created in the

previous recipe. You can use the same logic discussed in the previous recipe to read the

customer.csv file, producing a primary list:

<?php

define('CUSTOMER_FILE', DIR . '/../data/files/customer.csv');

include DIR . '/chap_10_linked_list_include.php';

$headers = array();

$customer = readCsv(CUSTOMER_FILE, $headers);

You can then produce a linked list using the first column as a sort key:

$makeLink = function ($row) {

return $row[0];

};

$linked = buildLinkedList($customer, $makeLink);

Finally, call the bubbleSort() function, providing the linked list and customer list

as arguments. You can also provide a sort column, in this illustration column 2, that

represents the account balance, using the letter 'A' to indicate ascending order. The

printCustomer() function can be used to display output:

echo 'Iterations: ' . bubbleSort($linked,

$customer, 2, 'A') . PHP_EOL;

echo printCustomer($headers, $linked, $customer);

Here is an example of the output:

372

Chapter 10

 Implementing a stack

A stack is a simple algorithm normally implemented as Last In First Out (LIFO). Think of a

stack of books sitting on a library table. When the librarian goes to restore the books to their

place, the topmost book is processed first, and so on in order, until the book at the bottom of

the stack has been replaced. The topmost book was the last one to be placed on the stack,

thus last in first out.

In programming terms, a stack is used to temporarily store information. The retrieval order

facilitates retrieving the most recent item first.

 How to do it…

1. First we define a class, Application\Generic\Stack. The core logic is

encapsulated in an SPL class, SplStack:

namespace Application\Generic;

use SplStack;

class Stack

{

// code

}

2. Next we define a property to represent the stack, and set up an SplStack instance:

protected $stack;

public function construct()

{

$this->stack = new SplStack();

}

3. After that we define methods to add and remove from the stack, the classic push()

and pop() methods:

public function push($message)

{

$this->stack->push($message);

}

public function pop()

{

return $this->stack->pop();

}

373

Looking at Advanced Algorithms

4. We also throw in an implementation of invoke() that returns an instance of the

stack property. This allows us to use the object in a direct function call:

public function invoke()

{

return $this->stack;

}

 How it works…

One possible use for a stack is to store messages. In the case of messages, it is usually

desirable to retrieve the latest first, thus it is a perfect use case for a stack. Define the

Application\Generic\Stack class as discussed in this recipe. Next, define a calling

program that sets up autoloading and creates an instance of the stack:

<?php

// setup class autoloading

require DIR . '/../Application/Autoload/Loader.php';

Application\Autoload\Loader::init(DIR

use Application\Generic\Stack;

$stack = new Stack();

. '/..');

To do something with the stack, store a series of messages. As you would most likely store

messages at different points in your application, you can use sleep() to simulate other code

running:

echo 'Do Something ... ' . PHP_EOL;

$stack->push('1st Message: ' . date('H:i:s'));

sleep(3);

echo 'Do Something Else ... ' . PHP_EOL;

$stack->push('2nd Message: ' . date('H:i:s'));

sleep(3);

echo 'Do Something Else Again ... ' . PHP_EOL;

$stack->push('3rd Message: ' . date('H:i:s'));

sleep(3);

Finally, simply iterate through the stack to retrieve messages. Note that you can call the stack

object as if it were a function, which returns the SplStack instance:

echo 'What Time Is It?' . PHP_EOL;

foreach ($stack() as $item) {

echo $item . PHP_EOL;

}

374

Chapter 10

Here is the expected output:

 Building a binary search class

Conventional searches often proceed through the list of items in a sequential manner. This

means that the maximum possible number of items to be searched could be the same as

the length of the list! This is not very efficient. If you need to expedite a search, consider

implementing a binary search.

The technique is quite simple: you find the midpoint in the list, and determine whether the

search item is less than, equal to, or greater than the midpoint item. If less, you set the upper

limit to the midpoint, and search only the first half of the list. If greater, set the lower limit to

the midpoint, and search only the last half of the list. You would then proceed to divide the list

into 1/4, 1/8, 1/16, and so on, until the search item is found (or not).

It's important to note that although the maximum number of comparisons

is considerably smaller than a sequential search (log n + 1 where n is the

 number of elements in the list, and log is the binary logarithm), the list
involved in the search must first be sorted, which of course downgrades

performance.

 How to do it…

1. We first construct a search class, Application\Generic\Search, which

accepts the primary list as an argument. As a control, we also define a property,

$iterations:

namespace Application\Generic;

class Search

{

375

Looking at Advanced Algorithms

protected $primary;

protected $iterations;

public function construct($primary)

{

$this->primary = $primary;

}

2. Next we define a method, binarySearch(), which sets up the search

infrastructure. The first order of business is to build a separate array, $search,

where the key is a composite of the columns included in the search. We then sort by

key:

public function binarySearch(array $keys, $item)

{

$search = array();

foreach ($this->primary as $primaryKey => $data) {

$searchKey = function ($keys, $data) {

$key = '';

foreach ($keys as $k) $key .= $data[$k];

return $key;

};

$search[$searchKey($keys, $data)] = $primaryKey;

}

ksort($search);

3. We then pull out the keys into another array, $binary, so that we can perform the

binary sort based on numeric keys. We then call doBinarySearch(), which results

in a key from our intermediary array $search, or a Boolean, FALSE:

$binary = array_keys($search);

$result = $this->doBinarySearch($binary, $item);

return $this->primary[$search[$result]] ?? FALSE;

}

4. The first doBinarySearch() initializes a series of parameters. $iterations,

$found, $loop, $done, and $max are all used to prevent an endless loop. $upper

and $lower represent the slice of the list to be examined:

public function doBinarySearch($binary, $item)

{

$iterations = 0;

$found = FALSE;

$loop = TRUE;

$done = -1;

$max = count($binary);

$lower = 0;

$upper = $max - 1;

376

Chapter 10

5. We then implement a while() loop and set the midpoint:

while ($loop && !$found) {

$mid = (int) (($upper - $lower) / 2) + $lower;

6. We now get to use the new PHP 7 spaceship operator, which gives us, in a single

comparison, less than, equal to, or greater than. If less, we set the upper limit to the

midpoint. If greater, the lower limit is adjusted to the midpoint. If equal, we're done

and home free:

switch ($item <=> $binary[$mid]) {

// $item < $binary[$mid]

case -1 :

$upper = $mid;

break;

// $item == $binary[$mid]

case 0 :

$found = $binary[$mid];

break;

// $item > $binary[$mid]

case 1 :

default :

$lower = $mid;

}

7. Now for a bit of loop control. We increment the number of iterations and make sure it

does not exceed the size of the list. If so, something is definitely wrong and we need

to bail out. Otherwise, we check to see whether the upper and lower limits are the

same more than twice in a row, in which case the search item has not been found.

Then we store the number of iterations and return whatever was found (or not):

$loop = (($iterations++ < $max) && ($done < 1));

$done += ($upper == $lower) ? 1 : 0;

}

$this->iterations = $iterations;

return $found;

}

377

Looking at Advanced Algorithms

 How it works…

First, implement the Application\Generic\Search class defining the methods described

in this recipe. Next, define a calling program, chap_10_binary_search.php, which sets

up autoloading and reads the customer.csv file as a search target (as discussed in the

previous recipe):

<?php

define('CUSTOMER_FILE', DIR . '/../data/files/customer.csv');

include DIR

require DIR

. '/chap_10_linked_list_include.php';

. '/../Application/Autoload/Loader.php';

Application\Autoload\Loader::init(DIR

use Application\Generic\Search;

$headers = array();

. '/..');

$customer = readCsv(CUSTOMER_FILE, $headers);

You can then create a new Search instance, and specify an item somewhere in the middle of

the list. In this illustration, the search is based on column 1, customer name, and the item is

Todd Lindsey:

$search = new Search($customer);

$item = 'Todd Lindsey';

$cols = [1];

echo "Searching For: $item\n";

var_dump($search->binarySearch($cols, $item));

For illustration, add this line just before switch() in Application\Generic\

Search::doBinarySearch():

echo 'Upper:Mid:Lower:<=> | ' . $upper . ':' . $mid . ':' .

$lower . ':' . ($item <=> $binary[$mid]);

The output is shown here. Notice how the upper, middle, and lower limits adjust until the item

is found:

378

Chapter 10

 See also

For more information on binary search, there is an excellent article on Wikipedia that goes

through the basic math at https://en.wikipedia.org/wiki/Binary_search_

algorithm.

 Implementing a search engine

In order to implement a search engine, we need to make provision for multiple columns to be

included in the search. In addition, it's important to recognize that the search item might be

found in the middle of the field, and that very rarely will users provide enough information for

an exact match. Accordingly, we will rely heavily on the SQL LIKE %value% clause.

 How to do it…

1. First, we define a basic class to hold search criteria. The object contains three

properties: the key, which ultimately represents a database column; the operator

(LIKE, <, >, and so on); and optionally an item. The reason why an item is optional is

that some operators, such as IS NOT NULL, do not require specific data:

namespace Application\Database\Search;

class Criteria

{

public $key;

public $item;

379

Looking at Advanced Algorithms

public $operator;

public function construct($key, $operator, $item = NULL)

{

$this->key = $key;

$this->operator = $operator;

$this->item = $item;

}

}

2. Next we need to define a class, Application\Database\Search\Engine,

and provide the necessary class constants and properties. The difference between

$columns and $mapping is that $columns holds information that will ultimately

appear in an HTML SELECT field (or the equivalent). For security reasons, we do not

want to expose the actual names of the database columns, thus the need for another

array $mapping:

namespace Application\Database\Search;

use PDO;

use Application\Database\Connection;

class Engine

{

const ERROR_PREPARE = 'ERROR: unable to prepare statement';

const ERROR_EXECUTE = 'ERROR: unable to execute statement';

const ERROR_COLUMN = 'ERROR: column name not on list';

const ERROR_OPERATOR= 'ERROR: operator not on list';

const ERROR_INVALID = 'ERROR: invalid search criteria';

protected $connection;

protected $table;

protected $columns;

protected $mapping;

protected $statement;

protected $sql = '';

3. Next, we define a set of operators we are willing to support. The key represents actual

SQL. The value is what will appear in the form:

protected $operators = [

'LIKE' => 'Equals',

'<' => 'Less Than',

'>' => 'Greater Than',

'<>' => 'Not Equals',

'NOT NULL' => 'Exists',

];

380

Chapter 10

4. The constructor accepts a database connection instance as an argument. For our

purposes, we will use Application\Database\Connection, defined in Chapter

5, Interacting with a Database. We also need to provide the name of the database

table, as well as $columns, an array of arbitrary column keys and labels, which will

appear in the HTML form. This will reference $mapping, where the key matches

$columns, but where the value represents actual database column names:

public function construct(Connection $connection,

$table, array $columns, array $mapping)

{

$this->connection = $connection;

$this->setTable($table);

$this->setColumns($columns);

$this->setMapping($mapping);

}

5. After the constructor, we provide a series of useful getters and setters:

public function setColumns($columns)

{

$this->columns = $columns;

}

public function getColumns()

{

return $this->columns;

}

// etc.

6. Probably the most critical method is the one that builds the SQL statement to be

prepared. After the initial SELECT setup, we add a WHERE clause, using $mapping

to add the actual database column name. We then add the operator and implement

switch() which, based on the operator, may or may not add a named placeholder

that will represent the search item:

public function prepareStatement(Criteria $criteria)

{

$this->sql = 'SELECT * FROM ' . $this->table . ' WHERE ';

$this->sql .= $this->mapping[$criteria->key] . ' ';

switch ($criteria->operator) {

case 'NOT NULL' :

$this->sql .= ' IS NOT NULL OR ';

break;

default :

$this->sql .= $criteria->operator . ' :'

. $this->mapping[$criteria->key] . ' OR ';

}

381

Looking at Advanced Algorithms

7. Now that the core SELECT has been defined, we remove any trailing OR keywords,

and add a clause that causes the result to be sorted according to the search column.

The statement is then sent to the database to be prepared:

$this->sql = substr($this->sql, 0, -4)

. ' ORDER BY ' . $this->mapping[$criteria->key];

$statement = $this->connection->pdo->prepare($this-

>sql); return $statement;

}

8. We are now ready to move on to the main show, the search() method. We accept

an Application\Database\Search\Criteria object as an argument. This

ensures that we have an item key and operator at a minimum. To be on the safe side,

we add an if() statement to check these properties:

public function search(Criteria $criteria)

{

if (empty($criteria->key) || empty($criteria->operator)) {

yield ['error' => self::ERROR_INVALID];

return FALSE;

}

9. We then call prepareStatement() using try / catch to trap errors:

try {

if (!$statement = $this->prepareStatement($criteria)) {

yield ['error' => self::ERROR_PREPARE];

return FALSE;

}

10. Next we build an array of parameters that will be supplied to execute().

The key represents the database column name that was used as a placeholder

in the prepared statement. Note that instead of using =, we use the LIKE

%value% construct:

$params = array();

switch ($criteria->operator) {

case 'NOT NULL' :

// do nothing: already in statement

break;

case 'LIKE' :

$params[$this->mapping[$criteria->key]] =

'%' . $criteria->item . '%';

break;

default :

$params[$this->mapping[$criteria->key]] =

$criteria->item;

}

382

Chapter 10

11. The statement is executed, and the results returned using the yield keywords,

which effectively turns this method into a generator:

$statement->execute($params);

while ($row = $statement->fetch(PDO::FETCH_ASSOC)) {

yield $row;

}

} catch (Throwable $e) {

error_log(METHOD . ':' . $e->getMessage());

throw new Exception(self::ERROR_EXECUTE);

}

return TRUE;

}

 How it works…

Place the code discussed in this recipe in the files Criteria.php and Engine.php under

Application\Database\Search. You can then define a calling script, chap_10_search_

engine.php, which sets up autoloading. You can take advantage of the Application\

Database\Connection class discussed in Chapter 5, Interacting with a Database, and the

form element classes covered in Chapter 6, Building Scalable Websites:

<?php

define('DB_CONFIG_FILE', '/../config/db.config.php');

require DIR . '/../Application/Autoload/Loader.php';

Application\Autoload\Loader::init(DIR . '/..');

use Application\Database\Connection;

use Application\Database\Search\ { Engine, Criteria };

use Application\Form\Generic;

use Application\Form\Element\Select;

You can now define which database columns will appear in the form, and a matching

mapping file:

$dbCols = [

'cname' => 'Customer Name',

'cbal' => 'Account Balance',

'cmail' => 'Email Address',

'clevel' => 'Level'

];

$mapping = [

'cname' => 'name',

'cbal' => 'balance',

'cmail' => 'email',

'clevel' => 'level'

];

383

Looking at Advanced Algorithms

You can now set up the database connection and create the search engine instance:

$conn = new Connection(include DIR . DB_CONFIG_FILE);

$engine = new Engine($conn, 'customer', $dbCols, $mapping);

In order to display the appropriate drop-down SELECT elements, we define wrappers and

elements based on Application\Form* classes:

$wrappers = [

Generic::INPUT => ['type' => 'td', 'class' =>

'content'], Generic::LABEL => ['type' => 'th', 'class'

=> 'label'], Generic::ERRORS => ['type' => 'td', 'class'

=> 'error']

];

// define elements

$fieldElement = new Select('field',

Generic::TYPE_SELECT,

'Field',

$wrappers,

['id' => 'field']);

$opsElement = new Select('ops',

Generic::TYPE_SELECT,

'Operators',

$wrappers,

['id' => 'ops']);

$itemElement = new Generic('item',

Generic::TYPE_TEXT,

'Searching For ...',

$wrappers,

['id' => 'item','title' => 'If more than one item,

separate with commas']);

$submitElement = new Generic('submit',

Generic::TYPE_SUBMIT,

'Search',

$wrappers,

['id' => 'submit','title' => 'Click to Search',

'value' => 'Search']);

384

Chapter 10

We then get input parameters (if defined), set form element options, create search criteria,

and run the search:

$key = (isset($_GET['field']))

? strip_tags($_GET['field']) : NULL;

$op = (isset($_GET['ops'])) ? $_GET['ops'] : NULL;

$item = (isset($_GET['item'])) ? strip_tags($_GET['item']) : NULL;

$fieldElement->setOptions($dbCols, $key);

$itemElement->setSingleAttribute('value', $item);

$opsElement->setOptions($engine->getOperators(), $op);

$criteria = new Criteria($key, $op, $item);

$results = $engine->search($criteria);

?>

The display logic mainly orients towards rendering the form. A more thorough presentation is

discussed in Chapter 6, Building Scalable Websites, but we show the core logic here:

<form name="search" method="get">

<table class="display" cellspacing="0" width="100%">

<tr><?= $fieldElement->render(); ?></tr>

<tr><?= $opsElement->render(); ?></tr>

<tr><?= $itemElement->render(); ?></tr>

<tr><?= $submitElement->render(); ?></tr>

<tr>

<th class="label">Results</th>

<td class="content" colspan=2>

<table>

<?php foreach ($results as $row) : ?>

<tr>

<td><?= $row['id'] ?></td>

<td><?= $row['name'] ?></td>

<td><?= $row['balance'] ?></td>

<td><?= $row['email'] ?></td>

<td><?= $row['level'] ?></td>

</tr>

<?php endforeach; ?>

</table>

</td>

</tr>

</table>

</form>

385

Looking at Advanced Algorithms

Here is sample output from a browser:

Displaying a multi-dimensional array and

 accumulating totals

How to properly display data from a multi-dimensional array has been a classic problem for

any web developer. For illustration, assume you wish to display a list of customers and their

purchases. For each customer, you wish to show their name, phone number, account balance,

and so on. This already represents a two dimensional array where the x axis represents

customers and the y axis represents data for that customer. Now add in purchases and you

have a third axis! How can you represent a 3D model on a 2D screen? One possible solution

would be to incorporate "hidden" division tags with a simple JavaScript visibility toggle.

 How to do it…

1. First we need to generate a 3D array from a SQL statement that uses a number

of JOIN clauses. We will use the Application/Database/Connection class

introduced in Chapter 1, Building a Foundation, to formulate an appropriate SQL

query. We leave two parameters open, min and max, in order to support pagination.

Unfortunately, we cannot use a simple LIMIT and OFFSET in this case, as the

number of rows will vary depending on the number of purchases for any given

customer. Accordingly, we can restrict the number of rows by placing restrictions

on the customer ID that presumably (hopefully) is incremental. To make this work

properly, we also need to set the primary ORDER to customer ID:

define('ITEMS_PER_PAGE', 6);

define('SUBROWS_PER_PAGE', 6);

define('DB_CONFIG_FILE', '/../config/db.config.php');

include DIR . '/../Application/Database/Connection.php';

386

use Application\Database\Connection;

$conn = new Connection(include DIR

. DB_CONFIG_FILE);

Chapter 10

$sql = 'SELECT c.id,c.name,c.balance,c.email,f.phone, '

. 'u.transaction,u.date,u.quantity,u.sale_price,r.title '

. 'FROM customer AS c '

. 'JOIN profile AS f '

. 'ON f.id = c.id '

. 'JOIN purchases AS u '

. 'ON u.customer_id = c.id '

. 'JOIN products AS r '

. 'ON u.product_id = r.id '

. 'WHERE c.id >= :min AND c.id < :max '

. 'ORDER BY c.id ASC, u.date DESC ';

2. Next we can implement a form of pagination, based on restrictions on the customer

ID, using simple $_GET parameters. Note that we add an extra check to make sure

the value of $prev does not go below zero. You might consider adding another

control that ensures the value of $next does not go beyond the last customer ID. In

this illustration, we just allow it to increment:

$page = $_GET['page'] ?? 1;

$page = (int) $page;

$next = $page + 1;

$prev = $page - 1;

$prev = ($prev >= 0) ? $prev : 0;

3. We then calculate the values for $min and $max, and prepare and execute the SQL

statement:

$min = $prev * ITEMS_PER_PAGE;

$max = $page * ITEMS_PER_PAGE;

$stmt = $conn->pdo->prepare($sql);

$stmt->execute(['min' => $min, 'max' => $max]);

4. A while() loop can be used to fetch results. We use a simple fetch mode of

PDO::FETCH_ASSOC for the purpose of this example. Using the customer ID as a

key, we store basic customer information as array parameters. We then store an array

of purchase information in a sub-array, $results[$key]['purchases'][]. When

the customer ID changes, it's a signal to store the same information for the next

customer. Note that we accumulate totals per customer in an array key total:

$custId = 0;

$result = array();

$grandTotal = 0.0;

while ($row = $stmt->fetch(PDO::FETCH_ASSOC)) {

if ($row['id'] != $custId) {

$custId = $row['id'];

$result[$custId] = [

387

Looking at Advanced Algorithms

'name' => $row['name'],

'balance' => $row['balance'],

'email' => $row['email'],

'phone' => $row['phone'],

];

$result[$custId]['total'] = 0;

}

$result[$custId]['purchases'][] = [

'transaction' => $row['transaction'],

'date' => $row['date'],

'quantity' => $row['quantity'],

'sale_price' => $row['sale_price'],

'title' => $row['title'],

];

$result[$custId]['total'] += $row['sale_price'];

$grandTotal += $row['sale_price'];

}

?>

5. Next we implement the view logic. First, we start with a block that displays primary

customer information:

<div class="container">

<?php foreach ($result as $key => $data) : ?>

<div class="mainLeft color0">

<?= $data['name'] ?> [<?= $key ?>]

</div>

<div class="mainRight">

<div class="row">

<div class="left">Balance</div>

<div class="right"><?= $data['balance']; ?></div>

</div>

<div class="row">

<div class="left color2">Email</div>

<div class="right"><?= $data['email']; ?></div>

</div>

<div class="row">

<div class="left">Phone</div>

<div class="right"><?= $data['phone']; ?></div>

</div>

<div class="row">

<div class="left color2">Total Purchases</div>

<div class="right">

<?= number_format($data['total'],2); ?>

</div>

</div>

388

Chapter 10

6. Next comes the logic to display a list of purchases for this customer:

<!-- Purchases Info -->

<table>

<tr>

<th>Transaction</th><th>Date</th><th>Qty</th>

<th>Price</th><th>Product</th>

</tr>

<?php $count = 0; ?>

<?php foreach ($data['purchases'] as $purchase) : ?>

<?php $class = ($count++ & 01) ? 'color1' : 'color2'; ?>

<tr>

<td class="<?= $class ?>"><?= $purchase['transaction'] ?></td>

<td class="<?= $class ?>"><?= $purchase['date'] ?></td>

<td class="<?= $class ?>"><?= $purchase['quantity'] ?></td>

<td class="<?= $class ?>"><?= $purchase['sale_price'] ?></td>

<td class="<?= $class ?>"><?= $purchase['title'] ?></td>

</tr>

<?php endforeach; ?>

</table>

7. For the purposes of pagination, we then add buttons to represent previous and next:

<?php endforeach; ?>

<div class="container">

<a href="?page=<?= $prev ?>">

<input type="button" value="Previous">

<a href="?page=<?= $next ?>">

<input type="button" value="Next" class="buttonRight">

</div>

<div class="clearRow"></div>

</div>

8. The result so far, unfortunately, is nowhere near neat and tidy! Accordingly we add

a simple JavaScript function to toggle the visibility of a <div> tag based on its id

attribute:

<script type="text/javascript">

function showOrHide(id) {

var div = document.getElementById(id);

div.style.display = div.style.display == "none" ?

"block" : "none";

}

</script>

389

Looking at Advanced Algorithms

9. Next we wrap the purchases table inside an initially invisible <div> tag. Then, we can

place a limit of how many sub-rows are initially visible, and add a link that reveals the

remaining purchase data:

<div class="row" id="<?= 'purchase' . $key ?>"

style="display:none;">

<table>

<tr>

<th>Transaction</th><th>Date</th><th>Qty</th>

<th>Price</th><th>Product</th>

</tr>

<?php $count = 0; ?>

<?php $first = TRUE; ?>

<?php foreach ($data['purchases'] as $purchase) : ?>

<?php if ($count > SUBROWS_PER_PAGE && $first) : ?>

<?php $first = FALSE; ?>

<?php $subId = 'subrow' . $key; ?>

</table>

<a href="#" onClick="showOrHide('<?= $subId ?>')">More

<div id="<?= $subId ?>" style="display:none;">

<table>

<?php endif; ?>

<?php $class = ($count++ & 01) ? 'color1' : 'color2'; ?>

<tr>

<td class="<?= $class ?>"><?= $purchase['transaction'] ?></td>

<td class="<?= $class ?>"><?= $purchase['date'] ?></td>

<td class="<?= $class ?>"><?= $purchase['quantity'] ?></td>

<td class="<?= $class ?>"><?= $purchase['sale_price'] ?></td>

<td class="<?= $class ?>"><?= $purchase['title'] ?></td>

</tr>

<?php endforeach; ?>

</table>

<?php if (!$first) : ?></div><?php endif; ?>

</div>

10. We then add a button that, when clicked, reveals the hidden <div> tag:

<input type="button" value="Purchases" class="buttonRight"

onClick="showOrHide('<?= 'purchase' . $key ?>')">

 How it works…

Place the code described in steps 1 to 5 into a file, chap_10_html_table_multi_array_

hidden.php.

Just inside the while() loop, add the following:

printf('%6s : %20s : %8s : %20s' . PHP_EOL,

$row['id'], $row['name'], $row['transaction'], $row['title']);

390

Chapter 10

Just after the while() loop, add an exit command. Here is the output:

You will notice that the basic customer information, such as the ID and name, repeats for

each result row, but purchase information, such as transaction and product title, varies. Go

ahead and remove the printf() statement.

Replace the exit command with the following:

echo '<pre>', var_dump($result), '</pre>'; exit;

Here is how the newly composed 3D array looks:

391

Looking at Advanced Algorithms

You can now add the display logic shown in steps 5 to 7. As mentioned, although you are now

showing all data, the visual display is not helpful. Now go ahead and add the refinements

mentioned in the remaining steps. Here is how the initial output might appear:

When the Purchases button is clicked, initial purchase info appears. If the link to More is

clicked, the remaining purchase information shows:

392

11
Implementing Software

Design Patterns

In this chapter, we will cover the following topics:

f Creating an array to object hydrator

f Building an object to array hydrator

f Implementing a strategy pattern

f Defining a mapper

f Implementing object-relational mapping

f Implementing the Pub/Sub design pattern

 Introduction

The idea of incorporating software design patterns into object-oriented programming

(OOP) code was first discussed in a seminal work entitled Design Patterns: Elements of

Reusable Object-Oriented Software, authored by the famous Gang of Four (E. Gamma, R.

Helm, R. Johnson, and J. Vlissides) in 1994. Defining neither standards nor protocols, this

work identified common generic software designs that have proven useful over the years. The

patterns discussed in this book are generally thought to fall into three categories: creational,

structural, and behavioral.

393

Implementing Software Design Patterns

Examples of many of these patterns have already been presented in this book. Here is a brief

summary:

Design pattern Chapter Recipe

Singleton 2 Defining visibility

Factory 6 Implementing a form factory

Adapter 8 Handling translation without gettext()

Proxy 7 Creating a simple REST client

Creating a simple SOAP client

Iterator 2

3

Recursive directory iterator

Using iterators

In this chapter, we will examine a number of additional design patterns, focusing primarily on

Concurrency and Architectural patterns.

 Creating an array to object hydrator

The Hydrator pattern is a variation of the Data Transfer Object design pattern. Its design

principle is quite simple: moving data from one place to another. In this illustration, we will

define classes to move data from an array to an object.

 How to do it…

1. First, we define a Hydrator class that is able to use getters and setters. For this

illustration we will use Application\Generic\Hydrator\GetSet:

namespace Application\Generic\Hydrator;

class GetSet

{

// code

}

2. Next, we define a hydrate() method, which takes both an array and an object as

arguments. It then calls the setXXX() methods on the object to populate it with

values from the array. We use get_class() to determine the object's class, and

then get_class_methods() to get a list of all methods. preg_match() is used

to match the method prefix and its suffix, which is subsequently assumed to be the

array key:

public static function hydrate(array $array, $object)

{

$class = get_class($object);

$methodList = get_class_methods($class);

394

Chapter 11

foreach ($methodList as $method) {

preg_match('/^(set)(.*?)$/i', $method, $matches);

$prefix = $matches[1] ?? '';

$key = $matches[2] ?? '';

$key = strtolower(substr($key, 0, 1)) . substr($key, 1);

if ($prefix == 'set' && !empty($array[$key])) {

$object->$method($array[$key]);

}

}

return $object;

}

 How it works…

To demonstrate how the array to hydrator object is used, first define the Application\

Generic\Hydrator\GetSet class as described in the How to do it… section. Next, define

an entity class that can be used to test the concept. For the purposes of this illustration,

create a Application\Entity\Person class, with the appropriate properties and

methods. Be sure to define getters and setters for all properties. Not all such methods are

shown here:

namespace Application\Entity;

class Person

{

protected $firstName = '';

protected $lastName = '';

protected $address = '';

protected $city = '';

protected $stateProv = '';

protected $postalCode = '';

protected $country = '';

public function getFirstName()

{

return $this->firstName;

}

public function setFirstName($firstName)

{

$this->firstName = $firstName;

}

// etc.

}

395

Implementing Software Design Patterns

You can now create a calling program called chap_11_array_to_object.php, which sets

up autoloading, and uses the appropriate classes:

<?php

require DIR . '/../Application/Autoload/Loader.php';

Application\Autoload\Loader::init(DIR

use Application\Entity\Person;

use Application\Generic\Hydrator\GetSet;

. '/..');

Next, you can define a test array with values that will be added to a new Person instance:

$a['firstName'] = 'Li\'l Abner';

$a['lastName'] = 'Yokum';

$a['address'] = '1 Dirt Street';

$a['city'] = 'Dogpatch';

$a['stateProv'] = 'Kentucky';

$a['postalCode']= '12345';

$a['country'] = 'USA';

You can now call hydrate() and extract() in a static manner:

$b = GetSet::hydrate($a, new Person());

var_dump($b);

The results are shown in the following screenshot:

396

Chapter 11

 Building an object to array hydrator

This recipe is the converse of the Creating an array to object hydrator recipe. In this case, we

need to pull values from object properties and return an associative array where the key will

be the column name.

 How to do it…

1. For this illustration we will build upon the Application\Generic\Hydrator\

GetSet class defined in the previous recipe:

namespace Application\Generic\Hydrator;

class GetSet

{

// code

}

2. After the hydrate() method defined in the previous recipe, we define an

extract() method, which takes an object as an argument. The logic is similar to

that used with hydrate(), except this time we're searching for getXXX() methods.

Again, preg_match() is used to match the method prefix and its suffix, which is

subsequently assumed to be the array key:

public static function extract($object)

{

$array = array();

$class = get_class($object);

$methodList = get_class_methods($class);

foreach ($methodList as $method) {

preg_match('/^(get)(.*?)$/i', $method, $matches);

$prefix = $matches[1] ?? '';

$key = $matches[2] ?? '';

$key = strtolower(substr($key, 0, 1)) . substr($key, 1);

if ($prefix == 'get') {

$array[$key] = $object->$method();

}

}

return $array;

}

}

Note that we have defined hydrate() and extract() as static methods

for convenience.

397

Implementing Software Design Patterns

 How it works…

Define a calling program called chap_11_object_to_array.php, which sets up

autoloading, and uses the appropriate classes:

<?php

require DIR . '/../Application/Autoload/Loader.php';

Application\Autoload\Loader::init(DIR

use Application\Entity\Person;

use Application\Generic\Hydrator\GetSet;

. '/..');

Next, define an instance of Person, setting values for its properties:

$obj = new Person();

$obj->setFirstName('Li\'lAbner');

$obj->setLastName('Yokum');

$obj->setAddress('1DirtStreet');

$obj->setCity('Dogpatch');

$obj->setStateProv('Kentucky');

$obj->setPostalCode('12345');

$obj->setCountry('USA');

Finally, call the new extract() method in a static manner:

$a = GetSet::extract($obj);

var_dump($a);

The output is shown in the following screenshot:

398

Chapter 11

 Implementing a strategy pattern

It is often the case that runtime conditions force the developer to define several ways of doing

the same thing. Traditionally, this involved a massive if/elseif/else block of commands.

You would then either have to define large blocks of logic inside the if statement, or create

a series of functions or methods to enable the different approaches. The strategy pattern

attempts to formalize this process by having the primary class encapsulate a series of sub-

classes that represent different approaches to solve the same problem.

 How to do it…

1. In this illustration, we will use the GetSet hydrator class defined previously as

a strategy. We will define a primary Application\Generic\Hydrator\Any

class, which will then consume strategy classes in the Application\Generic\

Hydrator\Strategy namespace, including GetSet, PublicProps, and

Extending.

2. We first define class constants that reflect the built-in strategies that are available:

namespace Application\Generic\Hydrator;

use InvalidArgumentException;

use Application\Generic\Hydrator\Strategy\ {

GetSet, PublicProps, Extending };

class Any

{

const STRATEGY_PUBLIC = 'PublicProps';

const STRATEGY_GET_SET = 'GetSet';

const STRATEGY_EXTEND = 'Extending';

protected $strategies;

public $chosen;

3. We then define a constructor that adds all built-in strategies to the $strategies

property:

public function construct()

{

$this->strategies[self::STRATEGY_GET_SET] = new GetSet();

$this->strategies[self::STRATEGY_PUBLIC] = new PublicProps();

$this->strategies[self::STRATEGY_EXTEND] = new Extending();

}

399

Implementing Software Design Patterns

4. We also add an addStrategy() method that allows us to overwrite or add new

strategies without having to recode the class:

public function addStrategy($key, HydratorInterface $strategy)

{

$this->strategies[$key] = $strategy;

}

5. The hydrate() and extract() methods simply call those of the chosen strategy:

public function hydrate(array $array, $object)

{

$strategy = $this->chooseStrategy($object);

$this->chosen = get_class($strategy);

return $strategy::hydrate($array, $object);

}

public function extract($object)

{

$strategy = $this->chooseStrategy($object);

$this->chosen = get_class($strategy);

return $strategy::extract($object);

}

6. The tricky bit is figuring out which hydration strategy to choose. For this purpose we

define chooseStrategy(), which takes an object as an argument. We first perform

some detective work by way of getting a list of class methods. We then scan through

the list to see if we have any getXXX() or setXXX() methods. If so, we choose the

GetSet hydrator as our chosen strategy:

public function chooseStrategy($object)

{

$strategy = NULL;

$methodList = get_class_methods(get_class($object));

if (!empty($methodList) && is_array($methodList)) {

$getSet = FALSE;

foreach ($methodList as $method) {

if (preg_match('/^get|set.*$/i', $method)) {

$strategy = $this->strategies[self::STRATEGY_GET_SET];

break;

}

}

}

400

Chapter 11

7. Still within our chooseStrategy() method, if there are no getters or setters, we

next use get_class_vars() to determine if there are any available properties. If

so, we choose PublicProps as our hydrator:

if (!$strategy) {

$vars = get_class_vars(get_class($object));

if (!empty($vars) && count($vars)) {

$strategy = $this->strategies[self::STRATEGY_PUBLIC];

}

}

8. If all else fails, we fall back to the Extending hydrator, which returns a new class

that simply extends the object class, thus making any public or protected

properties available:

if (!$strategy) {

$strategy = $this->strategies[self::STRATEGY_EXTEND];

}

return $strategy;

}

}

9. Now we turn our attention to the strategies themselves. First, we define a new

Application\Generic\Hydrator\Strategy namespace.

10. In the new namespace, we define an interface that allows us to identify any strategies

that can be consumed by Application\Generic\Hydrator\Any:

namespace Application\Generic\Hydrator\Strategy;

interface HydratorInterface

{

public static function hydrate(array $array, $object);

public static function extract($object);

}

11. The GetSet hydrator is exactly as defined in the previous two recipes, with the only

addition being that it will implement the new interface:

namespace Application\Generic\Hydrator\Strategy;

class GetSet implements HydratorInterface

{

public static function hydrate(array $array, $object)

{

// defined in the recipe:

// "Creating an Array to Object Hydrator"

}

public static function extract($object)

401

Implementing Software Design Patterns

{

// defined in the recipe:

// "Building an Object to Array Hydrator"

}

}

12. The next hydrator simply reads and writes public properties:

namespace Application\Generic\Hydrator\Strategy;

class PublicProps implements HydratorInterface

{

public static function hydrate(array $array, $object)

{

$propertyList= array_keys(

get_class_vars(get_class($object)));

foreach ($propertyList as $property) {

$object->$property = $array[$property] ?? NULL;

}

return $object;

}

public static function extract($object)

{

$array = array();

$propertyList = array_keys(

get_class_vars(get_class($object)));

foreach ($propertyList as $property) {

$array[$property] = $object->$property;

}

return $array;

}

}

13. Finally, Extending, the Swiss Army knife of hydrators, extends the object class, thus

providing direct access to properties. We further define magic getters and setters to

provide access to properties.

14. The hydrate() method is the most difficult as we are assuming no getters or

setters are defined, nor are the properties defined with a visibility level of public.

Accordingly, we need to define a class that extends the class of the object to be

hydrated. We do this by first defining a string that will be used as a template to build

the new class:

namespace Application\Generic\Hydrator\Strategy;

class Extending implements HydratorInterface

{

const UNDEFINED_PREFIX = 'undefined';

402

Chapter 11

const TEMP_PREFIX = 'TEMP_';

const ERROR_EVAL = 'ERROR: unable to evaluate object';

public static function hydrate(array $array, $object)

{

$className = get_class($object);

$components = explode('\\', $className);

$realClass = array_pop($components);

$nameSpace = implode('\\', $components);

$tempClass = $realClass . self::TEMP_SUFFIX;

$template = 'namespace '

. $nameSpace . '{'

. 'class ' . $tempClass

. ' extends ' . $realClass . ' '

15. Continuing in the hydrate() method, we define a $values property, and a

constructor that assigns the array to be hydrated into the object as an argument.

We loop through the array of values, assigning values to properties. We also define a

useful getArrayCopy() method, which returns these values if needed, as well as a

magic get() method to simulate direct property access:

. '{ '

. ' protected $values; '

. ' public function construct($array) '

. ' { $this->values = $array; '

. ' foreach ($array as $key => $value) '

. ' $this->$key = $value; '

. ' } '

. ' public function getArrayCopy() '

. ' { return $this->values; } '

16. For convenience we define a magic get() method, which simulates direct variable

access as if they were public:

. ' public function get($key) '

. ' { return $this->values[$key] ?? NULL; } '

17. Still in the template for the new class, we define also a magic call() method,

which simulates getters and setters:

. ' public function call($method, $params) '

. ' { '

. ' preg_match("/^(get|set)(.*?)$/i", '

. ' $method, $matches); '

. ' $prefix = $matches[1] ?? ""; '

. ' $key = $matches[2] ?? ""; '

. ' $key = strtolower(substr($key, 0, 1)) '

. ' substr($key, 1); '

403

Implementing Software Design Patterns

. ' if ($prefix == "get") { '

. ' return $this->values[$key] ?? NULL; '

. ' } else { '

. ' $this->values[$key] = $params[0]; '

. ' } '

. ' } '

. '} '

. '} // ends namespace ' . PHP_EOL

18. Finally, still in the template for the new class, we add a function, in the global

namespace, that builds and returns the class instance:

. 'namespace { '

. 'function build($array) '

. '{ return new ' . $nameSpace . '\\'

. $tempClass . '($array); } '

. '} // ends global namespace '

. PHP_EOL;

19. Still in the hydrate() method, we execute the completed template using eval().

We then run the build() method defined just at the end of the template. Note that

as we are unsure of the namespace of the class to be populated, we define and call

build() from the global namespace:

try {

eval($template);

} catch (ParseError $e) {

error_log(METHOD . ':' . $e->getMessage());

throw new Exception(self::ERROR_EVAL);

}

return \build($array);

}

20. The extract() method is much easier to define as our choices are extremely

limited. Extending a class and populating it from an array using magic methods is

easily accomplished. The reverse is not the case. If we were to extend the class,

we would lose all the property values, as we are extending the class, not the object

instance. Accordingly, our only option is to use a combination of getters and public

properties:

public static function extract($object)

{

$array = array();

$class = get_class($object);

$methodList = get_class_methods($class);

foreach ($methodList as $method) {

preg_match('/^(get)(.*?)$/i', $method, $matches);

404

Chapter 11

$prefix = $matches[1] ?? '';

$key = $matches[2] ?? '';

$key = strtolower(substr($key, 0, 1))

. substr($key, 1);

if ($prefix == 'get') {

$array[$key] = $object->$method();

}

}

$propertyList= array_keys(get_class_vars($class));

foreach ($propertyList as $property) {

$array[$property] = $object->$property;

}

return $array;

}

}

 How it works…

You can begin by defining three test classes with identical properties: firstName, lastName,

and so on. The first, Person, should have protected properties along with getters and setters.

The second, PublicPerson, will have public properties. The third, ProtectedPerson, has

protected properties but no getters nor setters:

<?php

namespace Application\Entity;

class Person

{

protected $firstName = '';

protected $lastName = '';

protected $address = '';

protected $city = '';

protected $stateProv = '';

protected $postalCode = '';

protected $country = '';

public function getFirstName()

{

return $this->firstName;

}

public function setFirstName($firstName)

{

$this->firstName = $firstName;

405

Implementing Software Design Patterns

}

// be sure to define remaining getters and setters

}

<?php

namespace Application\Entity;

class PublicPerson

{

private $id = NULL;

public $firstName = '';

public $lastName = '';

public $address = '';

public $city = '';

public $stateProv = '';

public $postalCode = '';

public $country = '';

}

<?php

namespace Application\Entity;

class ProtectedPerson

{

private $id = NULL;

protected $firstName = '';

protected $lastName = '';

protected $address = '';

protected $city = '';

protected $stateProv = '';

protected $postalCode = '';

protected $country = '';

}

You can now define a calling program called chap_11_strategy_pattern.php, which sets

up autoloading and uses the appropriate classes:

<?php

require DIR . '/../Application/Autoload/Loader.php';

Application\Autoload\Loader::init(DIR . '/..');

use Application\Entity\ { Person, PublicPerson, ProtectedPerson };

use Application\Generic\Hydrator\Any;

use Application\Generic\Hydrator\Strategy\ { GetSet, Extending,

PublicProps };

406

Chapter 11

Next, create an instance of Person and run the setters to define values for properties:

$obj = new Person();

$obj->setFirstName('Li\'lAbner');

$obj->setLastName('Yokum');

$obj->setAddress('1 Dirt Street');

$obj->setCity('Dogpatch');

$obj->setStateProv('Kentucky');

$obj->setPostalCode('12345');

$obj->setCountry('USA');

Next, create an instance of the Any hydrator, call extract(), and use var_dump() to view

the results:

$hydrator = new Any();

$b = $hydrator->extract($obj);

echo "\nChosen Strategy: " . $hydrator->chosen . "\n";

var_dump($b);

Observe, in the following output, that the GetSet strategy was chosen:

Note that the id property is not set as its visibility level is private.

Next, you can define an array with the same values. Call hydrate() on the Any instance,

and supply a new PublicPerson instance as an argument:

$a = [

'firstName' => 'Li\'lAbner',

'lastName' => 'Yokum',

407

Implementing Software Design Patterns

'address' => '1 Dirt Street',

'city' => 'Dogpatch',

'stateProv' => 'Kentucky',

'postalCode' => '12345',

'country' => 'USA'

];

$p = $hydrator->hydrate($a, new PublicPerson());

echo "\nChosen Strategy: " . $hydrator->chosen . "\n";

var_dump($p);

Here is the result. Note that the PublicProps strategy was chosen in this case:

Finally, call hydrate() again, but this time supply an instance of ProtectedPerson as the

object argument. We then call getFirstName() and getLastName() to test the magic

getters. We also access first and last names as direct variable access:

$q = $hydrator->hydrate($a, new ProtectedPerson());

echo "\nChosen Strategy: " . $hydrator->chosen . "\n";

echo "Name: {$q->getFirstName()} {$q->getLastName()}\n";

echo "Name: {$q->firstName} {$q->lastName}\n";

var_dump($q);

Here is the last output, showing that the Extending strategy was chosen. You'll also note

that the instance is a new ProtectedPerson_TEMP class, and that the protected properties

are fully populated:

408

Chapter 11

Defining a mapper

A mapper or data mapper works in much the same manner as a hydrator: converting data

from one model, be it array or object, into another. A critical difference is that the hydrator

is generic and does not need to have object property names pre-programmed, whereas the

mapper is the opposite: it needs precise information on property names for both models. In

this recipe we will demonstrate the use of a mapper to convert data from one database table

into another.

 How to do it…

1. We first define a Application\Database\Mapper\FieldConfig class, which

contains mapping instructions for individual fields. We also define appropriate class

constants:

namespace Application\Database\Mapper;

use InvalidArgumentException;

class FieldConfig

{

const ERROR_SOURCE =

'ERROR: need to specify destTable and/or source';

const ERROR_DEST = 'ERROR: need to specify either '

. 'both destTable and destCol or neither';

409

Implementing Software Design Patterns

2. Key properties are defined along with the appropriate class constants. $key is used

to identify the object. $source represents the column from the source database

table. $destTable and $destCol represent the target database table and column.

$default, if defined, contains a default value or a callback that produces the

appropriate value:

public $key;

public $source;

public $destTable;

public $destCol;

public $default;

3. We now turn our attention to the constructor, which assigns default values, builds the

key, and checks to see that either or both $source or $destTable and $destCol

are defined:

public function construct($source = NULL,

$destTable = NULL,

$destCol = NULL,

$default = NULL)

{

// generate key from source + destTable + destCol

$this->key = $source . '.' . $destTable . '.' . $destCol;

$this->source = $source;

$this->destTable = $destTable;

$this->destCol = $destCol;

$this->default = $default;

if (($destTable && !$destCol) ||

(!$destTable && $destCol)) {

throw new InvalidArgumentException(self::ERROR_DEST);

}

if (!$destTable && !$source) {

throw new InvalidArgumentException(

self::ERROR_SOURCE);

}

}

Note that we allow source and destination columns to be NULL. The

reason for this is that we might have a source column that has no place in

the destination table. Likewise, there might be mandatory columns in the

destination table that are not represented in the source table.

410

Chapter 11

4. In the case of defaults, we need to check to see if the value is a callback. If so, we

run the callback; otherwise, we return the direct value. Note that the callbacks should

be defined so that they accept a database table row as an argument:

public function getDefault()

{

if (is_callable($this->default)) {

return call_user_func($this->default, $row);

} else {

return $this->default;

}

}

5. Finally, to wrap up this class, we define getters and setters for each of the five

properties:

public function getKey()

{

return $this->key;

}

public function setKey($key)

{

$this->key = $key;

}

// etc.

6. Next, we define a Application\Database\Mapper\Mapping mapping class,

which accepts the name of the source and destination tables as well as an array

of FieldConfig objects as an argument. You will see later that we allow the

destination table property to be an array, as the mapping might be to two or more

destination tables:

namespace Application\Database\Mapper;

class Mapping

{

protected $sourceTable;

protected $destTable;

protected $fields;

protected $sourceCols;

protected $destCols;

public function construct(

$sourceTable, $destTable, $fields = NULL)

{

$this->sourceTable = $sourceTable;

411

Implementing Software Design Patterns

$this->destTable = $destTable;

$this->fields = $fields;

}

7. We then define getters and setters for these properties:

public function getSourceTable()

{

return $this->sourceTable;

}

public function setSourceTable($sourceTable)

{

$this->sourceTable = $sourceTable;

}

// etc.

8. For field configuration, we also need to provide the ability to add an individual field.

There is no need to supply the key as a separate argument as this can be obtained

from the FieldConfig instance:

public function addField(FieldConfig $field)

{

$this->fields[$field->getKey()] = $field;

return $this;

}

9. It is extremely important to obtain an array of source column names. The problem

is that the source column name is a property buried in a FieldConfig object.

Accordingly, when this method is called, we loop through the array of FieldConfig

objects and invoke getSource() on each one to obtain the source column name:

public function getSourceColumns()

{

if (!$this->sourceCols) {

$this->sourceCols = array();

foreach ($this->getFields() as $field) {

if (!empty($field->getSource())) {

$this->sourceCols[$field->getKey()] =

$field->getSource();

}

}

}

return $this->sourceCols;

}

412

Chapter 11

10. We use a similar approach for getDestColumns(). The big difference compared

to getting a list of source columns is that we only want the columns for one specific

destination table, which is critical if there's more than one such table is defined. We

do not need to check to see if $destCol is set as this is already taken care of in the

constructor for FieldConfig:

public function getDestColumns($table)

{

if (empty($this->destCols[$table])) {

foreach ($this->getFields() as $field) {

if ($field->getDestTable()) {

if ($field->getDestTable() == $table) {

$this->destCols[$table][$field->getKey()] =

$field->getDestCol();

}

}

}

}

return $this->destCols[$table];

}

11. Finally, we define a method that accepts as a first argument an array representing

one row of data from the source table. The second argument is the name of the

destination table. The method produces an array of data ready to be inserted into the

destination table.

12. We had to make a decision as to which would take precedence: the default value

(which could be provided by a callback), or data from the source table. We decided to

test for a default value first. If the default comes back NULL, data from the source is

used. Note that if further processing is required, the default should be defined as a

callback.

public function mapData($sourceData, $destTable)

{

$dest = array();

foreach ($this->fields as $field) {

if ($field->getDestTable() == $destTable) {

$dest[$field->getDestCol()] = NULL;

$default = $field->getDefault($sourceData);

if ($default) {

$dest[$field->getDestCol()] = $default;

} else {

$dest[$field->getDestCol()] =

$sourceData[$field->getSource()];

}

}

}

413

Implementing Software Design Patterns

return $dest;

}

}

Note that some columns will appear in the destination insert that are

not present in the source row. In this case, the $source property of the

FieldConfig object is left as NULL, and a default value is supplied,

either as a scalar value or as a callback.

13. We are now ready to define two methods that will generate SQL. The first such

method will generate an SQL statement to read from the source table. The statement

will include placeholders to be prepared (for example, using PDO::prepare()):

public function getSourceSelect($where = NULL)

{

$sql = 'SELECT '

. implode(',', $this->getSourceColumns()) . ' ';

$sql .= 'FROM ' . $this->getSourceTable() . ' ';

if ($where) {

$where = trim($where);

if (stripos($where, 'WHERE') !== FALSE) {

$sql .= $where;

} else {

$sql .= 'WHERE ' . $where;

}

}

return trim($sql);

}

14. The other SQL generation method produces a statement to be prepared for a specific

destination table. Notice that the placeholders are the same as the column names

preceded by ":":

public function getDestInsert($table)

{

$sql = 'INSERT INTO ' . $table . ' ';

$sql .= '('

. implode(',', $this->getDestColumns($table))

. ') ';

$sql .= ' VALUES ';

$sql .= '(:'

. implode(',:', $this->getDestColumns($table))

. ') ';

return trim($sql);

}

414

 How it works…

Chapter 11

Use the code shown in steps 1 to 5 to produce an Application\Database\Mapper\

FieldConfig class. Place the code shown in steps 6 to 14 into a second Application\

Database\Mapper\Mapping class.

Before defining a calling program that performs mapping, it's important to consider the

source and destination database tables. The definition for the source table, prospects_11,

is as follows:

CREATE TABLE `prospects_11` (

`id` int(11) NOT NULL AUTO_INCREMENT,

`first_name` varchar(128) NOT NULL,

`last_name` varchar(128) NOT NULL,

`address` varchar(256) DEFAULT NULL,

`city` varchar(64) DEFAULT NULL,

`state_province` varchar(32) DEFAULT NULL,

`postal_code` char(16) NOT NULL,

`phone` varchar(16) NOT NULL,

`country` char(2) NOT NULL,

`email` varchar(250) NOT NULL,

`status` char(8) DEFAULT NULL,

`budget` decimal(10,2) DEFAULT NULL,

`last_updated` datetime DEFAULT NULL,

PRIMARY KEY (`id`),

UNIQUE KEY `UNIQ_35730C06E7927C74` (`email`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

In this example, you can use two destination tables, customer_11 and profile_11,

between which there is a 1:1 relationship:

CREATE TABLE `customer_11` (

`id` int(11) NOT NULL AUTO_INCREMENT,

`name` varchar(256) CHARACTER SET latin1

COLLATE latin1_general_cs NOT NULL,

`balance` decimal(10,2) NOT NULL,

`email` varchar(250) NOT NULL,

`password` char(16) NOT NULL,

`status` int(10) unsigned NOT NULL DEFAULT '0',

`security_question` varchar(250) DEFAULT NULL,

`confirm_code` varchar(32) DEFAULT NULL,

`profile_id` int(11) DEFAULT NULL,

`level` char(3) NOT NULL,

PRIMARY KEY (`id`),

UNIQUE KEY `UNIQ_81398E09E7927C74` (`email`)

415

Implementing Software Design Patterns

) ENGINE=InnoDB AUTO_INCREMENT=80 DEFAULT CHARSET=utf8

COMMENT='Customers';

CREATE TABLE `profile_11` (

`id` int(11) NOT NULL AUTO_INCREMENT,

`address` varchar(256) NOT NULL,

`city` varchar(64) NOT NULL,

`state_province` varchar(32) NOT NULL,

`postal_code` varchar(10) NOT NULL,

`country` varchar(3) NOT NULL,

`phone` varchar(16) NOT NULL,

`photo` varchar(128) NOT NULL,

`dob` datetime NOT NULL,

PRIMARY KEY (`id`)

) ENGINE=InnoDB AUTO_INCREMENT=80 DEFAULT CHARSET=utf8

COMMENT='Customers';

You can now define a calling program called chap_11_mapper.php, which sets up

autoloading and uses the two classes mentioned previously. You can also use the

Connection class defined in Chapter 5, Interacting with a Database:

<?php

define('DB_CONFIG_FILE', '/../config/db.config.php');

define('DEFAULT_PHOTO', 'person.gif');

require DIR . '/../Application/Autoload/Loader.php';

Application\Autoload\Loader::init(DIR . '/..');

use Application\Database\Mapper\ { FieldConfig, Mapping };

use Application\Database\Connection;

$conn = new Connection(include DIR . DB_CONFIG_FILE);

For demonstration purposes, after having made sure the two destination tables exist, you can

truncate both tables so that any data that appears is clean:

$conn->pdo->query('DELETE FROM customer_11');

$conn->pdo->query('DELETE FROM profile_11');

You are now ready to build the Mapping instance and populate it with FieldConfig objects.

Each FieldConfig object represents a mapping between source and destination. In the

constructor, supply the name of the source table and the two destination tables in the form of

an array:

$mapper = new Mapping('prospects_11', ['customer_11','profile_11']);

You can start simply by mapping fields between prospects_11 and customer_11 where

there are no defaults:

$mapper>addField(new FieldConfig('email','customer_11','email'))

416

Chapter 11

Note that addField() returns the current mapping instance so there is no need to keep

specifying $mapper->addField(). This technique is referred to as the fluent interface.

The name field is tricky, as in the prospects_11 table it's represented by two columns, but

only one column in the customer_11 table. Accordingly, you can add a callback as default

for first_name to combine the two fields into one. You will also need to define an entry for

last_name but where there is no destination mapping:

->addField(new FieldConfig('first_name','customer_11','name',

function ($row) { return trim(($row['first_name'] ?? '')

. ' ' . ($row['last_name'] ?? ''));}))

->addField(new FieldConfig('last_name'))

The customer_11::status field can use the null coalesce operator (??) to determine if it's

set or not:

->addField(new FieldConfig('status','customer_11','status',

function ($row) { return $row['status'] ?? 'Unknown'; }))

The customer_11::level field is not represented in the source table, thus you can make

a NULL entry for the source field, but make sure the destination table and column are set.

Likewise, customer_11::password is not present in the source table. In this case, the

callback uses the phone number as a temporary password:

->addField(new FieldConfig(NULL,'customer_11','level','BEG'))

->addField(new

FieldConfig(NULL,'customer_11','password', function

($row) { return $row['phone']; }))

You can also set mappings from prospects_11 to profile_11 as follows. Note that as the

source photo and date of birth columns are not present in prospects_11, you can set any

appropriate default:

->addField(new FieldConfig('address','profile_11','address'))

->addField(new FieldConfig('city','profile_11','city'))

->addField(new

FieldConfig('state_province','profile_11',

'state_province', function ($row) {

return $row['state_province'] ?? 'Unknown'; }))

->addField(new FieldConfig('postal_code','profile_11',

'postal_code'))

->addField(new FieldConfig('phone','profile_11','phone'))

->addField(new FieldConfig('country','profile_11','country'))

->addField(new FieldConfig(NULL,'profile_11','photo',

DEFAULT_PHOTO))

->addField(new FieldConfig(NULL,'profile_11','dob',

date('Y-m-d')));

417

Implementing Software Design Patterns

In order to establish the 1:1 relationship between the profile_11 and customer_11

tables, we set the values of customer_11::id, customer_11::profile_id and

profile_11::id to the value of $row['id'] using a callback:

$idCallback = function ($row) { return $row['id']; };

$mapper->addField(new FieldConfig('id','customer_11','id',

$idCallback))

->addField(new FieldConfig(NULL,'customer_11','profile_id',

$idCallback))

->addField(new FieldConfig('id','profile_11','id',$idCallback));

You can now call the appropriate methods to generate three SQL statements, one to read

from the source table, and two to insert into the two destination tables:

$sourceSelect = $mapper->getSourceSelect();

$custInsert = $mapper->getDestInsert('customer_11');

$profileInsert = $mapper->getDestInsert('profile_11');

These three statements can immediately be prepared for later execution:

$sourceStmt = $conn->pdo->prepare($sourceSelect);

$custStmt = $conn->pdo->prepare($custInsert);

$profileStmt = $conn->pdo->prepare($profileInsert);

We then execute the SELECT statement, which produces rows from the source table. In a

loop we then generate INSERT data for each destination table, and execute the appropriate

prepared statements:

$sourceStmt->execute();

while ($row = $sourceStmt->fetch(PDO::FETCH_ASSOC)) {

$custData = $mapper->mapData($row, 'customer_11');

$custStmt->execute($custData);

$profileData = $mapper->mapData($row, 'profile_11');

$profileStmt->execute($profileData);

echo "Processing: {$custData['name']}\n";

}

Here are the three SQL statements produced:

418

Chapter 11

We can then view the data directly from the database using SQL JOIN to ensure the

relationship has been maintained:

419

Implementing Software Design Patterns

 Implementing object-relational mapping

There are two primary techniques to achieve a relational mapping between objects. The first

technique involves pre-loading the related child objects into the parent object. The advantage

to this approach is that it is easy to implement, and all parent-child information is immediately

available. The disadvantage is that large amounts of memory are potentially consumed, and

the performance curve is skewed.

The second technique is to embed a secondary lookup into the parent object. In this latter

approach, when you need to access the child objects, you would run a getter that would

perform the secondary lookup. The advantage of this approach is that performance demands

are spread out throughout the request cycle, and memory usage is (or can be) more easily

managed. The disadvantage of this approach is that there are more queries generated, which

means more work for the database server.

Please note, however, that we will show how the use of prepared

statements can be used to greatly offset this disadvantage.

 How to do it…

Let's have a look at two techniques to implement object-relational mapping.

Technique #1 – pre-loading all child information

First, we will discuss how to implement object relational mapping by pre-loading all child

information into the parent class. For this illustration, we will use three related database

tables, customer, purchases, and products:

1. We will use the existing Application\Entity\Customer class (defined in

Chapter 5, Interacting with a Database, in the Defining entity classes to match

database tables recipe) as a model to develop an Application\Entity\

Purchase class. As before, we will use the database definition as the basis of the

entity class definition. Here is the database definition for the purchases table:

CREATE TABLE `purchases` (

`id` int(11) NOT NULL AUTO_INCREMENT,

`transaction` varchar(8) NOT NULL,

`date` datetime NOT NULL,

`quantity` int(10) unsigned NOT NULL,

`sale_price` decimal(8,2) NOT NULL,

`customer_id` int(11) DEFAULT NULL,

`product_id` int(11) DEFAULT NULL,

PRIMARY KEY (`id`),

KEY `IDX_C3F3` (`customer_id`),

420

KEY `IDX_665A` (`product_id`),

Chapter 11

CONSTRAINT `FK_665A` FOREIGN KEY (`product_id`) REFERENCES

`products` (`id`),

CONSTRAINT `FK_C3F3` FOREIGN KEY (`customer_id`) REFERENCES

`customer` (`id`)

);

2. Based on the customer entity class, here is how Application\Entity\Purchase

might look. Note that not all getters and setters are shown:

namespace Application\Entity;

class Purchase extends Base

{

const TABLE_NAME = 'purchases';

protected $transaction = '';

protected $date = NULL;

protected $quantity = 0;

protected $salePrice = 0.0;

protected $customerId = 0;

protected $productId = 0;

protected $mapping = [

'id' => 'id',

'transaction' => 'transaction',

'date' => 'date',

'quantity' => 'quantity',

'sale_price' => 'salePrice',

'customer_id' => 'customerId',

'product_id' => 'productId',

];

public function getTransaction() : string

{

return $this->transaction;

}

public function setTransaction($transaction)

{

$this->transaction = $transaction;

}

// NOTE: other getters / setters are not shown here

}

421

Implementing Software Design Patterns

3. We are now ready to define Application\Entity\Product. Here is the database

definition for the products table:

CREATE TABLE `products` (

`id` int(11) NOT NULL AUTO_INCREMENT,

`sku` varchar(16) DEFAULT NULL,

`title` varchar(255) NOT NULL,

`description` varchar(4096) DEFAULT NULL,

`price` decimal(10,2) NOT NULL,

`special` int(11) NOT NULL,

`link` varchar(128) NOT NULL,

PRIMARY KEY (`id`),

UNIQUE KEY `UNIQ_38C4` (`sku`)

);

4. Based on the customer entity class, here is how Application\Entity\Product

might look:

namespace Application\Entity;

class Product extends Base

{

const TABLE_NAME = 'products';

protected $sku = '';

protected $title = '';

protected $description = '';

protected $price = 0.0;

protected $special = 0;

protected $link = '';

protected $mapping = [

'id' => 'id',

'sku' => 'sku',

'title' => 'title',

'description' => 'description',

'price' => 'price',

'special' => 'special',

'link' => 'link',

];

public function getSku() : string

{

return $this->sku;

}

public function setSku($sku)

422

Chapter 11

{

$this->sku = $sku;

}

// NOTE: other getters / setters are not shown here

}

5. Next, we need to implement a way to embed related objects. We will start with the

Application\Entity\Customer parent class. For this section, we will assume

the following relationships, illustrated in the following diagram:

 One customer, many purchases

 One purchase, one product

6. Accordingly, we define a getter and setter that process purchases in the form of an

array of objects:

protected $purchases = array();

public function addPurchase($purchase)

{

$this->purchases[] = $purchase;

}

public function getPurchases()

{

return $this->purchases;

}

7. Now we turn our attention to Application\Entity\Purchase. In this case,

there is a 1:1 relationship between a purchase and a product, so there's no need to

process an array:

protected $product = NULL;

public function getProduct()

{

return $this->product;

}

public function setProduct(Product $product)

{

$this->product = $product;

}

423

Implementing Software Design Patterns

Notice that in both entity classes, we do not alter the $mapping array.

This is because implementing object relational mapping has no bearing

on the mapping between entity property names and database column

names.

8. Since the core functionality of obtaining basic customer information is still needed,

all we need to do is to extend the Application\Database\CustomerService

class described in Chapter 5, Interacting with a Database, in the Tying entity classes

to RDBMS queries recipe. We can create a new Application\Database\

CustomerOrmService_1 class, which extends Application\Database\

CustomerService:

namespace Application\Database;

use PDO;

use PDOException;

use Application\Entity\Customer;

use Application\Entity\Product;

use Application\Entity\Purchase;

class CustomerOrmService_1 extends CustomerService

{

// add methods here

}

9. We then add a method to the new service class that performs a lookup and embeds

the results, in the form of Product and Purchase entities, into the core customer

entity. This method performs a lookup in the form of a JOIN. This is possible because

there is a 1:1 relationship between purchase and product. Because the id column

has the same name in both tables, we need to add the purchase ID column as an

alias. We then loop through the results, creating Product and Purchase entities.

After overriding the ID, we can then embed the Product entity into the Purchase

entity, and then add the Purchase entity to the array in the Customer entity:

protected function fetchPurchasesForCustomer(Customer $cust)

{

$sql = 'SELECT u.*,r.*,u.id AS purch_id '

. 'FROM purchases AS u '

. 'JOIN products AS r '

. 'ON r.id = u.product_id '

. 'WHERE u.customer_id = :id '

. 'ORDER BY u.date';

$stmt = $this->connection->pdo->prepare($sql);

$stmt->execute(['id' => $cust->getId()]);

while ($result = $stmt->fetch(PDO::FETCH_ASSOC)) {

$product = Product::arrayToEntity($result, new Product());

$product->setId($result['product_id']);

424

Chapter 11

$purch = Purchase::arrayToEntity($result, new Purchase());

$purch->setId($result['purch_id']);

$purch->setProduct($product);

$cust->addPurchase($purch);

}

return $cust;

}

10. Next, we provide a wrapper for the original fetchById() method. This block

of code needs to not only get the original Customer entity, but needs to look

up and embed Product and Purchase entities. We can call the new

fetchByIdAndEmbedPurchases() method and accept a customer ID as an

argument:

public function fetchByIdAndEmbedPurchases($id)

{

return $this->fetchPurchasesForCustomer(

$this->fetchById($id));

}

Technique #2 – embedding secondary lookups

Now we will cover embedding secondary lookups into the related entity classes. We will

continue to use the same illustration as above, using the entity classes defined that

correspond to three related database tables, customer, purchases, and products:

1. The mechanics of this approach are quite similar to those described in the preceding

section. The main difference is that instead of doing the database lookup, and

producing entity classes right away, we will embed a series of anonymous functions

that will do the same thing, but called from the view logic.

2. We need to add a new method to the Application\Entity\Customer class that

adds a single entry to the purchases property. Instead of an array of Purchase

entities, we will be supplying an anonymous function:

public function setPurchases(Closure $purchaseLookup)

{

$this->purchases = $purchaseLookup;

}

3. Next, we will make a copy of the Application\Database\

CustomerOrmService_1 class, and call it Application\Database\

CustomerOrmService_2:

namespace Application\Database;

use PDO;

use PDOException;

425

Implementing Software Design Patterns

use Application\Entity\Customer;

use Application\Entity\Product;

use Application\Entity\Purchase;

class CustomerOrmService_2 extends CustomerService

{

// code

}

4. We then define a fetchPurchaseById() method, which looks up a single

purchase based on its ID and produces a Purchase entity. Because we will

ultimately be making a series of repetitive requests for single purchases in this

approach, we can regain database efficiency by working off the same prepared

statement, in this case, a property called $purchPreparedStmt:

public function fetchPurchaseById($purchId)

{

if (!$this->purchPreparedStmt) {

$sql = 'SELECT * FROM purchases WHERE id = :id';

$this->purchPreparedStmt =

$this->connection->pdo->prepare($sql);

}

$this->purchPreparedStmt->execute(['id' => $purchId]);

$result = $this->purchPreparedStmt->fetch(PDO::FETCH_ASSOC);

return Purchase::arrayToEntity($result, new Purchase());

}

5. After that, we need a fetchProductById() method that looks up a single product

based on its ID and produces a Product entity. Given that a customer may have

purchased the same product several times, we can introduce an additional level of

efficiency by storing acquired product entities in a $products array. In addition, as

with purchases, we can perform lookups on the same prepared statement:

public function fetchProductById($prodId)

{

if (!isset($this->products[$prodId])) {

if (!$this->prodPreparedStmt) {

$sql = 'SELECT * FROM products WHERE id = :id';

$this->prodPreparedStmt =

$this->connection->pdo->prepare($sql);

}

$this->prodPreparedStmt->execute(['id' => $prodId]);

$result = $this->prodPreparedStmt

->fetch(PDO::FETCH_ASSOC);

$this->products[$prodId] =

Product::arrayToEntity($result, new Product());

}

return $this->products[$prodId];

}

426

Chapter 11

6. We can now rework the fetchPurchasesForCustomer() method to have it

embed an anonymous function that makes calls to both fetchPurchaseById()

and fetchProductById(), and then assigns the resulting product entity to the

newly found purchase entity. In this example, we do an initial lookup that just returns

the IDs of all purchases for this customer. We then embed a sequence of anonymous

functions in the Customer::$purchases property, storing the purchase ID as the

array key, and the anonymous function as its value:

public function fetchPurchasesForCustomer(Customer $cust)

{

$sql = 'SELECT id '

. 'FROM purchases AS u '

. 'WHERE u.customer_id = :id '

. 'ORDER BY u.date';

$stmt = $this->connection->pdo->prepare($sql);

$stmt->execute(['id' => $cust->getId()]);

while ($result = $stmt->fetch(PDO::FETCH_ASSOC)) {

$cust->addPurchaseLookup(

$result['id'],

function ($purchId, $service) {

$purchase = $service->fetchPurchaseById($purchId);

$product = $service->fetchProductById(

$purchase->getProductId());

$purchase->setProduct($product);

return $purchase; }

);

}

return $cust;

}

 How it works…

Define the following classes based on the steps from this recipe as follows:

Class Technique #1 steps

Application\Entity\Purchase 1 - 2, 7

Application\Entity\Product 3 – 4

Application\Entity\Customer 6, 16, + described in Chapter 5,

Interacting with a Database.

Application\Database\

CustomerOrmService_1

8 – 10

427

Implementing Software Design Patterns

The second approach to this would be as follows:

Class Technique #2 steps

Application\Entity\Customer 2

Application\Database\

CustomerOrmService_2

3 – 6

In order to implement approach #1, where entities are embedded, define a calling program

called chap_11_orm_embedded.php, which sets up autoloading and uses the appropriate

classes:

<?php

define('DB_CONFIG_FILE', '/../config/db.config.php');

require DIR . '/../Application/Autoload/Loader.php';

Application\Autoload\Loader::init(DIR

use Application\Database\Connection;

. '/..');

use Application\Database\CustomerOrmService_1;

Next, create an instance of the service, and look up a customer using a random ID:

$service = new CustomerOrmService_1(

new Connection(include DIR

$id = rand(1,79);

. DB_CONFIG_FILE));

$cust = $service->fetchByIdAndEmbedPurchases($id);

In the view logic, you will have acquired a fully populated Customer entity by way of the

fetchByIdAndEmbedPurchases() method. Now all you need to do is to call the right

getters to display information:

<!-- Customer Info -->

<h1><?= $cust->getname() ?></h1>

<div class="row">

<div class="left">Balance</div><div class="right">

<?= $cust->getBalance(); ?></div>

</div>

<!-- etc. -->

The logic needed to display purchase information would then look something like the

following HTML. Notice that Customer::getPurchases() returns an array of Purchase

entities. To get product information from the Purchase entity, inside the loop, call

Purchase::getProduct(), which produces a Product entity. You can then call any of the

Product getters, in this example, Product::getTitle():

<!-- Purchases Info -->

<table>

<?php foreach ($cust->getPurchases() as $purchase) : ?>

428

Chapter 11

<tr>

<td><?= $purchase->getTransaction() ?></td>

<td><?= $purchase->getDate() ?></td>

<td><?= $purchase->getQuantity() ?></td>

<td><?= $purchase->getSalePrice() ?></td>

<td><?= $purchase->getProduct()->getTitle() ?></td>

</tr>

<?php endforeach; ?>

</table>

Turning your attention to the second approach, which uses secondary lookups, define a calling

program called chap_11_orm_secondary_lookups.php, which sets up autoloading and

uses the appropriate classes:

<?php

define('DB_CONFIG_FILE', '/../config/db.config.php');

require DIR . '/../Application/Autoload/Loader.php';

Application\Autoload\Loader::init(DIR

use Application\Database\Connection;

. '/..');

use Application\Database\CustomerOrmService_2;

Next, create an instance of the service, and look up a customer using a random ID:

$service = new CustomerOrmService_2(new Connection(include DIR .

DB_CONFIG_FILE));

$id = rand(1,79);

You can now retrieve an Application\Entity\Customer instance and call

fetchPurchasesForCustomer() for this customer, which embeds the sequence of

anonymous functions:

$cust = $service->fetchById($id);

$cust = $service->fetchPurchasesForCustomer($cust);

The view logic for displaying core customer information remains the same as described

previously. The logic needed to display purchase information would then look something like the

following HTML code snippet. Notice that Customer::getPurchases() returns an array of

anonymous functions. Each function call returns one specific purchase and related products:

<table>

<?php foreach($cust->getPurchases() as $purchId => $function) : ?>

<tr>

<?php $purchase = $function($purchId, $service); ?>

<td><?= $purchase->getTransaction() ?></td>

<td><?= $purchase->getDate() ?></td>

<td><?= $purchase->getQuantity() ?></td>

<td><?= $purchase->getSalePrice() ?></td>

429

Implementing Software Design Patterns

<td><?= $purchase->getProduct()->getTitle() ?></td>

</tr>

<?php endforeach; ?>

</table>

Here is an example of the output:

Best practice

Although each iteration of the loop represents two independent database

queries (one for purchase, one for product), efficiency is retained by the

use of prepared statements. Two statements are prepared in advance: one

that looks up a specific purchase, and one that looks up a specific product.

These prepared statements are then executed multiple times. Also, each

product retrieval is independently stored in an array, resulting in even

greater efficiency.

 See also

Probably the best example of a library that implements object-relational mapping is Doctrine.

Doctrine uses an embedded approach that its documentation refers to as a proxy. For more

information, please refer to http://www.doctrine-project.org/projects/orm.

html.

430

http://www.doctrine-project.org/projects/orm

Chapter 11

You might also consider reviewing a training video on Learning Doctrine, available from

O'Reilly Media at http://shop.oreilly.com/product/0636920041382.do.

(Disclaimer: this is a shameless plug by the author of both this book and this video!)

 Implementing the Pub/Sub design pattern

The Publish/Subscribe (Pub/Sub) design pattern often forms the basis of software event-

driven programming. This methodology allows asynchronous communications between different

software applications, or different software modules within a single application. The purpose of

the pattern is to allow a method or function to publish a signal when an action of significance

has taken place. One or more classes would then subscribe and take action if a certain signal

has been published.

Example of such actions are when the database is modified, or when a user has logged in.

Another common use for this design pattern is when an application delivers news feeds. If

an urgent news item has been posted, the application would publish this fact, allowing client

subscribers to refresh their news listings.

 How to do it…

1. First, we define our publisher class, Application\PubSub\Publisher. You'll

notice that we are making use of two useful Standard PHP Library (SPL) interfaces,

SplSubject and SplObserver:

namespace Application\PubSub;

use SplSubject;

use SplObserver;

class Publisher implements SplSubject

{

// code

}

2. Next, we add properties to represent the publisher name, data to be passed to

subscribers, and an array of subscribers (also referred to as listeners). You will also

note that we will use a linked list (described in Chapter 10, Looking at Advanced

Algorithms) to allow for priority:

protected $name;

protected $data;

protected $linked;

protected $subscribers;

431

http://shop.oreilly.com/product/0636920041382.do

Implementing Software Design Patterns

3. The constructor initializes these properties. We also throw in toString() in case

we need quick access to the name of this publisher:

public function construct($name)

{

$this->name = $name;

$this->data = array();

$this->subscribers = array();

$this->linked = array();

}

public function toString()

{

return $this->name;

}

4. In order to associate a subscriber with this publisher, we define attach(), which

is specified in the SplSubject interface. We accept an SplObserver instance

as an argument. Note that we need to add entries to both the $subscribers and

$linked properties. $linked is then sorted by value, represented by the priority,

using arsort(), which sorts in reverse and maintains the key:

public function attach(SplObserver $subscriber)

{

$this->subscribers[$subscriber->getKey()] = $subscriber;

$this->linked[$subscriber->getKey()] =

$subscriber->getPriority();

arsort($this->linked);

}

5. The interface also requires us to define detach(), which removes the subscriber

from the list:

public function detach(SplObserver $subscriber)

{

unset($this->subscribers[$subscriber->getKey()]);

unset($this->linked[$subscriber->getKey()]);

}

6. Also required by the interface, we define notify(), which calls update() on all the

subscribers. Note that we loop through the linked list to ensure the subscribers are

called in order of priority:

public function notify()

{

foreach ($this->linked as $key => $value)

{

$this->subscribers[$key]->update($this);

}

}

432

Chapter 11

7. Next, we define the appropriate getters and setters. We don't show them all here to

conserve space:

public function getName()

{

return $this->name;

}

public function setName($name)

{

$this->name = $name;

}

8. Finally, we need to provide a means of setting data items by key, which will then be

available to subscribers when notify() is invoked:

public function setDataByKey($key, $value)

{

$this->data[$key] = $value;

}

9. Now we can have a look at Application\PubSub\Subscriber. Typically, we

would define multiple subscribers for each publisher. In this case, we implement the

SplObserver interface:

namespace Application\PubSub;

use SplSubject;

use SplObserver;

class Subscriber implements SplObserver

{

// code

}

10. Each subscriber needs a unique identifier. In this case, we create the key using

md5() and date/time information, combined with a random number. The constructor

initializes the properties as follows. The actual logical functionality performed by the

subscriber is in the form of a callback:

protected $key;

protected $name;

protected $priority;

protected $callback;

public function construct(

string $name, callable $callback, $priority = 0)

{

$this->key = md5(date('YmdHis') . rand(0,9999));

$this->name = $name;

$this->callback = $callback;

$this->priority = $priority;

}

433

Implementing Software Design Patterns

11. The update() function is called when notifiy() on the publisher is invoked.

We pass a publisher instance as an argument, and call the callback defined for this

subscriber:

public function update(SplSubject $publisher)

{

call_user_func($this->callback, $publisher);

}

12. We also need to define getters and setters for convenience. Not all are shown here:

public function getKey()

{

return $this->key;

}

public function setKey($key)

{

$this->key = $key;

}

// other getters and setters not shown

 How it works…

For the purposes of this illustration, define a calling program called chap_11_pub_sub_

simple_example.php, which sets up autoloading and uses the appropriate classes:

<?php

require DIR . '/../Application/Autoload/Loader.php';

Application\Autoload\Loader::init(DIR . '/..');

use Application\PubSub\ { Publisher, Subscriber };

Next, create a publisher instance and assign data:

$pub = new Publisher('test');

$pub->setDataByKey('1', 'AAA');

$pub->setDataByKey('2', 'BBB');

$pub->setDataByKey('3', 'CCC');

$pub->setDataByKey('4', 'DDD');

Now you can create test subscribers that read data from the publisher and echo the results.

The first parameter is the name, the second the callback, and the last is the priority:

$sub1 = new Subscriber(

'1',

function ($pub) {

434

Chapter 11

echo '1:' . $pub->getData()[1] . PHP_EOL;

},

10

);

$sub2 = new Subscriber(

'2',

function ($pub) {

echo '2:' . $pub->getData()[2] . PHP_EOL;

},

20

);

$sub3 = new Subscriber(

'3',

function ($pub) {

echo '3:' . $pub->getData()[3] . PHP_EOL;

},

99

);

For test purposes, attach the subscribers out of order, and call notify() twice:

$pub->attach($sub2);

$pub->attach($sub1);

$pub->attach($sub3);

$pub->notify();

$pub->notify();

Next, define and attach another subscriber that looks at the data for subscriber 1 and exits if

it's not empty:

$sub4 = new Subscriber(

'4',

function ($pub) {

echo '4:' . $pub->getData()[4] . PHP_EOL;

if (!empty($pub->getData()[1]))

die('1 is set ... halting execution');

},

25

);

$pub->attach($sub4);

$pub->notify();

435

Implementing Software Design Patterns

Here is the output. Note that the output is in order of priority (where higher priority goes first),

and that the second block of output is interrupted:

 There's more…

A closely related software design pattern is Observer. The mechanism is similar but the

generally agreed difference is that Observer operates in a synchronous manner, where all

observer methods are called when a signal (often also referred to as message or event)

is received. The Pub/Sub pattern, in contrast, operates asynchronously, typically using a

message queue. Another difference is that in the Pub/Sub pattern, publishers do not need to

be aware of subscribers.

 See also

For a good discussion on the difference between the Observer and Pub/Sub patterns, refer

to the article at http://stackoverflow.com/questions/15594905/difference-

between-observer-pub-sub-and-data-binding.

436

http://stackoverflow.com/questions/15594905/difference-

12
Improving Web Security

In this chapter, we will cover the following topics:

f Filtering $_POST data

f Validating $_POST data

f Safeguarding the PHP session

f Securing forms with a token

f Building a secure password generator

f Safeguarding forms with a CAPTCHA

f Encrypting/decrypting without mcrypt

 Introduction

In this chapter, we will show you how to set up a simple yet effective mechanism for filtering

and validating a block of post data. Then, we will cover how to protect your PHP sessions from

potential session hijacking and other forms of attack. The next recipe shows how to protect

forms from Cross Site Request Forgery (CSRF) attacks using a randomly generated token.

The recipe on password generation shows you how to incorporate PHP 7 true randomization to

generate secure passwords. We then show you two forms of CAPTCHA: one that is text based,

the other using a distorted image. Finally, there is a recipe that covers strong encryption

without using the discredited and soon-to-be-deprecated mcrypt extension.

437

Improving Web Security

 Filtering $_POST data

The process of filtering data can encompass any or all of the following:

f Removing unwanted characters (that is, removing <script> tags)

f Performing transformations on the data (that is, converting a quote to ")

f Encrypting or decrypting the data

Encryption is covered in the last recipe of this chapter. Otherwise, we will present a basic

mechanism that can be used to filter $_POST data arriving following form submission.

 How to do it…

1. First of all, you need to have an awareness of the data that will be present in $_POST.

Also, perhaps more importantly, you will need to be aware of the restrictions imposed

by the database table in which the form data will presumably be stored. As an

example, have a look at the database structure for the prospects table:

COLUMN TYPE NULL DEFAULT

first_name varchar(128) No None NULL

last_name varchar(128) No None NULL

address varchar(256) Yes None NULL

city varchar(64) Yes None NULL

state_province varchar(32) Yes None NULL

postal_code char(16) No None NULL

phone varchar(16) No None NULL

country char(2) No None NULL

email varchar(250) No None NULL

status char(8) Yes None NULL

budget decimal(10,2) Yes None NULL

last_updated datetime Yes None NULL

2. Once you have completed an analysis of the data to be posted and stored, you can

determine what type of filtering is to occur, and which PHP functions will serve this

purpose.

3. As an example, if you need to get rid of leading and trailing white space, which is

completely possible from user supplied form data, you can use the PHP trim()

function. All of the character data has length limits according to the database

structure. Accordingly, you might consider using substr() to ensure the length

is not exceeded. If you wanted to remove non-alphabetical characters, you might

consider using preg_replace() with the appropriate pattern.

438

Chapter 12

4. We can now group the set of desired PHP functions into a single array of callbacks.

Here is an example based on the filtering needs for the form data that will eventually

be stored in the prospects table:

$filter = [

'trim' => function ($item) { return trim($item); },

'float' => function ($item) { return (float) $item; },

'upper' => function ($item) { return strtoupper($item); },

'email' => function ($item) {

return filter_var($item, FILTER_SANITIZE_EMAIL); },

'alpha' => function ($item) {

return preg_replace('/[^A-Za-z]/', '', $item); },

'alnum' => function ($item) {

return preg_replace('/[^0-9A-Za-z]/', '', $item); },

'length' => function ($item, $length) {

return substr($item, 0, $length); },

'stripTags' => function ($item) { return strip_tags($item); },

];

5. Next, we define an array that matches the field names expected in $_POST. In this

array, we specify the key in the $filter array, along with any parameters. Note the

first key, *. We will use that as a wildcard to be applied to all fields:

$assignments = [

'*' => ['trim' => NULL, 'stripTags' => NULL],

'first_name' => ['length' => 32, 'alnum' => NULL],

'last_name' => ['length' => 32, 'alnum' => NULL],

'address' => ['length' => 64, 'alnum' => NULL],

'city' => ['length' => 32],

'state_province'=> ['length' => 20],

'postal_code' => ['length' => 12, 'alnum' => NULL],

'phone' => ['length' => 12],

'country' => ['length' => 2, 'alpha' => NULL,

'upper' => NULL],

'email' => ['length' => 128, 'email' => NULL],

'budget' => ['float' => NULL],

];

6. We then loop through the data set (that is, coming from $_POST) and apply the

callbacks in turn. We first run all callbacks assigned to the wildcard (*) key.

It is important to implement a wildcard filter to avoid redundant settings.

 In the preceding example, we wish to apply filters that represent the
PHP functions strip_tags() and trim() for every item.

439

Improving Web Security

7. Next, we run through all callbacks assigned to a particular data field. When we're

done, all values in $data will be filtered:

foreach ($data as $field => $item) {

foreach ($assignments['*'] as $key => $option) {

$item = $filter[$key]($item, $option);

}

foreach ($assignments[$field] as $key => $option) {

$item = $filter[$key]($item, $option);

}

}

 How it works…

Place the code shown in steps 4 through 6 into a file called chap_12_post_data_

filtering_basic.php. You will also need to define an array to simulate data that would

be present in $_POST. In this case, you could define two arrays, one with good data, and one

with bad data:

$testData = [

'goodData' => [

'first_name' => 'Doug',

'last_name' => 'Bierer',

'address' => '123 Main Street',

'city' => 'San Francisco',

'state_province'=> 'California',

'postal_code' => '94101',

'phone' => '+1 415-555-1212',

'country' => 'US',

'email' => 'doug@unlikelysource.com',

'budget' => '123.45',

],

'badData' => [

'first_name' => 'This+Name<script>bad tag</script>Valid!',

'last_name' =>

'ThisLastNameIsWayTooLongAbcdefghijklmnopqrstuvwxyz0123456789

Abcdefghijklmnopqrstuvwxyz0123456789Abcdefghijklmnopqrstuvwxyz

0123456789Abcdefghijklmnopqrstuvwxyz0123456789',

//'address' => '', // missing

'city' => 'ThisCityNameIsTooLong01234567890123456

7890123456789012345678901234567890123456789 ',

//'state_province'=> '', // missing

'postal_code' => '!"£$%^Non Alpha Chars',

'phone' => ' 12345 ',

'country' => '12345',

440

Chapter 12

'email' => 'this.is@not@an.email',

'budget' => 'XXX',

]

];

Finally, you will need to loop through the filter assignments, presenting the good and bad data:

foreach ($testData as $data) {

foreach ($data as $field => $item) {

foreach ($assignments['*'] as $key => $option) {

$item = $filter[$key]($item, $option);

}

foreach ($assignments[$field] as $key => $option) {

$item = $filter[$key]($item, $option);

}

printf("%16s : %s\n", $field, $item);

}

}

Here's how the output might appear for this example:

Note that the names were truncated and tags were removed. You will also note that although

the e-mail address was filtered, it is still not a valid address. It's important to note that for

proper treatment of data, it might be necessary to validate as well as to filter.

441

Improving Web Security

 See also

In Chapter 6, Building Scalable Websites, the recipe entitled Chaining $_POST filters,

discusses how to incorporate the basic filtering concepts covered here into a comprehensive

filter chaining mechanism.

 Validating $_POST data

The primary difference between filtering and validation is that the latter does not alter the

original data. Another difference is in intent. The purpose of validation is to confirm that the

data matches certain criteria established according to the needs of your customer.

 How to do it…

1. The basic validation mechanism we will present here is identical to that shown in

the preceding recipe. As with filtering, it is vital to have an idea of the nature of the

data to be validated, how it fits your customer's requirements, and also whether it

matches the criteria enforced by the database. For example, if in the database, the

maximum width of the column is 128, the validation callback could use strlen() to

confirm that the length of the data submitted is less than or equal to 128 characters.

Likewise, you could use ctype_alnum() to confirm that the data only contains

letters and numbers, as appropriate.

2. Another consideration for validation is to present an appropriate validation failure

message. The validation process, in a certain sense, is also a confirmation process,

where somebody presumably will review the validation to confirm success or failure. If

the validation fails, that person will need to know the reason why.

3. For this illustration, we will again focus on the prospects table. We can now group

the set of desired PHP functions into a single array of callbacks. Here is an example

based on the validation needs for the form data, which will eventually be stored in the

prospects table:

$validator = [

'email' => [

'callback' => function ($item) {

return filter_var($item, FILTER_VALIDATE_EMAIL); },

'message' => 'Invalid email address'],

'alpha' => [

'callback' => function ($item) {

return ctype_alpha(str_replace(' ', '', $item)); },

'message' => 'Data contains non-alpha characters'],

'alnum' => [

'callback' => function ($item) {

return ctype_alnum(str_replace(' ', '', $item)); },

442

Chapter 12

'message' => 'Data contains characters which are '

. 'not letters or numbers'],

'digits' => [

'callback' => function ($item) {

return preg_match('/[^0-9.]/', $item); },

'message' => 'Data contains characters which '

. 'are not numbers'],

'length' => [

'callback' => function ($item, $length) {

return strlen($item) <= $length; },

'message' => 'Item has too many characters'],

'upper' => [

'callback' => function ($item) {

return $item == strtoupper($item); },

'message' => 'Item is not upper case'],

'phone' => [

'callback' => function ($item) {

return preg_match('/[^0-9() -+]/', $item); },

'message' => 'Item is not a valid phone number'],

];

Notice, for the alpha and alnum callbacks, we allow for whitespace by

first removing it using str_replace(). We can then call ctype_

alpha() or ctype_alnum(), which will determine whether any

disallowed characters are present.

4. Next, we define an array of assignments that matches the field names expected in

$_POST. In this array, we specify the key in the $validator array, along with any

parameters:

$assignments = [

'first_name' => ['length' => 32, 'alpha' => NULL],

'last_name' => ['length' => 32, 'alpha' => NULL],

'address' => ['length' => 64, 'alnum' => NULL],

'city' => ['length' => 32, 'alnum' => NULL],

'state_province'=> ['length' => 20, 'alpha' => NULL],

'postal_code' => ['length' => 12, 'alnum' => NULL],

'phone' => ['length' => 12, 'phone' => NULL],

'country' => ['length' => 2, 'alpha' => NULL,

'upper' => NULL],

'email' => ['length' => 128, 'email' => NULL],

'budget' => ['digits' => NULL],

];

443

Improving Web Security

5. We then use nested foreach() loops to iterate through the block of data one field

at a time. For each field, we loop through the callbacks assigned to that field:

foreach ($data as $field => $item) {

echo 'Processing: ' . $field . PHP_EOL;

foreach ($assignments[$field] as $key => $option) {

if ($validator[$key]['callback']($item, $option)) {

$message = 'OK';

} else {

$message = $validator[$key]['message'];

}

printf('%8s : %s' . PHP_EOL, $key, $message);

}

}

Instead of echoing the output directly, as shown, you might log the validation

success/failure to be presented to the reviewer at a later time. Also, as

shown in Chapter 6, Building Scalable Websites, you can work the validation

mechanism into the form, displaying validation messages next to their

matching form elements.

 How it works…

Place the code shown in steps 3 through 5 into a file called chap_12_post_data_

validation_basic.php. You will also need to define an array of data that simulates data

that would be present in $_POST. In this case, you use the two arrays mentioned in the

preceding recipe, one with good data, and one with bad data. The final output should look

something like this:

444

 See also

Chapter 12

f In Chapter 6, Building Scalable Websites, the recipe entitled Chaining $_POST

validators discusses how to incorporate the basic validation concepts covered here

into a comprehensive filter chaining mechanism.

 Safeguarding the PHP session

The PHP session mechanism is quite simple. Once the session is started using session_

start() or the php.ini session.autostart setting, the PHP engine generates a

unique token that is, by default, conveyed to the user by way of a cookie. On subsequent

requests, while the session is still considered active, the user's browser (or equivalent)

presents the session identifier, again usually by way of a cookie, for inspection. The PHP

engine then uses this identifier to locate the appropriate file on the server, populating $_

SESSION with the stored information. There are tremendous security concerns when the

session identifier is the sole means of identifying a returning website visitor. In this recipe, we

will present several techniques that will help you to safeguard your sessions, which, in turn,

will vastly improve the overall security of the website.

 How to do it…

1. First of all, it's important to recognize how using the session as the sole means of

authentication can be dangerous. Imagine for a moment that when a valid user logs

in to your website, that you set a loggedIn flag in $_SESSION:

session_start();

$loggedIn = $_SESSION['isLoggedIn'] ?? FALSE;

if (isset($_POST['login'])) {

if ($_POST['username'] == // username lookup

&& $_POST['password'] == // password lookup) {

$loggedIn = TRUE;

$_SESSION['isLoggedIn'] = TRUE;

}

}

2. In your program logic, you allow the user to see sensitive information if $_

SESSION['isLoggedIn'] is set to TRUE:

Secret Info

<?php if ($loggedIn) echo // secret information; ?>

445

Improving Web Security

3. If an attacker were to obtain the session identifier, for example, by means of a

successfully executed Cross-site scripting (XSS) attack, all he/she would need to do

would be to set the value of the PHPSESSID cookie to the illegally obtained one, and

they are now viewed by your application as a valid user.

4. One quick and easy way to narrow the window of time during which the PHPSESSID is

valid is to use session_regenerate_id(). This very simple command generates

a new session identifier, invalidates the old one, maintains session data intact, and

has a minimal impact on performance. This command can only be executed after the

session has started:

session_start();

session_regenerate_id();

5. Another often overlooked technique is to ensure that web visitors have a logout

option. It is important, however, to not only destroy the session using session_

destroy(), but also to unset $_SESSION data and to expire the session cookie:

session_unset();

session_destroy();

setcookie('PHPSESSID', 0, time() - 3600);

6. Another easy technique that can be used to prevent session hijacking is to develop a

finger-print or thumb-print of the website visitor. One way to implement this technique

is to collect information unique to the website visitor over and above the session

identifier. Such information includes the user agent (that is, the browser), languages

accepted, and remote IP address. You can derive a simple hash from this information,

and store the hash on the server in a separate file. The next time the user visits the

website, if you have determined they are logged in based on session information, you

can then perform a secondary verification by matching finger-prints:

$remotePrint = md5($_SERVER['REMOTE_ADDR']

. $_SERVER['HTTP_USER_AGENT']

. $_SERVER['HTTP_ACCEPT_LANGUAGE']);

$printsMatch = file_exists(THUMB_PRINT_DIR . $remotePrint);

if ($loggedIn && !$printsMatch) {

$info = 'SESSION INVALID!!!';

error_log('Session Invalid: ' . date('Y-m-d H:i:s'), 0);

// take appropriate action

}

We are using md5() as it's a fast hashing algorithm and is well suited for

 internal usage. It is not recommended to use md5() for any external use

as it is subject to brute-force attacks.

446

 How it works…

Chapter 12

To demonstrate how a session is vulnerable, code a simple login script that sets a $_

SESSION['isLoggedIn'] flag upon successful login. You could call the file chap_12_

session_hijack.php:

session_start();

$loggedUser = $_SESSION['loggedUser'] ?? '';

$loggedIn = $_SESSION['isLoggedIn'] ?? FALSE;

$username = 'test';

$password = 'password';

$info = 'You Can Now See Super Secret Information!!!';

if (isset($_POST['login'])) {

if ($_POST['username'] == $username

&& $_POST['password'] == $password) {

$loggedIn = TRUE;

$_SESSION['isLoggedIn'] = TRUE;

$_SESSION['loggedUser'] = $username;

$loggedUser = $username;

}

} elseif (isset($_POST['logout'])) {

session_destroy();

}

You can then add code that displays a simple login form. To test for session vulnerability,

follow this procedure using the chap_12_session_hijack.php file we just created:

1. Change to the directory containing the file.

2. Run the php -S localhost:8080 command.

3. Using one browser, open the URL http://localhost:8080/<filename>.

4. Login as user test with a password as password.

5. You should be able to see You Can Now See Super Secret Information!!!.

6. Refresh the page: each time, you should see a new session identifier.

7. Copy the value of the PHPSESSID cookie.

8. Open another browser to the same web page.

9. Modify the cookie sent by the browser by copying the value of PHPSESSID.

447

Improving Web Security

For illustration, we are also showing the value of $_COOKIE and $_SESSION, shown in the

following screenshot using the Vivaldi browser:

We then copy the value of PHPSESSID, open a Firefox browser, and use a tool called Tamper

Data to modify the value of the cookie:

448

Chapter 12

You can see in the next screenshot that we are now an authenticated user without entering

the username or password:

You can now implement the changes discussed in the preceding steps. Copy the file created

previously to chap_12_session_protected.php. Now go ahead and regenerate the

session ID:

<?php

define('THUMB_PRINT_DIR', DIR

session_start();

session_regenerate_id();

. '/../data/');

Next, initialize variables and determine the logged in status (as before):

$username = 'test';

$password = 'password';

$info = 'You Can Now See Super Secret Information!!!';

$loggedIn = $_SESSION['isLoggedIn'] ?? FALSE;

$loggedUser = $_SESSION['user'] ?? 'guest';

You can add a session thumb-print using the remote address, user agent, and language

settings:

$remotePrint = md5($_SERVER['REMOTE_ADDR']

. $_SERVER['HTTP_USER_AGENT']

449

Improving Web Security

. $_SERVER['HTTP_ACCEPT_LANGUAGE']);

$printsMatch = file_exists(THUMB_PRINT_DIR . $remotePrint);

If the login is successful, we store thumb-print info and login status in the session:

if (isset($_POST['login'])) {

if ($_POST['username'] == $username

&& $_POST['password'] == $password) {

$loggedIn = TRUE;

$_SESSION['user'] = strip_tags($username);

$_SESSION['isLoggedIn'] = TRUE;

file_put_contents(

THUMB_PRINT_DIR . $remotePrint, $remotePrint);

}

You can also check for the logout option and implement a proper logout procedure: unset

$_SESSION variables, invalidate the session, and expire the cookie. You can also remove the

thumb-print file and implement a redirect:

} elseif (isset($_POST['logout'])) {

session_unset();

session_destroy();

setcookie('PHPSESSID', 0, time() - 3600);

if (file_exists(THUMB_PRINT_DIR . $remotePrint))

unlink(THUMB_PRINT_DIR . $remotePrint);

header('Location: ' . $_SERVER['REQUEST_URI']);

exit;

Otherwise, if the operation is not login or logout, you can check to see whether the user is

considered logged in, and if the thumb-print doesn't match, the session is considered invalid,

and the appropriate action is taken:

} elseif ($loggedIn && !$printsMatch) {

$info = 'SESSION INVALID!!!';

error_log('Session Invalid: ' . date('Y-m-d H:i:s'), 0);

// take appropriate action

}

You can now run the same procedure as mentioned previously using the new chap_12_

session_protected.php file. The first thing you will notice is that the session is now

considered invalid. The output will look something like this:

450

Chapter 12

The reason for this is that the thumb-print does not match as you are now using a different

browser. Likewise, if you refresh the page of the first browser, the session identifier is

regenerated, making any previously copied identifier obsolete. Finally, the logout button will

completely clear session information.

 See also

For an excellent overview of website vulnerabilities, please refer to the article present at

https://www.owasp.org/index.php/Category:Vulnerability. For information on

session hijacking, refer to https://www.owasp.org/index.php/Session_hijacking_

attack.

 Securing forms with a token

This recipe presents another very simple technique that will safeguard your forms against

Cross Site Request Forgery (CSRF) attacks. Simply put, a CSRF attack is possible when,

possibly using other techniques, an attacker is able to infect a web page on your website.

In most cases, the infected page will then start issuing requests (that is, using JavaScript to

purchase items, or make settings changes) using the credentials of a valid, logged-in user.

It's extremely difficult for your application to detect such activity. One measure that can easily

be taken is to generate a random token that is included in every form to be submitted. Since

the infected page will not have access to the token, nor have the ability to generate one that

matches, form validation will fail.

451

http://www.owasp.org/index.php/Session_hijacking_

Improving Web Security

 How to do it…

1. First, to demonstrate the problem, we create a web page that simulates an infected

page that generates a request to post an entry to the database. For this illustration,

we will call the file chap_12_form_csrf_test_unprotected.html:

<!DOCTYPE html>

<body onload="load()">

<form action="/chap_12_form_unprotected.php"

method="post" id="csrf_test" name="csrf_test">

<input name="name" type="hidden" value="No Goodnick" />

<input name="email" type="hidden" value="malicious@owasp.org" />

<input name="comments" type="hidden"

value="Form is vulnerable to CSRF attacks!" />

<input name="process" type="hidden" value="1" />

</form>

<script>

function load() { document.forms['csrf_test'].submit(); }

</script>

</body>

</html>

2. Next, we create a script called chap_12_form_unprotected.php that responds to

the form posting. As with other calling programs in this book, we set up autoloading

and use the Application\Database\Connection class covered in Chapter 5,

Interacting with a Database:

<?php

define('DB_CONFIG_FILE', '/../config/db.config.php');

require DIR . '/../Application/Autoload/Loader.php';

Application\Autoload\Loader::init(DIR

use Application\Database\Connection;

. '/..');

$conn = new Connection(include DIR . DB_CONFIG_FILE);

3. We then check to see the process button has been pressed, and even implement a

filtering mechanism, as covered in the Filtering $_POST data recipe in this chapter.

This is to prove that a CSRF attack is easily able to bypass filters:

if ($_POST['process']) {

$filter = [

'trim' => function ($item) { return trim($item); },

'email' => function ($item) {

return filter_var($item, FILTER_SANITIZE_EMAIL); },

'length' => function ($item, $length) {

return substr($item, 0, $length); },

'stripTags' => function ($item) {

452

mailto:malicious@owasp.org

Chapter 12

return strip_tags($item); },

];

$assignments = [

'*' => ['trim' => NULL, 'stripTags' => NULL],

'email' => ['length' => 249, 'email' => NULL],

'name' => ['length' => 128],

'comments'=> ['length' => 249],

];

$data = $_POST;

foreach ($data as $field => $item) {

foreach ($assignments['*'] as $key => $option) {

$item = $filter[$key]($item, $option);

}

if (isset($assignments[$field])) {

foreach ($assignments[$field] as $key => $option) {

$item = $filter[$key]($item, $option);

}

$filteredData[$field] = $item;

}

}

4. Finally, we insert the filtered data into the database using a prepared statement. We

then redirect to another script, called chap_12_form_view_results.php, which

simply dumps the contents of the visitors table:

try {

$filteredData['visit_date'] = date('Y-m-d H:i:s');

$sql = 'INSERT INTO visitors '

. ' (email,name,comments,visit_date) '

. 'VALUES (:email,:name,:comments,:visit_date)';

$insertStmt = $conn->pdo->prepare($sql);

$insertStmt->execute($filteredData);

} catch (PDOException $e) {

echo $e->getMessage();

}

}

header('Location: /chap_12_form_view_results.php');

exit;

5. The result, of course, is that the attack is allowed, despite filtering and the use of

prepared statements.

453

Improving Web Security

6. Implementing the form protection token is actually quite easy! First of all, you need

to generate the token and store it in the session. We take advantage of the new

random_bytes() PHP 7 function to generate a truly random token, one which will

be difficult, if not impossible, for an attacker to match:

session_start();

$token = urlencode(base64_encode((random_bytes(32))));

$_SESSION['token'] = $token;

The output of random_bytes() is binary. We use base64_

 encode() to convert it into a usable string. We then further process it

using urlencode() so that it is properly rendered in an HTML form.

7. When we render the form, we then present the token as a hidden field:

<input type="hidden" name="token" value="<?= $token ?>" />

8. We then copy and alter the chap_12_form_unprotected.php script mentioned

previously, adding logic to first check to see whether the token matches the one

stored in the session. Note that we unset the current token to make it invalid for

future use. We call the new script chap_12_form_protected_with_token.php:

if ($_POST['process']) {

$sessToken = $_SESSION['token'] ?? 1;

$postToken = $_POST['token'] ?? 2;

unset($_SESSION['token']);

if ($sessToken != $postToken) {

$_SESSION['message'] = 'ERROR: token mismatch';

} else {

$_SESSION['message'] = 'SUCCESS: form processed';

// continue with form processing

}

}

 How it works…

To test how an infected web page might launch a CSRF attack, create the following files, as

shown earlier in the recipe:

f chap_12_form_csrf_test_unprotected.html

f chap_12_form_unprotected.php

454

Chapter 12

You can then define a file called chap_12_form_view_results.php, which dumps the

visitors table:

<?php

session_start();

define('DB_CONFIG_FILE', '/../config/db.config.php');

require DIR . '/../Application/Autoload/Loader.php';

Application\Autoload\Loader::init(DIR

use Application\Database\Connection;

. '/..');

$conn = new Connection(include DIR

$message = $_SESSION['message'] ?? '';

unset($_SESSION['message']);

. DB_CONFIG_FILE);

$stmt = $conn->pdo->query('SELECT * FROM visitors');

?>

<!DOCTYPE html>

<body>

<div class="container">

<h1>CSRF Protection</h1>

<h3>Visitors Table</h3>

<?php while ($row = $stmt->fetch(PDO::FETCH_ASSOC)) : ?>

<pre><?php echo implode(':', $row); ?></pre>

<?php endwhile; ?>

<?php if ($message) : ?>

<?= $message; ?>

<?php endif; ?>

</div>

</body>

</html>

From a browser, launch chap_12_form_csrf_test_unprotected.html. Here is how the

output might appear:

455

Improving Web Security

As you can see, the attack was successful despite filtering and the use of prepared

statements!

Next, copy the chap_12_form_unprotected.php file to chap_12_form_protected.

php. Make the change indicated in step 8 in the recipe. You will also need to alter the test

HTML file, copying chap_12_form_csrf_test_unprotected.html to chap_12_form_

csrf_test_protected.html. Change the value for the action parameter in the FORM tag

as follows:

<form action="/chap_12_form_protected_with_token.php"

method="post" id="csrf_test" name="csrf_test">

When you run the new HTML file from a browser, it calls chap_12_form_protected.php,

which looks for a token that does not exist. Here is the expected output:

Finally, go ahead and define a file called chap_12_form_protected.php that generates a

token and displays it as a hidden element:

<?php

session_start();

$token = urlencode(base64_encode((random_bytes(32))));

$_SESSION['token'] = $token;

?>

<!DOCTYPE html>

<body onload="load()">

<div class="container">

<h1>CSRF Protected Form</h1>

<form action="/chap_12_form_protected_with_token.php"

method="post" id="csrf_test" name="csrf_test">

<table>

<tr><th>Name</th><td><input name="name" type="text" /></td></tr>

<tr><th>Email</th><td><input name="email" type="text" /></td></tr>

<tr><th>Comments</th><td>

<input name="comments" type="textarea" rows=4 cols=80 />

</td></tr>

<tr><th> </th><td>

456

Chapter 12

<input name="process" type="submit" value="Process" />

</td></tr>

</table>

<input type="hidden" name="token" value="<?= $token ?>" />

</form>

CLICK HERE to view results

</div>

</body>

</html>

When we display and submit data from the form, the token is validated and the data insertion

is allowed to continue, as shown here:

 See also

For more information on CSFR attacks, please refer to https://www.owasp.org/index.

php/Cross-Site_Request_Forgery_(CSRF).

 Building a secure password generator

A common misconception is that the only way attackers crack hashed passwords is by using

brute force attacks and rainbow tables. Although this is often the first pass in an attack

sequence, attackers will use much more sophisticated attacks on a second, third, or fourth

pass. Other attacks include combination, dictionary, mask, and rules-based. Dictionary

attacks use a database of words literally from the dictionary to guess passwords. Combination

is where dictionary words are combined. Mask attacks are similar to brute force, but more

selective, thus cutting down the time to crack. Rules-based attacks will detect things such as

substituting the number 0 for the letter o.

457

http://www.owasp.org/index

Improving Web Security

The good news is that by simply increasing the length of the password beyond the magic

length of six characters exponentially increases the time to crack the hashed password. Other

factors, such as interspersing uppercase with lowercase letters randomly, random digits, and

special characters, will also have an exponential impact on the time to crack. At the end of the

day, we need to bear in mind that a human being will eventually need to enter the passwords

created, which means that need to be at least marginally memorable.

Best practice

Passwords should be stored as a hash, and never as plain text. MD5 and

SHA* are no longer considered secure (although SHA* is much better than

MD5). Using a utility such as oclHashcat, an attacker can generate an

average of 55 billion attempts per second on a password hashed using MD5

that has been made available through an exploit (that is, a successful SQL

injection attack).

 How to do it…

1. First, we define a Application\Security\PassGen class that will hold the

methods needed for password generation. We also define certain class constants

and properties that will be used as part of the process:

namespace Application\Security;

class PassGen

{

const SOURCE_SUFFIX = 'src';

const SPECIAL_CHARS =

'\`¬|!"£$%^&*()_-+={}[]:@~;\'#<>?,./|\\';

protected $algorithm;

protected $sourceList;

protected $word;

protected $list;

2. We then define low-level methods that will be used for password generation. As the

names suggest, digits() produces random digits, and special() produces a

single character from the SPECIAL_CHARS class constant:

public function digits($max = 999)

{

return random_int(1, $max);

}

public function special()

{

$maxSpecial = strlen(self::SPECIAL_CHARS) - 1;

return self::SPECIAL_CHARS[random_int(0, $maxSpecial)];

}

458

Chapter 12

Notice that we are frequently using the new PHP 7 function random_

int() in this example. Although marginally slower, this method offers true

Cryptographically Secure Pseudo Random Number Generator (CSPRNG)

capabilities compared to the more dated rand() function.

3. Now comes the tricky part: generating a hard-to-guess word. This is where the

$wordSource constructor parameter comes into play. It is an array of websites from

which our word base will be derived. Accordingly, we need a method that will pull a

unique list of words from the sources indicated, and store the results in a file. We

accept the $wordSource array as an argument, and loop through each URL. We use

md5() to produce a hash of the website name, which is then built into a filename.

The newly produced filename is then stored in $sourceList:

public function processSource(

$wordSource, $minWordLength, $cacheDir)

{

foreach ($wordSource as $html) {

$hashKey = md5($html);

$sourceFile = $cacheDir . '/' . $hashKey . '.'

. self::SOURCE_SUFFIX;

$this->sourceList[] = $sourceFile;

4. If the file doesn't exist, or is zero-byte, we process the contents. If the source is HTML,

we only accept content inside the <body> tag. We then use str_word_count() to

pull a list of words out of the string, also employing strip_tags() to remove any

markup:

if (!file_exists($sourceFile) || filesize($sourceFile) == 0) {

echo 'Processing: ' . $html . PHP_EOL;

$contents = file_get_contents($html);

if (preg_match('/<body>(.*)<\/body>/i',

$contents, $matches)) {

$contents = $matches[1];

}

$list = str_word_count(strip_tags($contents), 1);

5. We then remove any words that are too short, and use array_unique() to get rid

of duplicates. The final result is stored in a file:

foreach ($list as $key => $value) {

if (strlen($value) < $minWordLength) {

$list[$key] = 'xxxxxx';

} else {

$list[$key] = trim($value);

}

}

459

Improving Web Security

$list = array_unique($list);

file_put_contents($sourceFile, implode("\n",$list));

}

}

return TRUE;

}

6. Next, we define a method that flips random letters in the word to uppercase:

public function flipUpper($word)

{

$maxLen = strlen($word);

$numFlips = random_int(1, $maxLen - 1);

$flipped = strtolower($word);

for ($x = 0; $x < $numFlips; $x++) {

$pos = random_int(0, $maxLen - 1);

$word[$pos] = strtoupper($word[$pos]);

}

return $word;

}

7. Finally, we are ready to define a method that chooses a word from our source. We

choose a word source at random, and use the file() function to read from the

appropriate cached file:

public function word()

{

$wsKey = random_int(0, count($this->sourceList) - 1);

$list = file($this->sourceList[$wsKey]);

$maxList = count($list) - 1;

$key = random_int(0, $maxList);

$word = $list[$key];

return $this->flipUpper($word);

}

8. So that we do not always produce passwords of the same pattern, we define a

method that allows us to place the various components of a password in different

positions in the final password string. The algorithms are defined as an array of

method calls available within this class. So, for example, an algorithm of ['word',

'digits', 'word', 'special'] might end up looking like hElLo123aUTo!:

public function initAlgorithm()

{

$this->algorithm = [

['word', 'digits', 'word', 'special'],

['digits', 'word', 'special', 'word'],

['word', 'word', 'special', 'digits'],

460

Chapter 12

['special', 'word', 'special', 'digits'],

['word', 'special', 'digits', 'word', 'special'],

['special', 'word', 'special', 'digits',

'special', 'word', 'special'],

];

}

9. The constructor accepts the word source array, minimum word length, and location of

the cache directory. It then processes the source files and initializes the algorithms:

public function construct(

array $wordSource, $minWordLength, $cacheDir)

{

$this->processSource($wordSource, $minWordLength, $cacheDir);

$this->initAlgorithm();

}

10. Finally, we are able to define the method that actually generates the password. All it

needs to do is to select an algorithm at random, and then loop through, calling the

appropriate methods:

public function generate()

{

$pwd = '';

$key = random_int(0, count($this->algorithm) - 1);

foreach ($this->algorithm[$key] as $method) {

$pwd .= $this->$method();

}

return str_replace("\n", '', $pwd);

}

}

 How it works…

First, you will need to place the code described in the previous recipe into a file called

PassGen.php in the Application\Security folder. Now you can create a calling program

called chap_12_password_generate.php that sets up autoloading, uses PassGen, and

defines the location of the cache directory:

<?php

define('CACHE_DIR', DIR . '/cache');

require DIR . '/../Application/Autoload/Loader.php';

Application\Autoload\Loader::init(DIR

use Application\Security\PassGen;

. '/..');

 461

Improving Web Security

Next, you will need to define an array of websites that will be used as a source for the word-

base to be used in password generation. In this illustration, we will choose from the Project

Gutenberg texts Ulysses (J. Joyce), War and Peace (L. Tolstoy), and Pride and Prejudice

(J. Austen):

$source = [

'https://www.gutenberg.org/files/4300/4300-0.txt',

'https://www.gutenberg.org/files/2600/2600-h/2600-h.htm',

'https://www.gutenberg.org/files/1342/1342-h/1342-h.htm',

];

Next, we create the PassGen instance, and run generate():

$passGen = new PassGen($source, 4, CACHE_DIR);

echo $passGen->generate();

Here are a few example passwords produced by PassGen:

 See also

An excellent article on how an attacker would approach cracking a password can be viewed

at http://arstechnica.com/security/2013/05/how-crackers-make-minced-

meat-out-of-your-passwords/. To find out more about brute force attacks you can refer

to https://www.owasp.org/index.php/Brute_force_attack. For information on

oclHashcat, see this page: http://hashcat.net/oclhashcat/.

462

http://www.gutenberg.org/files/4300/4300-0.txt%27
http://www.gutenberg.org/files/2600/2600-h/2600-h.htm%27
http://www.gutenberg.org/files/1342/1342-h/1342-h.htm%27
http://arstechnica.com/security/2013/05/how-crackers-make-minced-
http://www.owasp.org/index.php/Brute_force_attack
http://hashcat.net/oclhashcat/

Chapter 12

 Safeguarding forms with a CAPTCHA

CAPTCHA is actually an acronym for Completely Automated Public Turing Test to Tell

Computers and Humans Apart. The technique is similar to the one presented in the

preceding recipe, Securing forms with a token. The difference is that instead of storing the

token in a hidden form input field, the token is rendered into a graphic that is difficult for

an automated attack system to decipher. Also, the intent of a CAPTCHA is slightly different

from a form token: it is designed to confirm that the web visitor is a human being, and not an

automated system.

 How to do it…

1. There are several approaches to CAPTCHA: presenting a question based on

knowledge only a human would possess, text tricks, and a graphics image that needs

to be interpreted.

2. The image approach presents web visitors with an image with heavily distorted letters

and/or numbers. This approach can be complicated, however, in that it relies on the

GD extension, which may not be available on all servers. The GD extension can be

difficult to compile, and has heavy dependencies on various libraries that must be

present on the host server.

3. The text approach is to present a series of letters and/or numbers, and give the web

visitor a simple instruction such as please type this backwards. Another variation is to

use ASCII "art" to form characters that a human web visitor is able to interpret.

4. Finally, you might have a question/answer approach with questions such as The head

is attached to the body by what body part, and have answers such as Arm, Leg, and

Neck. The downside to this approach is that an automated attack system will have a

1 in 3 chance of passing the test.

Generating a text CAPTCHA

1. For this illustration, we will start with the text approach, and follow with the image

approach. In either case, we first need to define a class that generates the phrase

to be presented (and decoded by the web visitor). For this purpose, we define an

Application\Captcha\Phrase class. We also define properties and class

constants used in the phrase generation process:

namespace Application\Captcha;

class Phrase

{

const DEFAULT_LENGTH = 5;

const DEFAULT_NUMBERS = '0123456789';

const DEFAULT_UPPER = 'ABCDEFGHJKLMNOPQRSTUVWXYZ';

const DEFAULT_LOWER = 'abcdefghijklmnopqrstuvwxyz';

463

Improving Web Security

const DEFAULT_SPECIAL =

'¬\`|!"£$%^&*()_-+={}[]:;@\'~#<,>.?/|\\';

const DEFAULT_SUPPRESS = ['O','l'];

protected $phrase;

protected $includeNumbers;

protected $includeUpper;

protected $includeLower;

protected $includeSpecial;

protected $otherChars;

protected $suppressChars;

protected $string;

protected $length;

2. The constructor, as you would expect, accepts values for the various properties,

with defaults assigned so that an instance can be created without having to specify

any parameters. The $include* flags are used to signal which character sets

will be present in the base string from which the phrase will be generated. For

example, if you wish to only have numbers, $includeUpper and $includeLower

would both be set to FALSE. $otherChars is provided for extra flexibility. Finally,

$suppressChars represents an array of characters that will be removed from the

base string. The default removes uppercase O and lowercase l:

public function construct(

$length = NULL,

$includeNumbers = TRUE,

$includeUpper= TRUE,

$includeLower= TRUE,

$includeSpecial = FALSE,

$otherChars = NULL,

array $suppressChars = NULL)

{

$this->length = $length ?? self::DEFAULT_LENGTH;

$this->includeNumbers = $includeNumbers;

$this->includeUpper = $includeUpper;

$this->includeLower = $includeLower;

$this->includeSpecial = $includeSpecial;

$this->otherChars = $otherChars;

$this->suppressChars = $suppressChars

?? self::DEFAULT_SUPPRESS;

$this->phrase = $this->generatePhrase();

}

464

Chapter 12

3. We then define a series of getters and setters, one for each property. Please note that

we only show the first two in order to conserve space.

public function getString()

{

return $this->string;

}

public function setString($string)

{

$this->string = $string;

}

// other getters and setters not shown

4. We next need to define a method that initializes the base string. This consists of a

series of simple if statements that check the various $include* flags and append

to the base string as appropriate. At the end, we use str_replace() to remove the

characters represented in $suppressChars:

public function initString()

{

$string = '';

if ($this->includeNumbers) {

$string .= self::DEFAULT_NUMBERS;

}

if ($this->includeUpper) {

$string .= self::DEFAULT_UPPER;

}

if ($this->includeLower) {

$string .= self::DEFAULT_LOWER;

}

if ($this->includeSpecial) {

$string .= self::DEFAULT_SPECIAL;

}

if ($this->otherChars) {

$string .= $this->otherChars;

}

if ($this->suppressChars) {

$string = str_replace(

$this->suppressChars, '', $string);

}

return $string;

}

465

Improving Web Security

Best practice

Get rid of letters that can be confused with numbers (that is, the letter O

can be confused with the number 0, and a lowercase l can be confused

with the number 1.

5. We are now ready to define the core method that generates the random phrase that

the CAPTCHA presents to website visitors. We set up a simple for() loop, and use

the new PHP 7 random_int() function to jump around in the base string:

public function generatePhrase()

{

$phrase = '';

$this->string = $this->initString();

$max = strlen($this->string) - 1;

for ($x = 0; $x < $this->length; $x++) {

$phrase .= substr(

$this->string, random_int(0, $max), 1);

}

return $phrase;

}

}

6. Now we turn our attention away from the phrase and onto the class that will produce

a text CAPTCHA. For this purpose, we first define an interface so that, in the future,

we can create additional CAPTCHA classes that all make use of Application\

Captcha\Phrase. Note that getImage() will return text, text art, or an actual

image, depending on which class we decide to use:

namespace Application\Captcha;

interface CaptchaInterface

{

public function getLabel();

public function getImage();

public function getPhrase();

}

7. For a text CAPTCHA, we define a Application\Captcha\Reverse class. The

reason for this name is that this class produces not just text, but text in reverse. The

 construct() method builds an instance of Phrase. Note that getImage()

returns the phrase in reverse:

namespace Application\Captcha;

class Reverse implements CaptchaInterface

{

const DEFAULT_LABEL = 'Type this in reverse';

const DEFAULT_LENGTH = 6;

466

Chapter 12

protected $phrase;

public function construct(

$label = self::DEFAULT_LABEL,

$length = self:: DEFAULT_LENGTH,

$includeNumbers = TRUE,

$includeUpper = TRUE,

$includeLower = TRUE,

$includeSpecial = FALSE,

$otherChars = NULL,

array $suppressChars = NULL)

{

$this->label = $label;

$this->phrase = new Phrase(

$length,

$includeNumbers,

$includeUpper,

$includeLower,

$includeSpecial,

$otherChars,

$suppressChars);

}

public function getLabel()

{

return $this->label;

}

public function getImage()

{

return strrev($this->phrase->getPhrase());

}

public function getPhrase()

{

return $this->phrase->getPhrase();

}

}

Generating an image CAPTCHA

1. The image approach, as you can well imagine, is much more complicated. The phrase

generation process is the same. The main difference is that not only do we need to

imprint the phrase on a graphic, but we also need to distort each letter differently and

introduce noise in the form of random dots.

467

Improving Web Security

2. We define a Application\Captcha\Image class that implements

CaptchaInterface. The class constants and properties include not only those

needed for phrase generation, but what is needed for image generation as well:

namespace Application\Captcha;

use DirectoryIterator;

class Image implements CaptchaInterface

{

const DEFAULT_WIDTH = 200;

const DEFAULT_HEIGHT = 50;

const DEFAULT_LABEL = 'Enter this phrase';

const DEFAULT_BG_COLOR = [255,255,255];

const DEFAULT_URL = '/captcha';

const IMAGE_PREFIX = 'CAPTCHA_';

const IMAGE_SUFFIX = '.jpg';

const IMAGE_EXP_TIME = 300; // seconds

const ERROR_REQUIRES_GD = 'Requires the GD extension + '

. ' the JPEG library';

const ERROR_IMAGE = 'Unable to generate image';

protected $phrase;

protected $imageFn;

protected $label;

protected $imageWidth;

protected $imageHeight;

protected $imageRGB;

protected $imageDir;

protected $imageUrl;

3. The constructor needs to accept all the arguments required for phrase generation,

as described in the previous steps. In addition, we need to accept arguments

required for image generation. The two mandatory parameters are $imageDir and

$imageUrl. The first is where the graphic will be written. The second is the base

URL, after which we will append the generated filename. $imageFont is provided in

case we want to provide TrueType fonts, which will produce a more secure CAPTCHA.

Otherwise, we're limited to the default fonts which, to quote a line in a famous movie,

ain't a pretty sight:

public function construct(

$imageDir,

$imageUrl,

$imageFont = NULL,

$label = NULL,

$length = NULL,

$includeNumbers = TRUE,

468

Chapter 12

$includeUpper= TRUE,

$includeLower= TRUE,

$includeSpecial = FALSE,

$otherChars = NULL,

array $suppressChars = NULL,

$imageWidth = NULL,

$imageHeight = NULL,

array $imageRGB = NULL

)

{

4. Next, still in the constructor, we check to see whether the imagecreatetruecolor

function exists. If this comes back as FALSE, we know the GD extension is not

available. Otherwise, we assign parameters to properties, generate the phrase,

remove old images, and write out the CAPTCHA graphic:

if (!function_exists('imagecreatetruecolor')) {

throw new \Exception(self::ERROR_REQUIRES_GD);

}

$this->imageDir = $imageDir;

$this->imageUrl = $imageUrl;

$this->imageFont = $imageFont;

$this->label = $label ?? self::DEFAULT_LABEL;

$this->imageRGB = $imageRGB ?? self::DEFAULT_BG_COLOR;

$this->imageWidth = $imageWidth ?? self::DEFAULT_WIDTH;

$this->imageHeight= $imageHeight ??

self::DEFAULT_HEIGHT; if (substr($imageUrl, -1, 1) ==

'/') {

$imageUrl = substr($imageUrl, 0, -1);

}

$this->imageUrl = $imageUrl;

if (substr($imageDir, -1, 1) == DIRECTORY_SEPARATOR) {

$imageDir = substr($imageDir, 0, -1);

}

$this->phrase = new Phrase(

$length,

$includeNumbers,

$includeUpper,

$includeLower,

$includeSpecial,

$otherChars,

$suppressChars);

$this->removeOldImages();

$this->generateJpg();

}

469

Improving Web Security

5. The process of removing old images is extremely important; otherwise we

will end up with a directory filled with expired CAPTCHA images! We use the

DirectoryIterator class to scan the designated directory and check the access

time. We calculate an old image file as one that is the current time minus the value

specified by IMAGE_EXP_TIME:

public function removeOldImages()

{

$old = time() - self::IMAGE_EXP_TIME;

foreach (new DirectoryIterator($this->imageDir)

as $fileInfo) {

if($fileInfo->isDot()) continue;

if ($fileInfo->getATime() < $old) {

unlink($this->imageDir . DIRECTORY_SEPARATOR

. $fileInfo->getFilename());

}

}

}

6. We are now ready to move on to the main show. First, we split the $imageRGB array

into $red, $green, and $blue. We use the core imagecreatetruecolor()

function to generate the base graphic with the width and height specified. We use the

RGB values to colorize the background:

public function generateJpg()

{

try {

list($red,$green,$blue) = $this->imageRGB;

$im = imagecreatetruecolor(

$this->imageWidth, $this->imageHeight);

$black = imagecolorallocate($im, 0, 0, 0);

$imageBgColor = imagecolorallocate(

$im, $red, $green, $blue);

imagefilledrectangle($im, 0, 0, $this->imageWidth,

$this->imageHeight, $imageBgColor);

7. Next, we define x and y margins based on image width and height. We then initialize

variables to be used to write the phrase onto the graphic. We then loop a number of

times that matches the length of the phrase:

$xMargin = (int) ($this->imageWidth * .1 + .5);

$yMargin = (int) ($this->imageHeight * .3 + .5);

$phrase = $this->getPhrase();

$max = strlen($phrase);

$count = 0;

$x = $xMargin;

$size = 5;

for ($i = 0; $i < $max; $i++) {

470

Chapter 12

8. If $imageFont is specified, we are able to write each character with a different size

and angle. We also need to adjust the x axis (that is, horizontal) value according to

the size:

if ($this->imageFont) {

$size = rand(12, 32);

$angle = rand(0, 30);

$y = rand($yMargin + $size, $this->imageHeight);

imagettftext($im, $size, $angle, $x, $y, $black,

$this->imageFont, $phrase[$i]);

$x += (int) ($size + rand(0,5));

9. Otherwise, we're stuck with the default fonts. We use the largest size of 5, as smaller

sizes are unreadable. We provide a low level of distortion by alternating between

imagechar(), which writes the image normally, and imagecharup(), which writes

it sideways:

} else {

$y = rand(0, ($this->imageHeight - $yMargin));

if ($count++ & 1) {

imagechar($im, 5, $x, $y, $phrase[$i], $black);

} else {

imagecharup($im, 5, $x, $y, $phrase[$i], $black);

}

$x += (int) ($size * 1.2);

}

} // end for ($i = 0; $i < $max; $i++)

10. Next we need to add noise in the form of random dots. This is necessary in order to

make the image harder for automated systems to detect. It is also recommended that

you add code to draw a few lines as well:

$numDots = rand(10, 999);

for ($i = 0; $i < $numDots; $i++) {

imagesetpixel($im, rand(0, $this->imageWidth),

rand(0, $this->imageHeight), $black);

}

11. We then create a random image filename using our old friend md5() with the date

and a random number from 0 to 9999 as arguments. Note that we can safely use

md5() as we are not trying to hide any secret information; we're merely interested

in generating a unique filename quickly. We wipe out the image object as well to

conserve memory:

$this->imageFn = self::IMAGE_PREFIX

. md5(date('YmdHis') . rand(0,9999))

. self::IMAGE_SUFFIX;

imagejpeg($im, $this->imageDir . DIRECTORY_SEPARATOR

471

Improving Web Security

. $this->imageFn);

imagedestroy($im);

12. The entire construct is in a try/catch block. If an error or exception is thrown, we

log the message and take the appropriate action:

} catch (\Throwable $e) {

error_log(METHOD . ':' . $e->getMessage());

throw new \Exception(self::ERROR_IMAGE);

}

}

13. Finally, we define the methods required by the interface. Note that getImage()

returns an HTML tag, which can then be immediately displayed:

public function getLabel()

{

return $this->label;

}

public function getImage()

{

return sprintf('',

$this->imageUrl, $this->imageFn);

}

public function getPhrase()

{

return $this->phrase->getPhrase();

}

}

 How it works…

Be sure to define the classes discussed in this recipe, summarized in the following table:

Class Subsection The steps it appears in

Application\Captcha\Phrase Generating a text

CAPTCHA

1 – 5

Application\Captcha\

CaptchaInterface

 6

Application\Captcha\Reverse 7

Application\Captcha\Image Generating an image

CAPTCHA

2 - 13

472

Chapter 12

Next, define a calling program called chap_12_captcha_text.php that implements a text

CAPTCHA. You first need to set up autoloading and use the appropriate classes:

<?php

require DIR . '/../Application/Autoload/Loader.php';

Application\Autoload\Loader::init(DIR

use Application\Captcha\Reverse;

. '/..');

After that, be sure to start the session. You would use appropriate measures to protect

the session as well. To conserve space, we only show one simple measure, session_

regenerate_id():

session_start();

session_regenerate_id();

Next, you can define a function that creates the CAPTCHA; retrieves the phrase, label,

and image (in this case, reverse text); and stores the value in the session:

function setCaptcha(&$phrase, &$label, &$image)

{

$captcha = new Reverse();

$phrase = $captcha->getPhrase();

$label = $captcha->getLabel();

$image = $captcha->getImage();

$_SESSION['phrase'] = $phrase;

}

Now is a good time to initialize variables and determine the loggedIn status:

$image = '';

$label = '';

$phrase = $_SESSION['phrase'] ?? '';

$message = '';

$info = 'You Can Now See Super Secret Information!!!';

$loggedIn = $_SESSION['isLoggedIn'] ?? FALSE;

$loggedUser = $_SESSION['user'] ?? 'guest';

You can then check to see whether the login button has been pressed. If so, check to see

whether the CAPTCHA phrase has been entered. If not, initialize a message informing the

user they need to enter the CAPTCHA phrase:

if (!empty($_POST['login'])) {

if (empty($_POST['captcha'])) {

$message = 'Enter Captcha Phrase and Login Information';

473

Improving Web Security

If the CAPTCHA phrase is present, check to see whether it matches what is stored in the

session. If it doesn't match, proceed as if the form is invalid. Otherwise, process the login as

you would have otherwise. For the purposes of this illustration, you can simulate a login by

using hard-coded values for the username and password:

} else {

if ($_POST['captcha'] == $phrase) {

$username = 'test';

$password = 'password';

if ($_POST['user'] == $username

&& $_POST['pass'] == $password) {

$loggedIn = TRUE;

$_SESSION['user'] = strip_tags($username);

$_SESSION['isLoggedIn'] = TRUE;

} else {

$message = 'Invalid Login';

}

} else {

$message = 'Invalid Captcha';

}

}

You might also want to add code for a logout option, as described in the Safeguarding the PHP

session recipe:

} elseif (isset($_POST['logout'])) {

session_unset();

session_destroy();

setcookie('PHPSESSID', 0, time() - 3600);

header('Location: ' . $_SERVER['REQUEST_URI']);

exit;

}

You can then run setCaptcha():

setCaptcha($phrase, $label, $image);

Lastly, don't forget the view logic, which, in this example, presents a basic login form. Inside

the form tag, you'll need to add view logic to display the CAPTCHA and label:

<tr>

<th><?= $label; ?></th>

<td><?= $image; ?><input type="text" name="captcha" /></td>

</tr>

474

Chapter 12

Here is the resulting output:

To demonstrate how to use the image CAPTCHA, copy the code from chap_12_captcha_

text.php to cha_12_captcha_image.php. We define constants that represent the

location of the directory in which we will write the CAPTCHA images. (Be sure to create this

directory!) Otherwise, the autoloading and use statement structure is similar. Note that we

also define a TrueType font. Differences are noted in bold:

<?php

define('IMAGE_DIR', DIR . '/captcha');

define('IMAGE_URL', '/captcha');

define('IMAGE_FONT', DIR . '/FreeSansBold.ttf');

require DIR . '/../Application/Autoload/Loader.php';

Application\Autoload\Loader::init(DIR

use Application\Captcha\Image;

session_start();

session_regenerate_id();

. '/..');

Important!

Fonts can potentially be protected under copyright, trademark, patent,

or other intellectual property laws. If you use a font for which you are not

licensed, you and your customer could be held liable in court! Use an open

source font, or one that is available on the web server for which you have a

valid license.

Of course, in the setCaptcha() function, we use the Image class instead of Reverse:

function setCaptcha(&$phrase, &$label, &$image)

{

$captcha = new Image(IMAGE_DIR, IMAGE_URL, IMAGE_FONT);

$phrase = $captcha->getPhrase();

475

Improving Web Security

$label = $captcha->getLabel();

$image = $captcha->getImage();

$_SESSION['phrase'] = $phrase;

return $captcha;

}

Variable initialization is the same as the previous script, and login processing is identical to

the previous script:

$image = '';

$label = '';

$phrase = $_SESSION['phrase'] ?? '';

$message = '';

$info = 'You Can Now See Super Secret Information!!!';

$loggedIn = $_SESSION['isLoggedIn'] ?? FALSE;

$loggedUser = $_SESSION['user'] ?? 'guest';

if (!empty($_POST['login'])) {

// etc. -- identical to chap_12_captcha_text.php

Even the view logic remains the same, as we are using getImage(), which, in the case of the

image CAPTCHA, returns directly usable HTML. Here is the output using a TrueType font:

 There's more…

If you are not inclined to use the preceding code to generate your own in-house CAPTCHA,

there are plenty of libraries available. Most popular frameworks have this ability. Zend

Framework, for example, has its Zend\Captcha component class. There is also reCAPTCHA,

which is generally invoked as a service in which your application makes a call to an external

website that generates the CAPTCHA and token for you. A good place to start looking is

http://www.captcha.net/ website.

476

http://www.captcha.net/

Chapter 12

 See also

For more information on the protection of fonts as intellectual property, refer to the

article present at https://en.wikipedia.org/wiki/Intellectual_property_

protection_of_typefaces.

 Encrypting/decrypting without mcrypt

It is a little-known fact among members of the general PHP community that the mcrypt

extension, the core of most PHP-based encryption considered secure, is anything but secure.

One of the biggest issues, from a security perspective, is that the mcrypt extension requires

advanced knowledge of cryptography to successfully operate, which few programmers have. This

leads to gross misuse and ultimately problems such as a 1 in 256 chance of data corruption.

Not good odds. Furthermore, developer support for libmcrypt, the core library upon which

the mcrypt extension is based, was abandoned in 2007, which means the code base is out-of-

date, bug-ridden, and has no mechanism to apply patches. Accordingly, it is extremely important

to understand how to perform strong encryption/decryption without using mcrypt!

 How to do it…

1. The solution to the problem posed previously, in case you're wondering, is to use

openssl. This extension is well maintained, and has modern and very strong

encryption/decryption capabilities.

Important

In order to use any openssl* functions, the openssl PHP extension

must be compiled and enabled! In addition, you will need to install the

latest OpenSSL package on your web server.

2. First, you will need to determine which cipher methods are available on your

installation. For this purpose, you can use the openssl_get_cipher_methods()

command. Examples will include algorithms based on Advanced Encryption

Standard (AES), BlowFish (BF), CAMELLIA, CAST5, Data Encryption Standard

(DES), Rivest Cipher (RC) (also affectionately known as Ron's Code), and SEED. You

will note that this method shows cipher methods duplicated in upper and lowercase.

477

Improving Web Security

3. Next, you will need to figure out which method is most appropriate for your needs.

Here is a table that gives a quick summary of the various methods:

Method Published Key size (bits) Key block

size

(bytes)

Notes

camellia 2000 128, 192, 256 16 Developed by Mitsubishi and NTT

aes 1998 128, 192, 256 16 Developed by Joan Daemen

and Vincent Rijmen. Originally

submitted as Rijndael

seed 1998 128 16 Developed by the Korea

Information Security Agency

cast5 1996 40 to 128 8 Developed by Carlisle Adams and

Stafford Tavares

bf 1993 1 to 448 8 Designed by Bruce Schneier

rc2 1987 8 to 1,024

defaults to 64

8 Designed by Ron Rivest (one of

the core founders of RSA)

des 1977 56 (+8 parity

bits)

8 Developed by IBM, based on

work done by Horst Feistel

4. Another consideration is what your preferred block cipher mode of operation is.

Common choices are summarized in this table:

Mode Stands For Notes

ECB Electronic Code Book Does not require initialization vector (IV);

supports parallelization for both encryption

and decryption; simple and fast; does not

hide data patterns; not recommended!!!

CBC Cipher Block Chaining Requires IV; subsequent blocks, even if

identical, are XOR'ed with previous block,

resulting in better overall encryption; if

the IVs are predictable, the first block can

be decoded, leaving remaining message

exposed; message must be padded to a

multiple of the cipher block size; supports

parallelization only for decryption

CFB Cipher Feedback Close relative of CBC, except that encryption

is performed in reverse

478

Chapter 12

Mode Stands For Notes

OFB Output Feedback Very symmetrical: encrypt and decrypt are

the same; does not supports parallelization

at all

CTR Counter Similar in operation to OFB; supports

parallelization for both encryption and

decryption

CCM Counter with CBC-MAC Derivative of CTR; only designed for block

length of 128 bits; provides authentication

and confidentiality; CBC-MAC stands

for Cipher Block Chaining - Message

Authentication Code

GCM Galois/Counter Mode Based on CTR mode; should use a different

IV for each stream to be encrypted;

exceptionally high throughput (compared to

other modes); supports parallelization for

both encryption and decryption

XTS XEX-based Tweaked-codebook

mode with ciphertext Stealing

Relatively new (2010) and fast; uses two

keys; increases the amount of data that can

be securely encrypted as one block

5. Before choosing a cipher method and mode, you will also need to determine whether

the encrypted contents needs to be unencrypted outside of your PHP application. For

example, if you are storing database credentials encrypted into a standalone text file,

do you need to have the ability to decrypt from the command line? If so, make sure

that the cipher method and operation mode you choose are supported by the target

operating system.

6. The number of bytes supplied for the IV varies according to the cipher method

chosen. For best results, use random_bytes() (new in PHP 7), which returns a true

CSPRNG sequence of bytes. The length of the IV varies considerably. Try a size of 16

to start with. If a warning is generated, the correct number of bytes to be supplied for

that algorithm will be shown, so adjust the size accordingly:

$iv = random_bytes(16);

479

Improving Web Security

7. To perform encryption, use openssl_encrypt(). Here are the parameters that

should be passed:

Parameter Notes

Data Plain text you need to encrypt.

Method One of the methods you identified using openssl_get_

cipher_methods(). identified as follows:

method - key_size - cipher_mode

So, for example, if you want a method of AES, a key size of

256, and GCM mode, you would enter aes-256-gcm.

Password Although documented as password, this parameter can be

viewed as a key. Use random_bytes() to generate a key

with a number of bytes to match the desired key size.

Options Until you gain more experience with openssl encryption, it

is recommended you stick with the default value of 0.

IV Use random_bytes() to generate an IV with a number of

bytes to match the cipher method.

8. As an example, suppose you wanted to choose the AES cipher method, a key size of

256, and XTS mode. Here is the code used to encrypt:

$plainText = 'Super Secret Credentials';

$key = random_bytes(16);

$method = 'aes-256-xts';

$cipherText = openssl_encrypt($plainText, $method, $key, 0, $iv);

9. To decrypt, use the same values for $key and $iv, along with the openssl_

decrypt() function:

$plainText = openssl_decrypt($cipherText, $method, $key, 0, $iv);

 How it works…

In order to see which cipher methods are available, create a PHP script called chap_12_

openssl_encryption.php and run this command:

<?php

echo implode(', ', openssl_get_cipher_methods());

480

Chapter 12

The output should look something like this:

Next, you can add values for the plain text to be encrypted, the method, key, and IV. As an

example, try AES, with a key size of 256, using the XTS operating mode:

$plainText = 'Super Secret Credentials';

$method = 'aes-256-xts';

$key = random_bytes(16);

$iv = random_bytes(16);

To encrypt, you can use openssl_encrypt(), specifying the parameters configured

previously:

$cipherText = openssl_encrypt($plainText, $method, $key, 0, $iv);

You might also want to base 64-encode the result to make it more usable:

$cipherText = base64_encode($cipherText);

To decrypt, use the same $key and $iv values. Don't forget to un-encode the base 64 value

first:

$plainText = openssl_decrypt(base64_decode($cipherText),

$method, $key, 0, $iv);

481

Improving Web Security

Here is the output showing the base 64-encoded cipher text, followed by the decrypted

plain text:

If you supply an incorrect number of bytes for the IV, for the cipher method chosen, a warning

message will be shown:

 There's more…

In PHP 7, there was a problem when using open_ssl_encrypt() and open_ssl_

decrypt() and the Authenticated Encrypt with Associated Data (AEAD) modes supported:

GCM and CCM. Accordingly, in PHP 7.1, three extra parameters have been added to these

functions, as follows:

Parameter Description

$tag Authentication tag passed by reference; variable value remains the

same if authentication fails

$aad Additional authentication data

$tag_length 4 to 16 for GCM mode; no limits for CCM mode; only for open_ssl_

encrypt()

For more information, you can refer to https://wiki.php.net/rfc/openssl_aead.

482

 See also

Chapter 12

For an excellent discussion on why the mcrypt extension is being deprecated in PHP 7.1,

please refer to the article at https://wiki.php.net/rfc/mcrypt-viking-funeral.

For a good description of block cipher, which forms the basis for the various cipher methods,

refer to the article present at https://en.wikipedia.org/wiki/Block_cipher. For

an excellent description of AES, refer to https://en.wikipedia.org/wiki/Advanced_

Encryption_Standard. A good article that describes encryption operation modes can be

seen at https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation.

For some of the newer modes, if the data to be encrypted is less than the block

size, openssl_decrypt() will return no value. If you pad the data to be

at least the block size, the problem goes away. Most of the modes implement

internal padding so this is not an issue. With some of the newer modes (that is,

xts) you might see this problem. Be sure to conduct tests on short strings of

data less than eight characters before putting your code into production.

483

13
Best Practices, Testing,

and Debugging

In this chapter, we will cover the following topics:

f Using Traits and Interfaces

f Universal exception handler

f Universal error handler

f Writing a simple test

f Writing a test suite

f Generating fake test data

f Customizing sessions using session_start parameters

 Introduction

In this chapter, we will show you how traits and interfaces work together. Then, we turn our

attention to the design of a fallback mechanism that will catch errors and exceptions in

situations where you were not able (or forgot) to define specific try/catch blocks. We will

then venture into the world of unit testing, showing you first how to write simple tests, and

then how to group those tests together into test suites. Next, we define a class that lets you

create any amount of generic test data. We close the chapter with a discussion of how to

easily manage sessions using new PHP 7 features.

485

Best Practices, Testing, and Debugging

 Using Traits and Interfaces

It is considered a best practice to make use of interfaces as a means of establishing the

classification of a set of classes, and to guarantee the existence of certain methods. Traits

and Interfaces often work together, and are an important aspect of implementation. Wherever

you have a frequently used Interface that defines a method where the code does not change

(such as a setter or getter), it is useful to also define a Trait that contains the actual code

implementation.

 How to do it…

1. For this example, we will use ConnectionAwareInterface, first presented in

Chapter 4, Working with PHP Object-Oriented Programming. This interface defines a

setConnection() method that sets a $connection property. Two classes in the

Application\Generic namespace, CountryList and CustomerList, contain

redundant code, which matches the method defined in the interface.

2. Here is what CountryList looks like before the change:

class CountryList

{

protected $connection;

protected $key = 'iso3';

protected $value = 'name';

protected $table = 'iso_country_codes';

public function setConnection(Connection $connection)

{

$this->connection = $connection;

}

public function list()

{

$list = [];

$sql = sprintf('SELECT %s,%s FROM %s', $this->key,

$this->value, $this->table);

$stmt = $this->connection->pdo->query($sql);

while ($item = $stmt->fetch(PDO::FETCH_ASSOC)) {

$list[$item[$this->key]] = $item[$this->value];

}

return $list;

}

}

486

Chapter 13

3. We will now move list() into a trait called ListTrait:

trait ListTrait

{

public function list()

{

$list = [];

$sql = sprintf('SELECT %s,%s FROM %s',

$this->key, $this->value, $this->table);

$stmt = $this->connection->pdo->query($sql);

while ($item = $stmt->fetch(PDO::FETCH_ASSOC)) {

$list[$item[$this->key]] = $item[$this->value];

}

return $list;

}

}

4. We can then insert the code from ListTrait into a new class,

CountryListUsingTrait, as shown next:

class CountryListUsingTrait

{

use ListTrait;

protected $connection;

protected $key = 'iso3';

protected $value = 'name';

protected $table = 'iso_country_codes';

public function setConnection(Connection $connection)

{

$this->connection = $connection;

}

}

5. Next, we observe that many classes need to set a connection instance. Again,

this calls for a trait. This time, however, we place the trait in the Application\

Database namespace. Here is the new trait:

namespace Application\Database;

trait ConnectionTrait

{

protected $connection;

public function setConnection(Connection $connection)

{

487

Best Practices, Testing, and Debugging

$this->connection = $connection;

}

}

6. Traits are often used to avoid duplication of code. It is often the case that you also

need to identify the class that uses the trait. A good way to do this is to develop an

interface that matches the trait. In this example, we will define Application\

Database\ConnectionAwareInterface:

namespace Application\Database;

use Application\Database\Connection;

interface ConnectionAwareInterface

{

public function setConnection(Connection $connection);

}

7. And here is the revised CountryListUsingTrait class. Note that as the

new trait is affected by its location in the namespace, we needed to add a

use statement at the top of the class. You will also note that we implement

ConnectionAwareInterface to identify the fact that this class requires the

method defined in the trait. Notice that we are taking advantage of the new PHP 7

group use syntax:

namespace Application\Generic;

use PDO;

use Application\Database\ {

Connection, ConnectionTrait, ConnectionAwareInterface

};

class CountryListUsingTrait implements ConnectionAwareInterface

{

use ListTrait;

use ConnectionTrait;

protected $key = 'iso3';

protected $value = 'name';

protected $table = 'iso_country_codes';

}

488

 How it works…

Chapter 13

First of all, make sure the classes developed in Chapter 4, Working with PHP Object-

Oriented Programming, have been created. These include the Application\Generic\

CountryList and Application\Generic\CustomerList classes discussed in Chapter

4, Working with PHP Object-Oriented Programming, in the recipe Using interfaces. Save each

class in a new file in the Application\Generic folder as CountryListUsingTrait.php

and CustomerListUsingTrait.php. Be sure to change the class names to match the new

names of the files!

As discussed in step 3, remove the list() method from both CountryListUsingTrait.

php and CustomerListUsingTrait.php. Add use ListTrait; in place of the method

removed. Place the removed code into a separate file, in the same folder, called ListTrait.

php.

You will also notice further duplication of code between the two list classes, in this case the

setConnection() method. This calls for another trait!

Cut the setConnection() method out of both CountryListUsingTrait.

php and CustomerListUsingTrait.php list classes, and place the removed code

into a separate file called ConnectionTrait.php. As this trait is logically related to

ConnectionAwareInterface and Connection, it makes sense to place the file in the

Application\Database folder, and to specify its namespace accordingly.

Finally, define Application\Database\ConnectionAwareInterface as discussed in

step 6. Here is the final Application\Generic\CustomerListUsingTrait class after

all changes:

<?php

namespace Application\Generic;

use PDO;

use Application\Database\Connection;

use Application\Database\ConnectionTrait;

use Application\Database\ConnectionAwareInterface;

class CustomerListUsingTrait implements ConnectionAwareInterface

{

use ListTrait;

use ConnectionTrait;

protected $key = 'id';

protected $value = 'name';

protected $table = 'customer';

}

489

Best Practices, Testing, and Debugging

You can now copy the chap_04_oop_simple_interfaces_example.php file

mentioned in Chapter 4, Working with PHP Object-Oriented Programming, to a new file

called chap_13_trait_and_interface.php. Change the reference from CountryList

to CountryListUsingTrait. Likewise, change the reference from CustomerList to

CustomerListUsingTrait. Otherwise, the code can remain the same:

<?php

define('DB_CONFIG_FILE', '/../config/db.config.php');

require DIR . '/../Application/Autoload/Loader.php';

Application\Autoload\Loader::init(DIR . '/..');

$params = include DIR

try {

. DB_CONFIG_FILE;

$list = Application\Generic\ListFactory::factory(

new Application\Generic\CountryListUsingTrait(), $params);

echo 'Country List' . PHP_EOL;

foreach ($list->list() as $item) echo $item . ' ';

$list = Application\Generic\ListFactory::factory(

new Application\Generic\CustomerListUsingTrait(),

$params);

echo 'Customer List' . PHP_EOL;

foreach ($list->list() as $item) echo $item . ' ';

} catch (Throwable $e) {

echo $e->getMessage();

}

The output will be exactly as described in the Using interfaces recipe of Chapter 4, Working

with Object-Oriented Programming. You can see the country list portion of the output in the

following screenshot:

490

Chapter 13

The next image displays the customer list portion of the output:

 Universal exception handler

Exceptions are especially useful when used in conjunction with code in a try/catch block.

Using this construct, however, can be awkward in some situations, making code virtually

unreadable. Another consideration is that many classes end up throwing exceptions that you

have not anticipated. In such cases, it would be highly desirable to have some sort of fallback

exception handler.

 How to do it…

1. First, we define a generic exception handling class, Application\Error\

Handler:

namespace Application\Error;

class Handler

{

// code goes here

}

2. We define properties that represents a log file. If the name is not supplied, it is

named after the year, month, and day. In the constructor, we use set_exception_

handler() to assign the exceptionHandler() method (in this class) as the

fallback handler:

protected $logFile;

public function construct(

$logFileDir = NULL, $logFile = NULL)

491

Best Practices, Testing, and Debugging

{

$logFile = $logFile ?? date('Ymd') . '.log';

$logFileDir = $logFileDir ?? DIR ;

$this->logFile = $logFileDir . '/' . $logFile;

$this->logFile = str_replace('//', '/', $this-

>logFile);

set_exception_handler([$this,'exceptionHandler']);

}

3. Next, we define the exceptionHandler() method, which takes an Exception

object as an argument. We record the date and time, the class name of the

exception, and its message in the log file:

public function exceptionHandler($ex)

{

$message = sprintf('%19s : %20s : %s' . PHP_EOL,

date('Y-m-d H:i:s'), get_class($ex), $ex->getMessage());

file_put_contents($this->logFile, $message, FILE_APPEND);

}

4. If we specifically put a try/catch block in our code, this will override our universal

exception handler. If, on the other hand, we do not use try/catch and an exception is

thrown, the universal exception handler will come into play.

Best practice

You should always use try/catch to trap exceptions and possibly continue

in your application. The exception handler described here is only designed

to allow your application to end "gracefully" in situations where exceptions

thrown have not been caught.

 How it works…

First, place the code shown in the preceding recipe into a Handler.php file in the

Application\Error folder. Next, define a test class that will throw an exception. For the

purposes of illustration, create an Application\Error\ThrowsException class that

will throw an exception. As an example, set up a PDO instance with the error mode set to

PDO::ERRMODE_EXCEPTION. You then craft an SQL statement that is guaranteed to fail:

namespace Application\Error;

use PDO;

class ThrowsException

{

protected $result;

public function construct(array $config)

{

$dsn = $config['driver'] . ':';

492

Chapter 13

unset($config['driver']);

foreach ($config as $key => $value) {

$dsn .= $key . '=' . $value . ';';

}

$pdo = new PDO(

$dsn,

$config['user'],

$config['password'],

[PDO::ATTR_ERRMODE => PDO::ERRMODE_EXCEPTION]);

$stmt = $pdo->query('This Is Not SQL');

while ($row = $stmt->fetch(PDO::FETCH_ASSOC)) {

$this->result[] = $row;

}

}

}

Next, define a calling program called chap_13_exception_handler.php that sets up

autoloading, uses the appropriate classes:

<?php

define('DB_CONFIG_FILE', DIR . '/../config/db.config.php');

$config = include DB_CONFIG_FILE;

require DIR . '/../Application/Autoload/Loader.php';

Application\Autoload\Loader::init(DIR . '/..');

use Application\Error\ { Handler, ThrowsException };

At this point, if you create a ThrowsException instance without implementing the universal

handler, a Fatal Error is generated as an exception has been thrown but not caught:

$throws1 = new ThrowsException($config);

493

Best Practices, Testing, and Debugging

If, on the other hand, you use a try/catch block, the exception will be caught and your

application is allowed to continue, if it is stable enough:

try {

$throws1 = new ThrowsException($config);

} catch (Exception $e) {

echo 'Exception Caught: ' . get_class($e) . ':' . $e->getMessage()

. PHP_EOL;

}

echo 'Application Continues ...' . PHP_EOL;

You will observe the following output:

To demonstrate use of the exception handler, define a Handler instance, passing a

parameter that represents the directory to contain log files, before the try/catch block.

After try/catch, outside the block, create another instance of ThrowsException. When

you run this sample program, you will notice that the first exception is caught inside the try/

catch block, and the second exception is caught by the handler. You will also note that after

the handler, the application ends:

$handler = new Handler(DIR

try {

. '/logs');

$throws1 = new ThrowsException($config);

} catch (Exception $e) {

echo 'Exception Caught: ' . get_class($e) . ':'

. $e->getMessage() . PHP_EOL;

}

$throws1 = new ThrowsException($config);

echo 'Application Continues ...' . PHP_EOL;

494

Chapter 13

Here is the output from the completed example program, along with the contents of the

log file:

 See also

f It might be a good idea to review the documentation on the set_exception_

handler() function. Have a look, especially, at the comment (posted 7 years ago,

but still pertinent) by Anonymous that clarifies how this function works: http://

php.net/manual/en/function.set-exception-handler.php.

 Universal error handler

The process of developing a universal error handler is quite similar to the preceding recipe.

There are certain differences, however. First of all, in PHP 7, some errors are thrown and can

be caught, whereas others simply stop your application dead in its tracks. To further confuse

matters, some errors are treated like exceptions, whereas others are derived from the new

PHP 7 Error class. Fortunately for us, in PHP 7, both Error and Exception implement a

new interface called Throwable. Accordingly, if you are not sure whether your code will throw

an Exception or an Error, simply catch an instance of Throwable and you'll catch both.

 How to do it…

1. Modify the Application\Error\Handler class defined in the preceding recipe.

In the constructor, set a new errorHandler() method as the default error handler:

public function construct($logFileDir = NULL, $logFile = NULL)

{

$logFile = $logFile ?? date('Ymd') . '.log';

$logFileDir = $logFileDir ?? DIR ;

$this->logFile = $logFileDir . '/' . $logFile;

$this->logFile = str_replace('//', '/', $this->logFile);

set_exception_handler([$this,'exceptionHandler']);

set_error_handler([$this, 'errorHandler']);

}

495

Best Practices, Testing, and Debugging

2. We then define the new method, using the documented parameters. As with our

exception handler, we log information to a log file:

public function errorHandler($errno, $errstr, $errfile, $errline)

{

$message = sprintf('ERROR: %s : %d : %s : %s : %s' . PHP_EOL,

date('Y-m-d H:i:s'), $errno, $errstr, $errfile, $errline);

file_put_contents($this->logFile, $message, FILE_APPEND);

}

3. Also, just to be able to distinguish errors from exceptions, add EXCEPTION to the

message sent to the log file in the exceptionHandler() method:

public function exceptionHandler($ex)

{

$message = sprintf('EXCEPTION: %19s : %20s : %s' . PHP_EOL,

date('Y-m-d H:i:s'), get_class($ex), $ex->getMessage());

file_put_contents($this->logFile, $message, FILE_APPEND);

}

 How it works…

First, make the changes to Application\Error\Handler as defined previously.

Next, create a class that throws an error that, for this illustration, could be defined as

Application\Error\ThrowsError. For example, you could have a method that attempts

a divide by zero operation, and another that attempts to parse non-PHP code using eval():

<?php

namespace Application\Error;

class ThrowsError

{

const NOT_PARSE = 'this will not parse';

public function divideByZero()

{

$this->zero = 1 / 0;

}

public function willNotParse()

{

eval(self::NOT_PARSE);

}

}

You can then define a calling program called chap_13_error_throwable.php that sets up

autoloading, uses the appropriate classes, and creates an instance of ThrowsError:

<?php

require DIR . '/../Application/Autoload/Loader.php';

Application\Autoload\Loader::init(DIR . '/..');

496

Chapter 13

use Application\Error\ { Handler, ThrowsError };

$error = new ThrowsError();

If you then call the two methods, without a try/catch block and without defining the universal

error handler, the first method generates a Warning, whereas the second throws a

ParseError:

$error->divideByZero();

$error->willNotParse();

echo 'Application continues ... ' . PHP_EOL;

Because this is an error, program execution stops, and you will not see Application

continues ...:

If you wrap the method calls in try/catch blocks and catch Throwable, the code execution

continues:

try {

$error->divideByZero();

} catch (Throwable $e) {

echo 'Error Caught: ' . get_class($e) . ':'

. $e->getMessage() . PHP_EOL;

}

try {

$error->willNotParse();

} catch (Throwable $e) {

echo 'Error Caught: ' . get_class($e) . ':'

. $e->getMessage() . PHP_EOL;

}

echo 'Application continues ... ' . PHP_EOL;

497

Best Practices, Testing, and Debugging

From the following output, you will also note that the program exits with code 0, which tells

us all is OK:

Finally, after the try/catch blocks, run the errors again, moving the echo statement to

the end. You will see in the output that the errors were caught, but in the log file, notice that

DivisionByZeroError is caught by the exception handler, whereas the ParseError is

caught by the error hander:

$handler = new Handler(DIR

$error->divideByZero();

$error->willNotParse();

. '/logs');

echo 'Application continues ... ' . PHP_EOL;

 See also

f PHP 7.1 allows you to specify more than one class in the catch () clause. So,

instead of a single Throwable you could say catch (Exception | Error $e) {

xxx }

498

Chapter 13

 Writing a simple test

The primary means of testing PHP code is to use PHPUnit, which is based on a methodology

called Unit Testing. The philosophy behind unit testing is quite simple: you break down your

code into the smallest possible logical units. You then test each unit in isolation to confirm

that it performs as expected. These expectations are codified into a series of assertions.

If all assertions return TRUE, then the unit has passed the test.

In the case of procedural PHP, a unit is a function. For OOP PHP,

the unit is a method within a class.

 How to do it…

1. The first order of business is to either install PHPUnit directly onto your development

server, or download the source code, which is available in the form of a single

phar (PHP archive) file. A quick visit to the official website for PHPUnit (https://

phpunit.de/) lets us download right from the main page.

2. It is a best practice, however, to use a package manager to both install and maintain

PHPUnit. For this purpose, we will use a package management program called

Composer. To install Composer, visit the main website, https://getcomposer.

org/, and follow the instructions on the download page. The current procedure, at

the time of writing, is as follows. Note that you need to substitute the hash of the

current version in place of <hash>:

php -r "copy('https://getcomposer.org/installer',

'composer-setup.php');"

php -r "if (hash_file('SHA384', 'composer-setup.php')

=== '<hash>') {

echo 'Installer verified';

} else {

echo 'Installer corrupt'; unlink('composer-setup.php');

} echo PHP_EOL;"

php composer-setup.php

php -r "unlink('composer-setup.php');"

Best practice

The advantage of using a package management program such as

Composer is that it will not only install, but can also be used to update

any external software (such as PHPUnit) used by your application.

499

Best Practices, Testing, and Debugging

3. Next, we use Composer to install PHPUnit. This is accomplished by creating a

composer.json file that contains a series of directives outlining project parameters

and dependencies. A full description of these directives is beyond the scope of this

book; however, for the purposes of this recipe, we create a minimal set of directives

using the key parameter require. You will also note that the contents of the file are

in JavaScript Object Notation (JSON) format:

{

"require-dev": {

"phpunit/phpunit": "*"

}

}

4. To perform the installation from the command line, we run the following command.

The output is shown just after:

php composer.phar install

5. PHPUnit and its dependencies are placed in a vendor folder that Composer will

create if it does not already exist. The primary command to invoke PHPUnit is then

symbolically linked into the vendor/bin folder. If you place this folder in your PATH,

all you need do is to run this command, which checks the version and incidentally

confirms the installation:

phpunit --version

500

Running simple tests

Chapter 13

1. For the purposes of this illustration, let's assume we have a chap_13_unit_test_

simple.php file that contains the add() function:

<?php

function add($a = NULL, $b = NULL)

{

return $a + $b;

}

2. Tests are then written as classes that extend PHPUnit\Framework\TestCase. If

you are testing a library of functions, at the beginning of the test class, include the file

that contains function definitions. You would then write methods that start with the

word test, usually followed by the name of the function you are testing, and possibly

some additional CamelCase words to further describe the test. For the purposes of

this recipe, we will define a SimpleTest test class:

<?php

use PHPUnit\Framework\TestCase;

require_once DIR . '/chap_13_unit_test_simple.php';

class SimpleTest extends TestCase

{

// testXXX() methods go here

}

3. Assertions form the heart of any set of tests. The See also section gives you

the documentation reference for the complete list of assertions. An assertion is a

PHPUnit method that compares a known value against a value produced by that

which you wish to test. An example is assertEquals(), which checks to see

whether the first argument equals the second. The following example tests a

method called add() and confirms 2 is the return value for add(1,1):

public function testAdd()

{

$this->assertEquals(2, add(1,1));

}

4. You can also test to see whether something is not true. This example asserts that 1 +

1 does not equal 3:

$this->assertNotEquals(3, add(1,1));

5. An assertion that is extremely useful when used to test a string is assertRegExp().

Assume, for this illustration, that we are testing a function that produces an HTML

table out of a multidimensional array:

function table(array $a)

{

$table = '<table>';

501

Best Practices, Testing, and Debugging

foreach ($a as $row) {

$table .= '<tr><td>';

$table .= implode('</td><td>', $row);

$table .= '</td></tr>';

}

$table .= '</table>';

return $table;

}

6. We can construct a simple test that confirms that the output contains <table>,

one or more characters, followed by </table>. Further, we wish to confirm that

a <td>B</td> element exists. When writing the test, we build a test array that

consists of three sub-arrays containing the letters A–C, D—F, and G—I. We then pass

the test array to the function, and run assertions against the result:

public function testTable()

{

$a = [range('A', 'C'),range('D', 'F'),range('G','I')];

$table = table($a);

$this->assertRegExp('!^<table>.+</table>$!', $table);

$this->assertRegExp('!<td>B</td>!', $table);

}

7. To test a class, instead of including a library of functions, simply include the file that

defines the class to be tested. For the sake of illustration, let's take the library of

functions shown previously and move them into a Demo class:

<?php

class Demo

{

public function add($a, $b)

{

return $a + $b;

}

public function sub($a, $b)

{

return $a - $b;

}

// etc.

}

502

Chapter 13

8. In our SimpleClassTest test class, instead of including the library file, we include

the file that represents the Demo class. We need an instance of Demo in order to run

tests. For this purpose, we use a specially designed setup() method, which is run

before each test. Also, you will note a teardown() method, which is run immediately

after each test:

<?php

use PHPUnit\Framework\TestCase;

require_once DIR . '/Demo.php';

class SimpleClassTest extends TestCase

{

protected $demo;

public function setup()

{

$this->demo = new Demo();

}

public function teardown()

{

unset($this->demo);

}

public function testAdd()

{

$this->assertEquals(2, $this->demo->add(1,1));

}

public function testSub()

{

$this->assertEquals(0, $this->demo->sub(1,1));

}

// etc.

}

The reason why setup() and teardown() are run before and after

 each test is to ensure a fresh test environment. That way, the results of

one test will not influence the results of another test.

503

Best Practices, Testing, and Debugging

Testing database Model classes

1. When testing a class, such as a Model class, that has database access, other

considerations come into play. The main consideration is that you should run tests

against a test database, not the real database used in production. A final point is that

by using a test database, you can populate it in advance with appropriate, controlled

data. setup() and teardown() could also be used to add or remove test data.

2. As an example of a class that uses the database, we will define a class VisitorOps.

The new class will include methods to add, remove, and find visitors. Note that we've

also added a method to return the latest SQL statement executed:

<?php

require DIR . '/../Application/Database/Connection.php';

use Application\Database\Connection;

class VisitorOps

{

const TABLE_NAME = 'visitors';

protected $connection;

protected $sql;

public function construct(array $config)

{

$this->connection = new Connection($config);

}

public function getSql()

{

return $this->sql;

}

public function findAll()

{

$sql = 'SELECT * FROM ' . self::TABLE_NAME;

$stmt = $this->runSql($sql);

while ($row = $stmt->fetch(PDO::FETCH_ASSOC)) {

yield $row;

}

}

public function findById($id)

{

$sql = 'SELECT * FROM ' . self::TABLE_NAME;

$sql .= ' WHERE id = ?';

$stmt = $this->runSql($sql, [$id]);

504

Chapter 13

return $stmt->fetch(PDO::FETCH_ASSOC);

}

public function removeById($id)

{

$sql = 'DELETE FROM ' . self::TABLE_NAME;

$sql .= ' WHERE id = ?';

return $this->runSql($sql, [$id]);

}

public function addVisitor($data)

{

$sql = 'INSERT INTO ' . self::TABLE_NAME;

$sql .= ' (' . implode(',',array_keys($data)) . ') ';

$sql .= ' VALUES ';

$sql .= ' (:' . implode(',:',array_keys($data)) . ') ';

$this->runSql($sql, $data);

return $this->connection->pdo->lastInsertId();

}

public function runSql($sql, $params = NULL)

{

$this->sql = $sql;

try {

$stmt = $this->connection->pdo->prepare($sql);

$result = $stmt->execute($params);

} catch (Throwable $e) {

error_log(METHOD

return FALSE;

}

. ':' . $e->getMessage());

return $stmt;

}

}

3. For tests that involve a database, it is recommended that you use a test database

instead of the live production database. Accordingly, you will need an extra set

of database connection parameters that can be used to establish a database

connection in the setup() method.

4. It's possible that you wish to establish a consistent block of sample data. This could

be inserted into the test database in the setup() method.

5. Finally, you may wish to reset the test database after each test, which is

accomplished in the teardown() method.

505

Best Practices, Testing, and Debugging

Using mock classes

1. In some cases, the test will access complex components that require external

resources. An example is a service class that needs access to a database. It is a best

practice to minimize database access in a test suite. Another consideration is that we

are not testing database access; we are only testing the functionality of one specific

class. Accordingly, it is sometimes necessary to define mock classes that mimic the

behavior of the their parent class, but that restrict access to external resources.

Best practice

Limit actual database access in your tests to the Model (or equivalent)

classes. Otherwise, the time it takes to run the entire set of tests could

become excessive.

2. In this case, for illustration, define a service class, VisitorService, which makes

use of the VisitorOps class discussed earlier:

<?php

require_once DIR

require_once DIR

. '/VisitorOps.php';

. '/../Application/Database/Connection.php';

use Application\Database\Connection;

class VisitorService

{

protected $visitorOps;

public function construct(array $config)

{

$this->visitorOps = new VisitorOps($config);

}

public function showAllVisitors()

{

$table = '<table>';

foreach ($this->visitorOps->findAll() as $row) {

$table .= '<tr><td>';

$table .= implode('</td><td>', $row);

$table .= '</td></tr>';

}

$table .= '</table>';

return $table;

}

3. For test purposes, we add a getter and setter for the $visitorOps property.

This allows us to insert a mock class in place of the real VisitorOps class:

public function getVisitorOps()

{

return $this->visitorOps;

506

Chapter 13

}

public function setVisitorOps(VisitorOps $visitorOps)

{

$this->visitorOps = $visitorOps;

}

} // closing brace for VisitorService

4. Next, we define a VisitorOpsMock mock class that mimics the functionality of its

parent class. Class constants and properties are inherited. We then add mock test

data, and a getter in case we need access to the test data later:

<?php

require_once DIR . '/VisitorOps.php';

class VisitorOpsMock extends VisitorOps

{

protected $testData;

public function construct()

{

$data = array();

for ($x = 1; $x <= 3; $x++) {

$data[$x]['id'] = $x;

$data[$x]['email'] = $x . 'test@unlikelysource.com';

$data[$x]['visit_date'] =

'2000-0' . $x . '-0' . $x . ' 00:00:00';

$data[$x]['comments'] = 'TEST ' . $x;

$data[$x]['name'] = 'TEST ' . $x;

}

$this->testData = $data;

}

public function getTestData()

{

return $this->testData;

}

5. Next, we override findAll() to return test data using yield, just as in the parent

class. Note that we still build the SQL string, as this is what the parent class does:

public function findAll()

{

$sql = 'SELECT * FROM ' . self::TABLE_NAME;

foreach ($this->testData as $row) {

yield $row;

}

}

507

Best Practices, Testing, and Debugging

6. To mock findById() we simply return that array key from $this->testData.

For removeById(), we unset the array key supplied as a parameter from

$this->testData:

public function findById($id)

{

$sql = 'SELECT * FROM ' . self::TABLE_NAME;

$sql .= ' WHERE id = ?';

return $this->testData[$id] ?? FALSE;

}

public function removeById($id)

{

$sql = 'DELETE FROM ' . self::TABLE_NAME;

$sql .= ' WHERE id = ?';

if (empty($this->testData[$id])) {

return 0;

} else {

unset($this->testData[$id]);

return 1;

}

}

7. Adding data is slightly more complicated in that we need to emulate the fact that the

id parameter might not be supplied, as the database would normally auto-generate

this for us. To get around this, we check for the id parameter. If not set, we find the

largest array key and increment:

public function addVisitor($data)

{

$sql = 'INSERT INTO ' . self::TABLE_NAME;

$sql .= ' (' . implode(',',array_keys($data)) . ') ';

$sql .= ' VALUES ';

$sql .= ' (:' . implode(',:',array_keys($data)) . ') ';

if (!empty($data['id'])) {

$id = $data['id'];

} else {

$keys = array_keys($this->testData);

sort($keys);

$id = end($keys) + 1;

$data['id'] = $id;

}

$this->testData[$id] = $data;

return 1;

}

} // ending brace for the class VisitorOpsMock

508

Using anonymous classes as mock objects

Chapter 13

1. A nice variation on mock objects involves the use of the new PHP 7 anonymous class

in place of creating a formal class that defines mock functionality. The advantage

of using an anonymous class is that you can extend an existing class, which makes

the object appear legitimate. This approach is especially useful if you only need to

override one or two methods.

2. For this illustration, we will modify VisitorServiceTest.php presented

previously, calling it VisitorServiceTestAnonClass.php:

<?php

use PHPUnit\Framework\TestCase;

require_once DIR

require_once DIR

. '/VisitorService.php';

. '/VisitorOps.php';

class VisitorServiceTestAnonClass extends TestCase

{

protected $visitorService;

protected $dbConfig = [

'driver' => 'mysql',

'host' => 'localhost',

'dbname' => 'php7cookbook_test',

'user' => 'cook',

'password' => 'book',

'errmode' => PDO::ERRMODE_EXCEPTION,

];

protected $testData;

3. You will notice that in setup(), we define an anonymous class that extends

VisitorOps. We only need to override the findAll() method:

public function setup()

{

$data = array();

for ($x = 1; $x <= 3; $x++) {

$data[$x]['id'] = $x;

$data[$x]['email'] = $x . 'test@unlikelysource.com';

$data[$x]['visit_date'] =

'2000-0' . $x . '-0' . $x . ' 00:00:00';

$data[$x]['comments'] = 'TEST ' . $x;

$data[$x]['name'] = 'TEST ' . $x;

}

$this->testData = $data;

$this->visitorService =

new VisitorService($this->dbConfig);

$opsMock =

new class ($this->testData) extends VisitorOps {

509

Best Practices, Testing, and Debugging

protected $testData;

public function construct($testData)

{

$this->testData = $testData;

}

public function findAll()

{

return $this->testData;

}

};

$this->visitorService->setVisitorOps($opsMock);

}

4. Note that in testShowAllVisitors(), when $this->visitorService

->showAllVisitors() is executed, the anonymous class is called by the visitor

service, which in turn calls the overridden findAll():

public function teardown()

{

unset($this->visitorService);

}

public function testShowAllVisitors()

{

$result = $this->visitorService->showAllVisitors();

$this->assertRegExp('!^<table>.+</table>$!', $result);

foreach ($this->testData as $key => $value) {

$dataWeWant = '!<td>' . $key . '</td>!';

$this->assertRegExp($dataWeWant, $result);

}

}

}

Using Mock Builder

1. Another technique is to use getMockBuilder(). Although this approach does

not allow a great deal of finite control over the mock object produced, it's extremely

useful in situations where you only need to confirm that an object of a certain class

is returned, and when a specified method is run, this method returns some expected

value.

2. In the following example, we copied VisitorServiceTestAnonClass; the only

difference is in how an instance of VisitorOps is supplied in setup(), in this

case, using getMockBuilder(). Note that although we did not use with() in this

example, it is used to feed controlled parameters to the mocked method:

<?php

use PHPUnit\Framework\TestCase;

require_once DIR . '/VisitorService.php';

510

require_once DIR

. '/VisitorOps.php';

Chapter 13

class VisitorServiceTestAnonMockBuilder extends TestCase

{

// code is identical to VisitorServiceTestAnon

public function setup()

{

$data = array();

for ($x = 1; $x <= 3; $x++) {

$data[$x]['id'] = $x;

$data[$x]['email'] = $x . 'test@unlikelysource.com';

$data[$x]['visit_date'] =

'2000-0' . $x . '-0' . $x . ' 00:00:00';

$data[$x]['comments'] = 'TEST ' . $x;

$data[$x]['name'] = 'TEST ' . $x;

}

$this->testData = $data;

$this->visitorService =

new VisitorService($this->dbConfig);

$opsMock = $this->getMockBuilder(VisitorOps::class)

->setMethods(['findAll'])

->disableOriginalConstructor()

->getMock();

$opsMock->expects($this->once())

->method('findAll')

->with()

->will($this->returnValue($this->testData));

$this->visitorService

->setVisitorOps($opsMock);

}

// remaining code is the same

}

We have shown how to create simple one-off tests. In most cases,

however, you will have many classes that need to be tested, preferably

all at once. This is possible by developing a test suite, discussed in

more detail in the next recipe.

 How it works…

First, you need to install PHPUnit, as discussed in steps 1 to 5. Be sure to include vendor/

bin in your PATH so that you can run PHPUnit from the command line.

511

Best Practices, Testing, and Debugging

Running simple tests

Next, define a chap_13_unit_test_simple.php program file with a series of simple

functions, such as add(), sub() and so on, as discussed in step 1. You can then define a

simple test class contained in SimpleTest.php as mentioned in steps 2 and 3.

Assuming phpunit is in your PATH, from a terminal window, change to the directory

containing the code developed for this recipe, and run the following command:

phpunit SimpleTest SimpleTest.php

You should see the following output:

Make a change in SimpleTest.php so that the test will fail (step 4):

public function testDiv()

{

$this->assertEquals(2, div(4, 2));

$this->assertEquals(99, div(4, 0));

}

Here is the revised output:

512

Chapter 13

Next, add the table() function to chap_13_unit_test_simple.php (step 5), and

testTable() to SimpleTest.php (step 6). Re-run the unit test and observe the results.

To test a class, copy the functions developed in chap_13_unit_test_simple.php to a

Demo class (step 7). After making the modifications to SimpleTest.php suggested in step 8,

re-run the simple test and observe the results.

Testing database model classes

First, create an example class to be tested, VisitorOps, shown in step 2 in this subsection.

You can now define a class we will call SimpleDatabaseTest to test VisitorOps. First

of all, use require_once to load the class to test. (We will discuss how to incorporate

autoloading in the next recipe!) Then define key properties, including test database

configuration and test data. You could use php7cookbook_test as the test database:

<?php

use PHPUnit\Framework\TestCase;

require_once DIR . '/VisitorOps.php';

class SimpleDatabaseTest extends TestCase

{

protected $visitorOps;

protected $dbConfig = [

'driver' => 'mysql',

'host' => 'localhost',

'dbname' => 'php7cookbook_test',

'user' => 'cook',

'password' => 'book',

'errmode' => PDO::ERRMODE_EXCEPTION,

];

protected $testData = [

'id' => 1,

'email' => 'test@unlikelysource.com',

'visit_date' => '2000-01-01 00:00:00',

'comments' => 'TEST',

'name' => 'TEST'

];

}

Next, define setup(), which inserts the test data, and confirms that the last SQL statement

was INSERT. You should also check to see whether the return value was positive:

public function setup()

{

$this->visitorOps = new VisitorOps($this->dbConfig);

$this->visitorOps->addVisitor($this->testData);

$this->assertRegExp('/INSERT/', $this->visitorOps->getSql());

}

513

Best Practices, Testing, and Debugging

After that, define teardown(), which removes the test data and confirms that the query for

id = 1 comes back as FALSE:

public function teardown()

{

$result = $this->visitorOps->removeById(1);

$result = $this->visitorOps->findById(1);

$this->assertEquals(FALSE, $result);

unset($this->visitorOps);

}

The first test is for findAll(). First, confirm the data type of the result. You could take the

topmost element using current(). We confirm there are five elements, that one of them is

name, and that the value is the same as that in the test data:

public function testFindAll()

{

$result = $this->visitorOps->findAll();

$this->assertInstanceOf(Generator::class, $result);

$top = $result->current();

$this->assertCount(5, $top);

$this->assertArrayHasKey('name', $top);

$this->assertEquals($this->testData['name'], $top['name']);

}

The next test is for findById(). It is almost identical to testFindAll():

public function testFindById()

{

$result = $this->visitorOps->findById(1);

$this->assertCount(5, $result);

$this->assertArrayHasKey('name', $result);

$this->assertEquals($this->testData['name'], $result['name']);

}

You do not need to bother with a test for removeById() as this is already done in

teardown(). Likewise, there is no need to test runSql() as this is done as part of

the other tests.

Using mock classes

First, define a VisitorService service class as described in steps 2 and 3 in this

subsection. Next, define a VisitorOpsMock mock class, which is discussed in steps 4 to 7.

514

Chapter 13

You are now in a position to develop a test, VisitorServiceTest, for the service class.

Note that you need provide your own database configuration as it is a best practice to use a

test database instead of the production version:

<?php

use PHPUnit\Framework\TestCase;

require_once DIR

require_once DIR

. '/VisitorService.php';

. '/VisitorOpsMock.php';

class VisitorServiceTest extends TestCase

{

protected $visitorService;

protected $dbConfig = [

'driver' => 'mysql',

'host' => 'localhost',

'dbname' => 'php7cookbook_test',

'user' => 'cook',

'password' => 'book',

'errmode' => PDO::ERRMODE_EXCEPTION,

];

}

In setup(), create an instance of the service, and insert VisitorOpsMock in place of the

original class:

public function setup()

{

$this->visitorService = new VisitorService($this->dbConfig);

$this->visitorService->setVisitorOps(new VisitorOpsMock());

}

public function teardown()

{

unset($this->visitorService);

}

In our test, which produces an HTML table from the list of visitors, you can then look for

certain elements, knowing what to expect in advance as you have control over the test data:

public function testShowAllVisitors()

{

$result = $this->visitorService->showAllVisitors();

$this->assertRegExp('!^<table>.+</table>$!', $result);

$testData = $this->visitorService->getVisitorOps()->getTestData();

515

Best Practices, Testing, and Debugging

foreach ($testData as $key => $value) {

$dataWeWant = '!<td>' . $key . '</td>!';

$this->assertRegExp($dataWeWant, $result);

}

}

}

You might then wish to experiment with the variations suggested in the last two subsections,

Using Anonymous Classes as Mock Objects, and Using Mock Builder.

 There's more…

Other assertions test operations on numbers, strings, arrays, objects, files, JSON, and XML,

as summarized in the following table:

Category Assertions

General assertEquals(), assertFalse(), assertEmpty(),

assertNull(), assertSame(), assertThat(), assertTrue()

Numeric assertGreaterThan(), assertGreaterThanOrEqual(),

assertLessThan(), assertLessThanOrEqual(),

assertNan(), assertInfinite()

String assertStringEndsWith(), assertStringEqualsFile(),

assertStringStartsWith(), assertRegExp(),

assertStringMatchesFormat(),

assertStringMatchesFormatFile()

Array/iterator assertArrayHasKey(), assertArraySubset(),

assertContains(), assertContainsOnly(),

assertContainsOnlyInstancesOf(), assertCount()

File assertFileEquals(), assertFileExists()

Objects assertClassHasAttribute(),

assertClassHasStaticAttribute(), assertInstanceOf(),

assertInternalType(), assertObjectHasAttribute()

JSON assertJsonFileEqualsJsonFile(),

assertJsonStringEqualsJsonFile(),

assertJsonStringEqualsJsonString()

XML assertEqualXMLStructure(),

assertXmlFileEqualsXmlFile(),

assertXmlStringEqualsXmlFile(),

assertXmlStringEqualsXmlString()

516

 See also…

Chapter 13

f For a good discussion on unit testing, have a look here: https://en.wikipedia.

org/wiki/Unit_testing.

f For more information on composer.json file directives, see https://

getcomposer.org/doc/04-schema.md.

f For a complete list of assertions, have a look at this PHPUnit documentation
page:https://phpunit.de/manual/current/en/phpunit-book.

html#appendixes.assertions.

f The PHPUnit documentation also goes into using getMockBuilder() in detail here:

https://phpunit.de/manual/current/en/phpunit-book.html#test-

doubles.mock-objects

 Writing a test suite

You may have noticed after having read through the previous recipe that it can quickly become

tedious to have to manually run phpunit and specify test classes and PHP filenames. This

is especially true when dealing with applications that employ dozens or even hundreds of

classes and files. The PHPUnit project has a built-in capability to handle running multiple tests

with a single command. Such a set of tests is referred to as a test suite.

 How to do it…

1. At its simplest, all you need to do is to move all the tests into a single folder:

mkdir tests

cp *Test.php tests

2. You'll need to adjust commands that include or require external files to account for

the new location. The example shown (SimpleTest) was developed in the preceding

recipe:

<?php

use PHPUnit\Framework\TestCase;

require_once DIR . '/../chap_13_unit_test_simple.php';

class SimpleTest extends TestCase

{

// etc.

3. You can then simply run phpunit with the directory path as an argument. PHPUnit

will then automatically run all tests in that folder. In this example, we assume there is

a tests subdirectory:

phpunit tests

517

Best Practices, Testing, and Debugging

4. You can use the --bootstrap option to specify a file that is executed prior to

running the tests. A typical use for this option is to initiate autoloading:

phpunit --boostrap tests_with_autoload/bootstrap.php tests

5. Here is the sample bootstrap.php file that implements autoloading:

<?php

require DIR . '/../../Application/Autoload/Loader.php';

Application\Autoload\Loader::init([DIR]);

6. Another possibility is to define one or more sets of tests using an XML configuration

file. Here is an example that runs only the Simple* tests:

<phpunit>

<testsuites>

<testsuite name="simple">

<file>SimpleTest.php</file>

<file>SimpleDbTest.php</file>

<file>SimpleClassTest.php</file>

</testsuite>

</testsuites>

</phpunit>

7. Here is another example that runs a test based on a directory and also specifies a

bootstrap file:

<phpunit bootstrap="bootstrap.php">

<testsuites>

<testsuite name="visitor">

<directory>Simple</directory>

</testsuite>

</testsuites>

</phpunit>

 How it works…

Make sure all the tests discussed in the previous recipe, Writing a simple test, have been

defined. You can then create a tests folder and move or copy all the *Test.php files into

this folder. You'll then need to adjust the path in the require_once statements, as shown in

step 2.

In order to demonstrate how PHPUnit can run all tests in a folder, from the directory containing

the source code you defined for this chapter, run the following command:

phpunit tests

518

Chapter 13

You should see the following output:

To demonstrate the use of a autoloading via a bootstrap file, create a new tests_with_

autoload directory. In this folder, define a bootstrap.php file with the code shown in step

5. Create two directories in tests_with_autoload: Demo and Simple.

From the directory containing the source code for this chapter, copy the file (discussed in step

12 of the previous recipe) into tests_with_autoload/Demo/Demo.php. After the opening

<?php tag, add this line:

namespace Demo;

Next, copy the SimpleTest.php file to tests_with_autoload/Simple/ClassTest.

php. (Notice the filename change!). You will need to change the first few lines to the following:

<?php

namespace Simple;

use Demo\Demo;

use PHPUnit\Framework\TestCase;

class ClassTest extends TestCase

{

protected $demo;

public function setup()

{

$this->demo = new Demo();

}

// etc.

After that, create a tests_with_autoload/phpunit.xml file that pulls everything

together:

<phpunit bootstrap="bootstrap.php">

<testsuites>

<testsuite name="visitor">

<directory>Simple</directory>

</testsuite>

519

Best Practices, Testing, and Debugging

</testsuites>

</phpunit>

Finally, change to the directory that contains the code for this chapter. You can now run a unit

test that incorporates a bootstrap file, along with autoloading and namespaces, as follows:

phpunit -c tests_with_autoload/phpunit.xml

The output should appear as follows:

 See also…

f For more information on writing PHPUnit test suites, have a look at this

documentation page: https://phpunit.de/manual/current/en/phpunit-

book.html#organizing-tests.xml-configuration.

 Generating fake test data

Part of the testing and debugging process involves incorporating realistic test data. In some

cases, especially when testing database access and producing benchmarks, large amounts of

test data are needed. One way in which this can be accomplished is to incorporate a process

of scraping data from websites, and then putting the data together in realistic, yet random,

combinations to be inserted into a database.

 How to do it…

1. The first step is to determine what data is needed in order to test your application.

Another consideration is dose the website address an international audience, or will

the market be primarily from a single country?

2. In order to produce a consistent fake data tool, it's extremely important to move

the data from its source into a usable digital format. The first choice is a series of

database tables. Another, not as attractive, alternative is a CSV file.

520

Chapter 13

3. You may end up converting the data in stages. For example, you could pull data from

a web page that lists country codes and country names into a text file.

4. Since this list is short, it's easy to literally cut and paste this into a text file.

5. We can then do a search for " " and replace with "\n", which gives us this:

6. This can then be imported into a spreadsheet, which then lets you export to a CSV

file. From there, it's a simple matter to import it into a database. phpMyAdmin, for

example, has such a facility.

7. For the sake of this illustration, we will assume that we are generating data that will

end up in the prospects table. Here is the SQL statement used to create this table:

CREATE TABLE 'prospects' (

'id' int(11) NOT NULL AUTO_INCREMENT,

'first_name' varchar(128) NOT NULL,

'last_name' varchar(128) NOT NULL,

'address' varchar(256) DEFAULT NULL,

521

Best Practices, Testing, and Debugging

'city' varchar(64) DEFAULT NULL,

'state_province' varchar(32) DEFAULT NULL,

'postal_code' char(16) NOT NULL,

'phone' varchar(16) NOT NULL,

'country' char(2) NOT NULL,

'email' varchar(250) NOT NULL,

'status' char(8) DEFAULT NULL,

'budget' decimal(10,2) DEFAULT NULL,

'last_updated' datetime DEFAULT NULL,

PRIMARY KEY ('id'),

UNIQUE KEY 'UNIQ_35730C06E7927C74' ('email')

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

8. Now it's time to create a class that is capable of generating fake data. We will then

create methods to generate data for each of the fields shown above, except for id,

which is auto-generated:

namespace Application\Test;

use PDO;

use Exception;

use DateTime;

use DateInterval;

use PDOException;

use SplFileObject;

use InvalidArgumentsException;

use Application\Database\Connection;

class FakeData

{

// data generation methods here

}

9. Next, we define constants and properties that will be used as part of the process:

const MAX_LOOKUPS = 10;

const SOURCE_FILE = 'file';

const SOURCE_TABLE = 'table';

const SOURCE_METHOD = 'method';

const SOURCE_CALLBACK = 'callback';

const FILE_TYPE_CSV = 'csv';

const FILE_TYPE_TXT = 'txt';

const ERROR_DB = 'ERROR: unable to read source table';

const ERROR_FILE = 'ERROR: file not found';

const ERROR_COUNT = 'ERROR: unable to ascertain count or ID

column missing';

522

const ERROR_UPLOAD = 'ERROR: unable to upload file';

Chapter 13

const ERROR_LOOKUP = 'ERROR: unable to find any IDs in the

source table';

protected $connection;

protected $mapping;

protected $files;

protected $tables;

10. We then define properties that will be used to generate random letters, street names,

and e-mail addresses. You can think of these arrays as seeds that can be modified

and/or expanded to suite your needs. As an example, you might substitute street

name fragments in Paris for a French audience:

protected $alpha = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ';

protected $street1 = ['Amber','Blue','Bright','Broad','Burning',

'Cinder','Clear','Dewy','Dusty','Easy']; // etc.

protected $street2 = ['Anchor','Apple','Autumn','Barn','Beacon',

'Bear','Berry','Blossom','Bluff','Cider','Cloud']; // etc.

protected $street3 = ['Acres','Arbor','Avenue','Bank','Bend',

'Canyon','Circle','Street'];

protected $email1 = ['northern','southern','eastern','western',

'fast','midland','central'];

protected $email2 = ['telecom','telco','net','connect'];

protected $email3 = ['com','net'];

11. In the constructor, we accept a Connection object, used for database access, an

array of mappings to the fake data:

public function construct(Connection $conn, array $mapping)

{

$this->connection = $conn;

$this->mapping = $mapping;

}

12. To generate street names, rather than attempt to create a database table, it might be

more efficient to use a set of seed arrays to generate random combinations. Here is

an example of how this might work:

public function getAddress($entry)

{

return random_int(1,999)

. ' ' . $this->street1[array_rand($this->street1)]

. ' ' . $this->street2[array_rand($this->street2)]

. ' ' . $this->street3[array_rand($this->street3)];

}

523

Best Practices, Testing, and Debugging

13. Depending on the level of realism desired, you could also build a database table that

matches postal codes to cities. Postal codes could also be randomly generated. Here

is an example that generates postal codes for the UK:

public function getPostalCode($entry, $pattern = 1)

{

return $this->alpha[random_int(0,25)]

. $this->alpha[random_int(0,25)]

. random_int(1, 99)

. ' '

. random_int(1, 9)

. $this->alpha[random_int(0,25)]

. $this->alpha[random_int(0,25)];

}

14. Fake e-mail generation can likewise use a set of seed arrays to produce random

results. We could also program it to receive an existing $entry array, with

parameters, and use those parameters to create the name portion of the address:

public function getEmail($entry, $params = NULL)

{

$first = $entry[$params[0]] ?? $this->alpha[random_int(0,25)];

$last = $entry[$params[1]] ?? $this->alpha[random_int(0,25)];

return $first[0] . '.' . $last

. '@'

. $this->email1[array_rand($this->email1)]

. $this->email2[array_rand($this->email2)]

. '.'

. $this->email3[array_rand($this->email3)];

}

15. For date generation, one approach would be to accept as arguments an existing

$entry array, with parameters. The parameters would be an array where the first

value is a start date. The second parameter would be the maximum number of days

to subtract from the start date. This effectively lets you return a random date from a

range. Note that we use DateTime::sub() to subtract a random number of days.

sub() requires a DateInterval instance, which we build using P, the random

number of days, and then 'D':

public function getDate($entry, $params)

{

list($fromDate, $maxDays) = $params;

$date = new DateTime($fromDate);

$date->sub(new DateInterval('P' . random_int(0, $maxDays) . 'D'));

return $date->format('Y-m-d H:i:s');

}

524

Chapter 13

16. As mentioned at the beginning of this recipe, the data sources we will use for fake

data generation will vary. In some cases, as shown in the previous few steps, we use

seed arrays, and build the fake data. In other cases, we might want to use a text or

CSV file as a data source. Here is how such a method might look:

public function getEntryFromFile($name, $type)

{

if (empty($this->files[$name])) {

$this->pullFileData($name, $type);

}

return $this->files[$name][

random_int(0, count($this->files[$name]))];

}

17. You will note that we first need to pull the file data into an array, which forms the

return value. Here is the method that does that for us. We throw an Exception if

the specified file is not found. The file type is identified as one of our class constants:

FILE_TYPE_TEXT or FILE_TYPE_CSV. Depending on the type, we use either

fgetcsv() or fgets():

public function pullFileData($name, $type)

{

if (!file_exists($name)) {

throw new Exception(self::ERROR_FILE);

}

$fileObj = new SplFileObject($name, 'r');

if ($type == self::FILE_TYPE_CSV) {

while ($data = $fileObj->fgetcsv()) {

$this->files[$name][] = trim($data);

}

} else {

while ($data = $fileObj->fgets()) {

$this->files[$name][] = trim($data);

}

}

18. Probably the most complicated aspect of this process is drawing random data from

a database table. We accept as arguments the table name, the name of the column

that comprises the primary key, an array that maps between the database column

name in the lookup table, and the target column name:

public function getEntryFromTable($tableName, $idColumn, $mapping)

{

$entry = array();

try {

if (empty($this->tables[$tableName])) {

525

Best Practices, Testing, and Debugging

$sql = 'SELECT ' . $idColumn . ' FROM ' . $tableName

. ' ORDER BY ' . $idColumn . ' ASC LIMIT 1';

$stmt = $this->connection->pdo->query($sql);

$this->tables[$tableName]['first'] =

$stmt->fetchColumn();

$sql = 'SELECT ' . $idColumn . ' FROM ' . $tableName

. ' ORDER BY ' . $idColumn . ' DESC LIMIT 1';

$stmt = $this->connection->pdo->query($sql);

$this->tables[$tableName]['last'] =

$stmt->fetchColumn();

}

19. We are now in a position to set up the prepared statement and initialize a number of

critical variables:

$result = FALSE;

$count = self::MAX_LOOKUPS;

$sql = 'SELECT * FROM ' . $tableName

. ' WHERE ' . $idColumn . ' = ?';

$stmt = $this->connection->pdo->prepare($sql);

20. The actual lookup we place inside a do…while loop. The reason for this is that we

need to run the query at least once to achieve results. Only if we do not arrive at a

result do we continue with the loop. We generate a random number between the

lowest ID and the highest ID, and then use this in a parameter in the query. Notice

that we also decrement a counter to prevent an endless loop. This is in case the IDs

are not sequential, in which case we could accidentally generate an ID that does

not exist. If we exceed the maximum attempts, still with no results, we throw an

Exception:

do {

$id = random_int($this->tables[$tableName]['first'],

$this->tables[$tableName]['last']);

$stmt->execute([$id]);

$result = $stmt->fetch(PDO::FETCH_ASSOC);

} while ($count-- && !$result);

if (!$result) {

error_log(METHOD . ':' . self::ERROR_LOOKUP);

throw new Exception(self::ERROR_LOOKUP);

}

} catch (PDOException $e) {

error_log(METHOD . ':' . $e->getMessage());

throw new Exception(self::ERROR_DB);

}

526

Chapter 13

21. We then use the mapping array to retrieve values from the source table using keys

expected in the destination table:

foreach ($mapping as $key => $value) {

$entry[$value] = $result[$key] ?? NULL;

}

return $entry;

}

22. The heart of this class is a getRandomEntry() method, which generates a single

array of fake data. We loop through $mapping one entry at a time and examine the

various parameters:

public function getRandomEntry()

{

$entry = array();

foreach ($this->mapping as $key => $value) {

if (isset($value['source'])) {

switch ($value['source']) {

23. The source parameter is used to implement what effectively serves as a

Strategy Pattern. We support four different possibilities for source, all defined

as class constants. The first one is SOURCE_FILE. In this case, we use the

getEntryFromFile() method discussed previously:

case self::SOURCE_FILE :

$entry[$key] = $this->getEntryFromFile(

$value['name'], $value['type']);

break;

24. The callback option returns a value according to the callback supplied in the

$mapping array:

case self::SOURCE_CALLBACK :

$entry[$key] = $value['name']();

break;

25. The SOURCE_TABLE option uses the database table defined in $mapping as a

lookup. Note that getEntryFromTable(), discussed previously, is able to return

an array of values, which means we need to use array_merge() to consolidate the

results:

case self::SOURCE_TABLE :

$result = $this->getEntryFromTable(

$value['name'],$value['idCol'],$value['mapping']);

$entry = array_merge($entry, $result);

break;

527

Best Practices, Testing, and Debugging

26. The SOURCE_METHOD option, which is also the default, uses a method already

included with this class. We check to see whether parameters are included, and, if

so, add those to the method call. Note the use of {} to influence interpolation. If we

made a $this->$value['name']() PHP 7 call, due to the Abstract Syntax Tree

(AST) rewrite, it would interpolate like this, ${$this->$value}['name'](), which

is not what we want:

case self::SOURCE_METHOD :

default :

if (!empty($value['params'])) {

$entry[$key] = $this->{$value['name']}(

$entry, $value['params']);

} else {

$entry[$key] = $this->{$value['name']}($entry);

}

}

}

}

return $entry;

}

27. We define a method that loops through getRandomEntry() to produce multiple

lines of fake data. We also add an option to insert to a destination table. If this option

is enabled, we set up a prepared statement to insert, and also check to see whether

we need to truncate any data currently in this table:

public function generateData(

$howMany, $destTableName = NULL, $truncateDestTable = FALSE)

{

try {

if ($destTableName) {

$sql = 'INSERT INTO ' . $destTableName

. ' (' . implode(',', array_keys($this->mapping))

. ') '. ' VALUES ' . ' (:'

. implode(',:', array_keys($this->mapping)) . ')';

$stmt = $this->connection->pdo->prepare($sql);

if ($truncateDestTable) {

$sql = 'DELETE FROM ' . $destTableName;

$this->connection->pdo->query($sql);

}

}

} catch (PDOException $e) {

error_log(METHOD . ':' . $e->getMessage());

throw new Exception(self::ERROR_COUNT);

}

528

Chapter 13

28. Next, we loop through the number of lines of data requested, and run

getRandomEntry(). If a database insert is requested, we execute the prepared

statement in a try/catch block. In any event, we turn this method into a generator

using the yield keyword:

for ($x = 0; $x < $howMany; $x++) {

$entry = $this->getRandomEntry();

if ($insert) {

try {

$stmt->execute($entry);

} catch (PDOException $e) {

error_log(METHOD . ':' . $e->getMessage());

throw new Exception(self::ERROR_DB);

}

}

yield $entry;

}

}

Best practice

 If the amount of data to be returned is massive, it's much better to yield
the data as it is produced, thus saving the memory required for an array.

 How it works…

The first thing to do is to ensure you have the data ready for random data generation. In this

recipe, we will presume that the destination table is prospects, which has the following SQL

database definition shown in step 7.

As a data source for names, you could create text files for first names and surnames. In this

illustration, we will reference the data/files directory, and the files first_names.txt

and surnames.txt. For city, state or province, postal code, and country, it might be useful

to download the data from a source such as http://www.geonames.org/, and upload to

a world_city_data table. For the remaining fields, such as address, e-mail, status, and so

on, you could either use methods built into FakeData, or define callbacks.

Next, be sure to define Application\Test\FakeData, adding the content discussed in

steps 8 to 29. After you have finished, create a calling program called chap_13_fake_data.

php, which sets up autoloading and uses the appropriate classes. You should also define

constants that match the path to the database configuration, and names files:

<?php

define('DB_CONFIG_FILE', DIR . '/../config/db.config.php');

define('FIRST_NAME_FILE', DIR . '/../data/files/first_names.txt');

define('LAST_NAME_FILE', DIR . '/../data/files/surnames.txt');

529

http://www.geonames.org/

Best Practices, Testing, and Debugging

require DIR . '/../Application/Autoload/Loader.php';

Application\Autoload\Loader::init(DIR

use Application\Test\FakeData;

use Application\Database\Connection;

. '/..');

Next, define a mapping array that uses the column names in the destination table (prospects)

as a key. You need to then define sub-keys for source, name, and any other parameters that

are required. For starters, 'first_name' and 'last_name' will both use a file as a source,

'name' points to the name of the file, and 'type' indicates a file type of text:

$mapping = [

'first_name' => ['source' => FakeData::SOURCE_FILE,

'name' => FIRST_NAME_FILE,

'type' => FakeData::FILE_TYPE_TXT],

'last_name' => ['source' => FakeData::SOURCE_FILE,

'name' => LAST_NAME_FILE,

'type' => FakeData::FILE_TYPE_TXT],

The 'address', 'email', and 'last_updated' all use built-in methods as a data source.

The last two also define parameters to be passed:

'address' => ['source' => FakeData::SOURCE_METHOD,

'name' => 'getAddress'],

'email' => ['source' => FakeData::SOURCE_METHOD,

'name' => 'getEmail',

'params' => ['first_name','last_name']],

'last_updated' => ['source' => FakeData::SOURCE_METHOD,

'name' => 'getDate',

'params' => [date('Y-m-d'), 365*5]]

The 'phone', 'status' and 'budget' could all use callbacks to provide fake data:

'phone' => ['source' => FakeData::SOURCE_CALLBACK,

'name' => function () {

return sprintf('%3d-%3d-%4d', random_int(101,999),

random_int(101,999), random_int(0,9999)); }],

'status' => ['source' => FakeData::SOURCE_CALLBACK,

'name' => function () { $status = ['BEG','INT','ADV'];

return $status[rand(0,2)]; }],

'budget' => ['source' => FakeData::SOURCE_CALLBACK,

'name' => function() { return random_int(0, 99999)

+ (random_int(0, 99) * .01); }]

530

Chapter 13

And finally, 'city' draws its data from a lookup table, which also gives you data for the fields

listed in the 'mapping' parameter. You can then leave those keys undefined. Notice that you

should also specify the column representing the primary key for the table:

'city' => ['source' => FakeData::SOURCE_TABLE,

'name' => 'world_city_data',

'idCol' => 'id',

'mapping' => [

'city' => 'city',

'state_province' => 'state_province',

'postal_code_prefix' => 'postal_code',

'iso2' => 'country']

],

'state_province'=> [],

'postal_code' => [],

'country' => [],

];

You can then define the destination table, a Connection instance, and create the FakeData

instance. A foreach() loop will suffice to display a given number of entries:

$destTableName = 'prospects';

$conn = new Connection(include DB_CONFIG_FILE);

$fake = new FakeData($conn, $mapping);

foreach ($fake->generateData(10) as $row) {

echo implode(':', $row) . PHP_EOL;

}

The output, for 10 rows, would look something like this:

531

Best Practices, Testing, and Debugging

 There's more…

Here is a summary of websites with various lists of data that could be of use when generating

test data:

Type of

Data

URL Notes

Names http://nameberry.com/

 http://www.babynamewizard.

com/international-names-lists-

popular-names-from-around-the-

world

Raw

Name

Lists

http://deron.meranda.us/data/

census-dist-female-first.txt

US female first names

 http://deron.meranda.us/data/

census-dist-male-first.txt

US male first names

 http://www.avss.ucsb.edu/

NameFema.HTM

US female first names

 http://www.avss.ucsb.edu/

namemal.htm

US male first names

Last

Names

http://names.mongabay.com/

data/1000.html

US surnames from census

 http://surname.sofeminine.

co.uk/w/surnames/most-common-

surnames-in-great-britain.html

British surnames

 https://gist.github.com/

subodhghulaxe/8148971

List of US surnames in the form of a

PHP array

 http://www.dutchgenealogy.nl/

tng/surnames-all.php

Dutch surnames

 http://www.worldvitalrecords.

com/browsesurnames.aspx?l=A

International surnames; just change

the last letter(s) to get a list of

names starting with that letter(s)

Cities http://www.travelgis.com/

default.asp?framesrc=/cities/

World cities

532

http://nameberry.com/
http://deron.meranda.us/data/
http://deron.meranda.us/data/
http://www.avss.ucsb.edu/
http://www.avss.ucsb.edu/
http://names.mongabay.com/
http://surname.sofeminine/
http://www.dutchgenealogy.nl/
http://www.travelgis.com/

Chapter 13

Type of

Data

URL Notes

 https://www.maxmind.com/en/free-

world-cities-database

 https://github.com/David-Haim/

CountriesToCitiesJSON

 http://www.fallingrain.com/

world/index.html

Postal

Codes

https://boutell.com/zipcodes/ US only; includes cities, postal

codes, latitude and longitude

 http://www.geonames.org/export/ International; city names, postal

codes, EVERYTHING!; free download

Customizing sessions using session_start

 parameters

Up until PHP 7, in order to override php.ini settings for secure session management, you

had to use a series of ini_set() commands. This approach is extremely annoying in that

you also needed to know which settings were available, and being able to re-use the same

settings in other applications was difficult. As of PHP 7, however, you can supply an array of

parameters to the session_start() command, which immediately sets those values.

 How to do it…

1. We start by developing an Application\Security\SessOptions class, which

will hold session parameters and also have the ability to start the session. We also

define a class constant in case invalid session options are passed:

namespace Application\Security;

use ReflectionClass;

use InvalidArgumentsException;

class SessOptions

{

const ERROR_PARAMS = 'ERROR: invalid session options';

533

http://www.maxmind.com/en/free-
http://www.fallingrain.com/
http://www.geonames.org/export/

Best Practices, Testing, and Debugging

2. Next we scan the list of php.ini session directives (documented at http://php.

net/manual/en/session.configuration.php). We are specifically looking

for directives that, in the Changeable column, are marked PHP_INI_ALL. Such

directives can be overridden at runtime, and are thus available as arguments to

session_start():

3. We then define these as class constants, which will make this class more usable for

development purposes. Most decent code editors will be able to scan the class and

give you a list of constants, making it easy to manage session settings. Please note

that not all settings are shown, in order to conserve space in the book:

const SESS_OP_NAME = 'name';

const SESS_OP_LAZY_WRITE = 'lazy_write'; // AVAILABLE

// SINCE PHP 7.0.0.

const SESS_OP_SAVE_PATH = 'save_path';

const SESS_OP_SAVE_HANDLER = 'save_handler';

// etc.

534

http://php/

Chapter 13

4. We are then in a position to define the constructor, which accepts an array of php.

ini session settings as an argument. We use ReflectionClass to get a list of

class constants, and run the $options argument through a loop to confirm the

setting is allowed. Also note the use of array_flip(), which flips keys and values,

so that the actual values for our class constants form the array key, and the name of

the class constant becomes the value:

protected $options;

protected $allowed;

public function construct(array $options)

{

$reflect = new ReflectionClass(get_class($this));

$this->allowed = $reflect->getConstants();

$this->allowed = array_flip($this->allowed);

unset($this->allowed[self::ERROR_PARAMS]);

foreach ($options as $key => $value) {

if(!isset($this->allowed[$key])) {

error_log(METHOD . ':' . self::ERROR_PARAMS);

throw new InvalidArgumentsException(

self::ERROR_PARAMS);

}

}

$this->options = $options;

}

5. We then close with two more methods; one gives us outside access to the allowed

parameters, while the other starts the session:

public function getAllowed()

{

return $this->allowed;

}

public function start()

{

session_start($this->options);

}

535

Best Practices, Testing, and Debugging

 How it works…

Place all the code discussed in this recipe into a SessOptions.php file in the

Application\Security directory. You can then define a calling program called chap_13_

session_options.php to test the new class, which sets up autoloading and uses the class:

<?php

require DIR . '/../Application/Autoload/Loader.php';

Application\Autoload\Loader::init(DIR

use Application\Security\SessOptions;

. '/..');

Next, define an array that uses the class constants as keys, with values as desired to

manage the session. Note that in the example shown here, session information is stored in a

subdirectory, session, which you need to create:

$options = [

SessOptions::SESS_OP_USE_ONLY_COOKIES => 1,

SessOptions::SESS_OP_COOKIE_LIFETIME => 300,

SessOptions::SESS_OP_COOKIE_HTTPONLY => 1,

SessOptions::SESS_OP_NAME => 'UNLIKELYSOURCE',

SessOptions::SESS_OP_SAVE_PATH => DIR

];

. '/session'

You can now create the SessOptions instance and run start() to start the session. You

could use phpinfo() here to show some information on the session:

$sessOpt = new SessOptions($options);

$sessOpt->start();

$_SESSION['test'] = 'TEST';

phpinfo(INFO_VARIABLES);

If you look for information on cookies using your browser's developer tools, you will note the

name is set to UNLIKELYSOURCE and the expiration time is 5 minutes from now:

536

Chapter 13

If you do a scan of the session directory, you will see that the session information has been

stored there:

 See also…

f For more information on session-related php.ini directives, see this summary:

http://php.net/manual/en/session.configuration.php

537

http://php.net/manual/en/session.configuration.php

Defining PSR-7 Classes

In this appendix, we will cover the following topics:

f Implementing PSR-7 value object classes

f Developing a PSR-7 Request class

f Defining a PSR-7 Response class

 Introduction

PHP Standard Recommendation number 7 (PSR-7) defines a number of interfaces, but

does not provide actual implementations. Accordingly, we need to define concrete code

implementations in order to start creating custom middleware.

 Implementing PSR-7 value object classes

In order to work with PSR-7 requests and responses, we first need to define a series of value

objects. These are classes that represent logical objects used in web-based activities such as

URIs, file uploads, and streaming request or response bodies.

 Getting ready

The source code for the PSR-7 interfaces is available as a Composer package. It is

considered a best practice to use Composer to manage external software, including PSR-7

interfaces.

539

Defining PSR-7 Classes

 How to do it...

1. First of all, go to the following URL to obtain the latest versions of the PSR-7 interface

definitions: https://github.com/php-fig/http-message. The source code is

also available. At the time of writing, the following definitions are available:

Interface Extends Notes What the methods

handle

MessageInterface Defines methods

common to HTTP

messages

Headers, message

body (that is,

content), and

protocol

RequestInterface MessageInterface Represents requests

generated by a client

The URI, HTTP

method, and the

request target

ServerRequestInterface RequestInterface Represents a request

coming to a server

from a client

Server and query

parameters, cookies,

uploaded files, and

the parsed body

ResponseInterface MessageInterface Represents a response

from the server to

client

HTTP status code

and reason

StreamInterface Represents the data

stream

Streaming behavior

such as seek, tell,

read, write, and

so on

UriInterface Represents the URI Scheme (that is,

HTTP, HTTPS), host,

port, username,

password (that

is, for FTP), query

parameters, path,

and fragment

UploadedFileInterface Deals with uploaded

files

File size, media type,

moving the file, and

filename

2. Unfortunately, we will need to create concrete classes that implement these

interfaces in order to utilize PSR-7. Fortunately, the interface classes are extensively

documented internally through a series of comments. We will start with a separate

class that contains useful constants:

Note that we take advantage of a new feature introduced in PHP 7 that

allows us to define a constant as an array.

540

Appendix

namespace Application\MiddleWare;

class Constants

{

const HEADER_HOST = 'Host'; // host header

const HEADER_CONTENT_TYPE = 'Content-Type';

const HEADER_CONTENT_LENGTH = 'Content-Length';

const METHOD_GET = 'get';

const METHOD_POST = 'post';

const METHOD_PUT = 'put';

const METHOD_DELETE = 'delete';

const HTTP_METHODS = ['get','put','post','delete'];

const STANDARD_PORTS = [

'ftp' => 21, 'ssh' => 22, 'http' => 80, 'https' => 443

];

const CONTENT_TYPE_FORM_ENCODED =

'application/x-www-form-urlencoded';

const CONTENT_TYPE_MULTI_FORM = 'multipart/form-data';

const CONTENT_TYPE_JSON = 'application/json';

const CONTENT_TYPE_HAL_JSON = 'application/hal+json';

const DEFAULT_STATUS_CODE = 200;

const DEFAULT_BODY_STREAM = 'php://input';

const DEFAULT_REQUEST_TARGET = '/';

const MODE_READ = 'r';

const MODE_WRITE = 'w';

// NOTE: not all error constants are shown to conserve space

const ERROR_BAD = 'ERROR: ';

const ERROR_UNKNOWN = 'ERROR: unknown';

// NOTE: not all status codes are shown here!

const STATUS_CODES = [

200 => 'OK',

301 => 'Moved Permanently',

302 => 'Found',

401 => 'Unauthorized',

404 => 'Not Found',

405 => 'Method Not Allowed',

418 => 'I_m A Teapot',

500 => 'Internal Server Error',

];

}

541

Defining PSR-7 Classes

A complete list of HTTP status codes can be found here: https://tools.

ietf.org/html/rfc7231#section-6.1.

3. Next, we will tackle classes that represent value objects used by other PSR-7 classes.

For a start, here is the class that represents a URI. In the constructor, we accept a

URI string as an argument, and break it down into its component parts using the

parse_url() function:

namespace Application\MiddleWare;

use InvalidArgumentException;

use Psr\Http\Message\UriInterface;

class Uri implements UriInterface

{

protected $uriString;

protected $uriParts = array();

public function construct($uriString)

{

$this->uriParts = parse_url($uriString);

if (!$this->uriParts) {

throw new InvalidArgumentException(

Constants::ERROR_INVALID_URI);

}

$this->uriString = $uriString;

}

URI stands for Uniform Resource Indicator. This is what you would see

at the top of your browser when making a request. For more information

on what comprises a URI, have a look at http://tools.ietf.org/

html/rfc3986.

4. Following the constructor, we define methods to access the component parts of the

URI. The scheme represents a PHP wrapper (that is, HTTP, FTP, and so on):

public function getScheme()

{

return strtolower($this->uriParts['scheme']) ?? '';

}

5. The authority represents the username (if present), the host, and optionally the port

number:

public function getAuthority()

{

$val = '';

if (!empty($this->getUserInfo()))

$val .= $this->getUserInfo() . '@';

542

http://tools.ietf.org/

Appendix

$val .= $this->uriParts['host'] ?? '';

if (!empty($this->uriParts['port']))

$val .= ':' . $this->uriParts['port'];

return $val;

}

6. User info represents the username (if present) and optionally the password. An

example of when a password is used is when accessing an FTP website such as

ftp://username:password@website.com:/path:

public function getUserInfo()

{

if (empty($this->uriParts['user'])) {

return '';

}

$val = $this->uriParts['user'];

if (!empty($this->uriParts['pass']))

$val .= ':' . $this->uriParts['pass'];

return $val;

}

7. Host is the DNS address included in the URI:

public function getHost()

{

if (empty($this->uriParts['host'])) {

return '';

}

return strtolower($this->uriParts['host']);

}

8. Port is the HTTP port, if present. You will note if a port is listed in our STANDARD_

PORTS constant, the return value is NULL, according to the requirements of PSR-7:

public function getPort()

{

if (empty($this->uriParts['port'])) {

return NULL;

} else {

if ($this->getScheme()) {

if ($this->uriParts['port'] ==

Constants::STANDARD_PORTS[$this->getScheme()]) {

return NULL;

}

}

return (int) $this->uriParts['port'];

}

}

543

Defining PSR-7 Classes

9. Path is the part of the URI that follows the DNS address. According to PSR-7, this

must be encoded. We use the rawurlencode() PHP function as it is compliant with

RFC 3986. We cannot just encode the entire path, however, as the path separator

(that is, /) would also get encoded! Accordingly, we need to first break it up using

explode(), encode the parts, and then reassemble it:

public function getPath()

{

if (empty($this->urlParts['path'])) {

return '';

}

return implode('/', array_map("rawurlencode",

explode('/', $this->urlParts['path'])));

}

10. Next, we define a method to retrieve the query string (that is, from $_GET). These

too must be URL-encoded. First, we define getQueryParams(), which breaks the

query string into an associative array. You will note the reset option in case we wish

to refresh the query parameters. We then define getQuery(), which takes the array

and produces a proper URL-encoded string:

public function getQueryParams($reset = FALSE)

{

if ($this->queryParams && !$reset) {

return $this->queryParams;

}

$this->queryParams = [];

if (!empty($this->uriParts['query'])) {

foreach (explode('&', $this->uriParts['query']) as $keyPair) {

list($param,$value) = explode('=',$keyPair);

$this->queryParams[$param] = $value;

}

}

return $this->queryParams;

}

public function getQuery()

{

if (!$this->getQueryParams()) {

return '';

}

$output = '';

foreach ($this->getQueryParams() as $key => $value) {

$output .= rawurlencode($key) . '='

544

Appendix

. rawurlencode($value) . '&';

}

return substr($output, 0, -1);

}

11. After that, we provide a method to return the fragment (that is, a # in the URI), and

any part following it:

public function getFragment()

{

if (empty($this->urlParts['fragment'])) {

return '';

}

return rawurlencode($this->urlParts['fragment']);

}

12. Next, we define a series of withXXX() methods, which match the getXXX()

methods described above. These methods are designed to add, replace, or remove

properties associated with the request class (scheme, authority, user info, and so on).

In addition, these methods return the current instance that allows us to use these

methods in a series of successive calls (often referred to as the fluent interface). We

start with withScheme():

You will note that an empty argument, according to PSR-7,

signals the removal of that property. You will also note that we do

not allow a scheme that does not match what is defined in our

Constants::STANDARD_PORTS array.

public function withScheme($scheme)

{

if (empty($scheme) && $this->getScheme()) {

unset($this->uriParts['scheme']);

} else {

if (isset(STANDARD_PORTS[strtolower($scheme)])) {

$this->uriParts['scheme'] = $scheme;

} else {

throw new InvalidArgumentException(

Constants::ERROR_BAD . METHOD);

}

}

return $this;

}

545

Defining PSR-7 Classes

13. We then apply similar logic to methods that overwrite, add, or replace the user

info, host, port, path, query, and fragment. Note that the withQuery() method

resets the query parameters array. withHost(), withPort(), withPath(), and

withFragment() use the same logic, but are not shown to conserve space:

public function withUserInfo($user, $password = null)

{

if (empty($user) && $this->getUserInfo()) {

unset($this->uriParts['user']);

} else {

$this->urlParts['user'] = $user;

if ($password) {

$this->urlParts['pass'] = $password;

}

}

return $this;

}

// Not shown: withHost(),withPort(),withPath(),withFragment()

public function withQuery($query)

{

if (empty($query) && $this->getQuery()) {

unset($this->uriParts['query']);

} else {

$this->uriParts['query'] = $query;

}

// reset query params array

$this->getQueryParams(TRUE);

return $this;

}

14. Finally, we wrap up the Application\MiddleWare\Uri class with

 toString(), which, when the object is used in a string context, returns a

proper URI, assembled from $uriParts. We also define a convenience method,

getUriString(), that simply calls toString():

public function toString()

{

$uri = ($this->getScheme())

? $this->getScheme() . '://' : '';

15. If the authority URI part is present, we add it. authority includes the user

information, host, and port. Otherwise, we just append host and port:

if ($this->getAuthority()) {

$uri .= $this->getAuthority();

} else {

546

Appendix

$uri .= ($this->getHost()) ? $this->getHost() : '';

$uri .= ($this->getPort())

? ':' . $this->getPort() : '';

}

16. Before adding path, we first check whether the first character is /. If not, we need to

add this separator. We then add query and fragment, if present:

$path = $this->getPath();

if ($path) {

if ($path[0] != '/') {

$uri .= '/' . $path;

} else {

$uri .= $path;

}

}

$uri .= ($this->getQuery())

? '?' . $this->getQuery() : '';

$uri .= ($this->getFragment())

? '#' . $this->getFragment() : '';

return $uri;

}

public function getUriString()

{

return $this-> toString();

}

}

Note the use of string dereferencing (that is, $path[0]), now part of PHP 7.

17. Next, we turn our attention to a class that represents the body of the message. As it

is not known how large the body might be, PSR-7 recommends that the body should

be treated as a stream. A stream is a resource that allows access to input and output

sources in a linear fashion. In PHP, all file commands operate on top of the Streams

sub-system, so this is a natural fit. PSR-7 formalizes this by way of Psr\Http\

Message\StreamInterface that defines such methods as read(), write(),

seek(), and so on. We now present Application\MiddleWare\Stream that we

can use to represent the body of incoming or outgoing requests and/or responses:

namespace Application\MiddleWare;

use SplFileInfo;

use Throwable;

547

Defining PSR-7 Classes

use RuntimeException;

use Psr\Http\Message\StreamInterface;

class Stream implements StreamInterface

{

protected $stream;

protected $metadata;

protected $info;

18. In the constructor, we open the stream using a simple fopen() command. We then

use stream_get_meta_data() to get information on the stream. For other details,

we create an SplFileInfo instance:

public function construct($input, $mode = self::MODE_READ)

{

$this->stream = fopen($input, $mode);

$this->metadata = stream_get_meta_data($this->stream);

$this->info = new SplFileInfo($input);

}

The reason why we chose fopen() over the more modern SplFileObject

 is that the latter does not allow direct access to the inner file resource object,
and is therefore useless for this application.

19. We include two convenience methods that provide access to the resource, as well as

access to the SplFileInfo instance:

public function getStream()

{

return $this->stream;

}

public function getInfo()

{

return $this->info;

}

20. Next, we define low-level core streaming methods:

public function read($length)

{

if (!fread($this->stream, $length)) {

throw new RuntimeException(

self::ERROR_BAD . METHOD);

}

}

548

Appendix

public function write($string)

{

if (!fwrite($this->stream, $string)) {

throw new RuntimeException(

self::ERROR_BAD . METHOD);

}

}

public function rewind()

{

if (!rewind($this->stream)) {

throw new RuntimeException(

self::ERROR_BAD . METHOD);

}

}

public function eof()

{

return eof($this->stream);

}

public function tell()

{

try {

return ftell($this->stream);

} catch (Throwable $e) {

throw new RuntimeException(

self::ERROR_BAD . METHOD);

}

}

public function seek($offset, $whence = SEEK_SET)

{

try {

fseek($this->stream, $offset, $whence);

} catch (Throwable $e) {

throw new RuntimeException(

self::ERROR_BAD . METHOD);

}

}

public function close()

{

if ($this->stream) {

fclose($this->stream);

}

}

public function detach()

{

return $this->close();

}

549

Defining PSR-7 Classes

21. We also need to define informational methods that tell us about the stream:

public function getMetadata($key = null)

{

if ($key) {

return $this->metadata[$key] ?? NULL;

} else {

return $this->metadata;

}

}

public function getSize()

{

return $this->info->getSize();

}

public function isSeekable()

{

return boolval($this->metadata['seekable']);

}

public function isWritable()

{

return $this->stream->isWritable();

}

public function isReadable()

{

return $this->info->isReadable();

}

22. Following PSR-7 guidelines, we then define getContents() and toString() in

order to dump the contents of the stream:

public function toString()

{

$this->rewind();

return $this->getContents();

}

public function getContents()

{

ob_start();

if (!fpassthru($this->stream)) {

throw new RuntimeException(

self::ERROR_BAD . METHOD);

}

return ob_get_clean();

}

}

550

Appendix

23. An important variation of the Stream class shown previously is TextStream that is

designed for situations where the body is a string (that is, an array encoded as JSON)

rather than a file. As we need to make absolutely certain that the incoming $input

value is of the string data type, we invoke PHP 7 strict types just after the opening

tag. We also identify a $pos property (that is, position) that will emulate a file pointer,

but instead point to a position within the string:

<?php

declare(strict_types=1);

namespace Application\MiddleWare;

use Throwable;

use RuntimeException;

use SplFileInfo;

use Psr\Http\Message\StreamInterface;

class TextStream implements StreamInterface

{

protected $stream;

protected $pos = 0;

24. Most of the methods are quite simple and self-explanatory. The $stream property is

the input string:

public function construct(string $input)

{

$this->stream = $input;

}

public function getStream()

{

return $this->stream;

}

public function getInfo()

{

return NULL;

}

public function getContents()

{

return $this->stream;

}

public function toString()

{

return $this->getContents();

}

public function getSize()

{

return strlen($this->stream);

551

Defining PSR-7 Classes

}

public function close()

{

// do nothing: how can you "close" string???

}

public function detach()

{

return $this->close(); // that is, do nothing!

}

25. To emulate streaming behavior, tell(), eof(), seek(), and so on, work with

$pos:

public function tell()

{

return $this->pos;

}

public function eof()

{

return ($this->pos == strlen($this->stream));

}

public function isSeekable()

{

return TRUE;

}

public function seek($offset, $whence = NULL)

{

if ($offset < $this->getSize()) {

$this->pos = $offset;

} else {

throw new RuntimeException(

Constants::ERROR_BAD . METHOD);

}

}

public function rewind()

{

$this->pos = 0;

}

public function isWritable()

{

return TRUE;

}

552

Appendix

26. The read() and write() methods work with $pos and substrings:

public function write($string)

{

$temp = substr($this->stream, 0, $this->pos);

$this->stream = $temp . $string;

$this->pos = strlen($this->stream);

}

public function isReadable()

{

return TRUE;

}

public function read($length)

{

return substr($this->stream, $this->pos, $length);

}

public function getMetadata($key = null)

{

return NULL;

}

}

27. The last of the value objects to be presented is Application\MiddleWare\

UploadedFile. As with the other classes, we first define properties that represent

aspects of a file upload:

namespace Application\MiddleWare;

use RuntimeException;

use InvalidArgumentException;

use Psr\Http\Message\UploadedFileInterface;

class UploadedFile implements UploadedFileInterface

{

protected $field; // original name of file upload field

protected $info; // $_FILES[$field]

protected $randomize;

protected $movedName = '';

553

Defining PSR-7 Classes

28. In the constructor, we allow the definition of the name attribute of the file upload form

field, as well as the corresponding array in $_FILES. We add the last parameter to

signal whether or not we want the class to generate a new random filename once the

uploaded file is confirmed:

public function construct(

$field, array $info, $randomize = FALSE)

{

$this->field = $field;

$this->info = $info;

$this->randomize = $randomize;

}

29. Next, we create a Stream class instance for the temporary or moved file:

public function getStream()

{

if (!$this->stream) {

if ($this->movedName) {

$this->stream = new Stream($this->movedName);

} else {

$this->stream = new Stream($info['tmp_name']);

}

}

return $this->stream;

}

30. The moveTo() method performs the actual file movement. Note the extensive series

of safety checks to help prevent an injection attack. If randomize is not enabled, we

use the original user-supplied filename:

public function moveTo($targetPath)

{

if ($this->moved) {

throw new Exception(Constants::ERROR_MOVE_DONE);

}

if (!file_exists($targetPath)) {

throw new InvalidArgumentException(Constants::ERROR_BAD_DIR);

}

$tempFile = $this->info['tmp_name'] ?? FALSE;

if (!$tempFile || !file_exists($tempFile)) {

throw new Exception(Constants::ERROR_BAD_FILE);

}

if (!is_uploaded_file($tempFile)) {

throw new Exception(Constants::ERROR_FILE_NOT);

}

554

Appendix

if ($this->randomize) {

$final = bin2hex(random_bytes(8)) . '.txt';

} else {

$final = $this->info['name'];

}

$final = $targetPath . '/' . $final;

$final = str_replace('//', '/', $final);

if (!move_uploaded_file($tempFile, $final)) {

throw new RuntimeException(Constants::ERROR_MOVE_UNABLE);

}

$this->movedName = $final;

return TRUE;

}

31. We then provide access to the other parameters returned in $_FILES from the

$info property. Please note that the return values from getClientFilename()

and getClientMediaType() should be considered untrusted, as they originate

from the outside. We also add a method to return the moved filename:

public function getMovedName()

{

return $this->movedName ?? NULL;

}

public function getSize()

{

return $this->info['size'] ?? NULL;

}

public function getError()

{

if (!$this->moved) {

return UPLOAD_ERR_OK;

}

return $this->info['error'];

}

public function getClientFilename()

{

return $this->info['name'] ?? NULL;

}

public function getClientMediaType()

{

return $this->info['type'] ?? NULL;

}

}

555

Defining PSR-7 Classes

 How it works...

First of all, go to https://github.com/php-fig/http-message/tree/master/src,

the GitHub repository for the PSR-7 interfaces, and download them. Create a directory called

Psr/Http/Message in /path/to/source and places the files there. Alternatively, you can

visit https://packagist.org/packages/psr/http-message and install the source

code using Composer. (For instructions on how to obtain and use Composer, you can visit

https://getcomposer.org/.)

Then, go ahead and define the classes discussed previously, summarized in this table:

Class Steps discussed in

Application\MiddleWare\Constants 2

Application\MiddleWare\Uri 3 to 16

Application\MiddleWare\Stream 17 to 22

Application\MiddleWare\TextStream 23 to 26

Application\MiddleWare\UploadedFile 27 to 31

Next, define a chap_09_middleware_value_objects_uri.php calling program that

implements autoloading and uses the appropriate classes. Please note that if you use

Composer, unless otherwise instructed, it will create a folder called vendor. Composer also

adds its own autoloader, which you are free to use here:

<?php

require DIR . '/../Application/Autoload/Loader.php';

Application\Autoload\Loader::init(DIR

use Application\MiddleWare\Uri;

. '/..');

You can then create a Uri instance and use the with methods to add parameters. You can

then echo the Uri instance directly as toString() is defined:

$uri = new Uri();

$uri->withScheme('https')

->withHost('localhost')

->withPort('8080')

->withPath('chap_09_middleware_value_objects_uri.php')

->withQuery('param=TEST');

echo $uri;

556

Appendix

Here is the expected result:

Next, create a directory called uploads from /path/to/source/for/this/chapter.

Go ahead and define another calling program, chap_09_middleware_value_objects_

file_upload.php, that sets up autoloading and uses the appropriate classes:

<?php

define('TARGET_DIR', DIR . '/uploads');

require DIR . '/../Application/Autoload/Loader.php';

Application\Autoload\Loader::init(DIR

use Application\MiddleWare\UploadedFile;

. '/..');

Inside a try...catch block, check to see whether any files were uploaded. If so, loop

through $_FILES and create UploadedFile instances where tmp_name is set. You can

then use the moveTo() method to move the files to TARGET_DIR:

try {

$message = '';

$uploadedFiles = array();

if (isset($_FILES)) {

foreach ($_FILES as $key => $info) {

if ($info['tmp_name']) {

$uploadedFiles[$key] = new UploadedFile(

$key, $info, TRUE);

$uploadedFiles[$key]->moveTo(TARGET_DIR);

}

}

}

} catch (Throwable $e) {

$message = $e->getMessage();

}

?>

557

Defining PSR-7 Classes

In the view logic, display a simple file upload form. You could also use phpinfo() to display

information about what was uploaded:

<form name="search" method="post"

enctype="<?= Constants::CONTENT_TYPE_MULTI_FORM ?>">

<table class="display" cellspacing="0" width="100%">

<tr><th>Upload 1</th><td><input type="file" name="upload_1" /></

td></tr>

<tr><th>Upload 2</th><td><input type="file" name="upload_2" /></

td></tr>

<tr><th>Upload 3</th><td><input type="file" name="upload_3" /></

td></tr>

<tr><th> </th><td><input type="submit" /></td></tr>

</table>

</form>

<?= ($message) ? '<h1>' . $message . '</h1>' : ''; ?>

Next, if there were any uploaded files, you can display information on each one. You can also

use getStream() followed by getContents() to display each file (assuming you're using

short text files):

<?php if ($uploadedFiles) : ?>

<table class="display" cellspacing="0" width="100%">

<tr>

<th>Filename</th><th>Size</th>

<th>Moved Filename</th><th>Text</th>

</tr>

<?php foreach ($uploadedFiles as $obj) : ?>

<?php if ($obj->getMovedName()) : ?>

<tr>

<td><?= htmlspecialchars($obj->getClientFilename()) ?></td>

<td><?= $obj->getSize() ?></td>

<td><?= $obj->getMovedName() ?></td>

<td><?= $obj->getStream()->getContents() ?></td>

</tr>

<?php endif; ?>

<?php endforeach; ?>

</table>

<?php endif; ?>

<?php phpinfo(INFO_VARIABLES); ?>

558

Appendix

Here is how the output might appear:

 See also

f For more information on PSR, please have a look at https://en.wikipedia.

org/wiki/PHP_Standard_Recommendation

f For information on PSR-7 specifically, here is the official description: http://www.

php-fig.org/psr/psr-7/

f For information on PHP streams, take a look at http://php.net/manual/en/

book.stream.php

Developing a PSR-7 Request class

One of the key characteristics of PSR-7 middleware is the use of Request and Response

classes. When applied, this enables different blocks of software to perform together without

sharing any specific knowledge between them. In this context, a request class should

encompass all aspects of the original user request, including such items as browser settings,

the original URL requested, parameters passed, and so forth.

559

http://www/
http://php.net/manual/en/

Defining PSR-7 Classes

 How to do it...

1. First, be sure to define classes to represent the Uri, Stream, and UploadedFile

value objects, as described in the previous recipe.

2. Now we are ready to define the core Application\MiddleWare\Message class.

This class consumes Stream and Uri and implements Psr\Http\Message\

MessageInterface. We first define properties for the key value objects, including

those representing the message body (that is, a StreamInterface instance),

version, and HTTP headers:

namespace Application\MiddleWare;

use Psr\Http\Message\ {

MessageInterface,

StreamInterface,

UriInterface

};

class Message implements MessageInterface

{

protected $body;

protected $version;

protected $httpHeaders = array();

3. Next, we have the getBody() method that represents a StreamInterface

instance. A companion method, withBody(), returns the current Message instance

and allows us to overwrite the current value of body:

public function getBody()

{

if (!$this->body) {

$this->body = new Stream(self::DEFAULT_BODY_STREAM);

}

return $this->body;

}

public function withBody(StreamInterface $body)

{

if (!$body->isReadable()) {

throw new InvalidArgumentException(

self::ERROR_BODY_UNREADABLE);

}

$this->body = $body;

return $this;

}

560

Appendix

4. PSR-7 recommends that headers should be viewed as case-insensitive. Accordingly,

we define a findHeader() method (not directly defined by MessageInterface)

that locates a header using stripos():

protected function findHeader($name)

{

$found = FALSE;

foreach (array_keys($this->getHeaders()) as $header) {

if (stripos($header, $name) !== FALSE) {

$found = $header;

break;

}

}

return $found;

}

5. The next method, not defined by PSR-7, is designed to populate the $httpHeaders

property. This property is assumed to be an associative array where the key is the

header, and the value is the string representing the header value. If there is more

than one value, additional values separated by commas are appended to the string.

There is an excellent apache_request_headers() PHP function from the Apache

extension that produces headers if they are not already available in $httpHeaders:

protected function getHttpHeaders()

{

if (!$this->httpHeaders) {

if (function_exists('apache_request_headers')) {

$this->httpHeaders = apache_request_headers();

} else {

$this->httpHeaders = $this->altApacheReqHeaders();

}

}

return $this->httpHeaders;

}

6. If apache_request_headers() is not available (that is, the Apache extension is

not enabled), we provide an alternative, altApacheReqHeaders():

protected function altApacheReqHeaders()

{

$headers = array();

foreach ($_SERVER as $key => $value) {

if (stripos($key, 'HTTP_') !== FALSE) {

$headerKey = str_ireplace('HTTP_', '', $key);

$headers[$this->explodeHeader($headerKey)] = $value;

561

Defining PSR-7 Classes

} elseif (stripos($key, 'CONTENT_') !== FALSE) {

$headers[$this->explodeHeader($key)] = $value;

}

}

return $headers;

}

protected function explodeHeader($header)

{

$headerParts = explode('_', $header);

$headerKey = ucwords(implode(' ', strtolower($headerParts)));

return str_replace(' ', '-', $headerKey);

}

7. Implementing getHeaders() (required in PSR-7) is now a trivial loop through the

$httpHeaders property produced by the getHttpHeaders() method discussed in

step 4:

public function getHeaders()

{

foreach ($this->getHttpHeaders() as $key => $value) {

header($key . ': ' . $value);

}

}

8. Again, we provide a series of with methods designed to overwrite or replace

headers. Since there can be many headers, we also have a method that adds to the

existing set of headers. The withoutHeader() method is used to remove a header

instance. Notice the consistent use of findHeader(), mentioned in the previous

step, to allow for case-insensitive handling of headers:

public function withHeader($name, $value)

{

$found = $this->findHeader($name);

if ($found) {

$this->httpHeaders[$found] = $value;

} else {

$this->httpHeaders[$name] = $value;

}

return $this;

}

public function withAddedHeader($name, $value)

{

$found = $this->findHeader($name);

if ($found) {

562

Appendix

$this->httpHeaders[$found] .= $value;

} else {

$this->httpHeaders[$name] = $value;

}

return $this;

}

public function withoutHeader($name)

{

$found = $this->findHeader($name);

if ($found) {

unset($this->httpHeaders[$found]);

}

return $this;

}

9. We then provide a series of useful header-related methods to confirm a header exists,

retrieve a single header line, and retrieve a header in array form, as per PSR-7:

public function hasHeader($name)

{

return boolval($this->findHeader($name));

}

public function getHeaderLine($name)

{

$found = $this->findHeader($name);

if ($found) {

return $this->httpHeaders[$found];

} else {

return '';

}

}

public function getHeader($name)

{

$line = $this->getHeaderLine($name);

if ($line) {

return explode(',', $line);

} else {

return array();

}

}

563

Defining PSR-7 Classes

10. Finally, to round off header handling, we present getHeadersAsString that

produces a single header string with the headers separated by \r\n for direct use

with PHP stream contexts:

public function getHeadersAsString()

{

$output = '';

$headers = $this->getHeaders();

if ($headers && is_array($headers)) {

foreach ($headers as $key => $value) {

if ($output) {

$output .= "\r\n" . $key . ': ' . $value;

} else {

$output .= $key . ': ' . $value;

}

}

}

return $output;

}

11. Still within the Message class, we now turn our attention to version handling.

According to PSR-7, the return value for the protocol version (that is, HTTP/1.1)

should only be the numerical part. For this reason, we also provide onlyVersion()

that strips off any non-digit character, allowing periods:

public function getProtocolVersion()

{

if (!$this->version) {

$this->version = $this->onlyVersion(

$_SERVER['SERVER_PROTOCOL']);

}

return $this->version;

}

public function withProtocolVersion($version)

{

$this->version = $this->onlyVersion($version);

return $this;

}

protected function onlyVersion($version)

{

if (!empty($version)) {

return preg_replace('/[^0-9\.]/', '', $version);

} else {

return NULL;

564

Appendix

}

}

}

12. Finally, almost as an anticlimax, we are ready to define our Request class. It must

be noted here, however, that we need to consider both out-bound as well as in-bound

requests. That is to say, we need a class to represent an outgoing request a client will

make to a server, as well as a request received from a client by a server. Accordingly,

we provide Application\MiddleWare\Request (requests a client will make to

a server), and Application\MiddleWare\ServerRequest (requests received

from a client by a server). The good news is that most of our work has already been

done: notice that our Request class extends Message. We also provide properties to

represent the URI and HTTP method:

namespace Application\MiddleWare;

use InvalidArgumentException;

use Psr\Http\Message\ { RequestInterface, StreamInterface,

UriInterface };

class Request extends Message implements RequestInterface

{

protected $uri;

protected $method; // HTTP method

protected $uriObj; // Psr\Http\Message\UriInterface instance

13. All properties in the constructor default to NULL, but we leave open the

possibility of defining the appropriate arguments right away. We use the inherited

onlyVersion() method to sanitize the version. We also define checkMethod() to

make sure any method supplied is on our list of supported HTTP methods, defined as

a constant array in Constants:

public function construct($uri = NULL,

$method = NULL,

StreamInterface $body = NULL,

$headers = NULL,

$version = NULL)

{

$this->uri = $uri;

$this->body = $body;

$this->method = $this->checkMethod($method);

$this->httpHeaders = $headers;

$this->version = $this->onlyVersion($version);

}

protected function checkMethod($method)

{

565

Defining PSR-7 Classes

if (!$method === NULL) {

if (!in_array(strtolower($method), Constants::HTTP_METHODS)) {

throw new InvalidArgumentException(

Constants::ERROR_HTTP_METHOD);

}

}

return $method;

}

14. We are going to interpret the request target as the originally requested URI in the

form of a string. Bear in mind that our Uri class has methods that will parse this

into its component parts, hence our provision of the $uriObj property. In the

case of withRequestTarget(), notice that we run getUri() that performs the

aforementioned parsing process:

public function getRequestTarget()

{

return $this->uri ?? Constants::DEFAULT_REQUEST_TARGET;

}

public function withRequestTarget($requestTarget)

{

$this->uri = $requestTarget;

$this->getUri();

return $this;

}

15. Our get and with methods, which represent the HTTP method, reveal no surprises.

We use checkMethod(), used in the constructor as well, to ensure the method

matches those we plan to support:

public function getMethod()

{

return $this->method;

}

public function withMethod($method)

{

$this->method = $this->checkMethod($method);

return $this;

}

566

Appendix

16. Finally, we have a get and with method for the URI. As mentioned in step 14, we

retain the original request string in the $uri property and the newly parsed Uri

instance in $uriObj. Note the extra flag to preserve any existing Host header:

public function getUri()

{

if (!$this->uriObj) {

$this->uriObj = new Uri($this->uri);

}

return $this->uriObj;

}

public function withUri(UriInterface $uri, $preserveHost = false)

{

if ($preserveHost) {

$found = $this->findHeader(Constants::HEADER_HOST);

if (!$found && $uri->getHost()) {

$this->httpHeaders[Constants::HEADER_HOST] = $uri->getHost();

}

} elseif ($uri->getHost()) {

$this->httpHeaders[Constants::HEADER_HOST] = $uri->getHost();

}

$this->uri = $uri-> toString();

return $this;

}

}

17. The ServerRequest class extends Request and provides additional functionality

to retrieve information of interest to a server handling an incoming request. We start

by defining properties that will represent incoming data read from the various PHP $_

super-globals (that is, $_SERVER, $_POST, and so on):

namespace Application\MiddleWare;

use Psr\Http\Message\ { ServerRequestInterface,

UploadedFileInterface } ;

class ServerRequest extends Request implements

ServerRequestInterface

{

protected $serverParams;

protected $cookies;

protected $queryParams;

protected $contentType;

567

Defining PSR-7 Classes

protected $parsedBody;

protected $attributes;

protected $method;

protected $uploadedFileInfo;

protected $uploadedFileObjs;

18. We then define a series of getters to pull super-global information. We do not show

everything, to conserve space:

public function getServerParams()

{

if (!$this->serverParams) {

$this->serverParams = $_SERVER;

}

return $this->serverParams;

}

// getCookieParams() reads $_COOKIE

// getQueryParams() reads $_GET

// getUploadedFileInfo() reads $_FILES

public function getRequestMethod()

{

$method = $this->getServerParams()['REQUEST_METHOD'] ?? '';

$this->method = strtolower($method);

return $this->method;

}

public function getContentType()

{

if (!$this->contentType) {

$this->contentType =

$this->getServerParams()['CONTENT_TYPE'] ?? '';

$this->contentType = strtolower($this->contentType);

}

return $this->contentType;

}

19. As uploaded files are supposed to be represented as independent UploadedFile

objects (presented in the previous recipe), we also define a method that takes

$uploadedFileInfo and creates UploadedFile objects:

public function getUploadedFiles()

{

if (!$this->uploadedFileObjs) {

568

Appendix

foreach ($this->getUploadedFileInfo() as $field => $value) {

$this->uploadedFileObjs[$field] =

new UploadedFile($field, $value);

}

}

return $this->uploadedFileObjs;

}

20. As with the other classes defined previously, we provide with methods that add or

overwrite properties and return the new instance:

public function withCookieParams(array $cookies)

{

array_merge($this->getCookieParams(), $cookies);

return $this;

}

public function withQueryParams(array $query)

{

array_merge($this->getQueryParams(), $query);

return $this;

}

public function withUploadedFiles(array $uploadedFiles)

{

if (!count($uploadedFiles)) {

throw new InvalidArgumentException(

Constant::ERROR_NO_UPLOADED_FILES);

}

foreach ($uploadedFiles as $fileObj) {

if (!$fileObj instanceof UploadedFileInterface) {

throw new InvalidArgumentException(

Constant::ERROR_INVALID_UPLOADED);

}

}

$this->uploadedFileObjs = $uploadedFiles;

}

21. One important aspect of PSR-7 messages is that the body should also be available

in a parsed manner, that is to say, a sort of structured representation rather than

just a raw stream. Accordingly, we define getParsedBody() and its accompanying

with method. The PSR-7 recommendations are quite specific when it comes to form

posting. Note the series of if statements that check the Content-Type header as

well as the method:

public function getParsedBody()

{

if (!$this->parsedBody) {

569

Defining PSR-7 Classes

if (($this->getContentType() ==

Constants::CONTENT_TYPE_FORM_ENCODED

|| $this->getContentType() ==

Constants::CONTENT_TYPE_MULTI_FORM)

&& $this->getRequestMethod() ==

Constants::METHOD_POST)

{

$this->parsedBody = $_POST;

} elseif ($this->getContentType() ==

Constants::CONTENT_TYPE_JSON

|| $this->getContentType() ==

Constants::CONTENT_TYPE_HAL_JSON)

{

ini_set("allow_url_fopen", true);

$this->parsedBody =

json_decode(file_get_contents('php://input'));

} elseif (!empty($_REQUEST)) {

$this->parsedBody = $_REQUEST;

} else {

ini_set("allow_url_fopen", true);

$this->parsedBody = file_get_contents('php://input');

}

}

return $this->parsedBody;

}

public function withParsedBody($data)

{

$this->parsedBody = $data;

return $this;

}

22. We also allow for attributes that are not precisely defined in PSR-7. Rather, we

leave this open so that the developer can provide whatever is appropriate for the

application. Notice the use of withoutAttributes() that allows you to remove

attributes at will:

public function getAttributes()

{

return $this->attributes;

}

public function getAttribute($name, $default = NULL)

{

return $this->attributes[$name] ?? $default;

}

570

Appendix

public function withAttribute($name, $value)

{

$this->attributes[$name] = $value;

return $this;

}

public function withoutAttribute($name)

{

if (isset($this->attributes[$name])) {

unset($this->attributes[$name]);

}

return $this;

}

}

23. Finally, in order to load the different properties from an in-bound request, we define

initialize(), which is not in PSR-7, but is extremely convenient:

public function initialize()

{

$this->getServerParams();

$this->getCookieParams();

$this->getQueryParams();

$this->getUploadedFiles;

$this->getRequestMethod();

$this->getContentType();

$this->getParsedBody();

return $this;

}

 How it works...

First, be sure to complete the preceding recipe, as the Message and Request classes

consume Uri, Stream, and UploadedFile value objects. After that, go ahead and define

the classes summarized in the following table:

Class Steps they are discussed in

Application\MiddleWare\Message 2 to 9

Application\MiddleWare\Request 10 to 14

Application\MiddleWare\ServerRequest 15 to 20

571

Defining PSR-7 Classes

After that, you can define a server program, chap_09_middleware_server.php, which

sets up autoloading and uses the appropriate classes. This script will pull the incoming

request into a ServerRequest instance, initialize it, and then use var_dump() to show

what information was received:

<?php

require DIR . '/../Application/Autoload/Loader.php';

Application\Autoload\Loader::init(DIR

use Application\MiddleWare\ServerRequest;

. '/..');

$request = new ServerRequest();

$request->initialize();

echo '<pre>', var_dump($request), '</pre>';

To run the server program, first change to the /path/to/source/for/this/chapter

folder. You can then run the following command:

php -S localhost:8080 chap_09_middleware_server.php'

As for the client, first create a calling program, chap_09_middleware_request.php, that

sets up autoloading, uses the appropriate classes, and defines the target server and a local

text file:

<?php

define('READ_FILE', DIR . '/gettysburg.txt');

define('TEST_SERVER', 'http://localhost:8080');

require DIR . '/../Application/Autoload/Loader.php';

Application\Autoload\Loader::init(DIR . '/..');

use Application\MiddleWare\ { Request, Stream, Constants };

Next, you can create a Stream instance using the text as a source. This will become the body

of a new Request, which, in this case, mirrors what might be expected for a form posting:

$body = new Stream(READ_FILE);

You can then directly build a Request instance, supplying parameters as appropriate:

$request = new Request(

TEST_SERVER,

Constants::METHOD_POST,

$body,

[Constants::HEADER_CONTENT_TYPE =>

Constants::CONTENT_TYPE_FORM_ENCODED,

Constants::HEADER_CONTENT_LENGTH => $body->getSize()]

);

572

Appendix

Alternatively, you can use the fluent interface syntax to produce exactly the same results:

$uriObj = new Uri(TEST_SERVER);

$request = new Request();

$request->withRequestTarget(TEST_SERVER)

->withMethod(Constants::METHOD_POST)

->withBody($body)

->withHeader(Constants::HEADER_CONTENT_TYPE,

Constants::CONTENT_TYPE_FORM_ENCODED)

->withAddedHeader(

Constants::HEADER_CONTENT_LENGTH, $body->getSize());

You can then set up a cURL resource to simulate a form posting, where the data parameter is

the contents of the text file. You can follow that with curl_init(), curl_exec(), and so

on, echoing the results:

$data = http_build_query(['data' =>

$request->getBody()->getContents()]);

$defaults = array(

CURLOPT_URL => $request->getUri()->getUriString(),

CURLOPT_POST => true,

CURLOPT_POSTFIELDS => $data,

);

$ch = curl_init();

curl_setopt_array($ch, $defaults);

$response = curl_exec($ch);

curl_close($ch);

Here is how the direct output might appear:

573

Defining PSR-7 Classes

 See also

f An excellent article that shows example usage written by Matthew Weir O'Phinney,

the editor of PSR-7 (also the lead architect for Zend Framework 1, 2, and 3), is

available here: https://mwop.net/blog/2015-01-26-psr-7-by-example.

html

Defining a PSR-7 Response class

The Response class represents outbound information returned to whatever entity made the

original request. HTTP headers play an important role in this context as we need to know

that format is requested by the client, usually in the incoming Accept header. We then need

to set the appropriate Content-Type header in the Response class to match that format.

Otherwise, the actual body of the response will be HTML, JSON, or whatever else has been

requested (and delivered).

 How to do it...

1. The Response class is actually much easier to implement than the Request class

as we are only concerned with returning the response from the server to the client.

Additionally, it extends our Application\MiddleWare\Message class where

most of the work has been done. So, all that remains to be done is to define an

Application\MiddleWare\Response class. As you will note, the only unique

property is $statusCode:

namespace Application\MiddleWare;

use Psr\Http\Message\ { Constants, ResponseInterface,

StreamInterface };

class Response extends Message implements ResponseInterface

{

protected $statusCode;

2. The constructor is not defined by PSR-7, but we provide it for convenience, allowing a

developer to create a Response instance with all parts intact. We use methods from

Message and constants from the Constants class to verify the arguments:

public function construct($statusCode = NULL,

StreamInterface $body = NULL,

$headers = NULL,

$version = NULL)

{

$this->body = $body;

$this->status['code'] = $statusCode

?? Constants::DEFAULT_STATUS_CODE;

$this->status['reason'] =

574

Appendix

Constants::STATUS_CODES[$statusCode] ?? '';

$this->httpHeaders = $headers;

$this->version = $this->onlyVersion($version);

if ($statusCode) $this->setStatusCode();

}

3. We provide a nice way to set the HTTP status code, irrespective of any headers, using

http_response_code(), available from PHP 5.4 onwards. As this work is on PHP

7, we are safe in the knowledge that this method exists:

public function setStatusCode()

{

http_response_code($this->getStatusCode());

}

4. Otherwise, it is of interest to obtain the status code using the following method:

public function getStatusCode()

{

return $this->status['code'];

}

5. As with the other PSR-7-based classes discussed in earlier recipes, we also define a

with method that sets the status code and returns the current instance. Note the

use of STATUS_CODES to confirm its existence:

public function withStatus($statusCode, $reasonPhrase = '')

{

if (!isset(Constants::STATUS_CODES[$statusCode])) {

throw new InvalidArgumentException(

Constants::ERROR_INVALID_STATUS);

}

$this->status['code'] = $statusCode;

$this->status['reason'] = ($reasonPhrase)

? Constants::STATUS_CODES[$statusCode] : NULL;

$this->setStatusCode();

return $this;

}

6. Finally, we define a method that returns the reason for the HTTP status, which is a

short text phrase, in this example, based on RFC 7231. Note the use of the PHP 7

null coalesce operator ?? that returns the first non-null item out of three possible

choices:

public function getReasonPhrase()

{

return $this->status['reason']

575

Defining PSR-7 Classes

?? Constants::STATUS_CODES[$this->status['code']]

?? '';

}

}

 How it works…

First of all, be sure to define the classes discussed in the previous two recipes. After that,

you can create another simple server program, chap_09_middleware_server_with_

response.php, which sets up autoloading and uses the appropriate classes:

<?php

require DIR . '/../Application/Autoload/Loader.php';

Application\Autoload\Loader::init(DIR . '/..');

use Application\MiddleWare\ { Constants, ServerRequest, Response,

Stream };

You can then define an array with key/value pairs, where the value points to a text file in the

current directory to be used as content:

$data = [

1 => 'churchill.txt',

2 => 'gettysburg.txt',

3 => 'star_trek.txt'

];

Next, inside a try…catch block, you can initialize some variables, initialize the server

request, and set up a temporary filename:

try {

$body['text'] = 'Initial State';

$request = new ServerRequest();

$request->initialize();

$tempFile = bin2hex(random_bytes(8)) . '.txt';

$code = 200;

After that, check to see whether the method is GET or POST. If it's GET, check to see whether

an id parameter was passed. If so, return the body of the matching text file. Otherwise, return

a list of text files:

if ($request->getMethod() == Constants::METHOD_GET) {

$id = $request->getQueryParams()['id'] ?? NULL;

$id = (int) $id;

if ($id && $id <= count($data)) {

$body['text'] = file_get_contents(

576

 DIR

} else {

. '/' . $data[$id]);

Appendix

$body['text'] = $data;

}

Otherwise, return a response indicating a success code 204 and the size of the request body

received:

} elseif ($request->getMethod() == Constants::METHOD_POST) {

$size = $request->getBody()->getSize();

$body['text'] = $size . ' bytes of data received';

if ($size) {

$code = 201;

} else {

$code = 204;

}

}

You can then catch any exceptions and report them with a status code of 500:

} catch (Exception $e) {

$code = 500;

$body['text'] = 'ERROR: ' . $e->getMessage();

}

The response needs to be wrapped in a stream, so you can write the body out to the temp

file and create it as Stream. You can also set the Content-Type header to application/

json and run getHeaders(), which outputs the current set of headers. After that, echo the

body of the response. For this illustration, you could also dump the Response instance to

confirm it was constructed correctly:

try {

file_put_contents($tempFile, json_encode($body));

$body = new Stream($tempFile);

$header[Constants::HEADER_CONTENT_TYPE] = 'application/json';

$response = new Response($code, $body, $header);

$response->getHeaders();

echo $response->getBody()->getContents() . PHP_EOL;

var_dump($response);

To wrap things up, catch any errors or exceptions using Throwable, and don't forget to delete

the temp file:

} catch (Throwable $e) {

echo $e->getMessage();

} finally {

unlink($tempFile);

}

577

Defining PSR-7 Classes

To test, it's just a matter of opening a terminal window, changing to the /path/to/source/

for/this/chapter directory, and running the following command:

php -S localhost:8080

From a browser, you can then call this program, adding an id parameter. You might consider

opening the developer tools to monitor the response header. Here is an example of the

expected output. Note the content type of application/json:

 See also

f For more information on PSR, please visit http://www.php-fig.org/psr/.

f The following table summarizes the state of PSR-7 compliance at the time of writing.

The frameworks not included in this table either do not have PSR-7 support at all, or

lack documentation for PSR-7.

578

http://www.php-fig.org/psr/

Appendix

Framework Website Notes

Slim http://www.slimframework.

com/docs/concepts/value-

objects.html

High PSR-7 compliance

Laravel/Lumen https://lumen.laravel.

com/docs/5.2/requests

High PSR-7 compliance

Zend Framework 3/

Expressive

https://framework.zend.

com/blog/2016-06-28-

zend-framework-3.html or

https://zendframework.

github.io/zend-

expressive/ respectively

High PSR-7 compliance

Also Diactoros, and

Straigility

Zend Framework 2 https://github.com/

zendframework/zend-

psr7bridge

PSR-7 bridge available

Symfony http://symfony.com/doc/

current/cookbook/psr7.

html

PSR-7 bridge available

Joomla https://www.joomla.org Limited PSR-7 support

Cake PHP http://mark-story.com/

posts/view/psr7-bridge-

for-cakephp

PSR-7 support is in the

roadmap and will use the

bridge approach

f There are a number of PSR-7 middleware classes already available. The following

table summarizes some of the more popular ones:

Middleware Website Notes

Guzzle https://github.com/guzzle/

psr7

HTTP message library

Relay http://relayphp.com/ Dispatcher

Radar https://github.com/

radarphp/Radar.Project

Action/domain/

responder skeleton

NegotiationMiddleware https://github.com/rszrama/

negotiation-middleware

Content negotiation

psr7-csrf-middleware https://packagist.org/

packages/schnittstabil/

psr7-csrf-middleware

Cross Site Request

Forgery prevention

oauth2-server http://alexbilbie.

com/2016/04/league-oauth2-

server-version-5-is-out

OAuth2 server which

supports PSR-7

zend-diactoros https://zendframework.

github.io/zend-diactoros/

PSR-7 HTTP message

implementation

579

http://symfony.com/doc/
http://www.joomla.org/
http://mark-story.com/
http://relayphp.com/
http://alexbilbie/

Module 2

Learning PHP 7 High Performance

Improve the performance of your PHP application to ensure
the application users aren’t left waiting

Chapter 1

Setting Up the Environment
PHP 7 has finally been released. For a long time, the PHP community was talking
about it and has still not stopped. The main improvement in PHP 7 is its performance.
For a long time, the PHP community faced performance issues in large-scale
applications. Even some small applications with high traffic faced performance issues.
Server resources were increased, but it did not help much because in the end the
bottleneck was PHP itself. Different caching techniques were used, such as APC, and
this helped a little. However, the community still needed a version of PHP that could
boost the application's performance at its peak. And this is where PHPNG comes in.

PHPNG stands for PHP next generation. It is a completely separate branch and is
mainly targeted for performance. Some people thought that PHPNG is JIT (Just In
Time) compilation, but in reality, PHPNG is based on a refactored Zend Engine,
which was highly optimized for performance. PHPNG is used as a base for PHP 7
development, and according to the official PHP wiki page, the PHPNG branch is
now merged into the master branch.

Before starting to build an application, the development environment should be
finalized and configured. In this chapter, we will discuss setting up the development
environment on different systems, such as Windows and different flavors of Linux.

We will cover the following topics:

• Setting up Windows

• Setting up Ubuntu or Debian

• Setting up CentOS

• Setting up Vagrant

All other environments can be skipped, and we can set up the environment that we
will use.

[583]

Setting Up the Environment

Setting up Windows
There are many tools available that have Apache, PHP, and MySQL bundled for
Windows, provide easy installation, and are very easy to use. Most of these tools
already provide support for PHP 7 with Apache, such as through XAMPP, WAMPP,
and EasyPHP. EasyPHP is the only one that also provides support for NGINX and
provides easy steps to changes webserver from NGINX to Apache or Apache to Nginx.

XAMPP is also available for Linux and Mac OS X. However, WAMP
and EasyPHP are only available for Windows. Any of these three can
be used for this book, but we recommend EasyPHP as it supports
NGINX, and for this book, we mostly use NGINX.

Any of the three tools can be used, but we require more control over every element of
our web server tools, so we will also install NGINX, PHP 7, and MySQL individually
and then connect them together.

NGINX Windows binaries can be downloaded from http://
nginx.org/en/download.html. We recommend using a
stable version, though there is no problem with using a mainline
version. PHP Windows binaries can be downloaded from http://
windows.php.net/download/. Download either 32-bit or 64-bit
binaries of the non-thread safe version according to your system.

Perform the following steps:

1. Download NGINX and PHP Windows binaries mentioned in the information
box. Copy NGINX to a suitable directory. For example, we have a completely
separate D drive for development purposes. Copy NGINX to this development
drive or any other directory. Now, copy PHP either to the NGINX directory or
to any other secure folder location.

2. In the PHP directory, there will be two .ini files, php.ini-development
and php.ini-production. Rename either one of them to php.ini. PHP
will be using this configuration file.

3. Hold the Shift key and right click in the PHP directory to open the
command-line window. The command-line window will be opened
in the same location path. Issue the following command to start PHP:

php-cgi –b 127.0.0.1:9000

[584]

 Chapter 1

The –b option starts PHP and binds to the path for external FastCGI servers.
The preceding command binds PHP to loop back the 127.0.0.1 IP on port
9000. Now, PHP is accessible on this path.

4. To configure NGINX, open the nginx_folder/conf/nginx.conf file.
The first thing to do is to add root and index to the server block, as follows:

server {

root html;

index index.php index.html index.htm;

5. Now, we need to configure NGINX to use PHP as FastCGI on the
path mentioned before on which it is started. In the nginx.conf file,
uncomment the following location block for PHP:

location ~ \.php$ {

fastcgi_pass 127.0.0.1:9000;

fastcgi_param SCRIPT_FILENAME complete_path_webroot_

folder$fastcgi_script_name;

include fastcgi_params;

}

Note the fastcgi_param option. The highlighted complete_path_webroot_
folder path should be the absolute path to the HTML directory inside the
nginx folder. Let's say that your NGINX is placed at the D:\nginx path;
then, the absolute path to the HTML folder will be D:\nginx\html. However,
for the preceding fastcgi_param option, \ should be replaced by /.

6. Now, restart NGINX by issuing the following command in the root of the
NGINX folder:

nginx –s restart

7. After NGINX is restarted, open your browser and enter the IP or hostname
of your Windows server or machine, and we will see the NGINX welcome
message.

8. Now, to verify the PHP installation and its working with NGINX, create an
info.php file in webroot and enter the following code in it:

<?php

phpinfo();

?>

9. Now, in the browser, access your_ip/info.php, and we will be presented
with a page full of PHP and server information. Congratulations! We
configured NGINX and PHP to work perfectly together.

[585]

Setting Up the Environment

On Windows and Mac OS X, we recommend that you use a virtual
machine installed with all the tools on a Linux flavor to get the
best performance out of the server. It is easy to manage everything
in Linux. There are vagrant boxes available that have everything

 ready to use. Also, a custom virtual machine configuration with all
the tools, including NGINX, Apache, PHP 7, Ubuntu, Debian, or
CentOS, and other great ones, can be made at https://puphpet.
com, which is an easy-to-use GUI. Another nice tool is Laravel
Homestead, which is a Vagrant box with great tools.

Setting up Debian or Ubuntu
Ubuntu is derived from Debian, so the process is the same for both Ubuntu and
Debian. We will use Debian 8 Jessie and Ubuntu 14.04 Server LTS. The same process
can be applied to desktop versions for both.

First, add the repositories for both Debian and Ubuntu.

Debian
As of the time we're writing this book, Debian does not provide an official repository
for PHP 7. So, for Debian, we will use dotdeb repositories to install NGINX and
PHP 7. Perform the following steps:

1. Open the /etc/apt/sources.list file and add the following two lines at
the end of the file:

deb http://packages.dotdeb.org jessie all

deb-src http://packages.dotdeb.org jessie all

2. Now, execute the following commands in the terminal:

wget https://www.dotdeb.org/dotdeb.gpg

sudo apt-key add dotdeb.gpg

sudo apt-get update

The first two commands will add dotdeb repo to Debian and the last command will
refresh the cache for sources.

Ubuntu
As of the time of writing this book, Ubuntu also does not provide PHP 7 in their
official repos, so we will use a third-party repo for the PHP 7 installation. Perform
the following steps:

[586]

http://packages.dotdeb.org/
http://packages.dotdeb.org/
http://www.dotdeb.org/dotdeb.gpg

 Chapter 1

1. Run the following commands in the terminal:

sudo add-apt-repository ppa:ondrej/php

sudo apt-get update

2. Now, the repositories are added. Let's install NGINX and PHP 7.

The rest of the process is mostly the same for both Debian

 and Ubuntu, so we wont list them separately, as we did for
the adding repositories section.

3. To install NGINX, run the following command in the terminal
(Debian and Ubuntu):

sudo apt-get install nginx

4. After the installation is successful, it can be verified by entering the hostname
and IP of the Debian or Ubuntu server. If we see something similar to the
following screenshot, then our installation is successful:

The following is a list of three useful NGINX commands:

 service nginx start: This starts the NGINX server

 service nginx restart: This restarts the NGINX server

 service nginx stop: This stops the NGINX server

5. Now, it's time to install PHP 7 by issuing the following command:

sudo apt-get install php7.0 php7.0-fpm php7.0-mysql php7.0-mcrypt

php7.0-cli

[587]

Setting Up the Environment

This will install PHP 7 along with the other modules mentioned. Also, we
installed PHP Cli for the command-line purpose. To verify whether PHP 7
is properly installed, issue the following command in the terminal:

php –v

6. If it displays the PHP version along with some other details, as shown in the
following screenshot, then PHP is properly installed:

7. Now, we need to configure NGINX to work with PHP 7. First, copy the
NGINX default config file /etc/nginx/sites-available/default to
/etc/nginx/sites-available/www.packt.com.conf using the following
command in the terminal:

cd /etc/nginx/sites-available

sudo cp default www.packt.com.conf

sudo ln –s /etc/nginx /sites-available/www.packt.com.conf /etc/

nginx/sites-enabled/www.packt.com.conf

First, we copied the default configuration file, created another virtual host
configuration file, www.packt.com.conf, and then created a symbolic link
file to this virtual host file in the sites-enabled folder.

It is good practice to create a configuration file for each virtual

 host by the same name as of the domain so that it can easily be
recognized by any other person.

8. Now, open the /etc/nginx/sites-available/www.packt.com.conf file
and add or edit the highlighted code, as shown here:

server {

server_name your_ip:80;

root /var/www/html;

index index.php index.html index.htm;

location ~ \.php$ {

fastcgi_pass unix:/var/run/php/php7.0-fpm.sock;

fastcgi_index index.php;

include fastcgi_params;

[588]

http://www.packt.com.conf/
http://www.packt.com.conf/
http://www.packt.com.conf/
http://www.packt.com.conf/
http://www.packt.com.conf/
http://www.packt.com.conf/

 Chapter 1

}

}

The preceding configuration is not a complete configuration file. We copied
only those configuration options that are important and that we may want
to change.

In the preceding code, our webroot path is /var/www/html, where our PHP
files and other application files will be placed. In the index config option,
add index.php so that if no file is provided in the URL, NGINX can look
for and parse index.php.

We added a location block for PHP that includes a fastcgi_pass option,
which has a path to the PHP7 FPM socket. Here, our PHP runs on a Unix
socket, which is faster than that of TCP/IP.

9. After making these changes, restart NGINX. Now, to test whether PHP and
NGINX are properly configured, create an info.php file at the root of the
webroot folder and place the following code in it:

<?php

phpinfo();

?>

10. Now, in the browser, type server_ip/info.php, and if you see a PHP
configuration page, then congratulations! PHP and NGINX are both
properly configured.

If PHP and NGINX run on the same system, then PHP listens
to the loopback IP at port 9000. The port can be changed to any
other port. In case, we want to run PHP on the TCP/IP port,
then in fastcgi_pass, we will enter 127.0.0.1:9000.

Now, let's install Percona Server. Percona Server is a fork of MySQL and is optimized
for high performance. We will read more about Percona Server in Chapter 3, Increasing
PHP 7 Application Performance. Now, let's install Percona Server on Debian/Ubuntu via
the following steps:

1. First, let's add the Percona Server repository to our system by running the
following command in the terminal:

sudo wget https://repo.percona.com/apt/percona-release_0.1-

3.$(lsb_release -sc)_all.deb

sudo dpkg -i percona-release_0.1-3.$(lsb_release -sc)_all.deb

[589]

Setting Up the Environment

The first command will download the repo packages from the Percona repo.
The second command will install the downloaded packages and will create
a percona-release.list file at /etc/apt/sources.list.d/percona-
release.list.

2. Now, install Percona Server by executing the following command in
the terminal:

sudo apt-get update

3. Now, issue the following command to install Percona Server:

sudo apt-get install percona-server-5.5

The installation process will start. It will take a while to download it.

For the purpose of this book, we will install Percona Server 5.5. Percona
Server 5.6 is also available, which can be installed without any issues.

During the installation, the password for the root user will be asked,
as shown in the following screenshot:

It is optional but recommended to enter the password. After entering the
password, re-enter the password on the next screen. The installation process
will continue.

4. After the installation is complete, the Percona Server installation can be
verified by using the following command:

mysql –-version

It will display the version of Percona Server. As mentioned before, Percona
Server is a fork of MySQL, so all the same MySQL commands, queries, and
settings can be used.

[590]

 Chapter 1

Setting up CentOS
CentOS is a fork of Red Hat Enterprise Linux (RHEL) and stands for Community
Enterprise Operating System. It is a widely used OS on servers specially used by
hosting companies to provide shared hosting.

Let's start by configuring CentOS for our development environment. Perform the
following steps:

Installing NGINX
1. First, we need to add NGINX RPM to our CentOS installation because

CentOS does not provide any default repository for NGINX. Issue the
following command in your terminal:

sudo rpm -Uvh

http://nginx.org/packages/centos/7/noarch/RPMS/nginx-release-

centos-7-0.el7.ngx.noarch.rpm

This will add the NGINX repo to CentOS.

2. Now, issue the following command to see which versions of NGINX are
available to install:

sudo yum --showduplicates list Nginx

This will show you the latest stable releases. In our case, it displays NGINX
1.8.0 and NGINX 1.8.1.

3. Now, let's install NGINX using the following command:

sudo yum install Nginx

This will install NGINX.

4. On CentOS, NGINX won't start automatically after installation or restarting.
So, first, we will enable NGINX to autostart after a system restarts using the
following command:

systemctl enable Nginx.service

5. Now, let's start NGINX by issuing the following command:

systemctl start Nginx.service

[591]

http://nginx.org/packages/centos/7/noarch/RPMS/nginx-release-

Setting Up the Environment

6. Then, open your browser and enter the IP of the CentOS server or host name.
If you see the same welcome screen as we saw in the figure earlier in the
chapter for Debian, then NGINX is installed successfully.

To check which version of NGINX is installed, issue the following command
in the terminal:

Nginx –v

On our server, the NGINX version installed is 1.8.1.

Now, our web server is ready.

Installing PHP 7
1. The next step is to install PHP 7 FPM and configure both NGINX and

PHP 7 to work together. As of the time of writing this book, PHP 7 is not
packaged in official CentOS repositories. So, we have two choices to install
PHP 7: either we build it from source, or we use third-party repositories.
Building from source is a little bit difficult, so let's go the easy way and
use third-party repositories.

For this book, we will use webtatic repos for the PHP 7 installation as
they provide quick updates for the new versions. There are some more
repositories, and it is just the reader's choice to use any repository as
long as it works.

2. Now, let's add a webtatic repository to our CentOS repo by issuing the
following command:

rpm -Uvh https://dl.fedoraproject.org/pub/epel/epel-release-

latest-7.noarch.rpm

rpm -Uvh https://mirror.webtatic.com/yum/el7/webtatic-release.rpm

3. After the repos are added successfully, issue the following command to see
which version is available for installation:

sudo yum –showduplicates list php70w

In our case, PHP 7.0.3 is available to install.

4. Now, issue the following command to install PHP 7 along with some
modules that may be required:

sudo yum install php70w php70w-common php70w-cli php70w-fpm

php70w-mysql php70w-opcache php70w-mcrypt

[592]

 Chapter 1

5. This will install core PHP 7 and some modules available for PHP 7. If any
other module is required, it can be installed easily; however, first, search
to check whether it is available or not. Issue the following command in the
terminal to see all the available modules for PHP 7:

sudo yum search php70w-

We will see a long list of all the available modules for PHP 7.

6. Now, let's say that we want to install the PHP 7 gd module; issue the
following command:

sudo yum install php70w-gd

This will install the gd module. Multiple modules can be installed using
the same command and separating each module by a space, as we did in
the initial installation of PHP.

Now, to check which version of PHP is installed, issue the following command:

php –v

In our case, PHP 7.0.3 is installed.

7. To start, stop, and restart PHP, issue the following commands in the terminal:

sudo systemctl start php-fpm

sudo systemctl restart php-fpm

sudo systemctl stop php-fpm

8. Now, let's configure NGINX to use PHP FPM. Open the default NGINX
virtual host file located at /etc/Nginx/conf.d/default.conf using either
vi, nano, or any other editor of your choice. Now, make sure that two
options are set in the server block, as follows:

server {

listen 80;

server_name localhost;

root /usr/share/nginx/html;

index index.php index.html index.htm;

The root option indicates the web document root where our website source
code files will be placed. Index indicates the default files that will be loaded
along with extensions. If any of these files are found, they will be executed
by default, regardless of any file mentioned in the URLs.

[593]

Setting Up the Environment

9. The next configuration in NGINX is a location block for PHP. The following
is the configuration for PHP:

location ~ \.php$ {

try_files $uri =404;

fastcgi_split_path_info ̂ (.+\.php)(/.+)$;

fastcgi_pass 127.0.0.1:9000;

fastcgi_index index.php;

fastcgi_param SCRIPT_FILENAME

$document_root$fastcgi_script_name;

include fastcgi_params;

}

The preceding block is the most important configuration as it enables NGINX
to communicate with PHP. The line fastcgi_pass 127.0.0.1:9000 tells
NGINX that PHP FPM can be accessed on the 127.0.0.1 loopback IP on port
9000. The rest of the details are the same as those we discussed for Debian
and Ubuntu.

10. Now, to test our installation, we will create a file named info.php with the
following contents:

<?php

phpinfo();

?>

After saving the file, type http://server_ip/info.php or http://
hostname/info.php, and we will get a page with complete information about
PHP. If you see this page, congratulations! PHP runs alongside NGINX.

Installing Percona Server
1. Now, we will install Percona Server on CentOS. The installation process is

the same, except that it has a separate repository. To add the Percona Server
repo to CentOS, execute the following command in the terminal:

sudo yum install http://www.percona.com/downloads/

percona-release/redhat/0.1-3/percona-release-0.1-3.noarch.rpm

After the repo installation is completed, a message will be displayed stating
the completion of the installation.

2. Now, to test the repo, issue the following command, and it will list all the
available Percona packages:

sudo yum search percona

[594]

http://www.percona.com/downloads/

 Chapter 1

3. To install Percona Server 5.5, issue the following command in the terminal:

sudo yum install Percona-Server-server-55

The installation process will start. The rest of the process is the same as for
Debian/Ubuntu.

4. After the installation is completed, we will see a completion message.

Setting up Vagrant
Vagrant is a tool used by developers for development environments. Vagrant
provides an easy command-line interface to set up virtual machines with all the
tools required. Vagrant uses boxes called Vagrant Boxes that can have a Linux
operating system and other tools according to this box. Vagrant supports both
Oracle VM VirtualBox and VMware. For the purpose of this book, we will use
VirtualBox, which we assume is installed on your machine as well.

Vagrant has several boxes for PHP 7, including Laravel Homestead and Rasmus
PHP7dev. So, let's get started by configuring the Rasmus PHP7dev box on Windows
and Mac OS X.

We assume that both VirutalBox and Vagrant are installed on our machine.
VirtualBox can be downloaded from https://www.virtualbox.org/
wiki/Downloads, and Vagrant can be downloaded from https://
www.vagrantup.com/downloads.html for different platforms. Details
about Rasmus PHP7dev VagrantBox can be found at https://github.
com/rlerdorf/php7dev.

Perform the following steps:

1. Make a directory in one of the drives. For example, we made a php7 directory
in our D drive. Then, open the command line in this specific folder directly
by holding the Shift key, right-clicking, and then selecting Open command
window here.

[595]

http://www.virtualbox.org/
http://www.vagrantup.com/downloads.html

Setting Up the Environment

2. Now, issue the following command in the command window:

vagrant box add rasmus/php7dev

It will start downloading the Vagrant box, as shown in the
following screenshot:

3. Now, when the download is completed, we need to initialize it so that
the box is configured and added to VirtualBox for us. Issue the following
command in the command window:

vagrant init rasmus/php7dev

This will start adding the box to VirtualBox and configuring it. When the
process is completed, it will display a message, as in the following screenshot:

4. Now, issue the following command, which will completely set up the
Vagrant box and start it up and running:

vagrant up

This process will take a little bit of time. When it is completed, your box is
ready and running and can be used.

5. Now, the first thing to do after it is up is to update everything. This box uses
Ubuntu, so open the command window in the same php7dev directory and
issue the following command:

vagrant ssh

It will connect us with the virtual machines through SSH.

[596]

 Chapter 1

In Windows, if SSH in not installed or not configured in the PATH
variable, PuTTY can be used. It can be downloaded from http://

 www.chiark.greenend.org.uk/~sgtatham/putty/download.

html. For PuTTY, the host will be 127.0.0.1, and the port will be
2222. Vagrant is both the username and password for SSH.

6. When we are logged in to the box OS, issue the following commands to
update the system:

sudo apt-get update

sudo apt-get upgrade

This will update the core system, NGINX, MySQL, PHP 7, and other
installed tools if new versions are available.

7. The box is now ready to use for development purposes. The box can be
accessed in the browser by typing its IP address in the browser window.
To find the IP address of the box, issue the following command in the
SSH-connected command window:

sudo ifconfig

This will display some details. Find out the IPv4 details there and take the
IP of the box.

Summary
In this chapter, we configured different environments for the purpose of
development. We installed NGINX and PHP 7 on the windows machine. We also
configured Debian/Ubuntu and installed NGINX, PHP, and Percona Server 5.5.
Then, we configured CentOS and installed NGINX, PHP, and Percona Server 5.5.
Lastly, we discussed how to configure Vagrant Box on a Windows machine.

In the next chapter, we will study new features in PHP 7, such as type hints, namespace
groupings and declarations, the Spaceship operator, and other features.

[597]

http://www.chiark.greenend.org.uk/~sgtatham/putty/download

Chapter 2

New Features in PHP 7
PHP 7 has introduced new features that can help programmers write high-performing
and effective code. Also, some old-fashioned features are completely removed, and
PHP 7 will throw an error if used. Most of the fatal errors are now exceptions, so
PHP won't show an ugly fatal error message any more; instead, it will go through an
exception with the available details.

In this chapter, we will cover the following topics:

• Type hints

• Namespaces and group use declarations

• The anonymous classes

• Old-style constructor deprecation

• The Spaceship operator

• The null coalesce operator

• Uniform variable syntax

• Miscellaneous changes

[599]

New Features in PHP 7

OOP features
PHP 7 introduced a few new OOP features that will enable developers to write clean
and effective code. In this section, we will discuss these features.

Type hints
Prior to PHP 7, there was no need to declare the data type of the arguments passed
to a function or class method. Also, there was no need to mention the return data
type. Any data type can be passed to and returned from a function or method. This
is one of the huge problems in PHP, in which it is not always clear which data types
should be passed or received from a function or method. To fix this problem, PHP 7
introduced type hints. As of now, two type hints are introduced: scalar and return
type hints. These are discussed in the following sections.

Type hints is a feature in both OOP and procedural PHP because it can be used for
both procedural functions and object methods.

Scalar type hints
PHP 7 made it possible to use scalar type hints for integers, floats, strings, and Booleans
for both functions and methods. Let's have a look at the following example:

class Person

{

public function age(int $age)

{

return $age;

}

public function name(string $name)

{

return $name;

}

public function isAlive(bool $alive)

{

return $alive;

}

}

$person = new Person();

echo $person->name('Altaf Hussain');

echo $person->age(30);

echo $person->isAlive(TRUE);

[600]

 Chapter 2

In the preceding code, we created a Person class. We have three methods, and each
method receives different arguments whose data types are defined with them, as is
highlighted in the preceding code. If you run the preceding code, it will work fine
as we will pass the desired data types for each method.

Age can be a float, such as 30.5 years; so, if we pass a float number to the age
method, it will still work, as follows:

echo $person->age(30.5);

Why is that? It is because, by default, scalar type hints are nonrestrictive. This means
that we can pass float numbers to a method that expects an integer number.

To make it more restrictive, the following single-line code can be placed at the top of
the file:

declare(strict_types = 1);

Now, if we pass a float number to the age function, we will get an Uncaught Type
Error, which is a fatal error that tells us that Person::age must be of the int type
given the float. Similar errors will be generated if we pass a string to a method that
is not of the string type. Consider the following example:

echo $person->isAlive('true');

The preceding code will generate the fatal error as the string is passed to it.

Return type hints
Another important feature of PHP 7 is the ability to define the return data type for a
function or method. It behaves the same way scalar type hints behave. Let's modify
our Person class a little to understand return type hints, as follows:

class Person

{

public function age(float $age) : string

{

return 'Age is '.$age;

}

public function name(string $name) : string

{

return $name;

}

[601]

New Features in PHP 7

public function isAlive(bool $alive) : string

{

return ($alive) ? 'Yes' : 'No';

}

}

The changes in the class are highlighted. The return type is defined using the:
data-type syntax. It does not matter if the return type is the same as the scalar type.
These can be different as long as they match their respective data types.

Now, let's try an example with the object return type. Consider the previous Person
class and add a getAddress method to it. Also, we will add a new class, Address,
to the same file, as shown in the following code:

class Address

{

public function getAddress()

{

return ['street' => 'Street 1', 'country' => 'Pak'];

}

}

class Person

{

public function age(float $age) : string

{

return 'Age is '.$age;

}

public function name(string $name) : string

{

return $name;

}

public function isAlive(bool $alive) : string

{

return ($alive) ? 'Yes' : 'No';

}

public function getAddress() : Address

{

return new Address();

}

}

[602]

 Chapter 2

The additional code added to the Person class and the new Address class is
highlighted. Now, if we call the getAddress method of the Person class, it will
work perfectly and won't throw an error. However, let's suppose that we change
the return statement, as follows:

public function getAddress() : Address

{

return ['street' => 'Street 1', 'country' => 'Pak'];

}

In this case, the preceding method will throw an uncaught exception similar to
the following:

Fatal error: Uncaught TypeError: Return value of Person::getAddress()

must be an instance of Address, array returned

This is because we return an array instead of an Address object. Now, the question
is: why use type hints? The big advantage of using type hints is that it will always
avoid accidentally passing or returning wrong and unexpected data to methods
or functions.

As can be seen in the preceding examples, this makes the code clear, and by looking
at the declarations of the methods, one can exactly know which data types should be
passed to each of the methods and what kind of data is returned by looking into the
code of each method or comment, if any.

Namespaces and group use declaration
In a very large codebase, classes are divided into namespaces, which makes them easy
to manage and work with. However, if there are too many classes in a namespace and
we need to use 10 of them, then we have to type the complete use statement for all
these classes.

In PHP, it is not required to divide classes in subfolders
according to their namespace, as is the case with other

 programming languages. Namespaces just provide a logical
separation of classes. However, we are not limited to placing
our classes in subfolders according to our namespaces.

[603]

New Features in PHP 7

For example, we have a Publishers/Packt namespace and the classes Book, Ebook,
Video, and Presentation. Also, we have a functions.php file, which has our
normal functions and is in the same Publishers/Packt namespace. Another file,
constants.php, has the constant values required for the application and is in the
same namespace. The code for each class and the functions.php and constants.
php files is as follows:

//book.php

namespace Publishers\Packt;

class Book

{

public function get() : string

{

return get_class();

}

}

Now, the code for the Ebook class is as follows:

//ebook.php

namespace Publishers\Packt;

class Ebook

{

public function get() : string

{

return get_class();

}

}

The code for the Video class is as follows:

//presentation.php

namespace Publishers\Packt;

class Video

{

public function get() : string

{

return get_class();

}

}

[604]

 Chapter 2

Similarly, the code for the presentation class is as follows:

//presentation.php

namespace Publishers\Packt;

class Presentation

{

public function get() : string

{

return get_class();

}

}

All the four classes have the same methods, which return the classes' names using
the PHP built-in get_class() function.

Now, add the following two functions to the functions.php file:

//functions.php

namespace Publishers\Packt;

function getBook() : string

{

return 'PHP 7';

}

function saveBook(string $book) : string

{

return $book.' is saved';

}

Now, let's add the following code to the constants.php file:

//constants.php

namespace Publishers/Packt;

const COUNT = 10;

const KEY = '123DGHtiop09847';

const URL = 'https://www.Packtpub.com/';

The code in both functions.php and constants.php is self-explanatory. Note that
each file has a namespace Publishers/Packt line at the top, which makes these
classes, functions, and constants belong to this namespace.

[605]

http://www.packtpub.com/%27%3B

New Features in PHP 7

Now, there are three ways to use the classes, functions, and constants. Let's consider
each one.

Take a look at the following code:

//Instantiate objects for each class in namespace

$book = new Publishers\Packt\Book();

$ebook = new Publishers\Packt\Ebook();

$video = new Publishers\Packt\Video();

$presentation = new Publishers\Packt\Presentation();

//Use functions in namespace

echo Publishers/Packt/getBook();

echo Publishers/Packt/saveBook('PHP 7 High Performance');

//Use constants

echo Publishers\Packt\COUNT;

echo Publishers\Packt\KEY;

In the preceding code, we used namespace names directly while creating objects or
using functions and constants. The code looks fine, but it is cluttered. Namespace
is everywhere, and if we have lots of namespaces, it will look very ugly, and the
readability will be affected.

We did not include class files in the previous code. Either the

 include statements or PHP's autoload function can be
used to include all the files.

Now, let's rewrite the preceding code to make it more readable, as follows:

use Publishers\Packt\Book;

use Publishers\Packt\Ebook;

use Publishers\Packt\Video;

use Publishers\Packt\Presentation;

use function Publishers\Packt\getBook;

use function Publishers\Packt\saveBook;

use const Publishers\Packt\COUNT;

use const Publishers\Packt\KEY;

$book = new Book();

$ebook = new Ebook(();

[606]

 Chapter 2

$video = new Video();

$pres = new Presentation();

echo getBook();

echo saveBook('PHP 7 High Performance');

echo COUNT;

echo KEY;

In the preceding code, at the top, we used PHP statements for specific classes,
functions, and constants in a namespace. However, we still wrote duplicate lines
of code for each class, function, and/or constant. This may lead to us have lots of
use statements at the top of the file, and the overall verbosity would not be good.

To fix this problem, PHP 7 introduced group use declaration. There are three types
of group use declarations:

• Non mixed use declarations

• Mixed use declarations

• Compound use declarations

Non mixed group use declarations
Consider that we have different types of features in a namespace, as we have classes,
functions, and contacts in a namespace. In non mixed group use declarations, we
declare them separately using a use statement. To better understand it, take a look
at the following code:

use Publishers\Packt\{ Book, Ebook, Video, Presentation };

use function Publishers\Packt\{ getBook, saveBook };

use const Publishers\Packt\{ COUNT, KEY };

We have three types of features in a namespace: class, functions, and constants.
So, we have used separate group use declaration statements to use them. The code
is now looking more cleaner, organized, and readable and doesn't require too much
duplicate typing.

[607]

New Features in PHP 7

Mixed group use declarations
In this declaration, we combine all types into a single use statement. Take a look at
the following code:

use Publishers\Packt\{

Book,

Ebook,

Video,

Presentation,

function getBook,

function saveBook,

const COUNT,

const KEY

};

The compound namespace declaration
To understand the compound namespace declaration, we will consider the
following criteria.

Let's say we have a Book class in the Publishers\Packt\Paper namespace. Also, we
have an Ebook class in the Publishers\Packt\Electronic namespace. The Video
and Presentation classes are in the Publishers\Packt\Media namespace. So, to
use these classes, we will use the code, as follows:

use Publishers\Packt\Paper\Book;

use Publishers\Packt\Electronic\Ebook;

use Publishers\Packt\Media\{Video,Presentation};

In the compound namespace declaration, we can use the preceding namespaces
as follows:

use Publishers\Packt\{

Paper\Book,

Electronic\Ebook,

Media\Video,

Media\Presentation

};

It is more elegant and clear, and it doesn't require extra typing if the namespace
names are long.

[608]

 Chapter 2

The anonymous classes
An anonymous class is a class that is declared and instantiated at the same time. It
does not have a name and can have the full features of a normal class. These classes
are useful when a single one-time small task is required to be performed and there is
no need to write a full-blown class for it.

While creating an anonymous class, it is not named, but it is named
internally in PHP with a unique reference based on its address in the
memory block. For example, the internal name of an anonymous class
may be class@0x4f6a8d124.

The syntax of this class is the same as that of the named classes, but only the name of
the class is missing, as shown in the following syntax:

new class(argument) { definition };

Let's look at a basic and very simple example of an anonymous class, as follows:

$name = new class() {

public function construct()

{

echo 'Altaf Hussain';

}

};

The preceding code will just display the output as Altaf Hussain.

Arguments can also be passed to the anonymous class constructor, as shown in the
following code:

$name = new class('Altaf Hussain') {

public function construct(string $name)

{

echo $name;

}

};

This will give us the same output as the first example.

[609]

New Features in PHP 7

Anonymous classes can extend other classes and have the same parent-child classes
functioning as normal named classes. Let's have another example; take a look at
the following:

class Packt

{

protected $number;

public function construct()

{

echo 'I am parent constructor';

}

public function getNumber() : float

{

return $this->number;

}

}

$number = new class(5) extends packt

{

public function construct(float $number)

{

parent:: construct();

$this->number = $number;

}

};

echo $number->getNumber();

The preceding code will display I am parent constructor and 5. As can be seen,
we extended the Packt class the way we extend named classes. Also, we can access
the public and protected properties and methods within the anonymous class and
public properties and methods using anonymous class objects.

Anonymous classes can implement interfaces too, the same as named classes.
Let's create an interface first. Run the following:

interface Publishers

{

public function construct(string $name, string $address);

public function getName();

public function getAddress();

}

[610]

 Chapter 2

Now, let's modify our Packt class as follows. We added the highlighted code:

class Packt

{

protected $number;

protected $name;

protected $address;

public function …

}

The rest of the code is same as the first Packt class. Now, let's create our anonymous
class, which will implement the Publishers interface created in the previous code
and extend the new Packt class, as follows:

$info = new class('Altaf Hussain', 'Islamabad,

Pakistan') extends packt implements Publishers

{

public function construct(string $name, string $address)

{

$this->name = $name;

$this->address = $address;

}

public function getName() : string

{

return $this->name;

}

public function getAddress() : string

{

return $this->address;

}

}

echo $info->getName(). ' '.$info->getAddress();

The preceding code is self-explanatory and will output Altaf Hussain along with
the address.

It is possible to use anonymous classes within another class, as shown here:

class Math

{

public $first_number = 10;

public $second_number = 20;

[611]

New Features in PHP 7

public function add() : float

{

return $this->first_number + $this->second_number;

}

public function multiply_sum()

{

return new class() extends Math

{

public function multiply(float $third_number) : float

{

return $this->add() * $third_number;

}

};

}

}

$math = new Math();

echo $math->multiply_sum()->multiply(2);

The preceding code will return 60. How does this happen? The Math class has a
multiply_sum method that returns the object of an anonymous class. This anonymous
class is extended from the Math class and has a multiply method. So, our echo
statement can be divided into two parts: the first is $math->multiply_sum(), which
returns the object of the anonymous class, and the second is ->multiply(2), in which
we chained this object to call the anonymous class's multiply method along with an
argument of the value 2.

In the preceding case, the Math class can be called the outer class, and the
anonymous class can be called the inner class. However, remember that it is not
required for the inner class to extend the outer class. In the preceding example,
we extended it just to ensure that the inner classes could have access to the outer
classes' properties and methods by extending the outer classes.

Old-style constructor deprecation
Back in PHP 4, the constructor of a class has the same name method as that of the
class. It is still used and is valid until PHP's 5.6 version. However, now, in PHP 7,
it is deprecated. Let's have an example, as shown here:

class Packt

{

public function packt()

{

[612]

 Chapter 2

echo 'I am an old style constructor';

}

}

$packt = new Packt();

The preceding code will display the output I am an old style constructor with
a deprecated message, as follows:

Deprecated: Methods with the same name as their class will not be

constructors in a future version of PHP; Packt has a deprecated

constructor in…

However, the old style constructor is still called. Now, let's add the PHP
construct method to our class, as follows:

class Packt

{

public function construct()

{

echo 'I am default constructor';

}

public function packt()

{

echo 'I am just a normal class method';

}

}

$packt = new Packt();

$packt->packt();

In the preceding code, when we instantiated the object of the class, the normal
construct constructor was called. The packt()method isn't considered a normal
class method.

Old-style constructors are deprecated, which means that they will
still work in PHP 7 and a deprecated message will be displayed,
but it will be removed in the upcoming versions. It is best practice
to not use them.

[613]

New Features in PHP 7

The throwable interface
PHP 7 introduced a base interface that can be base for every object that can use the
throw statement. In PHP, exceptions and errors can occur. Previously, exceptions
could be handled, but it was not possible to handle errors, and thus, any fatal error
caused the complete application or a part of the application to halt. To make errors
(the most fatal errors) catchable as well, PHP 7 introduced the throwable interface,
which is implemented by both the exception and error.

The PHP classes we created can't implement the throwable interface.
If required, these classes must extend an exception.

We all know exceptions, so in this topic, we will only discuss errors, which can
handle the ugly, fatal errors.

Error
Almost all fatal errors can now throw an error instance, and similarly to exceptions,
error instances can be caught using the try/catch block. Let's have a simple example:

function iHaveError($object)

{

return $object->iDontExist();

{

//Call the function

iHaveError(null);

echo "I am still running";

If the preceding code is executed, a fatal error will be displayed, the application will
be halted, and the echo statement won't be executed in the end.

Now, let's place the function call in the try/catch block, as follows:

try

{

iHaveError(null);

} catch(Error $e)

{

//Either display the error message or log the error message

echo $e->getMessage();

}

echo 'I am still running';

[614]

 Chapter 2

Now, if the preceding code is executed, the catch body will be executed, and after
this, the rest of the application will continue running. In the preceding case, the echo
statement will be executed.

In most cases, the error instance will be thrown for the most fatal errors, but
for some errors, a subinstance of error will be thrown, such as TypeError,
DivisionByZeroError, ParseError, and so on.

Now, let's take a look at a DivisionByZeroError exception in the following example:

try

{

$a = 20;

$division = $a / 20;

} catch(DivisionByZeroError $e)

{

echo $e->getMessage();

}

Before PHP 7, the preceding code would have issued a warning about the division
by zero. However, now in PHP 7, it will throw a DivisionByZeroError, which can
be handled.

New operators
PHP 7 introduced two interested operators. These operators can help write less and
cleaner code, so the final code will be more readable as compared to the traditional
operators in use. Let's have a look at them.

The Spaceship operator (<=>)
The Spaceship or Combined Comparison operator is useful to compare values
(strings, integers, floats, and so on), arrays, and objects. This operator is just a
wrapper and performs the same tasks as the three comparison operators ==, <,
and >. This operator can also be used to write clean and less code for callback
functions for usort, uasort, and uksort. This operator works as follows:

• It returns 0 if both the operands on left- and right-hand sides are equal

• It returns -1 if the right operand is greater than the left operand

• It returns 1 if the left operand is greater than the right one

[615]

New Features in PHP 7

Let's take a look at a few examples by comparing integers, strings, objects, and arrays
and note the result:

$int1 = 1;

$int2 = 2;

$int3 = 1;

echo $int1 <=> $int3; //Returns 0

echo '
';

echo $int1 <=> $int2; //Returns -1

echo '
';

echo $int2 <=> $int3; //Returns 1

Run the preceding code, and you will have an output similar to the following:

0

-1

1

In the first comparison, in which we compare $int1 and $int3, both are equal, so it
will return 0. In the second comparison, in which $int1 and $int2 are compared,
it will return -1 because the right operand ($int2) in greater than the left operand
($int1). Finally, the third comparison will return 1 as the left operand ($int2) is
greater than the right operand ($int3).

The preceding is a simple example in which we compared integers. We can check
strings, objects, and arrays in the same way, and they are compared the same
standard PHP way.

Some examples for the <=> operator can be found
at https://wiki.php.net/rfc/combined-
comparison-operator. This is an RFC publication
that has more useful details about its usage.

This operator can be more useful in sorting arrays. Take a look at the following code:

Function normal_sort($a, $b) : int

{

if($a == $b)

return 0;

if($a < $b)

return -1;

return 1;

}

[616]

https://wiki.php.net/rfc/combined-comparison-operator
https://wiki.php.net/rfc/combined-comparison-operator

 Chapter 2

function space_sort($a, $b) : int

{

return $a <=> $b;

}

$normalArray = [1,34,56,67,98,45];

//Sort the array in asc

usort($normalArray, 'normal_sort');

foreach($normalArray as $k => $v)

{

echo $k.' => '.$v.'
';

}

$spaceArray = [1,34,56,67,98,45];

//Sort it by spaceship operator

usort($spaceArray, 'space_sort');

foreach($spaceArray as $key => $value)

{

echo $key.' => '.$value.'
';

}

In the preceding code, we used two functions to sort the two different arrays with
the same values. The $normalArray array is sorted by the normal_sort function,
in which the normal_sort function uses if statements to compare the values. The
second array $spaceArray has the same values as $normalArray, but this array is
sorted by the space_sort function, which uses the Spaceship operator. The final
result for both array sorts is the same, but the code in the callback functions is
different. The normal_sort function has if statements and multiple lines of code,
while the space_sort function has a single line of code—that's it! The space_sort
function code is clearer and does not require multiple if statements.

The null coalesce operator(??)
We all know ternary operators, and we use them most of the time. Ternary operators
are just a single-line replacement for if-else statements. For example, consider the
following code:

$post = ($_POST['title']) ? $_POST['title'] : NULL;

[617]

New Features in PHP 7

If $_POST['title'] exists, then the $post variable will be assigned its value;
otherwise, NULL will be assigned. However, if $_POST or $_POST['title'] does
not exist or is null, then PHP will issue a notice of Undefined index. To fix this notice,
we need to use the isset function, as follows:

$post = isset($_POST['title']) ? $_POST['title'] : NULL;

Mostly, it will seem fine, but it becomes very nasty when we have to check for values
in multiple places, especially when using PHP as a templating language.

In PHP 7, the coalescence operator is introduced, which is simple and returns the
value of its first operand (left operand) if it exists and is not null. Otherwise, it
returns its second operand (right operand). Consider the following example:

$post = $_POST['title'] ?? NULL;

This example is exactly similar to the preceding code. The coalesce operator checks
whether $_POST['title'] exists. If it does, the operator returns it; otherwise, it
returns NULL.

Another great feature of this operator is that it can be chained. Here's an example:

$title = $_POST['title'] ?? $_GET['title'] ?? 'No POST or GET';

According to the definition, it will first check whether the first operand exists and
return it; if it does not exist, it will return the second operand. Now, if there is another
coalesce operator used on the second operand, the same rule will be applied, and the
value on the left operand will be returned if it exists. Otherwise, the value of the right
operand will be returned.

So, the preceding code is the same as the following:

If(isset($_POST['title']))

$title = $_POST['title'];

elseif(isset($_GET['title']))

$title = $_GET['title'];

else

$title = 'No POST or GET';

As can be noted in the preceding examples, the coalesce operator can help write
clean, concise, and less code.

[618]

 Chapter 2

Uniform variable syntax
Most of the time, we may face a situation in which the method, variable, or classes
names are stored in other variables. Take a look at the following example:

$objects['class']->name;

In the preceding code, first, $objects['class'] will be interpreted, and after this,
the property name will be interpreted. As shown in the preceding example, variables
are normally evaluated from left to right.

Now, consider the following scenario:

$first = ['name' => 'second'];

$second = 'Howdy';

echo $$first['name'];

In PHP 5.x, this code would be executed, and the output would be Howdy. However,
this is not inconsistent with the left-to-right expression evaluation. This is because
$$first should be evaluated first and then the index name, but in the preceding
case, it is evaluated as ${$first['name']}. It is clear that the variable syntax is not
consistent and may create confusion. To avoid this inconsistency, PHP 7 introduced a
new syntax called uniform variable syntax. Without using this syntax, the preceding
example will bring it into notice, and the desired results won't be produced. To make
it work in PHP 7, the curly brackets should be added, as follows:

echo ${$first['name']};

Now, let's have another example, as follows:

class Packt

{

public $title = 'PHP 7';

public $publisher = 'Packt Publisher';

public function getTitle() : string

{

return $this->title;

}

public function getPublisher() : string

{

return $this->publisher;

}

}

[619]

New Features in PHP 7

$mthods = ['title' => 'getTitle', 'publisher' => 'getPublisher'];

$object = new Packt();

echo 'Book '.$object->$methods['title']().

' is published by '.$object->$methods['publisher']();

If the preceding code is executed in PHP 5.x, it will work fine and output our
desired result. However, if we execute this code in PHP 7, it will give a fatal error.
The error will be at the last line of the code, which is highlighted. PHP 7 will first
try to evaluate $object->$method. After this, it will try to evaluate ['title'];
and so on; this is not correct.

To make it work in PHP 7, the curly brackets should be added, as in the following code:

echo 'Book '.$object->{$methods['title']}().

' is published by '.$object->{$methods['publisher']}();

After making the changes mentioned before, we will get our desired output.

Miscellaneous features and changes
PHP 7 also introduced some other new features with small changes, such as new
syntax for array constants, multiple default cases in switch statement, options array
in session_start, and so on. Let's have a look at these too.

Constant arrays
Starting with PHP 5.6, constant arrays can be initialized using the const keyword,
as follows:

const STORES = ['en', 'fr', 'ar'];

Now, starting with PHP 7, constant arrays can be initialized using the define
function, as follows:

define('STORES', ['en', 'fr', 'ar']);

Multiple default cases in the switch statement
Prior to PHP 7, multiple default cases in a switch statement were allowed. Check out
the following example:

switch(true)

{

default:

echo 'I am first one';

[620]

 Chapter 2

break;

default:

echo 'I am second one';

}

Before PHP 7, the preceding code was allowed, but in PHP 7, this will result in a fatal
error similar to the following:

Fatal error: Switch statements may only contain one default clause in…

The options array for session_start function
Before PHP 7, whenever we needed to start a session, we just used the session_
start() function. This function did not take any arguments, and all the settings
defined in php.ini were used. Now, starting with PHP 7, an optional array for
options can be passed, which will override the session settings in the php.ini file.

A simple example is as follows:

session_start([

'cookie_lifetime' => 3600,

'read_and_close' => true

]);

As can be seen in the preceding example, it is possible to override the php.ini
settings for a session easily.

Filtered unserialize function
It is common practice to serialize and unserialize objects. However, the PHP
unserialize() function was not secure because it did not have any filtering options
and could unserialize objects of any type. PHP 7 introduced filtering in this function.
The default filtering option is to unserialize objects of all classes or types. Its basic
working is as follows:

$result = unserialize($object,

['allowed_classes' => ['Packt', 'Books', 'Ebooks']]);

[621]

New Features in PHP 7

Summary
In this chapter, we discussed new OOP features, such as type hints, anonymous
classes, the throwable interface, group use declaration for namespaces, and two
important new operators, the Spaceship or Combined Comparison operator and
the null Coalesce operator. Also, we discussed the uniform variable syntax and a
few other new features, such as new syntax for the contact array definition, options
array for the session_start() function, and removal of multiple default cases in
the switch statement.

In the next chapter, we will discuss how to improve the application's performance.
We will discuss Apache and NGINX and different settings for them to improve
performance.

We will discuss different settings for PHP to improve its performance. The Google
page speed module, CSS/JavaScript combining and compression, CDN, and so on
will also be discussed.

[622]

Improving PHP 7

Application Performance
PHP 7 has been completely rewritten from the ground up based on the PHP Next
Generation (phpng or PHPNG) targeting performance. However, there are always
more ways to improve the performance of the application, including writing high
performance code, using best practices, web server optimizations, caching, and so
on. In this chapter, we will discuss such optimizations listed as follows:

• NGINX and Apache

• HTTP server optimization

• Content Delivery Network (CDN)

• JavaScript/CSS optimization

• Full page caching

• Varnish

• The infrastructure

NGINX and Apache
There are too many HTTP server software available, and each one has its pros and
cons. The two most popular HTTP servers used are NGINX and Apache. Let's have
a look at both of them and note which one is better for our needs.

[623]

Improving PHP 7 Application Performance

Apache
Apache is the most widely used HTTP server and is loved by most administrators.
It is selected by administrators because of its flexibility, widespread support, power,
and modules for most of the interpreted languages, such as PHP. As Apache can
process a vast number of interpreted languages, it does not need to communicate
with other software to fulfill the request. Apache can process requests in prefork
(the processes are spawned across thread), worker (threads are spawned across
processes), and event-driven (same as worker process, but it sets dedicated threads
for keep-alive connections and separate threads for active connections); thus,
it provides much more flexibility.

As discussed earlier, each request will be processed by a single thread or process,
so Apache consumes too many resources. When it comes to high-traffic applications,
Apache may slow down the application as it does not provide good support for
concurrent processing.

NGINX
NGINX was built to solve the concurrency problems with high-traffic applications.
NGINX provides asynchronous, event-driven, and nonblocking request handling.
As requests are processed asynchronously, NGINX does not wait for a request to
be completed to block the resource.

NGINX creates worker processes, and each individual worker process can handle
thousands of connections. So, a few processes can handle high traffic at once.

NGINX does not provide any built-in support for any interpreted languages.
It relies on external resources for this. This is also good because the processing is
made outside NGINX, and NGINX only processes the connections and requests.
Mostly, NGINX is considered faster than Apache. In some situations, such as with
static content (serving images, .css and .js files, and so on), this can be true, but in
current high performance servers, Apache is not the problem; PHP is the bottleneck.

Both Apache and NGINX are available for all kinds of operations

 systems. For the purpose of this book, we will use Debian and
Ubuntu, so all file paths will be mentioned according to these OSes

As mentioned before, we will use NGINX for this book.

[624]

 Chapter 3

HTTP server optimization
Each HTTP server provides certain features that can be used to optimize request
handling and serving content. In this section, we will share some techniques for
both Apache and NGINX that can be used to optimize the web server and provide
the best performance and scalability. Mostly, when these optimizations are applied,
a restart for Apache or NGINX is required.

Caching static files
Mostly, static files, such as images, .css, .js, and fonts don't change frequently.
So, it is best practice to cache these static files on the end user machine. For this
purpose, the web server adds special headers to the response, which tells the user
browser to cache the static content for a certain amount of time. The following is
the configuration code for both Apache and NGINX.

Apache
Let's have a look at the Apache configuration to cache the following static content:

<FilesMatch "\.(ico|jpg|jpeg|png|gif|css|js|woff)$">

Header set Cache-Control "max-age=604800, public"

Apache Configuration

</FileMatch>

Should be

</FilesMatch>

</FileMatch>

In the preceding code that has to be placed in a .htaccess file, we used the Apache
FilesMatch directive to match the extensions of files. If a desired extension file is
requested, Apache sets the headers to cache control for seven days. The browser
then caches these static files for seven days.

NGINX
The following configuration can be placed in /etc/nginx/sites-available/your-
virtual-host-conf-file:

Location ~* .(ico|jpg|jpeg|png|gif|css|js|woff)$ {

Expires 7d;

}

[625]

Improving PHP 7 Application Performance

In the preceding code, we used the NGINX Location block with a case-insensitive
modifier (~*) to set Expires for seven days. This code will set the cache-control
header for seven days for all the defined file types.

After making these settings, the response headers for a request will be as follows:

In the preceding figure, it can be clearly seen that the .js file is loaded from cache.
Its cache-control header is set to seven days or 604,800 seconds. The expiry date can
also be noted clearly in the expires headers. After the expiry date, the browser will
load this .js file from the server and cache it again for the duration
defined in the cache-control headers.

HTTP persistent connection
In HTTP persistent connection, or HTTP keep-alive, a single TCP/IP connection is
used for multiple requests or responses. It has a huge performance improvement
over the normal connection as it uses only a single connection instead of opening
and closing connections for each and every single request or response. Some of the
benefits of the HTTP keep-alive are as follows:

• The load on the CPU and memory is reduced because fewer TCP connections
are opened at a time, and no new connections are opened for subsequent
requests and responses as these TCP connections are used for them.

• Reduces latency in subsequent requests after the TCP connection is
established. When a TCP connection is to be established, a three-way
handshake communication is made between a user and the HTTP server.
After successfully handshaking, a TCP connection is established. In case of
keep-alive, the handshaking is performed only once for the initial request
to establish a TCP connection, and no handshaking or TCP connection
opening/closing is performed for the subsequent requests. This improves
the performance of the requests/responses.

[626]

 Chapter 3

• Network congestion is reduced because only a few TCP connections are
opened to the server at a time.

Besides these benefits, there are some side effects of keep-alive. Every server has a
concurrency limit, and when this concurrency limit is reached or consumed, there
can be a huge degradation in the application's performance. To overcome this
issue, a time-out is defined for each connection, after which the HTTP keep-alive
connection is closed automatically. Now, let's enable HTTP keep-alive on both
Apache and NGINX.

Apache
In Apache, keep-alive can be enabled in two ways. You can enable it either in the
.htaccess file or in the Apache config file.

To enable it in the .htaccess file, place the following configuration in the
.htaccess file:

<ifModule mod_headers.c>

Header set Connection keep-alive

</ifModule>

In the preceding configuration, we set the Connection header to keep-alive in the
.htaccess file. As the .htaccess configuration overrides the configuration in the
config files, this will override whatever configuration is made for keep-alive in the
Apache config file.

To enable the keep-alive connection in the Apache config file, we have to modify
three configuration options. Search for the following configuration and set the
values to the ones in the example:

KeepAlive On

MaxKeepAliveRequests 100

KeepAliveTimeout 100

In the preceding configuration, we turned on the keep-alive configuration by
setting the value of KeepAlive to On.

The next is MaxKeepAliveRequests, which defines the maximum number of
keep-alive connections to the web server at the time. A value of 100 is the default in
Apache, and it can be changed according to the requirements. For high performance,
this value should be kept high. If set to 0, it will allow unlimited keep-alive connections,
which is not recommended.

[627]

Improving PHP 7 Application Performance

The last configuration is KeepAliveTimeout, which is set to 100 seconds. This defines
the number of seconds to wait for the next request from the same client on the same
TCP connection. If no request is made, then the connection is closed.

NGINX
HTTP keep-alive is part of the http_core module and is enabled by default. In the
NGINX configuration file, we can edit a few options, such as timeout. Open the
nginx config file, edit the following configuration options, and set its values to
the following:

keepalive_requests 100

keepalive_timeout 100

The keepalive_requests config defines the maximum number of requests a single
client can make on a single HTTP keep-alive connection.

The keepalive_timeout config is the number of seconds that the server needs to
wait for the next request until it closes the keep-alive connection.

GZIP compression
Content compression provides a way to reduce the contents' size delivered by the
HTTP server. Both Apache and NGINX provide support for GZIP compression, and
similarly, most modern browsers support GZIP. When the GZIP compression is
enabled, the HTTP server sends compressed HTML, CSS, JavaScript, and images
that are small in size. This way, the contents are loaded fast.

A web server only compresses content via GZIP when the browser sends information
about itself that it supports GZIP compression. Usually, a browser sends such
information in Request headers.

The following are codes for both Apache and NGINX to enable GZIP compression.

Apache
The following code can be placed in the .htaccess file:

<IfModule mod_deflate.c>

SetOutputFilter DEFLATE

#Add filters to different content types

AddOutputFilterByType DEFLATE text/html text/plain text/xml text/

css text/javascript application/javascript

#Don't compress images

SetEnvIfNoCase Request_URI \.(?:gif|jpe?g|png)$ no-gzip dont-

[628]

 Chapter 3

vary

</IfModule>

In the preceding code, we used the Apache deflate module to enable compression.
We used filter by type to compress only certain types of files, such as .html, plain text,
.xml, .css, and .js. Also, before ending the module, we set a case to not compress the
images because compressing images can cause image quality degradation.

NGINX
As mentioned previously, you have to place the following code in your virtual host
conf file for NGINX:

gzip on;

gzip_vary on;

gzip_types text/plain text/xml text/css text/javascript application/x-

javascript;

gzip_com_level 4;

In the preceding code, GZIP compression is activated by the gzip on; line. The
gzip_vary on; line is used to enable varying headers. The gzip_types line is used
to define the types of files to be compressed. Any file types can be added depending
on the requirements. The gzip_com_level 4; line is used to set the compression
level, but be careful with this value; you don't want to set it too high. Its range is
from 1 to 9, so keep it in the middle.

Now, let's check whether the compression really works. In the following screenshot,
the request is sent to a server that does not have GZIP compression enabled. The size
of the final HTML page downloaded or transferred is 59 KB:

[629]

Improving PHP 7 Application Performance

After enabling GZIP compression on the web server, the size of the transferred
HTML page is reduced up to 9.95 KB, as shown in the following screenshot:

Also, it can be noted that the time to load the contents is also reduced. So, the smaller
the size of your contents, the faster the page will load.

Using PHP as a separate service
Apache uses the mod_php module for PHP. This way, the PHP interpreter is integrated
to Apache, and all processing is done by this Apache module, which eats up more
server hardware resources. It is possible to use PHP-FPM with Apache, which uses
the FastCGI protocol and runs in a separate process. This enables Apache to worry
about HTTP request handlings, and the PHP processing is made by the PHP-FPM.

NGINX, on the other hand, does not provide any built-in support or any support
by module for PHP processing. So, with NGINX, PHP is always used in a separate
service.

Now, let's take a look at what happens when PHP runs as a separate service:
the web server does not know how to process the dynamic content request and
forwards the request to another external service, which reduces the processing
load on the web server.

[630]

 Chapter 3

Disabling unused modules
Both Apache and NGINX come with lots of modules built into them. In most cases,
you won't need some of these modules. It is good practice to disable these modules.

It is good practice to make a list of the modules that are enabled, disable those
modules one by one, and restart the server. After this, check whether your application
is working or not. If it works, go ahead; otherwise, enable the module(s) after which
the application stopped working properly again.

This is because you may see that a certain module may not be required, but some
other useful module depends on this module. So, it's best practice it to make a list
and enable or disable the modules, as stated before.

Apache
To list all the modules that are loaded for Apache, issue the following command in
the terminal:

sudo apachectl –M

This command will list all the loaded modules, as can be seen in the following
screenshot:

[631]

Improving PHP 7 Application Performance

Now, analyze all the loaded modules, check whether they are needed for the
application, and disable them, as follows.

Open up the Apache config file and find the section where all the modules are
loaded. A sample is included here:

LoadModule access_compat_module modules/mod_access_compat.so

LoadModule actions_module modules/mod_actions.so

LoadModule alias_module modules/mod_alias.so

LoadModule allowmethods_module modules/mod_allowmethods.so

LoadModule asis_module modules/mod_asis.so

LoadModule auth_basic_module modules/mod_auth_basic.so

#LoadModule auth_digest_module

modules/mod_auth_digest.so #LoadModule auth_form_module

modules/mod_auth_form.so #LoadModule authn_anon_module

modules/mod_authn_anon.so

The modules that have a # sign in front of them are not loaded. So, to disable a
module in the complete list, just place a # sign. The # sign will comment out the line,
and the module won't be loaded anymore.

NGINX
To check which modules NGINX is compiled with, issue the following command
in the terminal:

sudo Nginx –V

This will list complete information about the NGINX installation, including
the version and modules with which NGINX is compiled. Have a look at the
following screenshot:

[632]

 Chapter 3

Normally, NGINX enables only those modules that are required for NGINX to work.
To enable any other module that is compiled with NGINX installed, we can place a
little configuration for it in the nginx.conf file, but there is no single way to disable
any NGINX module. So, it is good to search for this specific module and take a look
at the module page on the NGINX website. There, we can find information about this
specific module, and if available, we can find information about how to disable and
configure this module.

Web server resources
Each web server comes with its own optimum settings for general use. However,
these settings may be not optimum for your current server hardware. The biggest
problem on the web server hardware is the RAM. The more RAM the server has,
the more the web server will be able to handle requests.

NGINX
NGINX provides two variables to adjust the resources, which are worker_processes
and worker_connections. The worker_processes settings decide how many
NGINX processes should run.

Now, how many worker_processes resources should we use? This depends on
the server. Usually, it is one worker processes per processor core. So, if your server
processor has four cores, this value can be set to 4.

The value of worker_connections shows the number of connections per worker_
processes setting per second. Simply speaking, worker_connections tells NGINX
how many simultaneous requests can be handled by NGINX. The value of worker_
connections depends on the system processor core. To find out the core's limitations
on a Linux system (Debian/Ubuntu), issue the following command in the terminal:

Ulimit –n

This command will show you a number that should be used for worker_connections.

Now, let's say that our processor has four cores, and each core's limitation is 512.
Then, we can set the values for these two variables in the NGINX main configuration
file. On Debian/Ubuntu, it is located at /etc/nginx/nginx.conf.

Now, find out these two variables and set them as follows:

Worker_processes 4;

Worker_connections 512

The preceding values can be high, specially worker_connections, because server
processor cores have high limitations.

[633]

Improving PHP 7 Application Performance

Content Delivery Network (CDN)
Content Delivery Network is used to host static media files, such as images, .css
and .js files, and audio and video files. These files are stored on a geographical
network whose servers are located in different locations. Then, these files are
served to requests from a specific server, depending on the request location.

CDN provides the following features:

• As the contents are static, which don't change frequently, CDN caches
them in memory. When a request comes for a certain file, CDN sends the
file directly from cache, which is faster than loading the file from disk and
sending it to the browser.

• CDN servers are located in different locations. All the files are stored in each
location, depending on your settings in CDN. When a browser request arrives
to CDN, CDN sends the requested contents from the nearest location available
to the requested location. For example, if the CDN has servers in London, New
York, and Dubai and a request comes from Middle East, the CDN will send
content from the Dubai server. This way, as a CDN delivers the contents from
the nearest location, the response time is reduced.

• Each browser has limitations for sending simultaneous requests to a domain.
Mostly, it's three requests. When a response arrives for a request, the browser
sends more requests to the same domain, which causes a delay in complete
page loading. CDN provides subdomains (either their own subdomains or
your main domain's subdomains, using your main domain's DNS settings),
which enables browsers to send more parallel requests for the same contents
loading from different domains. This enables the browser to load the page
content fast.

• Generally, there is a small amount of requests for dynamic content and more
requests for static content. If your application's static content is hosted on a
separate CDN server, this will reduce the load on your server tremendously.

Using CDN
So, how do you use CDN in your application? In best practice, if your application
has high traffic, creating different subdomains at your CDN for each content type is
the best. For example, a separate domain for CSS and JavaScript files, a subdomain
for images, and another separate subdomain for audio/videos files can be created.
This way, the browser will send parallel requests for each content type. Let's say,
we have the following URLs for each content type:

• For CSS and JavaScript: http://css-js.yourcdn.com

[634]

http://css-js.yourcdn.com/

 Chapter 3

• For images: http://images.yourcdn.com

• For other media: http://media.yourcdn.com

Now, most open source applications provide settings at their admin control panel to
set up CDN URLs, but in case you happened to use an open source framework or a
custom-build application, you can define your own setting for CDN by placing the
previous URLs either in the database or in a configuration file loaded globally.

For our example, we will place the preceding URLs in a config file and create three
constants for them, as follows:

Constant('CSS_JS_URL', 'http://css-js.yourcdn.com/');

Constant('IMAGES_URL', 'http://images.yourcdn.com/');

Constant('MEDiA_URL', 'http://css-js.yourcdn.com/');

If we need to load a CSS file, it can be loaded as follows:

<script type="text/javascript" src="<?php echo CSS_JS_URL

?>js/file.js"></script>

For a JavaScript file, it can be loaded as follows:

<link rel="stylesheet" type="text/css" href="<?php echo CSS_JS_URL

?>css/file.css" />

If we load images, we can use the previous way in the src attribute of the img tag,
as follows:

<img src="<?php echo IMAGES_URL ?>images/image.png" />

In the preceding examples, if we don't need to use CDN or want to change the CDN
URLs, it will be easy to change in just one place.

Most famous JavaScript libraries and templating engines host their static resources
on their own personal CDN. Google hosts query libraries, fonts, and other JavaScript
libraries on its own CDN, which can be used directly in applications.

Sometimes, we may not want to use CDN or be able to afford them. For this,
we can use a technique called domain sharing. Using domain sharding, we can
create subdomains or point out other domains to our resources' directories on the
same server and application. The technique is the same as discussed earlier; the
only difference is that we direct other domains or subdomains to our media, CSS,
JavaScript, and image directories ourselves.

This may seem be fine, but it won't provide us with CDN's best performance. This
is because CDN decides the geographical availability of content depending on the
customer's location, extensive caching, and files optimization on the fly.

[635]

http://images.yourcdn.com/
http://media.yourcdn.com/
http://css-js.yourcdn.com/%27)%3B
http://images.yourcdn.com/%27)%3B
http://css-js.yourcdn.com/%27)%3B

Improving PHP 7 Application Performance

CSS and JavaScript optimization
Every web application has CSS and JavaScript files. Nowadays, it is common that most
applications have lots of CSS and JavaScript files to make the application attractive and
interactive. Each CSS and JavaScript file needs a browser to send a request to the server
to fetch the file. So, the more the CSS and JavaScript files you have, the more requests
the browser will need to send, thus affecting its performance.

Each file has a content size, and it takes time for the browser to download it. For
example, if we have 10 CSS files of 10 KB each and 10 JavaScript files of 50 KB each,
the total content size of the CSS files is 100 KB, and for JavaScript it is 500 KB—600
KB for both types of files. This is too much, and the browser will take time to
download them.

Performance plays a vital role in web applications. Even Google
counts performance in its indexing. Don't think of a file that has

 a few KBs and takes a 1 ms to download because when it comes
to performance, each millisecond is counted. The best thing is to
optimize, compress, and cache everything.

In this section, we will discuss two ways to optimize our CSS and JS, which are
as follows:

• Merging

• Minifying

Merging
In the merging process, we can merge all the CSS files into a single file, and the
same process is carried out with JavaScript files, thus creating a single file for CSS
and JavaScript. If we have 10 files for CSS, the browser sends 10 requests for all
these files. However, if we merge them in a single file, the browser will send only
one request, and thus, the time taken for nine requests is saved.

Minifying
In the minifying process, all the empty lines, comments, and extra spaces are
removed from the CSS and JavaScript files. This way, the size of the file is reduced,
and the file loads fast.

For example, let's say you have the following CSS code in a file:

.header {

width: 1000px;

[636]

 Chapter 3

height: auto;

padding: 10px

}

/* move container to left */

.float-left {

float: left;

}

/* Move container to right */

.float-right {

float: right;

}

After minifying the file, we will have CSS code similar to the following:

.header{width:100px;height:auto;padding:10px}.float-

left{float:left}.float-right{float:right}

Similarly for JavaScript, let's consider that we have the following code in a
JavaScript file:

/* Alert on page load */

$(document).ready(function() {

alert("Page is loaded");

});

/* add three numbers */

function addNumbers(a, b, c) {

return a + b + c;

}

Now, if the preceding file is minified, we will have the following code:

$(document).ready(function(){alert("Page is loaded")});

function addNumbers(a,b,c){return a+b+c;}

It can be noted in the preceding examples that all the unnecessary white spaces and
new lines are removed. Also, it places the complete file code in one single line. All
code comments are removed. This way, the file size is reduced, which helps the file
be loaded fast. Also, this file will consume less bandwidth, which is useful if the
server resources are limited.

Most open source applications, such as Magento, Drupal, and WordPress, provide
either built-in support or support the application by third-party plugins/modules.
Here, we won't cover how to merge CSS or JavaScript files in these applications, but
we will discuss a few tools that can merge CSS and JavaScript files.

[637]

Improving PHP 7 Application Performance

Minify
Minify is a set of libraries completely written in PHP. Minify supports both merging
and minifying for both CSS and JavaScript files. Its code is completely object-oriented
and namespaced, so it can be embedded into any current or proprietary framework.

The Minify homepage is located at http://minifier.org. It is also
hosted on GitHub at https://github.com/matthiasmullie/
minify. It is important to note that the Minify library uses a path

 converter library, which is written by the same author. The path
converter library can be downloaded from https://github.com/
matthiasmullie/path-converter. Download this library and
place it in the same folder as the minify libraries.

Now, let's create a small project that we will use to minify and merge CSS and
JavaScript files. The folder structure of the project will be as in the following
screenshot:

[638]

http://minifier.org/

 Chapter 3

In the preceding screenshot, the complete project structure is shown. The project
name is minify. The css folder has all of our CSS files, including the minified or
merged ones. Similarly, the js folder has all our JavaScript files, including the
minified or merged ones. The libs folder has the Minify library along with the
Converter library. Index.php has our main code to minify and merge CSS and
JavaScript files.

The data folder in the project tree is related to JavaScript minification.

 As JavaScript has keywords that require a space before and after them,
these .txt files are used to identify these operators.

So, let's start by minifying our CSS and JavaScript files using the following code
in index.php:

include('libs/Converter.php');

include('libs/Minify.php');

include('libs/CSS.php');

include('libs/JS.php');

include('libs/Exception.php');

use MatthiasMullie\Minify;

/* Minify CSS */

$cssSourcePath = 'css/styles.css';

$cssOutputPath = 'css/styles.min.css';

$cssMinifier = new Minify\CSS($cssSourcePath);

$cssMinifier->minify($cssOutputPath);

/* Minify JS */

$jsSourcePath = 'js/app.js';

$jsOutputPath = 'js/app.min.js';

$jsMinifier = new Minify\JS($jsSourcePath);

$jsMinifier->minify($jsOutputPath);

The preceding code is simple. First, we included all our required libraries. Then,
in the Minify CSS block, we created two path variables: $cssSourcePath, which
has the path to the CSS file that we need to minify, and $cssOutputPath, which
has path to the minified CSS file that will be generated.

After this, we instantiated an object of the CSS.php class and passed the CSS file that
we need to minify. Finally, we called the minify method of the CSS class and passed
the output path along with the filename, which will generate the required file for us.

[639]

Improving PHP 7 Application Performance

The same explanation goes for the JS minifying process.

If we run the preceding PHP code, all the files are in place, and everything goes fine,
then two new filenames will be created: styles.min.css and app.min.js. These are
the new minified versions of their original files.

Now, let's use Minify to merge multiple CSS and JavaScript files. First, add some CSS
and JavaScript files to the respective folders in the project. After this, we just need to
add a little code to the current code. In the following code, I will skip including all
the libraries, but these files have to be loaded whenever you need to use Minify:

/* Minify CSS */

$cssSourcePath = 'css/styles.css';

$cssOutputPath = 'css/styles.min.merged.css';

$cssMinifier = new Minify\CSS($cssSourcePath);

$cssMinifier->add('css/style.css');

$cssMinifier->add('css/forms.js');

$cssMinifier->minify($cssOutputPath);

/* Minify JS */

$jsSourcePath = 'js/app.js';

$jsOutputPath = 'js/app.min.merged.js';

$jsMinifier = new Minify\JS($jsSourcePath);

$jsMinifier->add('js/checkout.js');

$jsMinifier->minify($jsOutputPath);

Now, take a look at the highlighted code. In the CSS part, we saved the minified and
merged file as style.min.merged.css, but naming is not important; it is all up to
our own choice.

Now, we will simply use the add method of the $cssMinifier and $jsMinifier
objects to add new files and then call minify. This causes all the additional files to
be merged in the initial file and then minified, thus generating a single merged and
minified file.

Grunt
According to its official website, Grunt is a JavaScript task runner. It automates
certain repetitive tasks so that you don't have to work repeatedly. It is an awesome
tool and is widely used among web programmers.

Installing Grunt is very easy. Here, we will install it on MAC OS X, and the same
method is used for most Linux systems, such as Debian and Ubuntu.

[640]

 Chapter 3

Grunt requires Node.js and npm. Installing and configuring
Node.js and npm is out of the scope of this book, so for this book,
we will assume that these tools are installed on your machine or
that you can search for them and figure out how to install them.

If Node.js and npm are installed on your machine, just fire up the following command
in your terminal:

sudo npm install –g grunt

This will install Grunt CLI. If everything goes fine, then the following command will
show you the version the of Grunt CLI:

grunt –version

The output of the preceding command is grunt-cli v0.1.13; as of writing this
book, this version is available.

Grunt provides you with a command-line, which enables you to run a Grunt
command. A Grunt project requires two files in your project file tree. One is
package.json, which is used by npm and lists Grunt and the Grunt plugins
that the project needs as DevDependencies.

The second file is the GruntFile, which is stored as GruntFile.js or GruntFile.
coffee and is used to configure and define Grunt tasks and load Grunt plugins.

Now, we will use the same preceding project, but our folder structure will be
as follows:

Now, open the terminal in your project root and issue the following command:

sudo npm init

[641]

Improving PHP 7 Application Performance

This will generate the package.json file by asking a few questions. Now, open the
package.json file and modify it so that the contents of the final package.json files
look similar to the following:

{

"name" : "grunt" //Name of the project

"version : "1.0.0" //Version of the project

"description" : "Minify and Merge JS and CSS file",

"main" : "index.js",

"DevDependencies" : {

"grunt" : "0.4.1", //Version of Grunt

//Concat plugin version used to merge css and js files

"grunt-contrib-concat" : "0.1.3"

//CSS minifying plugin

"grunt-contrib-cssmin" : "0.6.1",

//Uglify plugin used to minify JS files.

"grunt-contrib-uglify" : "0.2.0"

},

"author" : "Altaf Hussain",

"license" : ""

}

I added comments to different parts of the package.json file so that it is easy to
understand. Note that for the final file, we will remove the comments from this file.

It can be seen that in the DevDependencies section, we added three Grunt plugins
used for different tasks.

The next step is to add GruntFile. Let's create a file called GruntFile.js in
our project root similar to the package.json file. Place the following contents in
GruntFile:

module.exports = function(grunt) {

/*Load the package.json file*/

pkg: grunt.file.readJSON('package.json'),

/*Define Tasks*/

grunt.initConfig({

concat: {

css: {

src: [

'css/*' //Load all files in CSS folder

[642]

 Chapter 3

],

dest: 'dest/combined.css' //Destination of the final combined

file.

js: {

}, //End of CSS

src: [

'js/*' //Load all files in js folder

],

dest: 'dest/combined.js' //Destination of the final combined

file.

}, //End of js

}, //End of concat

cssmin: {

css: {

src : 'dest/combined.css',

dest : 'dest/combined.min.css'

}

},//End of cssmin

uglify: {

js: {

files: {

'dest/combined.min.js' : ['dest/combined.js'] // destination

Path : [src path]

}

}

} //End of uglify

}); //End of initConfig

grunt.loadNpmTasks('grunt-contrib-concat');

grunt.loadNpmTasks('grunt-contrib-uglify');

grunt.loadNpmTasks('grunt-contrib-cssmin');

grunt.registerTask('default', ['concat:css', 'concat:js',

'cssmin:css', 'uglify:js']);

}; //End of module.exports

The preceding code is simple and self-explanatory, and the comments are added
whenever needed. At the top, we loaded our package.json file, and after this, we
defined different tasks along with their src and destination files. Remember that
every task's src and destination syntax is different, and it depends on the plugin.
After initConfig block, we loaded different plugins and npm tasks and then
registered them with GRUNT.

[643]

Improving PHP 7 Application Performance

Now, let's run our tasks.

First, let's combine CSS and JavaScript files and store them in their respective
destinations defined in our tasks list in GruntFile via the following command:

grunt concat

After running the preceding command in your terminal, if you see a message
such as Done, without errors, then the task is completed successfully.

In the same way, let's minify our css file using the following command:

grunt cssmin

Then, we will minify our JavaScript file using the following command:

grunt uglify

Now, it may seem like a lot of work to use Grunt, but it provides some other
features that can make a developer's life easy. For example, what if you need to
change your JavaScript and CSS files? Should you run all the preceding commands
again? No, Grunt provides a watch plugin, which activates and executes all the
files in the destination paths in the tasks, and if any changes occur, it runs the
tasks automatically.

For a more detailed learning, take a look at Grunt's official website at
http://gruntjs.com/.

Full page caching
In full page caching, the complete page of the website is stored in a cache, and for
the next requests, this cached page is served. Full page cache is more effective if your
website content does not change too often; for example, on a blog with simple posts,
new posts are added on a weekly basis. In this case, the cache can be cleared after
new posts are added.

What if you have a website that has pages with dynamic parts, such as an e-commerce
website? In this case, a complete page caching will create problems because the page
is always different for each request; as a user is logged in, he/she may add products to
the shopping cart and so on. In this case, using full page caching may not be that easy.

Most popular platforms provide either built-in support for full page cache or
through plugins and modules. In this case, the plugin or module takes care of the
dynamic blocks of the page for each request.

[644]

http://gruntjs.com/

 Chapter 3

Varnish
Varnish, as mentioned on its official website, makes your website fly; and this is true!
Varnish is an open source web application accelerator that runs in front of your web
server software. It has to be configured on port 80 so that each request comes to it.

Now, the Varnish configuration file (called VCL files with the .vcl extenstion) has a
definition for backends. A backend is the web server (Apache or NGINX) configured
on another port (let's say 8080). Multiple backends can be defined, and Varnish will
take care of the load balancing too.

When a request comes to Varnish, it checks whether the data for this request
in available at its cache or not. If it finds the data in its cache, this cached data
is returned to the request, and no request is sent to the web server or backend.
If Varnish does not find any data in its cache, it sends a request to the web server
and requests the data. When it receives data from the web server, it first caches
this data and then sends it back to the request.

As it is clear in the preceding discussion, if Varnish finds the data in the cache,
there is no need for a request to the web server and, therefore, for processing in
there, and the response is sent back very fast.

Varnish also provides features such as load balancing and health checks. Also,
Varnish has no support for SSL and cookies. If Varnish receives cookies from
the web server or backend, this page is not cached. There are different ways to
overcome these issues easily.

We've done enough theory; now, let's install Varnish on a Debian/Ubuntu server
via the following steps:

1. First, add the Varnish repositories to the sources.list file. Place the
following line in the file:

deb https://repo.varnish-cache.org/debian/ Jessie

varnish-4.1

2. After this, issue the following command to update the repositories:

sudo apt-get update

3. Now, issue the following command:

sudo apt-get install varnish

4. This will download and install Varnish. Now, the first thing to do is
configure Varnish to listen at port 80 and make your web server listen
at another port, such as 8080. We will configure it here with NGINX.

[645]

Improving PHP 7 Application Performance

5. Now, open the Varnish configuration file location at /etc/default/varnish
and change it so that it looks similar to the following code:

DAEMON_OPS="-a :80 \

-T localhost:6082 \

-f /etc/varnish/default.vcl \

-S /etc/varnish/secret \

-s malloc,256m"

6. Save the file and restart Varnish by issuing the following command in
the terminal:

sudo service varnish restart

7. Now our Varnish runs on port 80. Let's make NGINX run on port 8080.
Edit the NGINX vhost file for the application and change the listen port
from 80 to 8080, as follows:

listen 8080;

8. Now, restart NGINX by issuing the following command in the terminal:

sudo service nginx restart

9. The next step is to configure the Varnish VCL file and add a backend that
will communicate with our backend on port 8080. Edit the Varnish VCL
file located at /etc/varnish/default.vcl, as follows:

backend default {

.host = "127.0.0.1";

.port = "8080";

}

In the preceding configuration, our backend host is located at the same server on
which Varnish runs, so we entered the local IP. We can also enter a localhost in this
case. However, if our backend runs on a remote host or another server, the IP of this
server should be entered.

Now, we are done with Varnish and web server configuration. Restart both Varnish
and NGINX. Open your browser and enter the IP or hostname of the server. The
first response may seem slow, which is because Varnish is fetching data from the
backend and then caching it, but other subsequent responses will be extremely
fast, as Varnish cached them and is now sending back the cached data without
communicating with the backend.

[646]

 Chapter 3

Varnish provides a tool in which we can easily monitor the Varnish cache status. It is
a real-time tool and updates its contents in real time. It is called varnishstat. To start
varnishstat, just issue the following command in the terminal:

varnishstat

The preceding command will display a session similar to the following screenshot:

As can be seen in the preceding screenshot, it displays very useful information, such
as the running time and the number of requests made at the beginning, cache hits,
cache misses, all backends, backend reusages, and so on. We can use this information
to tune Varnish for its best performance.

A complete Varnish configuration is out of the scope of this book,

 but a good documentation can be found on the Varnish official
website at https://www.varnish-cache.org.

[647]

http://www.varnish-cache.org/

Improving PHP 7 Application Performance

The infrastructure
We discussed too many topics on increasing the performance of our application.
Now, let's discuss the scalability and availability of our application. With time,
the traffic on our application can increase to thousands of users at a time. If our
application runs on a single server, the performance will be hugely effected. Also,
it is not a good idea to keep the application running at a single point because in
case this server goes down, our complete application will be down.

To make our application more scalable and better in availability, we can use an
infrastructure setup in which we can host our application on multiple servers.
Also, we can host different parts of the application on different servers. To better
understand, take a look at the following diagram:

[648]

 Chapter 3

This is a very basic design for the infrastructure. Let's talk about its different parts
and what operations will be performed by each part and server.

It is possible that only the Load Balancer (LB) will be connected to
the public Internet, and the rest of the parts can be connected to each

 through a private network in a Rack. If a Rack is available, this will be
very good because all the communication between all the servers will
be on a private network and therefore secure.

Web servers
In the preceding diagram, we have two web servers. There can be as many web
servers as needed, and they can be easily connected to LB. The web servers will
host our actual application, and the application will run on NGINX or Apache and
PHP 7. All the performance tunings we will discuss in this chapter can be used on
these web servers. Also, it is not necessary that these servers should be listening
at port 80. It is good that our web server should listen at another port to avoid any
public access using browsers.

The database server
The database server is mainly used for the database where the MySQL or Percona
Server can be installed. However, one of the problems in the infrastructure setup is
to store session data in a single place. For this purpose, we can also install the Redis
server on the database server, which will handle our application's session data.

The preceding infrastructure design is not a final or perfect design. It is just to give
the idea of a multiserver application hosting. It has room for a lot of improvement,
such as adding another local balancer, more web servers, and servers for the
database cluster.

Load balancer (LB)
The first part is the load balancer (LB). The purpose of the load balancer is to divide
the traffic among the web servers according to the load on each web server.

For the load balancer, we can use HAProxy, which is widely used for this purpose.
Also, HAProxy checks the health of each web server, and if a web server is down,
it automatically redirects the traffic of this down web server to other available web
servers. For this purpose, only LB will be listening at port 80.

[649]

Improving PHP 7 Application Performance

We don't want to place a load on our available web servers (in our case, two web
servers) of encrypting and decrypting the SSL communication, so we will use the
HAProxy server to terminate SSL there. When our LB receives a request with SSL,
it will terminate SSL and send a normal request to one of the web servers. When
it receives a response, HAProxy will encrypt the response and send it back to the
client. This way, instead of using both the servers for SSL encryption/decryption,
only a single LB server will be used for this purpose.

Varnish can be also used as a load balancer, but this is not a good idea
because the whole purpose of Varnish is HTTP caching.

HAProxy load balancing
In the preceding infrastructure, we placed a load balancer in front of our web
servers, which balance load on each server, check the health of each server,
and terminate SSL. We will install HAProxy and configure it to achieve all the
configurations mentioned before.

HAProxy installation
We will install HAProxy on Debian/Ubuntu. As of writing this book, HAProxy 1.6 is
the latest stable version available. Perform the following steps to install HAProxy:

1. First, update the system cache by issuing the following command in
the terminal:

sudo apt-get update

2. Next, install HAProxy by entering the following command in the terminal:

sudo apt-get install haproxy

This will install HAProxy on the system.

3. Now, confirm the HAProxy installation by issuing the following command
in the terminal:

haproxy -v

[650]

 Chapter 3

If the output is as in the preceding screenshot, then congratulations! HAProxy is
installed successfully.

HAProxy load balancing
Now, it's time to use HAProxy. For this purpose, we have the following three servers:

• The first is a load balancer server on which HAProxy is installed. We will
call it LB. For this book's purpose, the IP of the LB server is 10.211.55.1. This
server will listen at port 80, and all HTTP requests will come to this server.
This server also acts as a frontend server as all the requests to our application
will come to this server.

• The second is a web server, which we will call Web1. NGINX, PHP 7,
MySQL, or Percona Server are installed on it. The IP of this server is
10.211.55.2. This server will either listen at port 80 or any other port.
We will keep it to listen at port 8080.

• The third is a second web server, which we will call Web2, with the IP
10.211.55.3. This has the same setup as of the Web1 server and will listen
at port 8080.

The Web1 and Web2 servers are also called backend servers. First, let's configure the
LB or frontend server to listen at port 80.

Open the haproxy.cfg file located at /etc/haproxy/ and add the following lines at
the end of the file:

frontend http

bind *:80

mode http

default_backend web-backends

[651]

Improving PHP 7 Application Performance

In the preceding code, we set HAProxy to listen at the HTTP port 80 on any IP
address, either the local loopback IP 127.0.0.1 or the public IP. Then, we set the
default backend.

Now, we will add two backend servers. In the same file, at the end, place the
following code:

backend web-backend

mode http

balance roundrobin

option forwardfor

server web1 10.211.55.2:8080 check

server web2 10.211.55.3:8080 check

In the preceding configuration, we added two servers into the web backend.
The reference name for the backend is web-backend, which is used in the frontend
configuration too. As we know, both our web servers listen at port 8080, so we
mentioned that it is the definition of each web server. Also, we used check at the end
of the definition of each web server, which tells HAProxy to check the server's health.

Now, restart HAProxy by issuing the following command in the terminal:

sudo service haproxy restart

To start HAProxy, we can use the sudo service haproxy

 start command. To stop HAProxy, we can use the sudo

service haproxy stop command.

Now, enter the IP or hostname of the LB server in the browser, and our web
application page will be displayed either from Web1 or Web2.

Now, disable any of the web servers and then reload the page again. The application
will still work fine, because HAProxy automatically detected that one of web servers
is down and redirected the traffic to the second web server.

HAProxy also provides a stats page, which is browser-based. It provides complete
monitoring information about the LB and all the backends. To enable stats, open
haprox.cfg, and place the following code at the end of the file:

listen stats *:1434

stats enable

stats uri /haproxy-stats

stats auth phpuser:packtPassword

[652]

 Chapter 3

The stats are enabled at port 1434, which can be set to any port. The URL of the
page is stats uri. It can be set to any URL. The auth section is for basic HTTP
authentication. Save the file and restart HAProxy. Now, open the browser and
enter the URL, such as 10.211.55.1:1434/haproxy-stats. The stats page will
be displayed as follows:

In the preceding screenshot, each backend web server can be seen, including
frontend information.

Also, if a web server is down, HAProxy stats will highlight the row for this web
server, as can be seen in the following screenshot:

[653]

Improving PHP 7 Application Performance

For our test, we stopped NGINX at our Web2 server and refreshed the stats page,
and the Web2 server row in the backend section was highlighted.

To terminate SSL using HAProxy, it is pretty simple. To terminate SSL using
HAProxy, we will just add the SSL port 443 binding along with the SSL certificate
file location. Open the haproxy.cfg file, edit the frontend block, and add the
highlighted code in it, as in the following block:

frontend http

bind *:80

bind *:443 ssl crt /etc/ssl/www.domain.crt

mode http

default_backend web-backends

Now, HAProxy also listens at 443, and when an SSL request is sent to it, it processes
it there and terminates it so that no HTTPS requests are sent to backend servers.
This way, the load of SSL encryption/decryption is removed from the web servers
and is managed by the HAProxy server only. As SSL is terminated at the HAProxy
server, there is no need for web servers to listen at port 443, as regular requests from
HAProxy server are sent to the backend.

Summary
In this chapter, we discussed several topics starting from NGINX and Apache to
Varnish. We discussed how we can optimize our web server's software settings
for the best performance. Also, we discussed CDNs and how to use them in our
customer applications. We discussed two ways to optimize JavaScript and CSS
files for the best performance. We briefly discussed full page cache and Varnish
installation and configuration. At the end, we discussed multiserver hosting or
infrastructure setup for our application to be scalable and the best in availability.

In next chapter, we will look into the ways of increasing the performance of our
database. We will discuss several topics, including the Percona Server, different
storage engines for the database, query caching, Redis, and Memcached.

[654]

http://www.domain.crt/

Improving Database

Performance
Databases play a key role in dynamic websites. All incoming and outgoing data is
stored in a database. So, if the database for a PHP application is not well designed
and optimized, it will effect the application's performance tremendously. In this
chapter, we will look into the ways of optimizing our PHP application's database.
The following topics will be covered in this chapter:

• MySQL

• Query caching

• The MyISAM and InnoDB storage engines

• The Percona DB and Percona XtraDB storage engines

• MySQL performance monitoring tools

• Redis

• Memcached

The MySQL database
MySQL is the most commonly used Relational Database Management System
(RDMS) for the Web. It is open source and has a free community version. It provides
all those features that can be provided by an enterprise-level database.

The default settings provided with the MySQL installation may not be so good
for performance, and there are always ways to fine-tune these settings to get an
improved performance. Also, remember that your database design plays a big
role in performance. A poorly designed database will have an effect on the
overall performance.

[655]

Improving Database Performance

In this section, we will discuss how to improve the MySQL database's performance.

We will modify the MySQL configuration's my.cnf file. This file
is located in different places in different operating systems. Also,
if you are using XAMPP, WAMP, or any other cross-platform web
server solution stack package on Windows, this file will be located in
the respective folder. Whenever my.cnf is mentioned, it is assumed
that the file is open no matter which OS is used.

Query caching
Query caching is an important performance feature of MySQL. It caches SELECT
queries along with the resulting dataset. When an identical SELECT query occurs,
MySQL fetches the data from memory so that the query is executed faster and
thus reduces the load on the database.

To check whether query cache is enabled on a MySQL server or not, issue the
following command in your MySQL command line:

SHOW VARIABLES LIKE 'have_query_cache';

The preceding command will display the following output:

The previous result set shows that query cache is enabled. If query cache is disabled,
the value will be NO.

To enable query caching, open up the my.cnf file and add the following lines. If
these lines are there and are commented, just uncomment them:

query_cache_type = 1

query_cache_size = 128MB

query_cache_limit = 1MB

[656]

 Chapter 4

Save the my.cnf file and restart the MySQL server. Let's discuss what the preceding
three configurations mean:

• query_cache_type: This plays a little confusing role.

 If query_cache_type is set to 1 and query_cache_size is 0, then no
memory is allocated, and query cache is disabled.

If query_cache_size is greater than 0, then query cache is enabled,
memory is allocated, and all queries that do not exceed the query_
cache_limit value or use the SQL_NO_CACHE option are cached.

 If the query_cache_type value is 0 and query_cache_size is 0,
then no memory is allocated, and cache is disabled.

If query_cache_size is greater than 0, then memory is allocated,
but nothing is cached—that is, cache is disabled.

• query_cache_size: query_cache_size: This indicates how much memory
will be allocated. Some think that the more memory is used, the better it will
be, but this is just a misunderstanding. It all depends on the database size,
query types and ratios between read and writes, hardware, database traffic,
and other factors. A good value for query_cache_size is between 100 MB
and 200 MB; then, you can monitor the performance and other variables on
which query cache depends, as mentioned, and adjust the size. We have used
128MB for a medium traffic Magento website and it is working perfectly. Set
this value to 0 to disable query cache.

• query_cache_limit: This defines the maximum size of a query dataset to
be cached. If a query dataset's size is larger than this value, it isn't cached.
The value of this configuration can be guessed by finding out the largest
SELECT query and the size of its returned dataset.

Storage engines
Storage engines (or table types) are a part of core MySQL and are responsible for
handling operations on tables. MySQL provides several storage engines, and the
two most widely used are MyISAM and InnoDB. Both these storage engines have
their own pros and cons, but InnoDB is always prioritized. MySQL started using
InnoDB as the default storage engine, starting from 5.5.

[657]

Improving Database Performance

MySQL provides some other storage engines that have their own
purposes. During the database design process, which table should

 use which storage engine can be decided. A complete list of storage
engines for MySQL 5.6 can be found at http://dev.mysql.com/
doc/refman/5.6/en/storage-engines.html.

A storage engine can be set at database level, which is then used as the default storage
engine for each newly created table. Note that the storage engine is the table's base,
and different tables can have different storage engines in a single database. What if
we have a table already created and want to change its storage engine? It is easy. Let's
say that our table name is pkt_users, its storage engine is MyISAM, and we want to
change it to InnoDB; we will use the following MySQL command:

ALTER TABLE pkt_users ENGINE=INNODB;

This will change the storage engine value of the table to INNODB.

Now, let's discuss the difference between the two most widely used storage engines:
MyISAM and InnoDB.

The MyISAM storage engine
A brief list of features that are or are not supported by MyISAM is as follows:

• MyISAM is designed for speed, which plays best with the SELECT statement.

• If a table is more static—that is, the data in this table is less frequently
updated/deleted and mostly only fetched—then MyISAM is the best
option for this table.

• MyISAM supports table-level locking. If a specific operation needs to be
performed on the data in a table, then the complete table can be locked.
During this lock, no operations can be performed on this table. This can
cause performance degradation if the table is more dynamic—that is,
if the data is frequently changed in this table.

• MyISAM does not have support for foreign keys.

• MyISAM supports full-text search.

• MyISAM does not support transactions. So, there is no support for COMMIT
and ROLLBACK. If a query on a table is executed, it is executed, and there is
no coming back.

• Data compression, replication, query caching, and data encryption
is supported.

• The cluster database is not supported.

[658]

http://dev.mysql.com/

 Chapter 4

The InnoDB storage engine
A brief list of features that are or are not supported by InnoDB is as follows:

• InnoDB is designed for high reliability and high performance when
processing a high volume of data.

• InnoDB supports row-level locking. It is a good feature and is great for
performance. Instead of locking the complete table as with MyISAM, it
locks only the specific row for the SELECT, DELETE, or UPDATE operations,
and during these operations, other data in this table can be manipulated.

• InnoDB supports foreign keys and forcing foreign keys constraints.

• Transactions are supported. COMMIT and ROLLBACK are possible, so data
can be recovered from a specific transaction.

• Data compression, replication, query caching, and data encryption
is supported.

• InnoDB can be used in a cluster environment, but it does not have full support.
However, InnoDB tables can be converted to the NDB storage engine, which is
used in the MySQL cluster by changing the table engine to NDB.

In the following sections, we will discuss some more performance features that are
related to InnoDB. Values for the following configuration are set in the my.cnf file.

innodb_buffer_pool_size
This setting defines how much memory should be used for InnoDB data and the
indices loaded into memory. For a dedicated MySQL server, the recommended
value is 50-80% of the installed memory on the server. If this value is set too high,
there will be no memory left for the operating system and other subsystems of
MySQL, such as transaction logs. So, let's open our my.cnf file, search for innodb_
buffer_pool_size, and set the value between the recommended value (that is,
50-80 %) of our RAM.

innodb_buffer_pool_instances
This feature is not that widely used. It enables multiple buffer pool instances to work
together to reduce the chances of memory contentions on a 64-bit system and with a
large value for innodb_buffer_pool_size.

There are different choices on which the value for innodb_buffer_pool_instances
are calculated. One way is to use one instance per GB of innodb_buffer_pool_size.
So, if the value of innodb_bufer_pool_size is 16 GB, we will set innodb_buffer_
pool_instances to 16.

[659]

Improving Database Performance

innodb_log_file_size
The innodb_log_file_size is the the size of the log file that stores every query
information executed. For a dedicated server, a value up to 4 GB is safe, but the time
taken for crash recovery may increase if the log file's size is too large. So, in best
practice, it is kept in between 1 and 4 GB.

The Percona Server - a fork of MySQL
According to the Percona website, Percona is a free, fully compatible, enhanced, open
source, and drop-in replacement for MySQL that provides superior performance,
scalability, and instrumentation.

Percona is a fork of MySQL with enhanced features for performance. All the features
available in MySQL are available in Percona. Percona uses an enhanced storage
engine called XtraDB. According to the Percona website, it is an enhanced version
of the InnoDB storage engine for MySQL that has more features, faster performance,
and better scalability on modern hardware. Percona XtraDB uses memory more
efficiently in high-load environments.

As mentioned earlier, XtraDB is a fork of InnoDB, so all the features available in
InnoDB are available in XtraDB.

Installing the Percona Server
Percona is only available for Linux systems. It is not available for Windows as of
now. In this book, we will install Percona Server on Debian 8. The process is same
for both Ubuntu and Debian.

To install the Percona Server on other Linux flavors, check out the
Percona installation manual at https://www.percona.com/doc/

 percona-server/5.5/installation.html. As of now, they
provide instructions for Debian, Ubuntu, CentOS, and RHEL. They also
provide instructions to install the Percona Server from sources and Git.

[660]

http://www.percona.com/doc/

 Chapter 4

Now, let's install the Percona Server through the following steps:

1. Open your sources list file using the following command in your terminal:

sudo nano /etc/apt/sources.list

If prompted for a password, enter your Debian password. The file will
be opened.

2. Now, place the following repository information at the end of the
sources.list file:

deb http://repo.percona.com/apt jessie main

deb-src http://repo.percona.com/apt jessie main

3. Save the file by pressing CTRL + O and close the file by pressing CTRL + X.

4. Update your system using the following command in the terminal:

sudo apt-get update

5. Start the installation by issuing the following command in the terminal:

sudo apt-get install percona-server-server-5.5

6. The installation will be started. The process is the same as the MySQL server
installation. During the installation, the root password for the Percona Server
will be asked; you just need to enter it. When the installation is complete, you
will be ready to use the Percona Server in the same way as MySQL.

7. Configure the Percona Server and optimize it as discussed in the
earlier sections.

MySQL performance monitoring tools
There is always a need to monitor the performance of database servers. For this
purpose, there are many tools available that make it easy to monitor MySQL servers
and performance. Most of them are open source and free, and some provide a GUI.
The command-line tools are more powerful and the best to use, though it takes a
little time to understand and get used to them. We will discuss a few here.

[661]

http://repo.percona.com/apt
http://repo.percona.com/apt

Improving Database Performance

phpMyAdmin
This is the most famous, web-based, open source, and free tool available to manage
MySQL databases. Despite managing a MySQL server, it also provides some good
tools to monitor a MySQL server. If we log in to phpMyAdmin and then click on the
Status tab at the top, we will see the following screen:

The Server tab shows us basic data about the MySQL server, such as when it started,
how much traffic is handled from the last start, information about connections, and
so on.

The next is Query Statistics. This section provides full stats about all of the queries
executed. It also provides a pie chart, which visualizes the percentage of each query
type, as shown in the following screenshot.

If we carefully look at the chart, we can see that we have 54% of the SELECT queries
running. If we use some kind of cache, such as Memcached or Redis, these SELECT
queries should not be this high. So, this graph and statistics information provides us
with a mean to analyze our cache systems.

[662]

 Chapter 4

The next option is All Status Variables, which lists all of the MySQL variables and
their current values. In this list, one can easily find out how MySQL is configured.
In the following screenshot, our query cache variables and their values are shown:

[663]

Improving Database Performance

The next option that phpMyAdmin provides is Monitor. This is a very powerful tool
that displays the server resources and their usages in real time in a graphical way.

As shown in the preceding screenshot, we can see Questions, Connections/Processes,
System CPU Usage, Traffic, System Memory, and System swap in a nice graphical
interface.

The last important section is Advisor. This gives us advice regarding the settings for
performance. It gives you as many details as possible so that the MySQL server can
be tuned for performance. A small section from the advisor section is shown in the
following screenshot:

[664]

 Chapter 4

If all these advices are applied, some performance can be gained.

The MySQL workbench
This is a desktop application from MySQL and is fully equipped with tools
to manage and monitor the MySQL server. It provides us with a dashboard for
performance in which all the data related to the server can be seen in a beautiful
and graphical way, as shown in the screenshot that follows:

[665]

Improving Database Performance

Percona Toolkit
All the tools mentioned before are good and provide some visual information about
our database server. However, they are not good enough to show us some more
useful information or provide more features that can make our lives easy. For this
purpose, another command-line toolkit is available, which is called Percona Toolkit.

Percona Toolkit is a set of more than 30 command-line tools, which includes those
used to do an analysis of slow queries, archive, optimize indices and many more.

Percona Toolkit is free and open source and is available under
GPL. Most of its tools run on Linux/Unix-based systems, but
some can run on Windows too. An installation guide can be

 found at https://www.percona.com/doc/percona-
toolkit/2.2/installation.html. A complete set of
tools can be found at https://www.percona.com/doc/
percona-toolkit/2.2/index.html.

Now, let's discuss a few tools in the subsections to follow.

pt-query-digest
This tool analyzes queries from slow, general, and binary log files. It generates a
sophisticated report about the queries. Let's run this tool for slow queries using the
following command:

Pt-query-digest /var/log/mysql/mysql-slow.log

After entering the preceding command in the terminal, we will see a long report.
Here, we will discuss a short part of the report, as shown in the following screenshot:

[666]

http://www.percona.com/doc/percona-
http://www.percona.com/doc/

 Chapter 4

In the preceding screenshot, slow queries are listed with the slowest at the top. The
first query, which is a SELECT query, takes the most time, which is about 12% of the
total time. The second query, which is also a SELECT query, takes 11.5% of the total
time. From this report, we can see which queries are slow so that we can optimize
them for the best performance.

Also, pt-query-digest displays information for each query, as shown in the following
screenshot. In the screenshot, data about the first query is mentioned, including the
total timing; percentage (pct) of time; min, max, and average time; bytes sent; and
some other parameters:

pt-duplicate-key-checker
This tool finds duplicate indices and duplicate foreign keys either in a set of specified
tables or in a complete database. Let's execute this tool again in a large database
using the following command in the terminal:

Pt-duplicate-key-checker –user packt –password dbPassword –database

packt_pub

[667]

Improving Database Performance

When executed, the following output is printed:

At the end of the report, a summary of the indices is displayed, which is
self-explanatory. Also, this tool prints out an ALTER query for each duplicate
index that can be executed as a MySQL query to fix the index, as follows:

Pt-variable-advisor

This tool displays MySQL config information and advice for each query. This is a
good tool that can help us set up MySQL configurations properly. We can execute
this tool by running the following command:

Pt-variable-advisor –user packt –password DbPassword localhost

After execution, the following output will be displayed:

There are many other tools provided by Percona Toolkit that are out of the scope
of this book. However, the documentation at https://www.percona.com/doc/
percona-toolkit/2.2/index.html is very helpful and easy to understand.
It provides complete details for each tool, including its description and risks,
how to execute it, and other options if there are any. This documentation is
worth reading if you wish to understand any tool in Percona Toolkit.

[668]

http://www.percona.com/doc/

 Chapter 4

Percona XtraDB Cluster (PXC)
Percona XtraDB Cluster provides a high-performance cluster environment that
can help easily configure and manage a database on multiple servers. It enables
databases to communicate with each other using the binary logs. The cluster
environment helps divide the load among different database servers and provides
safety from failure in case a server is down.

To set up the cluster, we need the following servers:

• One server with IP 10.211.55.1, which we will call Node1

• A second server with IP 10.211.55.2, which we will call Node2

• And a third server with IP 10.211.55.3, which we will call Node3

As we already have the Percona repository in our sources, let's start by installing and
configuring Percona XtraDB Cluster, also called PXC. Perform the following steps:

1. First, install Percona XtraDB Cluster on Node1 by issuing the following
command in the terminal:

apt-get install percona-xtradb-cluster-56

The installation will start similarly to a normal Percona Server installation.
During the installation, the password for a root user will be also asked.

2. When the installation is complete, we need to create a new user that has
replication privileges. Issue the following commands in the MySQL terminal
after logging in to it:

CREATE USER 'sstpackt'@'localhost' IDENTIFIED BY

'sstuserpassword';

GRANT RELOAD, LOCK TABLES, REPLICATION CLIENT ON *.* TO

'sstpackt'@'localhost';

FLUSH PRIVILEGES;

The first query creates a user with the username sstpackt and password
sstuserpassword. The username and password can be anything, but a
good and strong password is recommended. The second query sets proper
privileges to our new user, including locking tables and replication. The third
query refreshes the privileges.

3. Now, open the MySQL configuration file located at /etc/mysql/my.cnf.
Then, place the following configuration in the mysqld block:

#Add the galera library

wsrep_provider=/usr/lib/libgalera_smm.so

[669]

Improving Database Performance

#Add cluster nodes addresses

wsrep_cluster_address=gcomm://10.211.55.1,10.211.55.2,

10.211.55.3

#The binlog format should be ROW. It is required for galera to

work properly

binlog_format=ROW

#default storage engine for mysql will be InnoDB

default_storage_engine=InnoDB

#The InnoDB auto increment lock mode should be 2, and it is

required for galera

innodb_autoinc_lock_mode=2

#Node 1 address

wsrep_node_address=10.211.55.1

#SST method

wsrep_sst_method=xtrabackup

#Authentication for SST method. Use the same user name and

password created in above step 2

wsrep_sst_auth="sstpackt:sstuserpassword"

#Give the cluster a name

wsrep_cluster_name=packt_cluster

Save the file after adding the preceding configuration.

4. Now, start the first node by issuing the following command:

/etc/init.d/mysql bootstrap-pxc

This will bootstrap the first node. Bootstrapping means getting the initial
cluster up and running and defining which node has the correct information
and which one all the other nodes should sync to. As Node1 is our initial
cluster node and we created a new user here, we have to only bootstrap Node1.

SST stands for State Snapshot Transfer. It is responsible for copying
full data from one node to another. It is only used when a new node

 is added to the cluster and this node has to get complete initial data
from an existing node. Three SST methods are available in Percona
XtraDB Cluster, mysqldump, rsync, and xtrabackup.

[670]

 Chapter 4

5. Log in to the MySQL terminal on the first node and issue the
following command:

SHOW STATUS LIKE '%wsrep%';

A very long list will be displayed. A few of them are shown in the
following screenshot:

6. Now, repeat Step 1 and Step 3 for all nodes. The only configuration that
needs to be changed for each node is wsrep_node_address, which should
be the IP address of the node. Edit the my.cnf configuration file for all the
nodes and place the node address in wsrep_node_address.

7. Start the two new nodes by issuing the following command in the terminal:

/etc/init.d/mysql start

Now each node can be verified by repeating step 7.

To verify whether the cluster is working fine, create a database in one node and
add some tables and data into the tables. After this, check other nodes for the newly
created database, tables, and the data entered in each table. We will have all this data
synced to each node.

Redis – the key-value cache store
Redis is an open source, in-memory key-value data store that is widely used for
database caching. According to the Redis website (www.Redis.io), Redis supports
data structures such as strings, hashes, lists, sets, and sorted lists. Also, Redis
supports replication and transactions.

Redis installation instructions can be found at
http://redis.io/topics/quickstart.

[671]

http://redis.io/topics/quickstart

Improving Database Performance

To check whether Redis is working fine on your server or not, start the Redis server
instance by running the following command in the terminal:

redis server

Then issue the following command in a different terminal window:

redis-cli ping

If the output of the preceding command is as follows, the Redis server is ready to
be run:

[672]

 Chapter 4

Redis provides a command line, which provides some useful commands. There
are two ways to execute commands on the Redis server. You can either use the
previous method or just type redis-cli and hit Enter; we will be presented with
the Redis command line, where we can then just type the Redis commands that
will be executed.

By default, Redis uses the IP 127.0.0.1 and port 6379. Remote connections are
not allowed, though remote connections can be enabled. Redis stores data that
is already created in the database. Database names are integer numbers, such as
0, 1, 2, and so on.

We won't go in much detail about Redis here, but we will discuss a few commands
that are worth noting. Note that all these commands can be either executed in the
previous way, or we can just enter the redis-cli command window and type
the commands without typing redis-cli. Also, the following commands can be
executed directly in PHP, which makes it possible to clear out the cache directly
from our PHP application:

• SELECT: This command changes the current database. By default, redis-cli
will be opened at database 0. So, if we want to go to database 1, we will run
the following command:

SELECT 1

• FLUSHDB: This command flushes the current database. All keys or data from
the current database will be deleted.

• FLUSHALL: This command flushes all the databases, no matter which database
it is executed in.

• KEYS: This command lists all the keys in the current database matching a
pattern. The following command lists all the keys in the current database.

KEYS *

Now, it's time for some action in PHP with Redis.

As of writing this topic, PHP 7 does not have built-in support for
Redis yet. For this book's purpose, we compiled the PHPRedis
module for PHP 7, and it works very nicely. The module can be
found at https://github.com/phpredis/phpredis.

[673]

Improving Database Performance

Connecting with the Redis server
As mentioned before, by default, the Redis server runs on the IP 127.0.0.1 and
port 6379. So, to make a connection, we will use these details. Take a look at the
following code:

$redisObject = new Redis();

if(!$redisObject->connect('127.0.0.1', 6379))

die("Can't connect to Redis Server");

In the first line, we instantiated a Redis object by the name of redisObject, which
is then used in the second line to connect to the Redis server. The host is the local IP
address 127.0.0.1, and the port is 6379. The connect() method returns TRUE if the
connection is successful; otherwise, it returns FALSE.

Storing and fetching data from the

Redis server
Now, we are connected to our Redis server. Let's save some data in the Redis database.
For our example, we want to store some string data in the Redis database. The code is
as follows:

//Use same code as above for connection.

//Save Data in to Redis database.

$rdisObject->set('packt_title', 'Packt Publishing');

//Lets get our data from database

echo $redisObject->get('packt_title');

The set method stores data into the current Redis database and takes two arguments:
a key and a value. A key can be any unique name, and a value is what we need to
store. So, our key is packt_title, and the value is Packt Publishing. The default
database is always set to 0 (zero) unless explicitly set otherwise. So, the preceding set
method will save our data to database 0 with the packt_title key.

Now, the get method is used to fetch data from the current database. It takes the key
as the argument. So, the output of the preceding code will be our saved string data
Packt Publishing.

[674]

 Chapter 4

Now, what about arrays or a set of data coming from the database? We can store
them in several ways in Redis. Let's first try the normal strings way, as shown here:

//Use same connection code as above.

/* This $array can come from anywhere, either it is coming from

database or user entered form data or an array defined in code */

$array = ['PHP 5.4', PHP 5.5, 'PHP 5.6', PHP 7.0];

//Json encode the array

$encoded = json_encode($array);

//Select redis database 1

$redisObj->select(1);

//store it in redis database 1

$redisObject->set('my_array', $encoded);

//Now lets fetch it

$data = $redisObject->get('my_array');

//Decode it to array

$decoded = json_decode($data, true);

print_r($decoded);

The output of the preceding code will be the same array. For testing purposes,
we can comment out the set method and check whether the get method fetches
the data or not. Remember that in the preceding code, we stored the array as a json
string, then fetched it as a json string, and decoded it to the array. This is because
we used the methods that are available for the string datatype, and it is not possible
to store arrays in the string datatype.

Also, we used the select method to select another database and use it instead of 0.
This data will be stored in database 1 and can't be fetched if we are at database 0.

A complete discussion of Redis is out of the scope of this book.
So, we have provided an introduction. Note that if you use any
framework, you have built-in libraries available for Redis that
are easy to use, and any datatype can be used easily.

[675]

Improving Database Performance

Redis management tools
Redis management tools provide an easy way to manage Redis databases. These
tools provide features so that every key can be checked and a cache can be cleared
easily. One default tool comes with Redis, called Redis-cli, and we discussed it
earlier. Now, let's discuss a visual tool that is great and easy to use, called Redis
Desktop Manage (RDM). A screenshot of the main window of RDM looks like the
following screenshot:

RDM provides the following features:

• It connects to remote multiple Redis servers

• It displays data in a specific key in different formats

• It adds new keys to a selected database

• It adds more data to a selected key

• It edits/deletes keys and their names

• It supports SSH and SSL and is cloud ready

There are some other tools that can be used, but RDM and Redis-cli are the best and
easiest to use.

[676]

 Chapter 4

Memcached key-value cache store
According to the Memcached official website, it's a free, open source, high
performance, and distributed memory object caching system. Memcached is an
in-memory key-value store that can store datasets from a database or API calls.

Similarly to Redis, Memcached also helps a lot in speeding up a website. It stores the
data (strings or objects) in the memory. This allows us to reduce the communication
with outside resources, such as databases and or APIs.

We are assuming that Memcached is installed on the server.
Also, the PHP extension for PHP 7 is also assumed to be installed.

Now, let's play a little with Memcachd in PHP. Take a look at the following code:

//Instantiate Memcached Object

$memCached = new Memcached();

//Add server

$memCached->addServer('127.0.0.1', 11211);

//Lets get some data

$data = $memCached->get('packt_title');

//Check if data is available

if($data)

{

echo $data;

}

else

{

/*No data is found. Fetch your data from any where and add to

memcached */

$memCached->set('packt_title', 'Packt Publishing');

}

[677]

Improving Database Performance

The preceding code is a very simple example of using Memcached. The comments
are written with each line of code and are self-explanatory. After instantiating a
Memcached object, we have to add a Memcached server. By default, the Memcached
server server runs on the localhost IP, which is 127.0.0.1, and on the port 11211. After
this, we checked for some data using a key, and if it is available, we can process it
(in this case, we displayed it. It can be returned, or whatever processing is required
can be carried out.). If the data is not available, we can just add it. Please note that
the data can come from a remote server API or from the database.

We have just provided an introduction to Memcached and how it can
help us store data and improve performance. A complete discussion is
not possible in this title. A good book on Memcached is Getting Started
with Memcached by Packt Publishing.

Summary
In this chapter, we covered MySQL and the Percona Server. Also, we discussed
in detail query caching and other MySQL configuration options for performance
in detail. We mentioned different storage engines, such as MyISAM, InnoDB, and
Percona XtraDB. We also configured Percona XtraDB Cluster on three nodes. We
discussed different monitoring tools, such as PhpMyAdmin monitoring tools, MySQL
workbench performance monitoring, and Percona Toolkit. We also discussed Redis
and Memcached caching for PHP and MySQL.

In the next chapter, we will discuss benchmarking and different tools. We will use
XDebug, Apache JMeter, ApacheBench, and Siege to benchmark different open
source systems, such as WordPress, Magento, Drupal, and different versions of PHP,
and compare their performance with PHP 7.

[678]

Debugging and Profiling
During development, every developer faces problems, and it becomes unclear what
is really going on here and why the problem is generated. Most the time, these issues
can be logical or with the data. It is always hard to find such issues. Debugging is a
process to find such issues and problems and fix them. Similarly, we often need to
know how many resources a script consumes, including memory consumption, CPU,
and how much time it takes to execute.

In this chapter, we will cover the following topics:

• Xdebug

• Debugging with Sublime Text 3

• Debugging with Eclipse

• Profiling with Xdebug

• PHP DebugBar

Xdebug
Xdebug is an extension for PHP that provides both debugging and profiling
information for PHP scripts. Xdebug displays a full-stake trace information for
errors, including function names, line numbers, and filenames. Also, it provides
the ability to debug scripts interactively using different IDEs, such as Sublime Text,
Eclipse, PHP Storm, and Zend Studio.

[679]

Debugging and Profiling

To check whether Xdebug is installed and enabled on our PHP installation, we need
to check the phpinfo() details. On the phpinfo details page, search for Xdebug, and
you should see details similar to the following screenshot:

This means that our PHP installation has Xdebug installed. Now, we need to
configure Xdebug. Either the Xdebug configuration will be in the php.ini file,
or it will have its separate .ini file. At our installation, we will have a separate
20-xdebug.ini file placed at the /etc/php/7.0/fpm/conf.d/ path.

For the purpose of this book, we will use the Homestead
Vagrant box from Laravel. It provides complete tools on the
Ubuntu 14.04 LTS installation, including PHP7 with Xdebug,
NGINX, and MySQL. For the purpose of development, this
Vagrant box is a perfect solution. More information can be
found at https://laravel.com/docs/5.1/homestead.

Now, open the 20-xdebug.ini file and place the following configuration in it:

zend_extension = xdebug.so

xdebug.remote_enable = on

xdebug.remote_connect_back = on

xdebug.idekey = "vagrant"

The preceding are the minimum configurations we should use that enable remote
debugging and set an IDE key. Now, restart PHP by issuing the following command
in the terminal:

sudo service php-fpm7.0 restart

Now we are ready to debug some code.

Debugging with Sublime Text
The Sublime Text editor has a plugin that can be used to debug PHP code with
Xdebug. First, let's install the xdebug package for Sublime Text.

For this topic, we will use Sublime Text 3, which is still in beta.
It is your own choice to use version 2 or 3.

[680]

 Chapter 5

First, go to Tools | Command Pallet. A popup similar to the following will
be displayed:

Select Package Control: Install Package, and a popup similar to the following
screenshot will be displayed:

Type in xdebug, and the Xdebug Client package will be displayed. Click on it and
wait for a while until it is installed.

Now, create a project in Sublime Text and save it. Open the Sublime Text project file
and insert the following code in it:

{

"folders":

[

{

[681]

Debugging and Profiling

"follow_symlinks": true,

"path": "."

}

],

"settings": {

"xdebug": {

"path_mapping": {

"full_path_on_remote_host" : "full_path_on_local_host"

},

"url" : http://url-of-application.com/,

"super_globals" : true,

"close_on_stop" : true,

}

}

}

The highlighted code is important, and it has to be entered for Xdebug. Path mapping
is the most important part. It should have a full path to the root of the application on
the remote host and a full path to the root of the application on the localhost.

Now, let's start debugging. Create a file at the project's root, name it index.php, and
place the following code in it:

$a = [1,2,3,4,5];

$b = [4,5,6,7,8];

$c = array_merge($a, $b);

Now, right-click on a line in the editor and select Xdebug. Then, click on Add/Remove
Breakpoint. Let's add a few breakpoints as shown in the following screenshot:

[682]

http://url-of-application.com/

 Chapter 5

When a breakpoint is added to a line, a filled circle will be displayed on the left-hand
side near the line number, as can be seen in the preceding screenshot.

Now we are ready to debug our PHP code. Navigate to Tools | Xdebug | Start
Debugging (Launch in Browser). A browser window will open the application
along with a Sublime Text debug session parameter. The browser windows will be
in the loading state because as soon as the first breakpoint is reached, the execution
stops. The browser window will be similar to the following:

Some new small windows will also open in the Sublime Text editor that will display
debugging information along with all the variables available, as in the following
screenshot:

[683]

Debugging and Profiling

In the preceding screenshot, our $a, $b, and $c arrays are uninitialized because the
execution cursor is at Line 22, and it has stopped there. Also, all server variables,
cookies, environment variables, request data, and POST and GET data can be seen
here. This way, we can debug all kind of variables, arrays, and objects and check
what data each variable, object, or array holds at a certain point. This gives us the
possibility to find out the errors that are very hard to detect without debugging.

Now, let's move the execution cursor ahead. Right-click in the editor code section
and go to Xdebug | Step Into. The cursor will move ahead, and the variables data
may change according to the next line. This can be noted in the following screenshot:

Debugging can be stopped by clicking on Tools | Xdebug | Stop Debugging.

Debugging with Eclipse
Eclipse is the most free and powerful IDE widely used. It supports almost all major
programming languages, including PHP. We will discuss how to configure Eclipse
to use Xdebug to debug.

[684]

 Chapter 5

First, open the project in Eclipse. Then, click on the down arrow to the right of the
small bug icon in the tool bar, as shown in the following screenshot:

After this, click on the Debug Configuration menu, and the following windows
will open:

Select PHP Web Application on left panel and then click on the Add New icon in
the top-left corner. This will add a new configuration, as shown in the preceding
screenshot. Give the configuration a name. Now, we need to add a PHP server to
our configuration. Click on the New button on the right-hand side panel, and the
following window will open:

[685]

Debugging and Profiling

We will enter the server name as PHP Server. The server name can be anything as
long as it is user-friendly and can be recognized for later use. In the Base URL field,
enter the complete URL of the application. Document Root should be the local path
of the root of the application. After entering all the valid data, click on the Next
button, and we will see the following window:

Select XDebug in the Debugger drop-down list and leave rest of the fields as they
are. Click on the Next button, and we will have the path mapping window. It is very
important to map the correct local path to the correct remote path. Click on the Add
button, and we will have the following window:

[686]

 Chapter 5

Enter the full path to the document root of the application on the remote server. Then,
select Path in File System and enter the local path of the application's document root.
Click on OK and then click on the Finish button in the path mapping window. Then,
click on Finish in the next window to complete adding a PHP server.

Now, our configuration is ready. First, we will add some breakpoints to our PHP file
by clicking on the line number bar and a small blue dot will appear there, as shown
in the following screenshot. Now, click on the small bug icon on the tool bar, select
Debug As, and then click on PHP Web Application. The debug process will start,
and a window will be opened in the browser. It will be in the loading state, same as
we saw in Sublime Text debugging. Also, the Debug perspective will be opened in
Eclipse, as shown here:

When we click on the small (X)= icon in the right-hand side bar, we will see all the
variables there. Also, it is possible to edit any variable data, even the element values
of any array, object properties, and cookie data. The modified data will be retained
for the current debug session.

To step into the next line, we will just press F5, and the execution cursor will be
moved to the next line. To step out to the next breakpoint, we will press F6.

[687]

Debugging and Profiling

Profiling with Xdebug
Profiling gives us information about the cost of each script or task executed in an
application. It helps to provide information about how much time a task takes,
and hence we can optimize our code to consume less time.

Xdebug has a profiler that is disabled by default. To enable the profiler, open the
configuration file and place the following two lines in it:

xdebug.profiler_enable=on

xdebug.profiler_output_dir=/var/xdebug/profiler/

The first line enables the profiler. The second line, where we defined the output
directory for the profiler file, is important. In this directory, Xdebug will store the
output file when the profiler is executed. The output file is stored with a name, such
as cachegrind.out.id. This file contains all the profile data in a simple text format.

Now, we are set to profile a simple installation of the Laravel application home page.
The installation is a fresh and clean one. Now, let's open the application in a browser
and append ?XDEBUG_PROFILE=on at the end, as shown here:

http://application_url.com?XDEBUG_PROFILE=on

After this page is loaded, a cachegrind file will be generated at the specified location.
Now, when we open the file in a text editor, we will just see some text data.

The cachegrind file can be opened with different tools. One
of the tools for Windows is WinCacheGrind. For Mac, we have
qcachegrind. Any of these applications will view the file data in
such a way that we will see all the data in an interactive form that
can be easily analyzed. Also, PHP Storm has a nice analyzer for
cachegrind. For this topic, we used PHP Storm IDE.

[688]

 Chapter 5

After opening the file in PHP Storm, we will get a window similar to the
following screenshot:

As shown in the preceding screenshot, we have execution statistics in the upper
pane that shows the time (in ms) taken by each called script individually along
with the number of times it is called. In the lower pane, we have the callees that
called this script.

We can analyze which script takes more time, and we can optimize this script
to reduce its execution time. Also, we can find out whether, at a certain point,
we need to call a specific script or not. If not, then we can remove this call.

PHP DebugBar
PHP DebugBar is another awesome tool that displays a nice and full information bar
at the bottom of the page. It can display custom messages added for the purposes of
debugging and full request information including $_COOKIE, $_SERVER, $_POST, and
$_GET arrays along with the data if any of them have. Besides that, PHP DebugBar
displays details about exceptions if there are any, database queries executed, and
their details. Also it displays the memory taken by the script and the time the page
is loaded in.

[689]

Debugging and Profiling

According to the PHP Debug website, DebugBar integrates easily in any application
project and displays debugging and profiling data from any part of the application.

Its installation is easy. You can either download the complete source code, place it
somewhere in your application, and set up the autoloader to load all the classes, or
use composer to install it. We will use composer as it is the easy and clean way to
install it.

Composer is a nice tool for PHP to manage the dependencies
of a project. It is written in PHP and is freely available from
https://getcomposer.org/. We assume that composer
is installed on your machine.

In your project's composer.json file, place the following code in the required section:

"maximebf/debugbar" : ">=1.10.0"

Save the file and then issue the following command:

composer update

The Composer will start updating the dependencies and install composer. Also, it will
generate the autoloader file and/or the other dependencies required for DebugBar.

The preceding composer command will only work if
composer is installed globally on the system. If it is not,
we have to use the following command:

php composer.phar update

The preceding command should be executed in the
folder where composer.phar is placed.

[690]

 Chapter 5

After it is installed, the project tree for the DebugBar can be as follows:

The directories' structure may be a little bit different, but normally, it will be as
we previously noted. The src directory has the complete source code for DebugBar.
The vendor directory has some third-party modules or PHP tools that may or may
not be required. Also, note that the vendor folder has the autoloader to autoload all
the classes.

Let's check our installation now to see whether it is working or not. Create a new file
in your project root and name it index.php. After this, place the following code in it:

<?php

require "vendor/autoloader.php";

use Debugbar\StandardDebugBar;

$debugger = new StandardDebugBar();

$debugbarRenderer = $debugbar->getJavascriptRenderer();

[691]

Debugging and Profiling

//Add some messages

$debugbar['messages']->addMessage('PHP 7 by Packt');

$debugbar['messages']->addMessage('Written by Altaf Hussain');

?>

<html>

<head>

<?php echo $debugbarRenderer->renderHead(); ?>

</head>

<title>Welcome to Debug Bar</title>

<body>

<h1>Welcome to Debug Bar</h1>

<!—- display debug bar here -->

<?php echo $debugbarRenderer->render(); ?>

</body>

</html>

In the preceding code, we first included our autoloader, which is generated
by composer for us to autoload all the classes. Then, we used the DebugBar\
StandardDebugbar namespace. After this, we instantiated two objects:
StandardDebugBar and getJavascriptRenderer. The StandardDebugBar object is
an array of objects that has objects for different collectors, such as message collectors
and others. The getJavascriptRenderer object is responsible for placing the required
JavaScript and CSS code at the header and displaying the bar at the bottom of the page.

We used the $debugbar object to add messages to the message collector. Collectors
are responsible for collecting data from different sources, such as databases, HTTP
requests, messages, and others.

In the head section of the HTML code, we used the renderHead method of
$debugbarRenderer to place the required JavaScript and CSS code. After this,
just before the end of the <body> block, we used the render method of the same
object to display the debug bar.

Now, load the application in the browser, and if you notice a bar at the bottom of
the browser as in the following screenshot, then congrats! DebugBar is properly
installed and is working fine.

[692]

 Chapter 5

On the right-hand side, we have the memory consumed by our application and the
time it is loaded in.

If we click on the Messages tab, we will see the messages we added, as shown in the
following screenshot:

DebugBar provides data collectors, which are used to collect data from different
sources. These are called base collectors, and some of the data collectors are as follows:

• The message collector collects log messages, as shown in the
preceding example

• The TimeData collector collects the total execution time as well as the
execution time for a specific operation

• The exceptions collector displays all the exceptions that have occurred

• The PDO collector logs SQL queries

• The RequestData collector collects data of PHP global variables,
such as $_SERVER, $_POST, $_GET, and others

• The config collector is used to display any key-value pairs of arrays

Also, there are some collectors that provide the ability to collect data from third-
party frameworks such as Twig, Swift Mailer, Doctrine, and others. These collectors
are called bridge collectors. PHP DebugBar can be easily integrated into famous PHP
frameworks such as Laravel and Zend Framework 2 too.

A complete discussion of PHP DebugBar is not possible in
this book. Therefore, only a simple introduction is provided

 here. PHP DebugBar has a nice documentation that provides
complete details with examples. The documentation can be
found at http://phpdebugbar.com/docs/readme.html.

[693]

http://phpdebugbar.com/docs/readme.html

Debugging and Profiling

Summary
In this chapter, we discussed different tools to debug a PHP application. We used
Xdebug, Sublime Text 3, and Eclipse to debug our applications. Then, we used the
Xdebug profiler to profile an application to find out the execution statistics. Finally,
we discussed PHP DebugBar to debug an application.

In the next chapter, we will discuss load testing tools, which we can use to place load
or virtual visitors on our application in order to load test it, and find out how much
load our application can bear, and how it affects the performance.

[694]

Stress/Load Testing

PHP Applications
After an application is developed, tested, debugged and then profiled, it is time
to bring it to production. However, before going to production, it is best practice
to stress/load test the application. This test will give us an approximate result of
how many requests at a certain time can be handled by our server running the
application. Using these results, we can optimize the application, web server,
database, and our caching tools to get a better result and process
more requests.

In this chapter, we will load test different open source tools on both PHP 5.6 and
PHP 7 and compare these applications' performance for both versions of PHP.

We will cover the following topics:

• Apache JMeter

• ApacheBench (ab)

• Seige

• Load testing Magento 2 on PHP 5.6 and PHP 7

• Load testing WordPress on PHP 5.6 and PHP 7

• Load testing Drupal 8 on PHP 5.6 and PHP 7

[695]

Stress/Load Testing PHP Applications

Apache JMeter
Apache JMeter is a graphical and open source tool used to load test a server's
performance. JMeter is completely written in Java, so it is compatible with all
operating systems that have Java installed. JMeter has a complete set of extensive
tools for every kind of load testing, from static content to dynamic resources and
web services.

Its installation is simple. We need to download it from the JMeter website and then
just run the application. As mentioned before, it will require Java to be installed on
the machine.

JMeter can test FTP servers, mail servers, database servers, queries,
and more. In this book, we can't cover all these topics, so we will only
load test web servers. Apache JMeter's list of features can be found at
http://jmeter.apache.org/.

When we run the application at first, we will see the following window:

[696]

http://jmeter.apache.org/

 Chapter 6

To run any kind of test, you need to first create a test plan. A test plan has all the
components required to execute this test. By default, JMeter has a test plan called
Test Plan. Let's name it to our own plan, Packt Publisher Test Plan, as shown
in the following screenshot:

Now, save the test plan, and JMeter we will create a .jmx file. Save it in an
appropriate place.

The next step is to add a thread group. A thread group defines some basic properties for
the test plan, which can be common among all types of tests. To add a thread group, right-
click on the plan in the left panel, then navigate to Add | Threads (Users) | Thread
Group. The following window will be displayed:

The thread group has the following important properties:

• Number of Threads: This is the number of virtual users.

• The Ramp-Up period: This tells JMeter how long it should take to ramp up
to the full capacity of the number of threads. For example, in the preceding
screenshot, we have 40 threads and 80 seconds of ramp-up time; here, J
Meter will take 80 seconds to completely fire up 40 threads, and it will take 2
seconds for each of the thread to start

[697]

Stress/Load Testing PHP Applications

• Loop Count: This tells JMeter how much time it should take to run this
thread group.

• Scheduler: This is used to schedule the execution of the thread group for a
later time.

Now, we will need to add the HTTP request defaults. Right-click on Packt Thread
Group and then go to Add | Config Element | HTTP Request Defaults. A window
similar to the following will appear:

In the preceding window, we have to just enter the URL of the application or the IP
address. If the web server uses cookies, we can add HTTP Cookie Manager too, in
which we can add user-defined cookies with all the data, such as the name, value,
domain, path, and so on.

Next, we will add an HTTP request by right-clicking and navigating to Packt Thread
Group | Add | Sampler | HTTP Request, and the following window will appear:

[698]

 Chapter 6

The important field here is Path. We want to run the test only against the home
page, so for this HTTP request, we will just add a slash (/) in the Path field. If we
want to test another path, such as "Contact us", we will need to add another HTTP
request sampler, as in the preceding screenshot. Then, in the path, we will add
path/contact-us.

The HTTP Request sampler can be used to test forms too, where POST requests
can be sent to the URL by selecting the POST method in the Method field. Also,
file upload can be simulated.

The next step is to add some listeners. Listeners provide some powerful views to display
results. The results can be displayed in a table view and different kinds of graphs can
be saved in a file. For this thread group, we will add three listeners: View Results
in Table, Response Time Graph, and Graph Results. Each listener view displays a
different kind of data. Add all the preceding listeners by right-clicking on Packt
Thread Group and then navigating to Add | Listeners. We will have a complete list
of all the available listeners. Add all the three listeners one by one. Our final Packt
Publisher Test Plan panel on the left-hand side of JMeter will look similar to the
following:

Now, we are ready to run our test plan by clicking on the Start button in the upper
tool bar, as shown in the following screenshot:

[699]

Stress/Load Testing PHP Applications

As soon as we click on the Start button (the green arrow pointing to the right-hand
side), JMeter will start our test plan. Now, if we click on the View Results in Table
listener on the left panel, we will see data for each request in a table, as shown in
the following screenshot:

The preceding screenshot shows some interesting data, such as sample time, status,
bytes, and latency.

Sample time is the number of milliseconds in which the server served the complete
request. Status is the status of the request. It can be either a success, warning, or
error. Bytes is the number of bytes received for the request. Latency is the number
of milliseconds in which JMeter received the initial response from the server.

[700]

 Chapter 6

Now, if we click on Response Time Graph, we will see a visual graph for the
response time, which is similar to the one that follows:

Now, if we click on Graph Results, we will see the response time data along with
graphs for average, median, deviation, and throughput graphs, as shown in the
following graph:

[701]

Stress/Load Testing PHP Applications

Apache JMeter provides very powerful tools to load test our web servers by
simulating users. It can provide us with data regarding the amount of load that
makes our web server's response slow, and using this data, we can optimize
our web server and application.

ApacheBench (ab)
ApacheBench (ab) is also provided by Apache and is a command-line tool. It is a
lovely tool for command line lovers. This tool is normally installed on most Linux
flavors by default. Also, it is installed with Apache, so if you have Apache installed,
you will probably have ab installed too.

The basic syntax for an ab command is as follows:

ab –n <Number_Requests> -c <Concurrency> <Address>:<Port><Path>

Let's discuss what each part of the preceding command means:

• n: This is the number of requests for test.

• c: This is concurrency, which is the number of simultaneous requests
at a time.

• Address: This is either the application URL or IP address of the web server.

• Port: This is the port number at which the application is running.

• Path: This is the web path of the application that we can use to test. A slash
(/) is used for the home page.

Now, let's conduct a test using the ab tool by issuing the following command:

ab –n 500 –c 10 packtpub.com/

As the default port for the web server is 80, it is not required to mention it. Note the
slash at the end; this is required to place it there because it is the path's part.

[702]

 Chapter 6

After executing the preceding command, we will have an output that looks similar to
the following:

We can see some useful information here, including the number of requests per
second, which is 490.3; the total time taken for the test, which is 1.020 seconds;
the shortest request, which is 20 ms; and the longest request, which is 52 ms.

The server load limit can be found by increasing the number of requests and
concurrency level and checking the web server's performance.

[703]

Stress/Load Testing PHP Applications

Siege
Siege is another command-line open source tool to test load and performance. Siege
is an HTTP/FTP load tester and benchmarking utility. It is designed for developers
and administrators to measure the performance of their applications under load.
It can send a configurable number of simultaneous requests to a server and those
requests that place the server under a siege.

Its installation is simple and easy. For Linux and Mac OS X, first download Siege by
issuing the following command in the terminal:

wget http://download.joedog.org/siege/siege-3.1.4.tar.gz

It will download the Siege TAR compressed file. Now, uncompress it by issuing the
following command:

tar –xvf siege-3.1.4.tar.gz

Now, all the files will be in the siege-3.1.4 folder. Build and install it by issuing the
following commands one by one in the terminal:

cd siege-3.1.4

./configure

make

make install

Now, Siege is installed. To confirm this, issue the following command to check the
Siege version:

siege –V

If it displays the version with some other information, then Siege is installed
successfully.

As of writing this book, the current Siege stable version is 3.1.4. Also,

 Siege does not support Windows natively, and, of course, Windows
servers can be tested and benchmarked using Siege.

Now, let's have a load test. A basic load test can be executed by running the
following command:

siege some_url_or_ip

[704]

http://download.joedog.org/siege/siege-3.1.4.tar.gz

 Chapter 6

Siege will then start the test. We have to enter the application URL or server IP that
we want to load test. To stop the test, press Ctrl + C, and we will have an output
similar to the following:

In the preceding screenshot we can see Transactions, Response time, and
Transaction rate along with Longest transaction and Shortest transaction.

By default, Siege creates 15 concurrent users. This can be changed by using the –c
option, which is done by making the following alteration in the command:

siege url_or_ip –c 100

However, Siege has a limitation for the concurrent users, which may be different for
each OS. This can be set in the Siege configuration file. To find out the config file
location and concurrent user limit, issue the following command in terminal:

siege -C

A list of the configuration options will be displayed. Also the resource file or config
file location will be displayed. Open that file and find the config concurrent and set
its value to an appropriate required value.

[705]

Stress/Load Testing PHP Applications

Another important feature of Siege is that a file that has all the URLs that need to be
tested can be used. The file should have a single URL in each line. The –f flag is used
with Siege as follows:

siege -f /path/to/url/file.txt –c 120

Siege will load the file and start load testing each URL.

Another interesting feature of Siege is the internet mode, which can be entered using
the –i flag in the following command:

siege –if path_to_urls_file –c 120

In the internet mode, each URL is hit randomly and mimics a real-life situation, in
which it can't be predicted which URL will be hit.

Siege has lots of useful flags and features. A detailed list can be found

 in the official documentation at https://www.joedog.org/siege-
manual/.

Load testing real-world applications
We studied three tools in this chapter to load test. Now, it is time to load test some
real-world applications. In this section, we will test Magento 2, Drupal 8, and
WordPress 4. All these open source tools will have their default data.

We have three VPS configured with NGINX as the web server. One VPS has PHP
5.5-FPM, the second has PHP 5.6-FPM, and the third has PHP 7-FPM installed. The
hardware specs for all the three VPS are same, and all applications we will test will
have the same data and the same versions.

This way, we will benchmark these applications with PHP 5.5, PHP 5.6, and PHP 7
and take a look at how fast these applications can run on different versions of PHP.

In this topic, we won't cover configuring the servers with NGINX, PHP,

 and the databases. We will assume that the VPS are configured and that
Magento 2, Drupal 8, and WordPress 4 are installed on them.

[706]

http://www.joedog.org/siege-

 Chapter 6

Magento 2
Magento 2 is installed on all VPS, and all the caches are enabled for Magento. PHP
OPcache is also enabled. After running the tests, we got an average result for all the
three Magento 2 installations, as shown in the following graphs:

In the preceding chart, the vertical line, or Y-axis, shows the transactions per
second. As can be seen in the charts, Magento 2 on PHP 7 has 29 transactions per
second, while the same Magento 2 installation on the same hardware with PHP 5.6
has 12 transactions per second. Also, on PHP 5.5, the same Magento installation
has 9 transactions per second. So, in this case, Magento runs about 241% faster on
PHP 7 than PHP 5.6 and about 320% faster than in PHP 5.5. This is a very huge
improvement of PHP 7 on both PHP 5.6 and PHP 5.5.

[707]

Stress/Load Testing PHP Applications

WordPress 4
WordPress is installed on all of the three VPS. Unfortunately, there is no default
cache embedded into WordPress, and we will not install any third-party modules,
so no cache is used. The results are still good, as can be seen in the following graphs.
PHP OPcache is enabled.

As can be seen in the preceding graph, WordPress runs 135% faster in PHP 7 than in
PHP 5.6 and 182% faster than in PHP 5.5.

[708]

 Chapter 6

Drupal 8
We used the same VPS for PHP 5.5, PHP 5.6, and PHP 7. The default Drupal 8
cache is enabled. After load testing the default home of Drupal 8, we got the
following results:

The preceding graph shows that Drupal 8 runs 178% faster in PHP 7 than in PHP 5.6
and 205% faster than in PHP 5.5.

In the preceding graphs, all these values are approximate values. If a
low-power hardware is used, then smaller values will be generated.
If we use a more powerful multiprocessor-dedicated server with the
web server and database optimizations, we will get higher values. The
point to consider is that we will always get better performance for PHP
7 than PHP 5.6.

[709]

Stress/Load Testing PHP Applications

A combined graph is shown here, which displays the performance improvements for
different applications in PHP 7 over PHP 5.5 and PHP 5.6:

Summary
In this chapter, we discussed a few load testing and benchmarking tools, such as
JMeter, ApacheBench (ab), and Siege. We used each tool to load test, and discussed
the output and what it means. Finally, we load tested three famous open source
applications, Magento 2, WordPress 4, and Drupal 8, and created graphs for each
application's transactions per second in both PHP 7 and PHP 5.6.

In the next chapter, we will discuss best practices for PHP development. These
practices are not limited only to PHP and can be used for any programming language.

[710]

Best Practices in

PHP Programming
So far, we discussed performance-related topics. Now, in this chapter, we will study
best practices in PHP applications' development and deployment. This is a vast topic,
but we will cover it briefly. PHP provides all levels of programmers with the ability
to write quality code easily and quickly. However, when the application advances
to a more complex nature, we forget to follow the best practices. To produce a high
performance PHP application, it is necessary to keep in mind the performance at
every line of the code.

We will cover the following topics:

• Coding styles

• Design patterns

• Service-oriented architecture (SOA)

• Test-driven development (TDD) and PHPUnit testing

• PHP frameworks

• Version control systems and Git

• Deployment

[711]

Best Practices in PHP Programming

Coding styles
There are too many coding styles out there, such as PSR-0, PSR-1, PSR-2, PSR-3, and
so on. Programmers can use different standards as they want, but it is necessary
to follow a standard that is already used in the libraries or a framework in use
to make the code more readable. For example, Laravel uses the PSR-1 and PSR-4
coding standards, so if we are developing in Laravel, we should follow these coding
standards. Some PHP frameworks, such as Yii 2 and Zend Framework 2, follow
the PSR-2 coding standards. However, none of these frameworks stick to a single
standard; most of them follow a mixed standard according to their requirements.

The important point is to follow the standard that is used in the libraries used in
the application. An organization can also use its own coding standards for internal
purposes. It is not a requirement for coding; it is a requirement for readability and
producing quality code that others can understand.

PHP Framework Interop Group (PHP-FIG) is a group whose members defined
coding standards for PHP. Full details about PSR standards can be found on their
website at http://www.php-fig.org/.

Instead of discussing a specific coding standard, let's discuss best practices in coding
styles for PHP:

• The first letter of each word in the class name must be capital. The opening
brace should be on the line after the class declaration, and the closing brace
should be on the line after the class end line. Here's an example:

class Foo

{

…

…

…

}

• Class methods and function names should follow the camel case naming
convention. The starting braces should be on the next line of the class
declaration, and the end brace should be on the line at the end of the function
definition. There should be no spaces between the method name and the
parenthesis. Also, there should be no space between the first argument, the
opening parenthesis, the last argument, and the closing parenthesis. Also,
there should be no space between an argument and the comma at the end of
this argument, but there should be a space between a comma and the next
argument. Here's an example:

public function phpBook($arg1, $arg2, $arg3)

{

[712]

http://www.php-fig.org/

 Chapter 7

…

…

…

}

• If there is a namespace declaration, there must be a single empty line after
its declaration. If there are use declarations, all of them must go after that
namespace's declarations. There must be one use declaration per line, and
there must be a space after the use block. Also, the extends and implements
keywords must be on the same line as the class declaration. Here's an example:

namespace Packt\Videos;

use Packt\Books;

use Packt\Presentations;

class PacktClass extends VideosClass implements BaseClass

{

…

…

…

}

• Visibility must be declared for all properties, and the properties must be in
camel case. Also, properties must not be prepended with an underscore for
private or protected visibilities. Take a look at the following example:

class PacktClass

{

public $books;

private $electronicBooks;

…

…

…

}

• If there is an abstract keyword, it must come before the class keyword
for classes, and the final keyword must come before the method's visibility
in the case of methods. On the other hand, the static keyword must come
after the method visibility. Take a look at this example:

abstract class PacktClass

{

final public static function favoriteBooks()

{

…

[713]

Best Practices in PHP Programming

…

…

}

}

• All PHP keywords must be used in lowercase, including the true and false
keywords. Constants must be declared and used in capital case.

• For all control structures, there must be a space after the control structure
keyword. If there is an expression for this control structure, there must be no
space between the parenthesis holding this expression and the block of code
that follows. There must be a space after the parenthesis and the starting
brace. The starting brace must be on the same line as the control structure.
The closing brace must be on the line after the end of the body. Refer to the
following code for a better understanding:

if ($book == "PHP 7") {

…

…

…

} else {

…

…

…

}

• In the case of loops, the spaces must be as in the following examples:

for ($h = 0; $h < 10; $h++) {

…

…

…

}

foreach ($books as $key => $value) {

…

…

…

}

while ($book) {

…

…

…

}

[714]

 Chapter 7

For the purpose of this book, I did not follow the rule of the opening brace being on
the same line as the control structure declaration and always used it on the next line
of the declaration. I did not find it clearer; it is a personal choice, and anybody can
follow the standards mentioned here.

Standards are good to follow as they make the code more readable and professional.
However, never try to invent your own new standards; always follow those that are
already invented and followed by the community.

Test-driven development (TDD)
Test-driven development is the process of testing every aspect of the application
during development. Either the tests are defined before development and then
development is made to pass these tests, or the classes and libraries are built and
then tested. Testing the application is very important, and launching an application
without tests is like jumping from a 30-floor-high building without a parachute.

PHP does not provide any built-in features to test, but there are other test
frameworks that can be used for this purpose. One of most widely used frameworks
or libraries is PHPUnit. It is a very powerful tool and provides lots of features. Now,
let's have a look at it.

The installation of PHPUnit is easy. Just download it and place it in your project root
so that it can be accessed from the command line.

PHPUnit installation and basic details, including features and examples,
can be found at https://phpunit.de/.

Let's have a simple example. We have a Book class, as follows:

class Book

{

public $title;

public function construct($title)

{

$this->title = $title;

}

public function getBook()

{

return $this->title;

}

}

[715]

Best Practices in PHP Programming

This is an example of a simple class that initializes the title property when the class
is instantiated. When the getBook method is called, it returns the title of the book.

Now, we want to make a test in which we will check whether the getBook method
returns PHP 7 as a title. So, perform the following steps to create the test:

1. Create a tests directory at your project's root. Create a BookTest.php file in
the tests directory.

2. Now, place the following code in the BookTest.php file:

include (DIR .'/../Book.php');

class BookTest extends PHPUnit_Framework_TestCase

{

public function testBookClass()

{

$expected = 'PHP 7';

$book = new Book('PHP 7');

$actual = $book->getBook();

$this->assertEquals($expected, $book);

}

}

3. Now, we have written our first test. Note that we named our class BookTest,
which extends the PHPUnit_Framework_TestCase class. We can name
our test class whatever we want. However, the name should be easily
recognizable so that we know this is written for the class that needs
to be tested.

4. Then, we added a method named testBookClass. We are also free to select
whatever name we want to give to this method, but it should start with the
word test. If not, PHPUnit will not execute the method and will issue a
warning—in our case, for the preceding test class—that no tests were found.

In the testBookClass method, we created an object of the Book class and
passed PHP 7 as our title. Then, we fetched the title using the getBook
method of the Book class. The important part is the last line of the
testBookClass method, which performs the assertion and checks
whether the data returned from getBook is the desired data or not.

5. Now, we are ready to run our first test. Open the command line or terminal
in the root of the project and issue the following command:

php phpunit.phar tests/BookTest.php

[716]

 Chapter 7

When the command is executed, we will have an output similar to the
following screenshot:

Our test is executed successfully as it met the criteria defined in our test.

6. Now, let's change our class a little bit and pass PHP to the Book class, as
shown in the following code:

public function testBookClass()

{

$book = new Book('PHP');

$title = $book->getBook();

$this->assertEquals('PHP 7', $book);

}

7. Now, we are looking for PHP 7, and our Book class returns PHP, so it does not
pass our test. After executing this test, we will have a failure, as shown in the
following screenshot:

[717]

Best Practices in PHP Programming

As seen in the preceding screenshot, we expected PHP 7, and we got an
actual result of PHP 7. The – sign shows the expected value, and the + sign
shows the actual value.

In the previous topic, we discussed how we can perform tests on
our libraries. We only discussed a simple basic test. PHPUnit is not

 limited to these simple tests, but covering PHPUnit completely is out
of the scope of this book. A very nice book on PHPUnit is PHPUnit
Essentials, published by Packt Publishing.

Design patterns
A design pattern solves a specific problem. It is not a tool; it is just a description
or template that describes how to solve a specific problem. Design patterns are
important, and they play a good role in writing clean and clear code.

One of the most widely used design patterns in the PHP community is the Model
View Controller (MVC) pattern. Most PHP frameworks are built upon this pattern.
MVC advises you to keep the business logic and data operations (that is, the
model) separate from the presentation (the view). Controllers just play the role of a
middleman between models and views and make the communication between them
possible. There is no direct communication between models and views. If a view
needs any kind of data, it sends a request to the controller. The controller knows
how to operate on this request and, if needed, make a call to the model to perform
any operation on the data (fetch, insert, validate, delete, and so on). Then at last,
the controller sends a response to the view.

In best practices, fat models and skinny controllers are used. This means that
controllers are only used to take a specific action on a request and nothing else. Even
in some modern frameworks, the validation is moved out of the controllers and is
performed at the model level. These models perform all the operations on the data.
In modern frameworks, models are considered as a layer, which can have multiple
parts, such as the business logic, Create Read Update Delete (CRUD) database
operations, data mapper pattern and services, and so on. So, a full load of models
and controllers is just sitting there and enjoying the lazy work load.

Another widely used design pattern is the factory design pattern. This pattern
simply creates objects that are needed to be used. Another good pattern is the
observer pattern, in which an object calls different observers on a specific event or
task on it. This is mainly used for event handling. Yet another widely used pattern is
the singleton pattern, which is used when there is a requirement that only a single
object of a class be used throughout the application's execution. A singleton object
can't be serialized and cloned.

[718]

 Chapter 7

Service-oriented architecture (SOA)
In service-oriented architecture, the application's components provide services to each
other on a defined protocol. Each component is loosely coupled with each other, and
the only way of communication between them is through the services they provide.

In PHP, Symfony provides the best way to have SOA as it is mainly an HTTP-centric
framework. Symfony is the most mature, well-tested collection of libraries that
are widely used by other PHP frameworks, such as Zend Framework, Yii, Laravel,
and others.

Let's consider a scenario where we have a backend and a frontend for a website and
a mobile application. Normally, in most applications, the backend and frontend run
on the same code base and on a single access point, and an API or web service is built
for mobile applications to communicate with this backend. It is good, but we need
great. So, for high performance and scalable applications, the separate components
run independently of each other. If they need to communicate with each other, they
communicate through the web services.

Web services are the central communication point between the frontend and
backend and between the backend and mobile applications. The backend is the
main hub of data and any other business logic. It can be standalone and built using
any programming language, such as PHP. The frontend can be built using normal
HTML/CSS, AngularJS, Node.js, jQuery, or any other technology for the frontend.
Similarly, mobile apps can be native or built on cross-platform technologies. The
backend doesn't care what the frontend and mobile apps are built on.

Being object-oriented and reusable

always
This may seem difficult for a small, single-page application in which only a few
things are happening, but this is not the case. The classes are easy to handle, and the
code is always clear. Also, the classes separate the application logic from the views.
This make things more logical. In the earlier days when structure code was used and
a bunch of functions had to be created either in the view files or in a separate file,
this would have been too easy. However, when applications got more complex,
it got more difficult to handle.

Always try to create loosely coupled classes to make them more reusable in other
applications. Also, always perform a single task in each method of the class.

[719]

Best Practices in PHP Programming

PHP frameworks
We all know about frameworks, and they are not essential to a programmer's life.
There are lots of frameworks, and each framework has its own superiority over other
frameworks in some features. All frameworks are good, but what make a framework
not suitable for an application are the application's requirements.

Let's say that we want to build an enterprise-level CRM application, which
framework will suit us best? This is the most important, confusing, and time-wasting
question. First, we need to know the complete requirements for the CRM application,
usage capacity, features, data security, and performance.

Version control system (VCS) and Git
Version controller system provides the flexibility to properly maintain code, changes,
and versions of the application. Using VCS, a complete team can work together on an
application, and they can pull other team members' changes and their own changes
to the system without any big troubles. In case of a disaster, VCS provides the ability
to fall back to an old, more stable version of the application.

Oh wait! Are we talking about VCS? Did we mention Git? Nope! So, let's start
with Git.

Git is a powerful tool. It monitors changes in each file in a branch, and when pushed
to a remote branch, only the changed files are uploaded. Git keeps a history of the
file changes and provides you with the ability to compare the changed files.

A very informative and good book on Git is Git Essentials published by

 Packt Publishing. Also, an official and free book about Git can be found at
https://git-scm.com/book/en/v2.

Deployment and Continuous Integration

(CI)
FTP is obsolete. It is not feasible for today, it makes things slow, and a normal
FTP connection is insecure. It is hard for a team to deploy their changes using FTP
because it creates huge conflicts in their code and this may cause problems, while
uploading changes and can override each other's changes.

[720]

 Chapter 7

Using a Git versioning system, such as GitHub, GitLab, and Bitbucket, we can make
our deployment automatic. Different developers use different setups for automatic
deployments, and it all depends on their own choice and ease. The general rules of
using automatic deployments are to make them easy for a team and to not use FTP.

The following is a general flowchart for a deployment setup:

As shown in the preceding flowchart, we have two servers: the staging or testing
the server and production server. On the staging server, we have an exact copy
of the website to test new features and others, and the production server has our
live website.

Now, we have a repository that has two main branches: the master branch and the
production branch. The master branch is used for development and testing purposes,
and the production branch is used for final production features. Note that the
production branch should only accept merging, and it should not accept commits
so that the production environment is completely safe.

Now, let's say that we want to add a customer registration feature to our application.
We will perform the following steps:

1. The first and most important thing to do is to create a new branch from the
production branch head. Let's name this branch customer-registration.

2. Now, add all the new features to this customer-registration branch and
while verifying on the local development server, merge this branch to the
local master branch.

3. After merging the new branch to the local master branch, push the master
branch to remote master branch. A successful push will cause the new
features to be moved to the staging server.

4. Now, test all the new features on the staging server.

[721]

Best Practices in PHP Programming

5. When everything works fine, merge the remote master branch with the
remote production branch. This will cause all the changes to be moved to
the production branch, and this merge will cause all the new changes to be
moved to the production server.

6. An ideal setup similar to the preceding one makes deployment very
easy, and a complete team can work on the application regardless of the
geographical location. In case any issue occurs during the deployment,
one can be easily fall back to the old version of the production branch.

Continuous Integration (CI) is a technique in which all the members of a team
have to integrate their code into a shared repository, and then each check by the
team member is verified by automatic builds to catch errors and problems in
the early stages.

There are several tools that are used for CI for PHP; some of these are PHPCI,
Jenkins, Travis CI, and others.

Summary
In this chapter, we discussed a few best practices, including coding standards and
styles, PHP frameworks, design patterns, Git, and deployment. Also, we discussed
the PHPUnit framework to test classes and libraries against tests. Also, we discussed
Service-oriented design, which plays a major role in creating APIs for applications.

In this book, we studied setting up development environments, including Linux
servers, specifically Debian and Ubuntu, and we also discussed Vagrant. The new
features of PHP are also listed with sample codes. You read in detail about the tools
that we can use to improve the performance of an application and a database. Also,
we discussed debugging and stress or load testing our applications and some best
practices of writing quality code.

We mostly summarized the tools and techniques with simple examples to introduce
the reader to these tools and techniques. There is a good chance that each tool and
technique has its own book written for a more advanced usage. We recommend you
follow up on these tools and techniques and conduct more research for their advance
usage. Good luck Php-ing!

[722]

Tools to Make Life Easy
We covered many things in this book, starting with new features in PHP 7
and ending with the best techniques in programming. In each chapter, we used
and talked about some tools, but due to the finite length of chapters and the book,
we did not go too much in detail for these tools. In this appendix, we will discuss
three of these tools in much more detail. The tools we will to discuss are as follows:

• Composer

• Git

• Grunt watch

So, let's start.

Composer – A dependency manager

for PHP
Composer is a dependency management tool for PHP that enables us to define
dependencies for a PHP application, and Composer installs/updates them. Composer
is completely written in PHP and is an application in the PHP Archive (PHAR) format.

Composer downloads dependencies from https://packagist.
org/. Any dependency for an application can be installed through

 Composer as long as it is available on Packagist. Also, complete
applications can be installed through Composer if they are
available at Packagist.

[723]

Tools to Make Life Easy

Composer installation
Composer is a command line tool and can be installed globally in the operating
system, or the composer.phar file can be placed in the root of the application and
then executed from the command line. For Windows, an executable setup file is
provided, which can be used to install Composer globally. For this book, we will
follow the instructions for Debian/Ubuntu globally. Perform the following steps:

1. Issue the following command to download the Composer installer. The file
name is installer and can only be executed with PHP once installed via
the following code:

Wget https://getcomposer.org/installer

2. Issue the following command to install it globally on Debian or Ubuntu:

Php install --install-dir=/usr/local/bin --filename=composer

This command will download Composer and will install it in the /usr/
local/bin directory with the file name composer. Now, we will be able
to run Composer globally.

3. Verify the Composer installation by issuing the following command in
the terminal:

Composer --version

If the Composer version is displayed, then Composer is successfully
installed globally.

If Composer is installed locally to an application, then we will
have a composer.phar file. The commands are the same, but all
the commands should be executed with PHP. For example, php
composer.phar --version will display the Composer version.

Now, Composer is installed successfully and is working; it's time to use it.

Using Composer
To use Composer in our project, we will need a composer.json file. This file
contains all the dependencies required for the project and some other metadata.
Composer uses this file to install and update different libraries.

[724]

 Appendix A

Let's assume that our application needs to log different information in different ways.
For this, we can use the monolog library. First, we will create a composer.json file in
the root of our application and add the following code to it:

{

"require": {

"monolog/monolog": "1.0.*"

}

}

After saving the file, execute the following command to install the dependencies of
the application:

Composer install

This command will download the dependencies and place them in the vendor
directory, as can be seen in the following screenshot:

As can be seen in the preceding screenshot, monolog version 1.0.2 is downloaded,
and a vendor directory is created. The monolog library is placed in this directory.
Also, if a package has to autoload information, then Composer places the library in
the Composer autoloader, which is also placed in the vendor directory. So, any new
libraries or dependencies will be autoloaded automatically during the application's
execution.

Also a new file can be seen, which is composer.lock. When Composer downloads
and installs any dependencies, the exact version and other information is written to
this file to lock the application to this specific version of dependencies. This ensures
that all the team members or whoever wants to set up the application will use the
exact same version of the dependencies, and thus, it will reduce the chances of using
different versions of dependencies.

[725]

Tools to Make Life Easy

Nowadays, Composer is widely used for package management. Big open source
projects such as Magento, Zend Framework, Laravel, Yii, and many others are easily
available for installation through Composer. We will install some of these in the next
appendix using Composer.

Git – A version control system
Git is the most widely used version control system. According to the Git official
website, it is a distributed version control system capable of handling everything
from small- to large-sized projects with speed and efficiency.

Git installation
Git is available for all major operating systems. For Windows, an executable setup
file is provided that can be used to install Git and use it in the command line. On OS
X, Git comes already installed, but if it is not found, it can be downloaded from their
official website. To install Git on Debian/Ubuntu, just issue the following command
in the terminal:

sudo apt-get install git

After installation, issue the following command to check whether it is
properly installed:

git –version

Then, we will see the current installed version of Git.

Using Git
For a better understanding of Git, we will start with a test project. Our test project
name is packt-git. For this project, we also created a GitHub repository named
packt-git, where will push our project files.

First, we will initialize Git in our project by issuing the following command:

git init

The preceding command will initialize an empty Git repository in our project root
directory, and the head will be kept on the master branch, which is the default
branch for every Git repository. It will create a hidden .git directory that will
contain all the information about the repository. Next, we will add a remote
repository that we will create on GitHub. I created a test repository at GitHub
that has the URL https://github.com/altafhussain10/packt-git.git.

[726]

 Appendix A

Now, issue the following command to add the GitHub repository to our
empty repository:

git remote add origin https://github.com/altafhussain10/packt-git.git

Now, create a README.md file at your project root and add some content to it. The
README.md file is used to display the repository information and other details about
the repository at Git. This file is also used to display instructions regarding how to
use the repository and/or the project for which this repository is created.

Now, issue the following command to see the status of our Git repository:

git status

This command will display the status of the repository, as can be seen in the
following screenshot:

As can be seen in the preceding screenshot, we have an untracked file in our
repository that is not committed yet. First, we will add the files to be tracked
by issuing the following command in the terminal:

git add README.md

The git add command updates the index using the current contents found in the
working tree. This command adds all the changes made to the path. There are some
options that can be used to add some specific changes. The previous command we
used will only add the README.md file to the track in the repository. So, if we want
to track all the files, then we will use the following command:

git add

[727]

Tools to Make Life Easy

This will start tracking all the files in the current working directory or at the root of
the current branch. Now, if we want to track some specific files, such as all files with
the .php extension, then we can use it as follows:

git add '*.php'

This will add all the files with the .php extension to track.

Next, we will commit changes or additions to our repository using the following
command:

git commit –m "Initial Commit"

The git commit command commits all the changes to the local repository.
The -m flag specifies any log message to commit. Remember that the changes
are only committed to the local repository.

Now, we will push the changes to our remote repository using the following
command:

git push –u origin master

The preceding command will push all the changes from the local repository to the
remote repository or origin. The -u flag is used to set the upstream, and it links our
local repo to our remote central repo. As we pushed our changes for the first time,
we have to use the -u option. After this, we can just use the following command:

git push

This will push all the changes to the main repository of the current branch at which
we are.

Creating new branches and merging
New branches are always required during development. If any kind of changes
are required, it is good to create a new branch for these changes. Then, make all the
changes on this branch and finally commit, merge, and push them to the remote origin.

To better understand this, let's suppose we want to fix an issue in the login page. The
issue is about validation errors. We will name our new branch login_validation_
errors_fix. It is good practice to give a more understandable name to branches.
Also, we would like to create this new branch from the master branch head. This
means that we want the new branch to inherit all the data from the master branch.
So, if we are not at the master branch, we have to use the following command to
switch to the master branch:

git checkout master

[728]

 Appendix A

The preceding command will switch us to the master branch no matter which branch
we are at. To create the branch, issue the following command in the terminal:

git branch login_validation_errors_fix

Now, our new branch is created from the master branch head, so all the changes
should be made to this new branch. After all the changes and fixes are done, we have
to commit the changes to the local and remote repositories. Note that we did not
create the new branch in our remote repository. Now, let's commit the changes using
the following command:

git commit -a -m "Login validation errors fix"

Note that we did not use git add to add the changes or new additions. To
automatically commit our changes, we used the -a option in commit, which will
add all the files automatically. If git add is used, then there is no need to use the -a
option in commit. Now, our changes are committed to the local repository. We will
need to push the changes to the remote origin. Issue the following command in the
terminal:

git push -u origin login_validation_errors_fix

The preceding command will create a new branch at the remote repository, set the
tracking of the same local branch to the remote branch, and push all the changes to it.

Now, we want to merge the changes with our master branch. First, we need to
switch to our master branch using the following command:

git checkout master

Next, we will issue the following commands to merge our new branch login_
validation_errors_fix with the master branch:

git checkout master

git merge login_validation_errors_fix

git push

It is important to switch to the branch to which we want to merge our new branch.
After this, we need to use the git merge branch_to_merge syntax to merge this
branch with the current branch. Finally, we can just push to the remote origin. Now,
if we take a look at our remote repository, we will see the new branch and also the
changes in our master branch.

[729]

Tools to Make Life Easy

Cloning a repository
Sometimes, we need to work on a project that is hosted on a repository. For this,
we will first clone this repository, which will download the complete repository to
our local system, and then create a local repository for this remote repository. The
rest of the working is the same as we discussed before. To clone a repository, we
should first know the remote repository web address. Let's say that we want to clone
the PHPUnit repository. If we go to the GitHub repository for PHPUnit, we will
see the web address of the repository at the upper right-hand side, as shown in the
screenshot that follows:

The URL just after the HTTPS button is the web address for this repository.
Copy this URL and use the following command to clone this repository:

git clone https://github.com/sebastianbergmann/phpunit.git

This will start downloading the repository. After it is completed, we will have a
PHPUnit folder that will have the repository and all its files. Now, all the operations
mentioned in the preceding topics can be performed.

Webhooks
One of the most powerful features of Git is webhooks. Webhooks are events that
are fired when a specific action occurs on the repository. If an event or hook for
the Push request is made, then this hook will be fired every time a push is made
to this repository.

To add a webhook to a repository, click on the Settings link for the repository in
the upper right-hand side. In the new page, on the left-hand side, we will have
a Webhooks and Services link. Click on it, and we will see a page similar to
the following one:

[730]

 Appendix A

As can be seen in the preceding screenshot, we have to enter a payload URL, which
will be called every time our selected event is fired. In Content type, we will select
the data format in which the payload will be sent to our URL. In the events section,
we can select whether we want only push events or all the events; we can select
multiple events for which we want this hook to be fired. After saving this hook,
it will be fired every time the selected event occurs.

Webhooks are mostly used for deployment. When the changes are pushed and if
there is a webhook for the push event, the specific URL is called. Then, this URL
executes some command to download the changes and processes them on the
local server and places them at the appropriate place. Also, webhooks are used
for continues integration and to deploy to cloud services.

[731]

Tools to Make Life Easy

Desktop tools to manage repositories
There are several tools that can be used to manage Git repositories. GitHub provides
its own tool called GitHub Desktop that can be used to manage GitHub repositories.
This can be used to create new repositories, see the history, and push, pull, and
clone repositories. It provides every feature that we can use in the command line.
The screenshot that follows shows our test packt-git repository:

GitHub Desktop can be downloaded from https://desktop.
github.com/ and is available for Mac and Windows only. Also,

 GitHub Desktop can be only used with GitHub unless some hacks
are used to make it work with other repositories, such as GitLab
or Bitbucket.

Another powerful tool is SourceTree. SourceTree can be used with GitHub, GitLab,
and Bitbucket easily. It provides complete features to manage repositories, pull,
push, commit, merge, and other actions. SourceTree provides a very powerful and
beautiful graph tool for the branches and commits. The following is a screenshot
for SourceTree that is used to connect with our packt-git test repository:

[732]

 Appendix A

Besides the previous two nice tools, every development IDE provides version control
systems with full support and also provides features such as different colors for
modified and newly added files.

Git is a powerful tool; it can't be covered in this appendix. There are
several books available, but Git Book is a very good place to start.
This can be downloaded in different formats from https://git-
scm.com/book/en/v2 or can be read online.

Grunt watch
We studied Grunt in Chapter 3, Improving PHP 7 Application Performance. We only
used it to merge CSS and JavaScript files and minify them. However, Grunt is not
used only for this purpose. It is a JavaScript task runner, which can run tasks either
by watching specific files for changes or by manually running tasks. We studied
how we can run tasks manually, so now we will study how to use grunt watch to
run specific tasks when some changes are made.

[733]

Tools to Make Life Easy

Grunt watch is useful and saves a lot of time because it runs the specific tasks
automatically instead of running the tasks manually every time we change something.

Let's recall our examples from Chapter 3, Improving PHP 7 Application Performance.
We used Grunt to combine and compress CSS and JavaScript files. For this purpose,
we created four tasks. One task was combining all CSS files, the second task was
combining all JavaScript files, the third task was compressing the CSS files, and the
fourth task was compressing all JavaScript files. It will be very time consuming if we
run all these tasks manually every time we make some changes. Grunt provides a
feature called watch that watches different destinations for file changes, and if any
change occurs, it executes the tasks that are defined in the watch.

First, check whether the grunt watch module is installed or not. Check the
node_modules directory and see whether there is another directory with the name
grunt-contrib-watch. If this directory is there, then watch is already installed.
If the directory is not there, then just issue the following command in the terminal
at the project root directory where GruntFile.js is located:

npm install grunt-contrib-watch

The preceding command will install Grunt watch and the grunt-contrib-watch
directory will be available with the watch module.

Now, we will modify this GruntFile.js file to add the watch module, which will
monitor all the files in our defined directories, and if any changes occur, it will
run these tasks automatically. This will save a lot of time in manually executing
these tasks again and again. Look at the following code; the highlighted code is
the modified section:

module.exports = function(grunt) {

/*Load the package.json file*/

pkg: grunt.file.readJSON('package.json'),

/*Define Tasks*/

grunt.initConfig({

concat: {

css: {

src: [

'css/*' //Load all files in CSS folder

],

file.

dest: 'dest/combined.css' //Destination of the final combined

js: {

},//End of CSS

src: [

'js/*' //Load all files in js folder

[734]

 Appendix A

],

dest: 'dest/combined.js' //Destination of the final combined

file.

}, //End of js

}, //End of concat

cssmin: {

css: {

src : 'dest/combined.css',

dest : 'dest/combined.min.css'

}

}, //End of cssmin

uglify: {

js: {

files: {

'dest/combined.min.js' : ['dest/combined.js']//destination

Path : [src path]

}

}

}, //End of uglify

//The watch starts here

watch: {

mywatch: {

files: ['css/*', 'js/*', 'dist/*'],

tasks: ['concat', 'cssmin', 'uglify']

},

},

}); //End of initConfig

grunt.loadNpmTasks('grunt-contrib-watch'); //Include watch module

grunt.loadNpmTasks('grunt-contrib-concat');

grunt.loadNpmTasks('grunt-contrib-uglify');

grunt.loadNpmTasks('grunt-contrib-cssmin');

grunt.registerTask('default', ['concat:css', 'concat:js',

'cssmin:css', 'uglify:js']);

}; //End of module.exports

In preceding highlighted code, we added a watch block. The mywatch title can be
any name. The files block is required, and it takes an array of the source paths.
The Grunt watch watches for changes in these destinations and executes the tasks
that are defined in the tasks block. Also, the tasks that are mentioned in the tasks
block are already created in GruntFile.js. Also, we have to load the watch module
using grunt.loadNpmTasks.

[735]

Tools to Make Life Easy

Now, open the terminal at the root of the project where GruntFile.js is located and
run the following command:

grunt watch

Grunt will start watching the source files for changes. Now, modify any file in the
paths defined in the files block in GruntFile.js and save the file. As soon as the
file is saved, the tasks will be executed and the output for the tasks will be displayed
in the terminal. A sample output can be seen in the following screenshot:

It is possible to watch as many tasks as required in the watch block, but these tasks
should be present in GruntFile.js.

Summary
In this appendix, we discussed Composer and how to use it to install and update
packages. Also, we discussed Git in detail, including pushing, pulling, committing,
creating branches, and merging different branches. Also, we discussed Git hooks.
Lastly, we discussed Grunt watch and created a watch that executed four tasks
whenever any changes occurred in the files paths defined in GruntFile.js.

[736]

MVC and Frameworks
We covered the names of some of the frameworks in different chapters, but we did
not discuss them. In today's world, we don't invent the wheel again; we build upon
the tools that are already built, tested, and widely used. So, as best practice, if there is
nothing available to fulfill the requirements, we can build it using a framework that
suits the requirements best.

We will cover the following topics:

• The MVC design pattern

• Laravel

• Lumen

• Apigility

[737]

MVC and Frameworks

The MVC design pattern
Model View Controller (MVC) is a design pattern widely used in different
programming languages. Most PHP frameworks use this design pattern. This pattern
divides the application into three layers: Model, View, and Controller. Each one of
these has separate tasks, and they are all interconnected. There are different visual
representations for MVC, but an overall and simple representation can be seen in the
following diagram:

Now, let's discuss each part of the MVC design pattern.

Model
The model layer is the backbone of the application and handles the data logic. Mostly,
it is considered that model is responsible for CRUD operations on a database, which
may or may not be true. As we mentioned previously, model is responsible for the
data logic, which means that data validation operations can also be performed here. In
simple words, models provide an abstraction for the data. The remaining application
layers don't know or care how and from where the data comes or how an operation is
performed on data. It is the model's responsibility to take care of all data logic.

In today's complex framework structures, the overall MVC structure is changed,
and not only do models handle data operations, but also, every other application
logic is handled by models. The method followed is fat models and slim controllers,
which means keep all the application logic in models and the controllers as clean
as possible.

[738]

 Appendix B

Views
Views are what is visible to end users. All data related to this user and public is
displayed in the views, so views can be called the visual representation of the
models. Views need data to display. It asks for some specific data or action from the
controller. Views do not know or want to know from where the controller gets this
data; it just asks the controller to get it. Controller knows who to ask for this specific
data and communicates with the specific model. It means that views do not have
any direct link to models. However, in the earlier diagram, we linked model to view
directly. This is because in the advanced systems nowadays, views can directly take
data from models. For example, Magento controllers can't send data back to views.
For the data (that is, to get data directly from the database) and/or to communicate
with models, views communicate with blocks and helper classes. In modern
practices, views can be connected to models directly.

Controllers
Controllers respond to actions performed by a user in the views and respond to
the view. For example, a user fills a form and submits it. Here, the controller comes
in the middle and starts taking action on the submission of the form. Now, the
controller will first check whether the user is allowed to make this request or not.
Then, the controller will take the appropriate action, such as communicating with
the model or any other operation. In a simple analogy, the controller is the middle
man between views and models. As we mentioned before in the models section,
controllers should be slim. So, mostly, controllers are only used to handle the
requests and communicate with models and views. All kinds of data operations
are performed in models.

The MVC design pattern's sole job is to separate the responsibilities of different parts
in an application. So, models are used to manage the application data. Controllers
are used to take actions on user inputs, and views are responsible for the visual
representation of data. As we mentioned before, MVC separates the responsibilities
of each part, so it does not matter whether it accesses the model from controllers or
views; the only thing that matters is that views and controllers should not be used
to perform operations on data, as it is the model's responsibility, and controllers
should not be used to view any kind of data by the end user as this is the view's
responsibility.

[739]

MVC and Frameworks

Laravel
Laravel is one of the most popular PHP frameworks, and according to the
Laravel official website, it is a framework for Web Artisans. Laravel is beautiful,
powerful, and has tons of features that can enable developers to write efficient and
quality code. The Laravel official documentation is well written and very easy to
understand. So, let's play a little with Laravel.

Installation
Installation is very easy and simple. Let's use Composer to install Laravel.
We discussed Composer in Appendix A. Issue the following command in the
terminal to install and create a project in Laravel:

composer create-project --prefer-dist laravel/laravel packt

If Composer is not installed globally on the system, place composer.phar in a
directory where Laravel should be installed and issue the following command
in the terminal at the root of this directory:

php composer.phar create-project --prefer-dist laravel/laravel packt

Now, Laravel will be downloaded, and a new project with the name packt will
be created. Also, Composer will download and install all the dependencies for
the project.

Open the browser and head to the project's URL, and we will be welcomed with
a nice simple page saying Laravel 5.

As of the writing of this book, Laravel 5.2.29 is the latest version
available. However, if Composer is used, then every time the
composer update command is used, Laravel and all other
components will be automatically updated.

Features
Laravel provides tons of features, and we will only discuss a few here.

[740]

 Appendix B

Routing
Laravel provides powerful routing. Routes can be grouped, and prefixes,
namespaces, and middleware can be defined for route groups. Also, Laravel
supports all HTTP methods, including POST, GET, DELETE, PUT, OPTIONS, and PATCH.
All the routes are defined in the routes.php file in the application's app folder. Take
a look at the following example:

Route::group(['prefix' => 'customer', 'namespace' => 'Customer',

'middleware' => 'web'], function() {

Route::get('/', 'CustomerController@index');

Route::post('save', 'CustomerController@save');

Route::delete('delete/{id}', 'CustomerController@delete');

});

In the preceding snippet, we created a new routes group. This will be only used
when the URL has a prefixed customer. For example, if a URL is similar to domain.
com/customer, this group will be used. We also used a customer namespace.
Namespacing allows us to use standard PHP namespaces and divide our files in
subfolders. In the preceding example, all customer controllers can be placed in the
Customer subfolder in the Controllers directory, and the controller will be created
as follows:

namespace App\Http\Controllers\Customer

use App\Http\{

Controllers\Controller,

Requests,

};

use Illuminate\Http\Request;

Class CustomerController extends Controller

{

…

…

}

So, namespacing a route group enables us to place our controller files in subfolders,
which are easy to manage. Also, we used the web middleware. Middleware provides
a way to filter the request before entering the application, which enables us to use it
to check whether a user is logged in or not, the CSRF protection, or whether there are
any other actions that can be performed in a middleware and need to be performed
before the request is sent to application. Laravel comes with a few middleware,
including web, api, auth, and so on.

[741]

MVC and Frameworks

If a route is defined as GET, no POST request can be sent to this route. It is very
convenient, which enables us to not worry about the request method filtering.
However, HTML forms do not support the HTTP methods like DELETE, PATCH,
and PUT. For this, Laravel provides method spoofing, in which a hidden form field
with name _method and the value of the HTTP method is used to make this request
possible. For example, in our routes group, to make the request possible to delete a
route, we need a form similar to the following:

<form action="/customer/delete" method="post">

{{ method_field('DELETE') }}

{{ csrf_field() }}

</form>

When the preceding form is submitted, it will work, and the delete route will be
used. Also, we created a CSRF hidden field, which is used for CSRF protection.

Laravel routing is very interesting, and it is a big topic. More in-depth
detail can be found at https://laravel.com/docs/5.2/routing.

Eloquent ORM
Eloquent ORM provides active records to interact with the database. To use Eloquent
ORM, we have to just extend our models from the Eloquent model. Let's have a look
at a simple user model, as follows:

namespace App;

use Illuminate\Database\Eloquent\Model;

class user extends Model

{

//protected $table = 'customer';

//protected $primaryKey = 'id_customer';

…

…

}

That's it; we have a model that can handle all the CRUD operations now. Note that
we commented the $table property and did the same for $primaryKey. This is
because Laravel uses a plural name of the class to look for the table unless the table is
defined with the protected $table property. In our case, Laravel will look for table
name users and use it. However, if we want to use a table named customers, we can
just uncomment the line, as follows:

protected $table = 'customers';

[742]

 Appendix B

Similarly, Laravel thinks that a table will have a primary key with the column name
id. However, if another column is needed, we can override the default primary key,
as follows:

protected $primaryKey = 'id_customer';

Eloquent models also make it easy for timestamps. By default, if the table has
the created_at and updated_at fields, then these two dates will be generated
automatically and saved. If no timestamps are required, these can be disabled,
as follows:

protected $timestamps = false;

Saving data to the table is easy. The table columns are used as properties of the
models, so if our customer table has columns such as name, email, phone, and
so on, we can set them as follows in our customer controller, mentioned in the
routing section:

namespace App\Http\Controllers\Customer

use App\Http\{

Controllers\Controller,

Requests,

};

use Illuminate\Http\Request;

use App\Customer

Class CustomerController extends Controller

{

public function save(Request $request)

{

$customer = new Customer();

$customer->name = $request->name;

$customer->email = $request->email;

$customer->phone = $request->phone;

$customer->save();

}

}

[743]

MVC and Frameworks

In the preceding example, we added the save action to our controller. Now, if a POST
or GET request is made along the form data, Laravel assigns all the form-submitted
data to a Request object as properties with the same names as that of the form fields.
Then, using this request object, we can access all the data submitted by the form
either using POST or GET. After assigning all the data to model properties (the same
names as those of table columns), we can just call the save method. Now, our model
does not have any save method, but its parent class, which is the Eloquent model,
has this method defined. However, we can override this save method in our model
class in case we need some other features in this method.

Fetching data from the Eloquent model is also easy. Let's try an example. Add a new
action to the customer controller, as follows:

public function index()

{

$customers = Customer::all();

}

We used the all() static method in the model, which is basically defined in the
Eloquent model, which, in turn, fetches all the data in our customers table. Now,
if we want to get a single customer by the primary key, we can use the find($id)
method, as follows:

$customer = Customer::find(3);

This will fetch the customer with the ID 3.

Updating is simple, and the same save() method is used, as shown here:

$customer = Customer::find(3);

$customer->name = 'Altaf Hussain';

$customer->save();

This will update the customer with the ID 3. First, we loaded the customer, then we
assigned new data to its properties, and then we called the same save() method.
Deleting the model is simple and easy and can be done as follows:

$customer = Customer::find(3);

$customer->delete();

We first loaded the customer with the ID 3, and then we called the delete method,
which will delete the customer with the ID 3.

[744]

 Appendix B

Laravel's Eloquent models are very powerful and provide lots of features.
These are well explained in the documentation at https://laravel.

 com/docs/5.2/eloquent. The Laravel database section is also worth
reading and can be found at https://laravel.com/docs/5.2/
database.

Artisan CLI
Artisan is the command-line interface provided with Laravel, and it has some nice
commands that can be used for quicker operations. It has lots of commands, and a
full list can be seen using the following command:

php artisan list

This will list all the options and commands available.

The php artisan command should be run in the same directory in
which the artisan file is located. It is placed at the root of the project.

Some of the basic commands are as follows:

• make:controller: This command creates a new controller in the
Controllers folder. The command can be used as follows:

php artisan make:controller MyController

If a namespaced controller is required, as it happened before with the
Customer namespace, it can be done as follows:

php artisan make:controller Customer/CustomerController

This command will create CustomerController in the Customer folder.
If the Customer folder is not available, it will create the folder as well.

• make:model: This creates a new model in the app folder. The syntax is the
same as the make:controller command, as follows:

php artisan make:model Customer

For the namespaced models, it can be used as follows:

php artisan make:model Customer/Customer

This will create the Customer model in the Customer folder and use the
Customer namespace for it.

[745]

MVC and Frameworks

• make:event: This creates a new event class in the Events folder. It can be
used as follows:

php artisan make:event MyEvent

• make:listener: This command creates a new listener for an event. This can
be used as follows:

php artisan make:listener MyListener --event MyEvent

The preceding command will create a new listener for our MyEvent event.
We have to always mention the event for which we need to create a listener
using the --event option.

• make:migration: This command creates a new migration in the database/
migrations folder.

• php artisan migrate: This runs all the available migrations that are not
executed.

• php artisan optimize: This command optimizes the framework for better
performance.

• php artisan down: This puts the application in maintenance mode.

• php artisan up: This command brings the application back live from the
maintenance mode.

• php artisan cache:clear: This command clears the application cache.

• php artisan db:seed: This command seeds the database with records.

• php artisan view:clear: This clears all the compiled view files.

More detail about the Artisan console or Artisan CLI can be found in the
documentation at https://laravel.com/docs/5.2/homestead.

Migrations
Migrations is another powerful feature in Laravel. In migrations, we define the
database schemas—whether it creates tables, removes tables, or adds/updates
columns in the tables. Migrations are very convenient in deployment and act as
version control for the database. Let's create a migration for our customer table
that is not available in the database yet. To create a migration, issue the following
command in the terminal:

php artisan make:migration create_custmer_table

[746]

 Appendix B

A new file in the database/migrations folder will be created with the filename
create_customer_table prefixed with the current date and a unique ID. The class
is created as CreateCustomerTable. This is a class as follows:

use Illuminate\Database\Schema\Blueprint;

use Illuminate\Database\Migrations\Migration;

class CreateCustomerTable extends Migrations

{

//Run the migrations

public function up()

{

//schemas defined here

}

public function down()

{

//Reverse migrations

}

}

The class will have two public methods: up() and down(). The up() method should
have all the new schemas for the table(s). The down() method is responsible for
reversing the executed migration. Now, lets add the customers table schema to
the up() method, as follows:

public function up()

{

Schema::create('customers', function (Blueprint $table)

{

$table->increments('id', 11);

$table->string('name', 250)

$table->string('email', 50);

$table->string('phone', 20);

$table->timestamps();

});

}

public function down()

{

Schema::drop('customers');

}

[747]

MVC and Frameworks

In the up() method, we defined the schema and table name. Columns for the table
are individually defined, including the column size. The increments() method
defines the autoincrement column, which, in our case, is the id column. Next,
we created three string columns for name, email, and phone. Then, we used the
timestamps() method, which creates the created_at and updated_at timestamp
columns. In the down() method, we just used the drop() method of the Schema class
to drop out the customers table. Now, we need to run our migrations using the
following command:

php artisan migrate

The preceding command will not only run our migration but will also run all those
migrations that are not executed yet. When a migration is executed, Laravel stores
the migration name in a table called migrations, from where Laravel decides which
migrations it has to execute and which to skip.

Now, if we need to roll back the latest executed migration, we can use the following
command:

php artisan migrate:rollback

This will roll back to the last batch of migrations. To roll back all the migrations of
the application, we can use the reset command, as follows:

php artisan migrate:reset

This will roll back the complete application migrations.

Migrations make it easy for deployment because we won't need to upload the
database schemas every time we create some new changes in the tables or database.
We will just create the migrations and upload all the files, and after this, we will just
execute the migration command, and all the schemas will be updated.

Blade templates
Laravel comes with its own template language called Blade. Also, Blade template
files support plain PHP code. Blade template files are compiled to plain PHP files
and are cached until they are changed. Blade also supports layouts. For example,
the following is our master page layout in Blade, placed in the resources/views/
layout folder with the name master.blade.php. Take a look at the following code:

<!DOCTYPE html>

<html>

<head>

<title>@yield('title')</title>

</head>

[748]

 Appendix B

<body>

@section('sidebar')

Our main sidebar

@show

<div class="contents">

@yield('content')

</div>

</body>

</html>

In the preceding example, we had a section for the sidebar that defines a content
section. Also, we had @yield, which displays the contents of a section. Now, if we
want to use this layout, we will need to extend it in the child template files. Let's
create the customers.blade.php file in the resources/views/ folder and place
the following code in it:

@extend('layouts.master')

@section('title', 'All Customers')

@section('sidebar')

This will be our side bar contents

@endsection

@section('contents')

These will be our main contents of the page

@endsection

As can be seen in the preceding code, we extended the master layout and then
placed contents in every section of the master layout. Also, it is possible to include
different templates in another template. For example, let's have two files, sidebar.
blade.php and menu.blade.php, in the resources/views/includes folder. Then,
we can include these files in any template, as follows:

@include(includes.menu)

@include(includes.sidebar)

We used @include to include a template. The dot (.) indicates a folder separation.
We can easily send data to Blade templates or views from our controllers or routers.
We have to just pass the data as an array to a view, as follows:

return view('customers', ['count => 5]);

Now, count is available in our customers view file and can be accessed as follows:

Total Number of Customers: {{ count }}

[749]

MVC and Frameworks

Yes, Blade uses double curly braces to echo a variable. For control structures and
loops, let's have another example. Let's send data to the customers view, as follows:

return view('customers', ['customers' => $allCustomers]);

Now, our customers view file will be similar to the following if we want to display
all the customers data:

…

…

@if (count($customers) > 0)

{{ count($customers) }} found.

@foreach ($customers as $customer)

{{ $customer->name }} {{ $customer->email }}

{{ $customer->phone }}

@endforeach

@else

Now customers found.

@endif;

…

…

All the preceding syntax looks familiar as it is almost the same as plain PHP.
However, to display a variable, we have to use double curly braces {{}}.

A nice and easy-to-read documentation for Blade templates can be found
at https://laravel.com/docs/5.2/blade.

Other features
We only discussed a few basic features in the previous section. Laravel has tons of
other features, such as Authentication and Authorization, which provide an easy
way to authenticate and authorize users. Also, Laravel provides a powerful caching
system, which supports file-based cache, the Memcached, and Redis cache. Laravel
also provides events and listeners for these events, which is very convenient when
we want to perform a specific action and when a specific event occurs. Laravel
supports localization, which enables us to use localized contents and multiple
languages. Laravel also supports task scheduling and queues, in which we schedule
some tasks to run at a specific time and queue some tasks to be run when their
turn arrives.

[750]

 Appendix B

Lumen
Lumen is a micro-framework provided by Laravel. Lumen is mainly intended to
create stateless APIs and has a minimal set of features of Laravel. Also, Lumen is
compatible with Laravel, which means that if we just copy our Lumen application to
Laravel, it will work fine. The installation is simple. Just use the following Composer
command to create a Lumen project, and it will download all the dependencies,
including Lumen:

composer create-project --prefer-dist laravel/lumen api

The preceding command will download Lumen and then create our API application.
After this, rename .env.example as .env. Also, create a 32-characters-long app
key and place it in the .env file. Now, the basic application is ready to use and
create APIs.

Lumen is almost the same as Laravel, but some Laravel features are not

 included by default. More details can be found at https://lumen.
laravel.com/docs/5.2.

Apigility
Apigility is built and developed by Zend in Zend Framework 2. Apigility provides
an easy to use GUI to create and manage APIs. It is very easy to use and is capable of
creating complex APIs. Let's start by installing Apigility using Composer. Issue the
following command in the terminal:

composer create-project -sdev zfcampus/zf-apigility-skeleton packt

The preceding command will download Apigility and its dependencies, including
Zend Framework 2, and will set up our project named packt. Now, issue the
following command to enable the development mode so that we can have access
to the GUI:

php public/index.php development enable

[751]

MVC and Frameworks

Now, open the URL as yourdomain.com/packt/public, and we will see a beautiful
GUI, as shown in the following screenshot:

Now, let's create our first API. We will call this API "books", which will return a
list of books. Click on the New API button, as shown in the preceding picture, and
a popup will be displayed. In the text box, enter books as the API name and click
on Create button; the new API will be created. When the API is created, we will be
presented with the following screen:

Apigility provides easy ways to set other properties for the API, such as versioning
and authentication. Now, let's create an RPC service by clicking on the New Service
button in the left sidebar. Also, we can click on the Create a new one link in the RPC
section in the preceding screenshot. We will be presented with the following screen:

[752]

 Appendix B

As shown in the preceding screenshot, we created an RPC service named get in the
books API. The route URI entered is /books/get, which will be used to call this RPC
service. When we click on the Create service button, the API creation successful
message will be displayed, and also, the following screen will be displayed:

[753]

MVC and Frameworks

As can be seen in the preceding screenshot, the allowed HTTP method for this
service is only GET. Let's keep this as it is, but we can select all or any of them. Also,
we want to keep Content Negotiation Selector as Json, and our service will accept/
receive all the content in the JSON format. Also, we can select different media types
and content types.

Next, we should add some fields to our service that will be used. Click on the Fields
tab, and we will see the Fields screen. Click on the New Field button, and we will be
presented with the following popup:

As can be seen in the preceding screenshot, we can set all the properties for a field,
such as the Name, Description, whether it is required or not, and some other
settings, including an error message if the validation fails. After we created two
fields, title and author, we will have a screen similar to the following:

[754]

 Appendix B

As can be seen in the preceding screen, we can add validators and filters to each
individual field too.

As this is just an introductory topic for Apigility, we will not cover
validators and filters and some other topics in this book.

The next topic is documentation. When we click on the Documentation tab, we will
see the following screen:

Here, we will document our service, add some description, and also can generate the
response body for documentation purposes. This is very important as it will enable
others to better understand our APIs and services.

[755]

MVC and Frameworks

Now, we need to get the all the books from somewhere. It can be either from the
database or from another service or any other source. However, for now, we will
just use an array of books for test purposes. If we click on the Source tab, we will
find that our code for the service is placed at module/books/src/books/V1/Rpc/
Get/GetController.php. Apigility created a module for our API books and then
placed all the source code in this module in different folders according to the version
of our API, which is V1 by default. We can add more versions, such as V2 and V3, to
our APIs. Now, if we open the GetController file, we will find some code and an
action called getAction according to our route URI. The code is as follows, and the
highlighted code is the one we added:

namespace books\V1\Rpc\Get;

use Zend\Mvc\Controller\AbstractActionController;

use ZF\ContentNegotiation\ViewModel;

class GetController extends AbstractActionController

{

public function getAction()

{

$books = ['success' => [

[

'title' => 'PHP 7 High Performance',

'author' => 'Altaf Hussain'

],

[

'title' => 'Magento 2',

'author' => 'Packt Publisher'

],

]

];

return new ViewModel($books);

}

}

In the preceding code, we used ContentNegotiation\ViewModel, which is
responsible for responding with the data in the format that we selected in the service
setup, which is JSON in our case. Then, we created a simple $books array with
the fieldnames we created for the service and assigned our values to them. Then,
we returned them using the ViewModel object, which handles the response data
conversion to JSON.

[756]

 Appendix B

Now, let's test our API. As our service can accept GET requests, we will just type our
URL in the browser with the books/get URI, and we will see the JSON response. It
is best to check the API with tools such as RestClient or Postman for Google Chrome,
which provides an easy-to-use interface to make different types of requests to APIs.
We tested it with Postman and got the response shown in the following screenshot:

Also note that we set our service to accept only GET requests. So, if we send a
request other than GET, we will get an HTTP Status code 405 methods not
allowed error.

Apigility is very powerful and provides tons of features, such as RESTFul APIs,
HTTP authentication, database connected services with easy-to-create DB connectors,
and a selection of tables for a service. While using Apigility, we need not worry
about the API, service structure security, and other things, as Apigility does this for
us. We need to only concentrate on the business logic of the APIs and services.

Apigility can't be covered completely in this Appendix. Apigility has lots
of features that can be covered in a complete book. Apigility's official
documentation at https://apigility.org/documentation is a
good place to get started and read more about this.

[757]

MVC and Frameworks

Summary
In this Appendix, we discussed the basics of the MVC design pattern. We also
discussed the Laravel framework and some of its good features. We introduced
you to the Laravel-based micro-framework, Lumen. At the end, we had a small
introduction to Apigility and created a test API and web service.

In IT, things get obsolete in a very short time span. It is always required to study
upgraded tools and find new ways and techniques for the best approaches in
programming. Therefore, one should not stop after completing this book and start
studying new topics and also the topics that are not covered completely in this
book. Until this point, you will have the knowledge that you can use to set up
high-performance environments for high-performance applications. We wish
you good luck and success in PHP-ing!

[758]

Module 3

Modular Programming with PHP 7

Utilize the power of modular programming to improve code readability,
maintainability, and testability

Ecosystem Overview
It has been more than two decades now since the birth of PHP. Originally created by
Rasmus Lerdorf in 1994, the PHP acronym initially stood for Personal Home Page.
Back then, PHP was merely a few Common Gateway Interface (CGI) programs in C,
used to power a simple web page.

Though PHP was not intended to be a new programming language, the idea caught
on. During the late nineties Zeev Suraski and Andi Gutmans, co-founders of Zend
Technologies, continued the work on PHP by rewriting its entire parser, giving
birth to PHP 3. The PHP language name acronym now stood for PHP: Hypertext
Preprocessor.

PHP positions itself among the top ten programming languages in the world.
According to TIOBE, the software quality company, it currently holds sixth place.
For the last decade, especially since the release of PHP 5 in July 2004, PHP has been
recognized as the popular solution for building web applications.

Though PHP still presents itself as a scripting language, it's safe to say that as of
PHP 5 it is far more than that. Some of the world web's most popular platforms
like WordPress, Drupal, Magento, and PrestaShop are built in PHP. It is projects
like these that played a role in further raising the popularity of PHP. Some of them
stretch the boundaries of PHP by implementing complex OOP (Object Oriented
Programming) design patterns found in other programming languages like Java,
C#, and their frameworks.

Even though PHP 5 had decent OOP support, lots of things were still left to be
dreamed of. Work on PHP 6 was planned to give more support for the PHP Unicode
strings. Sadly, its development came to a halt and PHP 6 was canceled in 2010.

[761]

Ecosystem Overview

That same year, Facebook announced its HipHop compiler. Their compiler was
converting PHP code into C++ code. The C++ code was further compiled into
native machine code via a C++ compiler. This concept brought major performance
improvements for PHP. However, this approach was not very practical, because it
took too long to compile PHP scripts all the way to native machine code.

Shortly after, Dmitry Stogov, Zend Technologies Chief Performance Engineer,
announced a project called PHPNG, which became the basis for the next PHP
version, PHP 7.

In Dec 2015, PHP 7 was released, bringing numerous improvements and new
features:

• New version of the Zend Engine

• Improved performance (twice as fast as PHP 5.6)

• Significantly reduced memory usage

• Abstract Syntax Tree

• Consistent 64-bit support

• Improved exception hierarchy

• Many fatal errors converted to exceptions

• Secure random number generator

• Removed old and unsupported SAPIs and extensions

• The null coalescing operator

• Return and Scalar type declarations

• Anonymous classes

• Zero cost asserts

In this chapter, we will look at the following topics:

• Getting ready for PHP 7

• Frameworks

Getting ready for PHP 7
PHP 7 comes with quite a big list of changes. These changes affect both the PHP
interpreter and the various extensions and libraries. Though most of the PHP 5 code
will continue to operate normally on the PHP 7 interpreter, it is worth getting up to
speed with the newly available features.

Moving forward, we will look into some of these features and the benefits they
provide.

[762]

 Chapter 1

Scalar type hints
Scalar type hints are not an entirely new feature in PHP. With the introduction
of PHP 5.0 we were given the ability to type hint classes and interfaces. PHP 5.1
extended this by introducing array type hinting. Later on, with PHP 5.4, we were
additionally given the ability to type hint callable. Finally, PHP 7 introduced scalar
type hints. Extending the type hints to scalars makes this probably one of the most
exciting features added to PHP 7.

The following scalar type hints are now available:

• string: Strings (for example, hello, foo, and bar)

• int: Integer numbers (for example, 1, 2, and 3)

• float: Floating point numbers (for example, 1.2, 2.4, and 5.6)

• bool: Boolean values (for example, true or false)

By default, PHP 7 works in weak type-checking mode, and will attempt to convert
to the specified type without complaint. We can control this mode using the
strict_typesdeclare() directive.

The declare(strict_types=1); directive must be the first statement in a file, or
else it will generate a compiler error. It only affects the specific file it is used in, and
does not affect other included files. The directive is entirely compile-time and cannot
be controlled at runtime:

declare(strict_types=0); //weak type-checking

declare(strict_types=1); // strict type-checking

Let's assume the following simple function that accepts hinted scalar types.

function hint (int $A, float $B, string $C, bool $D)

{

var_dump($A, $B, $C, $D);

}

The weak type-checking rules for the new scalar type declarations are mostly the
same as those of extensions and built-in PHP functions. Because of this automated
conversion we might unknowingly lose data when passing it into a function. One
simple example is passing a float into a function that requires an int; in which case
conversion would simply strip away decimals.

[763]

Ecosystem Overview

Assuming the weak type-checking is on, as by default, the following can be
observed:

hint(2, 4.6, 'false', true);

/* int(2) float(4.6) string(5) "false" bool(true) */

hint(2.4, 4, true, 8);

/* int(2) float(4) string(1) "1" bool(true) */

We can see that the first function call passes on parameters as they are hinted. The
second function call does not pass the exact types of parameters but still the function
manages to execute as parameters go through conversion.

Assuming the weak type-checking is off, by using the declare(strict_types=1);
directive, the following can be observed:

hint(2.4, 4, true, 8);

Fatal error: Uncaught TypeError: Argument 1 passed to hint() must

be of the type integer, float given, called in php7.php on

line 16 and defined in php7.php:8 Stack trace: #0 php7.php(16):

hint(2.4, 4, true, 8) #1 {main} thrown in php7.php on line 8

The function call broke on the first argument resulting in the \TypeError exception.
The strict_types=1 directive does not allow any type juggling. The parameter has
to be of the same type, as hinted by the function definition.

Return type hints
In addition to type hinting, we can also type hint the return values. All of the type
hints that can be applied to function parameters can be applied to function return
values. This also implies to the weak type-checking rules.

To add a return type hint, simply follow the parameter list with a colon and the
return type, as shown in the following example:

function divide(int $A, int $B) : int

{

return $A / $B;

}

The preceding function definition says that the divide function expects two
parameters of the int type, and is supposed to return a parameter of the int type.

[764]

 Chapter 1

Assuming the weak type-checking is on, as by default, the following can be observed:

var_dump(divide(10, 2)); // int(5)

var_dump(divide(10, 3)); // int(3)

Though the actual result of divide(10, 3)should be a float, the return type hint
triggers conversion into an integer.

Assuming the weak type-checking is off, by using the declare(strict_types=1);
directive, the following can be observed:

int(5)

Fatal error: Uncaught TypeError: Return value of divide() must be

of the type integer, float returned in php7.php:10 Stack trace:

#0php7.php(14): divide(10, 3) #1 {main} thrown in php7.php on

line 10

With the strict_types=1 directive in place, the divide(10, 3) fails with the
\TypeError exception.

Using scalar type hints and return type hints can improve our code
readability as well as auto-complete features of IDE editors like NetBeans
and PhpStorm.

Anonymous classes
With the addition of anonymous classes, PHP objects gained closure-like capabilities.
We can now instantiate objects through nameless classes, which brings us closer
to object literal syntax found in other languages. Let's take a look at the following
simple example:

$object = new class {

public function hello($message) {

return "Hello $message";

}

};

echo$object->hello('PHP');

The preceding example shows an $object variable storing a reference to an instance
of an anonymous class. The more likely usage would be to directly pass the new
class to a function parameter, without storing it as a variable, as shown here:

$helper->sayHello(new class {

public function hello($message) {

[765]

Ecosystem Overview

return "Hello $message";

}

});

Similar to any normal class, anonymous classes can pass arguments through to their
constructors, extend other classes, implement interfaces, and use traits:

class TheClass {}

interface TheInterface {}

trait TheTrait {}

$object = new class('A', 'B', 'C') extends TheClass implements

TheInterface {

use TheTrait;

public $A;

private $B;

protected $C;

public function construct($A, $B, $C)

{

$this->A = $A;

$this->B = $B;

$this->C = $C;

}

};

var_dump($object);

The above example would output:

object(class@anonymous)#1 (3) { ["A"]=> string(1) "A"

["B":"class@anonymous":private]=> string(1) "B"

["C":protected]=> string(1) "C" }

The internal name of an anonymous class is generated with a unique reference based
on its address.

There is no definitive answer as to when to use anonymous classes. It depends
almost entirely on the application we are building, and the objects, depending on
their perspective and usage.

[766]

 Chapter 1

Some of the benefits of using anonymous classes are as follows:

• Mocking application tests becomes trivial. We can create on-the-fly
implementations for interfaces, avoiding using complex mocking APIs.

• Avoid invoking the autoloader every so often for simpler implementations.

• Makes it clear to anyone reading the code that this class is used here and
nowhere else.

Anonymous classes, or rather objects instantiated from anonymous classes, cannot be
serialized. Trying to serialize them results in a fatal error as follows:

Fatal error: Uncaught Exception: Serialization of

'class@anonymous' is not allowed in php7.php:29 Stack trace: #0

php7.php(29): serialize(Object(class@anonymous)) #1 {main}

thrown in php7.php on line 29

Nesting an anonymous class does not give it access to private or protected methods
and properties of the outer class. In order to use the outer class protected methods
and properties, the anonymous class can extend the outer class. Ignoring methods,
private or protected properties of the outer class can be used in the anonymous class
if passed through its constructor:

class Outer

{

private $prop = 1;

protected $prop2 = 2;

protected function outerFunc1()

{

return 3;

}

public function outerFunc2()

{

return new class($this->prop) extends Outer

{

private $prop3;

public function construct($prop)

{

$this->prop3 = $prop;

}

public function innerFunc1()

{

[767]

Ecosystem Overview

return $this->prop2 + $this->prop3 + $this

->outerFunc1();

}

};

}

}

echo (new Outer)->outerFunc2()->innerFunc1(); //6

Though we labeled them as anonymous classes, they are not really anonymous
in terms of the internal name the PHP engine assigns to objects instantiated from
these classes. The internal name of an anonymous class is generated with a unique
reference based on its address.

The statement get_class(new class{}); would result in something like
class@anonymous/php7.php0x7f33c22381c8, where 0x7f33c22381c8 is the
internal address. If we were to define the exact same anonymous class elsewhere
in the code, its class name would be different as it would have a different memory
address assigned. The resulting object in that case might have the same property
values, which means they will be equal (==) but not identical (===).

The Closure::call() method
PHP introduced the Closure class in the 5.3 version. Closure class is used to
represent anonymous functions. Anonymous functions, implemented in PHP 5.3,
yield objects of this type. As of PHP 5.4, the Closure class got several methods (bind,
bindTo) that allow further control of the anonymous function after it has been
created. These methods basically duplicate the Closure with a specific bound object
and class scope. PHP 7 introduced the call method on a Closure class. The call
method does not duplicate the closure, it temporarily binds the closure to new this
($newThis), and calls it with any given parameters. It then returns the return value
of the closure.

The call function signature looks like the following:

function call ($newThis, ...$parameters) {}

$newThis is the object to bind the closure for the duration of the call. The
parameters, which will be given as $parameters to the closure are optional,
meaning zero or more.

[768]

 Chapter 1

Let's take a look at the following example of a simple Customer class and a
$greeting closure:

class Customer {

private $firstname;

private $lastname;

public function construct($firstname, $lastname)

{

$this->firstname = $firstname;

$this->lastname = $lastname;

}

}

$customer = new Customer('John', 'Doe');

$greeting = function ($message) {

return "$message $this->firstname $this->lastname!";

};

echo $greeting->call($customer, 'Hello');

Within the actual $greeting closure, there is no $this, it does not exist until the
actual binding occurs. We could easily confirm this by directly calling a closure
like $greeting('Hello');. However, we assume $this will come in to existence
when we bind the closure to a given object instance via its call function. In which
case, $this within the closure becomes $this of the customer object instance. The
preceding example shows binding of $customer to the closure using a call method
call. The resulting output displays Hello John Doe!

Generator delegation
Generators provide a simple way to implement iterators without the overhead of
implementing a class that implements the Iterator interface. They allow us to write
code which uses foreach to iterate over a set of data without needing to build an
array in memory. This eliminates the exceeds memory limit errors. They were not
new to PHP, as they were added in PHP 5.5.

However, PHP 7 brings several new improvements to generators, one of which is
generator delegation.

Generator delegation allows a generator to yield other generators, arrays, or objects
that implement the Traversable interface. In another words, we might say that
generator delegation is yielding subgenerators.

[769]

Ecosystem Overview

Let's take a look at the following example with three generator type functions:

function gen1() {

yield '1';

yield '2';

yield '3';

}

function gen2() {

yield '4';

yield '5';

yield '6';

}

function gen3() {

yield '7';

yield '8';

yield from gen1();

yield '9';

yield from gen2();

yield '10';

}

// output of the below code: 123

foreach (gen1() as $number) {

echo $number;

}

//output of the below code: 78123945610

foreach (gen3() as $number) {

echo $number;

}

Yielding other generators requires using the yield from <expression> syntax.

Generator return expressions
Prior to PHP 7, generator functions were not able to return expressions. The
inability of generator functions to specify return values limited their usefulness for
multitasking in co-routine contexts.

[770]

 Chapter 1

PHP 7 made it possible for generators to return expressions. We can now call
$generator->getReturn() to retrieve the return expression. Calling $generator-
>getReturn() when the generator has not yet returned, or has thrown an uncaught
exception, will throw an exception.

If the generator has no return expression defined and has completed yielding, null is
returned.

Let's take a look at the following example:

function gen() {

yield 'A';

yield 'B';

yield 'C';

return 'gen-return';

}

$generator = gen();

//output of the below code: object(Generator)#1 (0) { }

var_dump($generator);

// output of the below code: Fatal error

// var_dump($generator->getReturn());

// output of the below code: ABC

foreach ($generator as $letter) {

echo $letter;

}

// string(10) "gen-return"

var_dump($generator->getReturn());

Looking at the gen() function definition and its return expression, one might
expect the value of the $generator variable to be equal to the gen-return string.
However, this is not the case, as the $generator variable becomes the instance of the
\Generator class. Calling the getReturn() method on the generator while it is still
open (not iterated over) will result in a fatal error.

If the code is structured in such a way that it is not obvious if the generator has been
closed, we can use the valid method to check, before fetching the return value:

if ($generator->valid() === false) {

var_dump($generator->getReturn());

}

[771]

Ecosystem Overview

The null coalesce operator
In PHP 5 we had the ternary operator which tests a value and then returns the
second element if that value is true, or third element if that value is false,
as shown in the following code block:

$check = (5 > 3) ? 'Correct!' : 'Faulty!'; // Correct!

$check = (5 < 3) ? 'Correct!' : 'Faulty!'; // Faulty!

While processing user-provided data in web-centered languages such as PHP, it is
common to check for variable existence. If a variable doesn't exist, then set it to some
default value. A ternary operator makes this easy for us, as shown here:

$role = isset($_GET['role']) ? $_GET['role'] : 'guest';

However, easy is not always quick or elegant. With that in mind, PHP 7 set out to
resolve one of the most common usage patterns, by introducing the null coalesce
operator(??).

The null coalesce operator enables us to write even shorter expressions, as in the
following code block:

$role = $_GET['role'] ??'guest';

The coalesce operator(??) is added right after the $_GET['role'] variable, which
returns the result of its first operand if it exists and is not NULL, or else its second
operand. This means the $_GET['role'] ?? 'guest' is completely safe and will
not raise an E_NOTICE.

We can also nest the coalesce operator:

$A = null; // or not set

$B = 10;

echo $A ?? 20; // 20

echo $A ?? $B ?? 30; // 10

Reading from left to right, the first value which exists and is not null is the value that
will be returned. The benefit of this construct is that it enables a clean and effective
way to achieve safe fallback to the desired value.

The code bundle for the book is also hosted on GitHub at https://
github.com/PacktPublishing/Modular-Programming-with-

PHP7. We also have other code bundles from our rich catalog of books
and videos available at https://github.com/PacktPublishing/.
Check them out!

[772]

https://github.com/PacktPublishing/Modular-Programming-with-PHP7
https://github.com/PacktPublishing/Modular-Programming-with-PHP7
https://github.com/PacktPublishing/Modular-Programming-with-PHP7
https://github.com/PacktPublishing/

 Chapter 1

The Spaceship operator
The three-way comparison operator, also known as the Spaceship operator, was
introduced in PHP 7. Its syntax goes as follows:

(expr) <=> (expr)

The operator returns 0 if both operands are equal, 1 if the left is greater, and -1 if the
right is greater.

It uses the same comparison rules as other existing comparison operators: <, <=, ==,
>=, and >:

operator<=> equivalent

$a < $b($a <=> $b) === -1

$a <= $b($a <=> $b) === -1 || ($a <=> $b) === 0

$a == $b($a <=> $b) === 0

$a != $b($a <=> $b) !== 0

$a >= $b($a <=> $b) === 1 || ($a <=> $b) === 0

$a > $b($a <=> $b) === 1

The following are some examples of Spaceship operator behavior:

// Floats

echo 1.5 <=> 1.5; // 0

echo 1.5 <=> 2.5; // -1

echo 2.5 <=> 1.5; // 1

// Strings

echo "a"<=>"a"; // 0

echo "a"<=>"b"; // -1

echo "b"<=>"a"; // 1

echo "a"<=>"aa"; // -1

echo "zz"<=>"aa"; // 1

// Arrays

echo [] <=> []; // 0

echo [1, 2, 3] <=> [1, 2, 3]; // 0

echo [1, 2, 3] <=> []; // 1

echo [1, 2, 3] <=> [1, 2, 1]; // 1

echo [1, 2, 3] <=> [1, 2, 4]; // -1

// Objects

$a = (object) ["a" =>"b"];

$b = (object) ["a" =>"b"];

[773]

Ecosystem Overview

echo $a <=> $b; // 0

$a = (object) ["a" =>"b"];

$b = (object) ["a" =>"c"];

echo $a <=> $b; // -1

$a = (object) ["a" =>"c"];

$b = (object) ["a" =>"b"];

echo $a <=> $b; // 1

// only values are compared

$a = (object) ["a" =>"b"];

$b = (object) ["b" =>"b"];

echo $a <=> $b; // 0

One practical use case for this operator is for writing callbacks used in sorting
functions like usort, uasort, and uksort:

$letters = ['D', 'B', 'A', 'C', 'E'];

usort($letters, function($a, $b) {

return $a <=> $b;

});

var_dump($letters);

// array(5) { [0]=> string(1) "A" [1]=> string(1) "B" [2]=>

string(1) "C" [3]=> string(1) "D" [4]=> string(1) "E" }

Throwables
Though PHP 5 introduced the exception model, overall errors and error handling
remained somewhat unpolished. Basically PHP had two error handling systems.
Traditional errors still popped out and were not handled by try…catch blocks.

Take the following E_RECOVERABLE_ERROR as an example:

class Address

{

private $customer;

public function construct(Customer $customer)

{

$this->customer = $customer;

}

}

[774]

 Chapter 1

$customer = new stdClass();

try {

$address = new Address($customer);

} catch (\Exception $e) {

echo 'handling';

} finally {

echo 'cleanup';

}

The try…catch block has no effect here, as the error is not interpreted as an
exception, rather a catchable fatal error:

Catchable fatal error: Argument 1 passed to Address:: construct()

must be an instance of Customer, instance of stdClass given,

called in script.php on line 15 and defined in script.php on

line 6.

A possible workaround involves setting a user-defined error handler by using the
set_error_handler function as follows:

set_error_handler(function($code, $message) {

throw new \Exception($message, $code);

});

The error handler, as written above, would now transform every error into an
exception, therefore making it catchable with try…catch blocks.

PHP 7 made fatal and catchable fatal errors part of engine exceptions, therefore
catchable with try…catch blocks. This excludes warnings and notices which
still do not pass through the exception system, which makes sense for backward
compatibility reasons.

It also introduced a new exception hierarchy via the \Throwable interface.
\Exception and \Error implement the \Throwable interface.

Standard PHP fatal and catchable fatal are now thrown as \Error exceptions, though
they will continue to trigger traditional fatal error if they are uncaught.

Throughout our application we must use \Exception and \Error, as we cannot
implement the \Throwable interface directly. We could, however, use the following
block to catch all errors, regardless of whether it is the \Exception or \Error type:

try {

// statements

} catch (\Throwable $t) {

// handling

[775]

Ecosystem Overview

} finally {

// cleanup

}

The \ParseError
The ParseError is a nice PHP 7 addition to error handling. We can now handle
parse errors triggered by eval(), include and require statements, as well as those
thrown by \ParseError exceptions. It extends \Error, which in turn implements
a \Throwable interface.

The following is an example of a broken PHP file, because of a missing "," inbetween
between array items:

<?php

$config = [

'host' =>'localhost'

'user' =>'john'

];

return $config;

The following is an example of a file including config.php:

<?php

try {

include 'config.php';

} catch (\ParseError $e) {

// handle broken file case

}

We can now safely catch possible parse errors.

Level support for the dirname() function
The dirname function has been with us since PHP 4. It's probably one of the most
often used functions in PHP. Up until PHP 7, this function only accepted the path
parameter. With PHP 7, the new levels parameter was added.

[776]

 Chapter 1

Let's take a look at the following example:

// would echo '/var/www/html/app/etc'

echo dirname('/var/www/html/app/etc/config/');

// would echo '/var/www/html/app/etc'

echo dirname('/var/www/html/app/etc/config.php');

// would echo '/var/www/html/app'

echo dirname('/var/www/html/app/etc/config.php', 2);

// would echo '/var/www/html'

echo dirname('/var/www/html/app/etc/config.php', 3);

By assigning the levels value, we indicate how many levels to go up from the
assigned path value. Though small, the addition of the levels parameter will
certainly make it easier to write some of the code that deals with paths.

The integer division function
The intdiv is a new integer division function introduced in PHP 7. The function
accepts dividend and divisor as parameters and returns the integer quotient of their
division, as shown here by the function description:

int intdiv(int $dividend, int $divisor)

Let's take a look at the following few examples:

intdiv(5, 3); // int(1)

intdiv(-5, 3); // int(-1)

intdiv(5, -2); // int(-2)

intdiv(-5, -2); // int(2)

intdiv(PHP_INT_MAX, PHP_INT_MAX); // int(1)

intdiv(PHP_INT_MIN, PHP_INT_MIN); // int(1)

// following two throw error

intdiv(PHP_INT_MIN, -1); // ArithmeticError

intdiv(1, 0); // DivisionByZeroError

If the dividend is PHP_INT_MIN and the divisor is -1, then an ArithmeticError
exception is thrown. If the divisor is 0, then the DivisionByZeroError exception
is thrown.

[777]

Ecosystem Overview

Constant arrays
Prior to PHP 7, constants defined with define() could only contain scalar
expressions, but not arrays. As of PHP 5.6, it is possible to define an array constant
by using const keywords, and as of PHP 7, array constants can also be defined using
define():

// the define() example

define('FRAMEWORK', [

'version' => 1.2,

'licence' =>'enterprise'

]);

echo FRAMEWORK['version']; // 1.2

echo FRAMEWORK['licence']; // enterprise

// the class const example

class App {

const FRAMEWORK = [

'version' => 1.2,

'licence' =>'enterprise'

];

}

echo App::FRAMEWORK['version']; // 1.2

echo App::FRAMEWORK['licence']; // enterprise

Constants may not be redefined or undefined once they have been set.

Uniform variable syntax
To make PHP's parser more complete for various variable dereferences, PHP 7
introduced a uniform variable syntax. With uniform variable syntax all variables
are evaluated from left to right.

Unlike various functions, keywords, or settings being removed, changes in semantics
like this one can be quite impacting for the existing code base. The following code
demonstrates the syntax, its old meaning and new:

// Syntax

$$foo['bar']['baz']

// PHP 5.x:

// Using a multidimensional array value as variable name

${$foo['bar']['baz']}

// PHP 7:

[778]

 Chapter 1

// Accessing a multidimensional array within a variable-variable

($$foo)['bar']['baz']

// Syntax

$foo->$bar['baz']

// PHP 5.x:

// Using an array value as a property name

$foo->{$bar['baz']}

// PHP 7:

// Accessing an array within a variable-property

($foo->$bar)['baz']

// Syntax

$foo->$bar['baz']()

// PHP 5.x:

// Using an array value as a method name

$foo->{$bar['baz']}()

// PHP 7:

// Calling a closure within an array in a variable-property

($foo->$bar)['baz']()

// Syntax

Foo::$bar['baz']()

// PHP 5.x:

// Using an array value as a static method name

Foo::{$bar['baz']}()

// PHP 7:

// Calling a closure within an array in a static

variable (Foo::$bar)['baz']()

Aside from previously rewritten examples of old-to-new syntax, there are now a few
newly supported syntax combinations.

PHP 7 now supports nested double colons,::, and following is an example of it:

// Access a static property on a string class name

// or object inside an array

$foo['bar']::$baz;

// Access a static property on a string class name or object

// returned by a static method call on a string class name

// or object

$foo::bar()::$baz;

// Call a static method on a string class or object returned by

// an instance method call

$foo->bar()::baz();

[779]

Ecosystem Overview

We can also nest methods and function calls—or any callables—by doubling up on
parentheses as shown in the following code examples:

// Call a callable returned by a function

foo()();

// Call a callable returned by an instance method

$foo->bar()();

// Call a callable returned by a static method

Foo::bar()();

// Call a callable return another callable

$foo()();

Furthermore, we can now dereference any valid expression enclosed with
parentheses:

// Access an array key

(expression)['foo'];

// Access a property

(expression)->foo;

// Call a method

(expression)->foo();

// Access a static property

(expression)::$foo;

// Call a static method

(expression)::foo();

// Call a callable

(expression)();

// Access a character

(expression){0};

Secure random number generator
PHP 7 introduced two new CSPRNG functions. CSPRNG is an acronym for
cryptographically secure pseudo-random number generator.

The first, random_bytes, generates an arbitrary length string of cryptographic
random bytes that are suitable for cryptographic use, such as when generating salts,
keys, or initialization vectors. The function accepts only one (length) parameter,
representing the length of the random string that should be returned in bytes.
It returns a string containing the requested number of cryptographically secure
random bytes, or, optionally, it throws an exception if an appropriate source of
randomness cannot be found.

[780]

 Chapter 1

The following is an example of random_bytes usage:

$bytes = random_bytes(5);

The second, random_int, generates cryptographic random integers that are suitable
for use where unbiased results are critical, such as when shuffling a deck of cards
for a poker game. The function accepts two (min, max) parameters, representing
the lowest value to be returned (must be PHP_INT_MIN or higher) and the highest
value to be returned (must be less than or equal to PHP_INT_MAX). It returns a
cryptographically secure random integer in the range min to max (inclusive).

The following is an example of random_int usage:

$int = random_int(1, 10);

$int = random_int(PHP_INT_MIN, 500);

$int = random_int(20, PHP_INT_MAX);

$int = random_int(PHP_INT_MIN, PHP_INT_MAX);

Filtered unserialize()
Serialized data can include objects. These objects can further include functions
like destructors, toString, and call. In order to increase security when
unserializing objects on unstructured data, PHP 7 introduced the optional options
parameter to the existing unserialize function.

The options parameter is of type array that currently only accepts the
allowed_classes key.

The allowed_classes can have one of three values:

• true: This is a default value and allows all objects just as before

• false: Here no objects allowed

• array of allowed class names, lists the allowed classes for unserialized objects

The following is an example of using the allowed_classes option:

class Customer{

public function construct(){

echo ' construct';

}

public function destruct(){

echo ' destruct';

}

[781]

Ecosystem Overview

public function toString(){

echo ' toString';

return ' toString';

}

public function call($name, $arguments) {

echo ' call';

}

}

$customer = new Customer();

$s = serialize($customer); // triggers: construct, destruct

$u = unserialize($s); // triggers: destruct

echo get_class($u); // Customer

$u = unserialize($s, ['allowed_classes'=>false]); // does not

trigger anything

echo get_class($u); // PHP_Incomplete_Class

We can see that the object of that class which is not accepted is instantiated as
 PHP_Incomplete_Class.

Context sensitive lexer
According to the http://php.net/manual/en/reserved.keywords.php list, PHP
has over 60 reserved keywords. These make up for language constructs, like names
for properties, methods, constants within classes, interfaces, and traits.

Sometimes these reserved words end up clashing with user defined API declarations.

To resolve the issue, PHP 7.0 introduced the context sensitive lexer. With the context
sensitive lexer, we may now use keywords for property, function, and constant
names within our code.

The following are a few practical examples related to the impact of context sensitive
lexer:

class ReportPool {

public function include(Report $report) {

//

}

}

[782]

http://php.net/manual/en/reserved.keywords.php

 Chapter 1

$reportPool = new ReportPool();

$reportPool->include(new Report());

class Collection extends \ArrayAccess, \Countable,

\IteratorAggregate {

public function forEach(callable $callback) {

//

}

public function list() {

//

}

public static function new(array $items) {

return new self($items);

}

}

Collection::new(['var1', 'var2'])

->forEach(function($index, $item){ /* ... */ })

->list();

The only exception being the class keyword, which remains reserved in class
constant context, as shown here:

class Customer {

const class = 'Retail'; // Fatal error

}

Group use declarations
The group use declarations are introduced in PHP 7 as a way to cut verbosities when
importing multiple classes from a common namespace. They enable shorthand
syntax as follows:

use Library\Group1\Group2\{ ClassA, ClassB, ClassC as Classy };

Let's take a look at the following examples where class names within the same
namespace are group used:

// Current use syntax

use Doctrine\Common\Collections\Expr\Comparison;

use Doctrine\Common\Collections\Expr\Value;

use Doctrine\Common\Collections\Expr\CompositeExpression;

[783]

Ecosystem Overview

// Group use syntax

use Doctrine\Common\Collections\Expr\{ Comparison,

Value, CompositeExpression };

We can also use the group use declarations on part of namespaces, as shown in the
following example:

// Current use syntax

use Symfony\Component\Console\Helper\Table;

use Symfony\Component\Console\Input\ArrayInput;

use Symfony\Component\Console\Output\NullOutput;

use Symfony\Component\Console\Question\Question;

use Symfony\Component\Console\Input\InputInterface;

use Symfony\Component\Console\Output\OutputInterface;

use Symfony\Component\Console\Question\ChoiceQuestion as Choice;

use Symfony\Component\Console\Question\ConfirmationQuestion;

// Group use syntax

use Symfony\Component\Console\{

Helper\Table,

Input\ArrayInput,

Input\InputInterface,

Output\NullOutput,

Output\OutputInterface,

Question\Question,

Question\ChoiceQuestion as Choice,

Question\ConfirmationQuestion,

};

We can further use group use for importing functions and constants as shown in the
following lines of code:

use Framework\Component\{

SubComponent\ClassA,

function OtherComponent\someFunction,

const OtherComponent\SOME_CONSTANT

};

Unicode enhancements
Unicode, and UTF-8 in particular, have grown increasingly popular in PHP
applications.

[784]

 Chapter 1

PHP 7 adds the new escape sequence for double-quoted strings and heredocs, with the
syntax as follows:

\u{code-point}

It produces the UTF-8 encoding of a Unicode code point, specified with hexadecimal
digits. It is worth noting that the length of the code-point within curly braces is
arbitrary. This means that we can use \u{FF} or the more traditional \u{00FF}.

The following is a simple listing of the four most traded currencies, their symbols,
and their UTF-8 code points:

Euro€U+20AC

Japanese Yen¥U+00A5

Pound sterling£U+00A3

Australian dollar$U+0024

Some of these symbols usually exist directly on a keyboard, so it's easy to write them
down as shown here:

echo "the € currency";

echo "the ¥ currency";

echo "the £ currency";

echo "the $ currency";

However, the majority of other symbols are not as easily accessible via the keyboard
as single keystrokes, and therefore need to be written in the form of code-points,
shown as follows:

echo "the \u{1F632} face";

echo "the \u{1F609} face";

echo "the \u{1F60F} face";

In older versions of PHP, the resulting output of preceding statements would
be the following:

the \u{1F632} face

the \u{1F609} face

the \u{1F60F} face

This obviously did not parse code-points, as it was outputting them literally.

PHP 7 introduced Unicode code-point escape sequence syntax to string
literals, making previous statements result in the following output:

the 😉 face

the 😉 face

the 😉 face

[785]

Ecosystem Overview

Assertions
Assertions is a debug feature, used to check the given assertion and take appropriate
action if its result is false. They have been part of PHP for years, ever since PHP 4.

Assertions differ from error handling in a way that assertions cover for impossible
cases, whereas errors are possible and need to be handled.

Using assertions as a general-purpose error handling mechanism should be avoided.
Assertions do not allow for recovery from errors. Assertion failure will normally halt
the execution of a program.

With modern debugging tools like Xdebug, not many developers use assertions
for debugging.

Assertions can be easily enabled and disabled using the assert_options function or
the assert.active INI setting.

To use assertions, we pass in either an expression or a string as shown in the
following function signature:

// PHP 5

bool assert (mixed $assertion [, string $description])

// PHP 7

bool assert (mixed $assertion [, Throwable $exception])

These two signatures differ in the second parameter. PHP 7 can accept either string
$description or $exception.

If the expression result or the result of evaluating the string evaluates to false,
then a warning is raised. If the second parameter is passed as $exception, then an
exception will be thrown instead of failure.

In regards to php.ini configuration options, the assert function has been expanded
to allow for so-called zero-cost assertions:

zend.assertions = 1 // Enable

zend.assertions = 0 // Disable

zend.assertions = -1 // Zero-cost

With zero-cost settings, assertions have zero impact on performance and execution
as they are not compiled.

Finally, the Boolean assert.exception option was added to the INI setting.
Setting it to true, results in AssertionError exceptions for the failed assertions.

[786]

 Chapter 1

Changes to the list() construct
In PHP 5, list() assigns the values starting with the right-most parameter. In PHP
7, list() starts with the left-most parameter. Basically, values are now assigned to
variables in the order they are defined.

However, this only affects the case where list() is being used in conjunction with
the array [] operator, as discussed in the following code block:

<?php

list($color1, $color2, $color3) = ['green', 'yellow', 'blue'];

var_dump($color1, $color2, $color3);

list($colors[], $colors[], $colors[]) = ['green', 'yellow',

'blue'];

var_dump($colors);

Output of the preceding code in PHP 5 would result in the following:

string(5) "green"

string(6) "yellow"

string(4) "blue"

array(3) {

[0] => string(5) "blue"

[1] => string(6) "yellow"

[2] => string(4) "green"

}

Output of the preceding code in PHP 7 would result in the following:

string(5) "green"

string(6) "yellow"

string(4) "blue"

array(3) {

[0] => string(5) "green"

[1] => string(6) "yellow"

[2] => string(4) "blue"

}

The order of assignment might change again in the future, so we should not rely
heavily on it.

[787]

Ecosystem Overview

Session options
Prior to PHP 7, the session_start() function did not directly accept any
configuration options. Any configuration options we wanted to set on the session,
needed to come from php.ini:

// PHP 5

ini_set('session.name', 'THEAPP');

ini_set('session.cookie_lifetime', 3600);

ini_set('session.cookie_httponly', 1);

session_start();

// PHP 7

session_start([

'name' =>'THEAPP',

'cookie_lifetime' => 3600,

'cookie_httponly' => 1

]);

Driven by the goal of performance optimization, a new lazy_write runtime
configuration was added in PHP 7. When lazy_write is set to 1, the session
data is only rewritten if it changes. This is the default behavior:

session_start([

'name' =>'THEAPP',

'cookie_lifetime' => 3600,

'cookie_httponly' => 1,

'lazy_write' => 1

]);

While changes listed here might not look impressive at first, being able to override
session options directly via the session_start function gives certain flexibility to
our code.

Deprecated features
Globally accepted, major versions of software have the luxury of breaking backward
compatibility. Ideally, not much, but in order to keep the software moving forward,
some old ideas need to be left behind. These changes don't come overnight. Certain
features are first flagged as deprecated to warn developers that it will be removed in
future versions of the language. Sometimes this period of deprecation takes years.

Throughout PHP 5.x, a number of features have been marked as deprecated, and in
PHP 7.0, they have all been removed.

[788]

 Chapter 1

The POSIX-compatible regular expressions have been deprecated in PHP 5.3, and
now completely removed in PHP 7.

The following functions are no longer available for use:

• ereg_replace

• ereg

• eregi_replace

• eregi

• split

• spliti

• sql_regcase

We should instead use Perl Compatible Regular Expressions (PCRE). The http://
php.net/manual/en/book.pcre.php is a great source of documentation for these
functions.

The mysql extension, which had been deprecated in PHP 5.5, has now been removed.
None of the mysql_* functions are available anymore. We should instead use the
mysqli extension. The good thing is that moving from mysql to mysqli functions is
mostly simple, as when adding i to our code, the mysql_* function calls and passes
the database handle (returned by mysqli_connect) as the first parameter. The
http://php.net/manual/en/book.mysqli.php is a great source of documentation
for these functions.

The PHP script and ASP tags are no longer available:

<!-- PHP script tag example -->

<script language="php">

// Code here

</script>

<!-- PHP ASP tag example -->

<%

// Code here

%>

<%=$varToEcho; %>

[789]

http://php.net/manual/en/book.pcre.php
http://php.net/manual/en/book.pcre.php
http://php.net/manual/en/book.mysqli.php

Ecosystem Overview

Frameworks
Application frameworks are a collection of functions, classes, configurations, and
conventions all designed to support the development of web applications, services,
and APIs. Some applications are embracing an API first approach, whereas server-
side REST and SOAP APIs are built via PHP, and client side in other technologies
like JavaScript.

When building a web application, we usually have three obvious choices:

• We can build everything ourselves, from scratch. This way, our development
process might be slow, but we can achieve architecture built entirely per our
standards. Needless to say, this is a highly unproductive approach.

• We can use one of the existing frameworks. This way, our development
process is fast, but we need to be happy that our application is built on
top of other things.

• We can use one of the existing frameworks but also try to abstract it to the
level where our application looks independent of it. This is a painful and
slow approach, to say the least. It involves writing numerous adapters,
wrappers, interfaces, and so on.

In a nutshell, frameworks are here to make it easier and quicker for us to build
our software. A great deal of programming languages out there have popular
frameworks. PHP is no exception to this.

Given the popularity of PHP as a go-to web programming language, it is no surprise
that dozens of frameworks have sprouted over the years. Choosing the "right"
framework is a daunting task, even so more for fresh starters. What is right for
one project or a team might not be right for another.

However, there are some general, high level segments each modern framework
should encompass. These account for:

• Modular: It supports modular application development, allowing us to
neatly separate our code into functional building blocks, whereas it is
built in a modular manner.

• Secure: It provides various cryptographic and other security tooling expected
of a modern web application. Provides seamless support for things like
authentication, authorization, and data encryption.

• Extensible: Manages to easily adopt our application needs, allowing us to
extend it according to our application needs.

• Community: It is actively developed and supported by a vibrant and active
community.

[790]

 Chapter 1

• High performing: Built with performance in mind. Many frameworks brag
about performance, but there are many variables to it. We need to be specific
as to what we are evaluating here. Measuring cached performance against
raw performance is often the misleading evaluation, as caching proxies can
be put in front of many frameworks.

• Enterprise ready: Depending on the type of project at hand, most likely we
would want to target a framework which flags itself as enterprise ready.
Making us confident enough of running critical and high-usage business
applications on top of it.

While it's perfectly alright to code an entire web application in pure PHP without
using any framework, the majority of today's projects do use frameworks.

The benefits of using frameworks outweigh the purity of doing it all from scratch.
Frameworks are usually well supported and documented, which makes it easier for
teams to catch up with libraries, project structure, conventions, and other things.

When it comes to PHP frameworks, it is worth pointing out a few popular ones:

• Laravel: https://laravel.com

• Symfony: http://symfony.com

• Zend Framework: http://framework.zend.com

• CodeIgniter: https://www.codeigniter.com

• CakePHP: http://cakephp.org

• Slim: http://www.slimframework.com

• Yii: http://www.yiiframework.com

• Phalcon: https://phalconphp.com

This is by no means a complete or even a popularity sorted list.

Laravel framework
Laravel is released under an MIT license, and can be downloaded from
https://laravel.com/.

Aside from the usual routing, controllers, requests, responses, views, and (blade)
templates, out of the box Laravel provides a large amount of additional services
such as authentication, cache, events, localization, and many others.

Another neat feature of Laravel, is Artisan, the command line tool, that provides
a number of useful commands that we can use during development. Artisan can
further be extended by writing our own console commands.

[791]

https://laravel.com/
http://symfony.com/
http://framework.zend.com/
https://www.codeigniter.com/
http://cakephp.org/
http://www.slimframework.com/
http://www.yiiframework.com/
https://phalconphp.com/
https://laravel.com/

Ecosystem Overview

Laravel has a pretty active and vibrant community. Its documentation is simple
and clear, which makes it easy for newcomers to get started. Furthermore, there
is also https://laracasts.com, which extends out beyond Laravel in terms of
documentation and other content. Laracasts is a web service providing a series
of expert screencasts, some of which are free.

All of these features make Laravel a choice worth evaluating when it comes to the
selection of a framework.

Symfony
Symfony is released under an MIT license, and can be downloaded from
http://symfony.com.

Over time, Symfony introduced the concept of Long-term Support(LTS) releases.
This release process has been adopted as of Symfony 2.2, and strictly followed as
of Symfony 2.4. The standard version of Symfony is maintained for eight months.
Long-term Support versions are supported for three years.

One other interesting thing about new releases is the time-based release model.
All of the new versions of Symfony releases come out every six months: one in
May and one in November.

Symfony has great community support via mailing lists, IRC, and StackOverflow.
Furthermore, SensioLabs professional support provides a full range of solutions
from consulting, training, coaching, to certification.

Lots of Symfony components are used in other web applications and frameworks,
such as Laravel, Silex, Drupal 8, Sylius, and others.

What made Symfony such a popular framework is its interoperability. The idea
of "Don't lock yourself up within Symfony!" made it popular with developers as
it allowed for building applications that precisely meet our needs.

By embracing the "don't reinvent the wheel" philosophy, Symfony itself makes heavy
use of existing PHP open-source projects as part of the framework, including:

• Doctrine (or Propel): Object-relational mapping layer

• PDO database abstraction layer (Doctrine or Propel)

• PHPUnit: A unit testing framework

• Twig: A templating engine

• Swift Mailer: An e-mail library

[792]

https://laracasts.com/
http://symfony.com/

 Chapter 1

Depending on our project needs, we can choose to use a full-stack Symfony
framework, the Silex micro-framework, or simply some of the components
individually.

Out of the box, Symfony provides a lot of structural ground for new web
applications. It does so via its bundle system. Bundles are sort of like micro-
applications inside our main application. Within them, the entire app is nicely
structured into models, controllers, templates, configuration files, and other building
blocks. Being able to fully separate logic from different domains helps us to keep
a clean separation of concerns and autonomously develop every single feature of
our domain.

Symfony is one of the PHP pioneers when it comes to embracing the dependency
injection across the framework, allowing it to achieve decoupled components and
to keep high flexibility of code.

Documented, modular, highly flexible, performant, supported, those are the
attributes that make Symfony a choice worth evaluating.

Zend Framework
Zend Framework is released under a new BSD license, and can be downloaded from
http://framework.zend.com.

Zend Framework features include:

• Fully object-oriented PHP components

• Loosely coupled components

• Extensible MVC supporting layouts and templates

• Support for multiple database systems MySQL, Oracle, MS SQL, and so on

• E-mail handling via mbox, Maildir, POP3, and IMAP4

• Flexible caching system

Aside from a free Zend Framework, Zend Technologies Ltd provides its own
commercial version of a PHP stack called Zend Server, and Zend Studio IDE that
includes features specifically to integrate with Zend Framework. While Zend
Framework is perfectly fine running on any PHP stack, Zend Server is advertised
as an optimized solution for running Zend Framework applications.

[793]

http://framework.zend.com/

Ecosystem Overview

By its architectural design, Zend Framework is merely a collection of classes. There
is no strictly imposed structure our application needs to follow. This is one of the
features that makes it so appealing to a certain range of developers. We could either
utilize Zend MVC components to create a fully-functional Zend Framework project,
or we can simply load the components we need.

The so called full-stack frameworks impose structure, ORM implementations,
code-generation, and other fixed things onto your projects. Zend Framework, on the
other hand, with its decoupled nature, classifies for a glue type of framework. We
can easily glue it to an existing application, or use it to build a new one.

The latest versions of Zend Framework follow the SOLID object oriented design
principle. The so called "use-at-will" design allows developers to use whichever
components they want.

Though the main driving force behind Zend Framework is Zend Technologies, many
other companies have contributed significant features to the framework.

Furthermore, Zend Technologies provides excellent Zend Certified PHP Engineer
certifications. Quality community, official company support, education, hosting,
and development tools make the Zend Framework choice worth evaluating.

CodeIgniter
CodeIgniter is released under an MIT license, and can be downloaded from
https://www.codeigniter.com.

CodeIgniter prides itself in being lightweight. The core system requires only a
handful of small libraries, which is not always the case with other frameworks.

The framework uses the simple Model-View-Control approach, allowing for
clean separation between logic and presentation. The View layer does not impose
any special template language, so it uses native PHP out of the box.

Here are some of the outstanding features of CodeIgniter:

• Model-View-Control-based system

• Extremely light weight

• Full featured database classes with support for several platforms

• Query builder database support

• Form and data validation

• Security and XSS filtering

• Localization

[794]

https://www.codeigniter.com/

 Chapter 1

• Data encryption

• Full page caching

• Unit testing class

• Search-engine friendly URLs

• Flexible URI routing

• Support for hooks and class extensions

• Large library of helper functions

CodeIgniter has an active community gathered around http://forum.
codeigniter.com.

Small footprint, flexibility, exceptional performance, near-zero configuration, and
thorough documentation are what makes this framework choice worth evaluating.

CakePHP
CakePHP is released under an MIT license, and can be downloaded from
http://cakephp.org.

The CakePHP framework was greatly inspired by Ruby on Rails, using many of its
concepts. It values conventions over configuration.

It comes with "batteries included". Most of the things we need for modern web
applications are already built-in. Translations, database access, caching, validation,
authentication, and much more are all built-in.

Security is another big part of the CakePHP philosophy. CakePHP comes with
built-in tools for input validation, CSRF protection, form tampering protection, SQL
injection prevention, and XSS prevention, helping us to secure our application.

CakePHP supports a variety of database storage engines, such as MySQL,
PostgreSQL, Microsoft SQL Server, and SQLite. The built-in CRUD feature is very
handy for database interaction.

It counts on a big community behind it. It also has a big list of plugins, available at
http://plugins.cakephp.org.

CakePHP provides a certification exam, whereby developers are tested in their
knowledge of the CakePHP framework, MVC principles, and standards used
within CakePHP. Certification is geared towards real world scenarios and intimate
CakePHP specifics.

[795]

http://forum.codeigniter.com/
http://forum.codeigniter.com/
http://cakephp.org/
http://plugins.cakephp.org/

Ecosystem Overview

Commercial support, consultation, code review, performance analysis, security
audits, and even development services are provided by the Cake Development
Corporation http://www.cakedc.com. The Cake Development Corporation is the
commercial entity behind the framework, established in 2007 by Larry Masters, a
founder of CakePHP.

Slim
Slim is released under an MIT license, and can be downloaded from http://www.
slimframework.com.

While frameworks with the "batteries included" mindset provide robust libraries,
directory structures, and configurations, micro frameworks get us started with
a few lines of code.

Micro frameworks usually lack even the basic framework features such as:

• Authentication and authorization

• ORM database abstraction

• Input validation and sanitation

• Template engine

This limits their use, but also makes them a great tool for rapid prototyping.

Slim supports any PSR-7 HTTP message implementation. An HTTP message is
either a request from a client to a server or a response from a server to a client. Slim
functions like a dispatcher that receives an HTTP request, invokes an appropriate
callback routine, and returns an HTTP response.

The good thing about Slim is that it plays nicely with middleware. The middleware
is basically a callable that accepts three arguments:

• \Psr\Http\Message\ServerRequestInterface: The PSR7 request object

• \Psr\Http\Message\ResponseInterface: The PSR7 response object

• callable: The next middleware callable

Middlewares are free to manipulate request and response objects, as long as they
return an instance of \Psr\Http\Message\ResponseInterface. Furthermore,
each middleware needs to invoke the next middleware and pass it to request and
response objects as arguments.

This simple concept gives Slim the power of extensibility, through various possible
third party middlewares.

[796]

http://www.cakedc.com/
http://www.slimframework.com/
http://www.slimframework.com/

 Chapter 1

Even though Slim provides good documentation, a vibrant community, and the
project is being actively developed to date, its usage is limited. Micro frameworks
are hardly a choice for robust enterprise applications. Still, they have their place in
development.

Yii
Yii is released under a BSD License, and can be downloaded from http://www.
yiiframework.com.

Yii's focus on performance optimization makes it a perfect choice for almost any type
of project, including the enterprise type of applications.

Some of the outstanding Yii features include:

• The MVC design pattern

• Automatic generation of complex service WSDL

• Translation, localization, locale-sensitive formatting of dates, time, and
numbers

• Data caching, fragment caching, page caching, and HTTP caching

• Error handler that displays errors based on the nature of the errors and the
mode the application runs in

• Security measures to help prevent SQL injection, Cross-site scripting (XSS),
Cross-site request forgery (CSRF), and cookie tampering

• Unit and functional testing based on PHPUnit and Selenium

One of the neat features of Yii is a tool called Gii. It's an extension that provides a
web-based code generator. We can use Gii's graphical interface to quickly set up
generate models, forms, modules, CRUD, and so on. There is also a command line
version of Gii for those who prefer consoles over GUI.

Yii's architecture allows it to play nicely with third-party code, like PEAR libraries,
Zend Framework, and the like. It adopts the MVC architecture, allowing for clean
separation of concerns.

Yii provides an impressive library of extensions available at http://www.
yiiframework.com/extensions. The majority of extensions are distributed as
composer packages. They empower us with accelerated development. We can easily
package our code as extensions and share it with others. This makes Yii even more
interesting for modular application development.

[797]

http://www.yiiframework.com/
http://www.yiiframework.com/
http://www.yiiframework.com/extensions
http://www.yiiframework.com/extensions

Ecosystem Overview

Official documentation is quite comprehensive. There are also several
books available.

Rich documentation, a vibrant community, active releases, performance
optimization, security emphasis, feature richness, and flexibility make Yii
a choice worth evaluating.

Phalcon
Phalcon is released under a BSD License, and can be downloaded from
https://phalconphp.com.

Phalcon was originally released in 2012, by Andres Gutierrez and collaborators.
The goal of the project was to find a new approach to traditional web application
frameworks written in PHP. This new approach came in the form of C language
extensions. The entire Phalcon framework is developed as a C extension.

The benefits of C-based frameworks lies in the fact that an entire PHP extension is
loaded during runtime. This greatly reduces I/O operations massively since there
is no need to load .php files any more. Furthermore, compiled C language code
executes faster than PHP bytecode. Since C extensions are loaded together with
PHP one time during the web server daemon start process, their memory footprint
is small. The downside of C-based frameworks is that the code is compiled, so we
cannot easily debug it and patch it as we would with PHP classes.

Low-level architecture and optimizations make Phalcon one of the lowest overheads
for MVC-based applications.

Phalcon is a full-stack, loosely coupled framework. While it does provide full MVC
structure to our application, it also allows us to use its objects as glue components
based on the needs of our application. We can choose if we want to create a full blown
MVC application, or the minimal style micro application. Micro applications are
suitable to implement small applications, APIs, and prototypes in a practical way.

All of the frameworks we mentioned so far enable some form of extensions, where
we can add new libraries or entire packages to a framework. Since Phalcon is a
C-code framework, contributions to the framework doesn't come in the form of PHP
code. On the other hand, writing and compiling C language code can be somewhat
challenging for an average PHP developer.

Zephir project http://zephir-lang.com addresses these challenges by
introducing high-level Zephir language. Zephir is designed to ease the creation and
maintainability of C extensions for PHP with a focus on type and memory safety.

[798]

https://phalconphp.com/
http://zephir-lang.com/

 Chapter 1

When communicating with databases, Phalcon uses Phalcon Query Language,
PhalconQL, or simply PHQL for short. PHQL is a high-level, object-oriented SQL
dialect that allows us to write queries using SQL-like language that works with
objects instead of tables.

View templates are handled by Volt, Phalcon's own templating engine. It is
highly integrated with other components, and can be used independently in
our applications.

Phalcon is pretty easy to pick up. Its documentation covers both the MVC and micro
applications style of using a framework, with practical examples. The framework
itself is rich enough to support the structure and libraries we need for most of today's
applications. On top of that, there is an official Phalcon website called Phalconist
https://phalconist.com which provides additional resources to framework.

Though there is no official company behind it, no certifications, no commercial
support, and similar enterprise looking things, Phalcon does a great job of
positioning itself as a choice worth evaluating even with a robust enterprise
application development.

Summary
Looking back on the release of PHP 5 and its support to OOP programming, we can
see the enormous positive impact it had on the PHP ecosystem. A large number of
frameworks and libraries have sprawled out, offering enterprise level solutions to
web application development.

The release of PHP 7 is likely to be another leap forward for the PHP ecosystem.
Though none of the new features are revolutionary as such, as they can be found in
other programming languages from years ago, they impact PHP greatly. We are
yet to see how its new features will reshape existing and future frameworks and
the way we write applications.

The introduction of more advanced errors to exceptions handling, scalar type
hints, and function return type hints will surely bring much awaited stability to
applications and frameworks using them. The speed improvements compared to
PHP 5.6 are significant enough to cut down the hosting costs for higher load sites.
Thankfully, the PHP development team minimized backward incomparability
changes, so they should not stand in the way of swift PHP 7 adoption.

Choosing the right framework is all but an easy task. What classifies a framework as
an enterprise class framework is more than just collection of classes. It has an entire
ecosystem around it.

[799]

https://phalconist.com/

Ecosystem Overview

One should never be driven by hype when evaluating a framework for a project.
Questions like the following should be taken into consideration:

• Is it company or community driven?

• Does it provide quality documentation?

• Does it have a stable and frequent release cycle?

• Does it provide some official form of certification?

• Does it provide free and commercial support?

• Does it have occasional seminars we can attend?

• Is it open towards community involvement, so we can submit
functionalities and patches?

• Is it a full-stack or glue type of framework?

• Is it convention or configuration driven?

• Does it provide enough libraries to get you started (security, validation,
templating, database abstractions, ORMs, routing, internationalization,
and so on)?

• Can the core framework be extended and overridden enough to make it
more future proof with possible changes?

There are a number of established PHP frameworks and libraries out there, so the
choice is all but easy. Most of these frameworks and libraries are still to fully catch
up with the latest features added in PHP 7.

Moving forward, in the next chapter, we will look into common design patterns and
how to integrate them in PHP.

[800]

GoF Design Patterns
There are a handful of things that make a great software developer. Knowledge and
usage of design patterns is one of them. Design patterns empower developers to
communicate using well-known names for various software interactions. Whether
someone is a PHP, Python, C#, Ruby, or any other language developer, design
patterns provide language agnostic solutions for frequently occurring software
problems.

The concept of design patterns emerged in 1994 as part of the Elements of Reusable
Object-Oriented Software book. Detailing 23 different design patterns, the book was
written by four authors Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides. The authors are often referred to as the Gang of Four (GoF), and the
presented design patterns are sometimes referred to as GoF design patterns. In
Today, more than two decades later, designing software that is extensible, reusable,
maintainable, and adaptable is near to impossible without embracing design patterns
as part of implementation.

There are three types of design patterns which we will cover in this chapter:

• Creational

• Structural

• Behavioral

Throughout this chapter we will not go deep into the theory of each of them, as that
alone is an entire book's worth of material. Moving forward, we will focus more on
simple PHP implementation examples for each of the patterns, just so we get a more
visual sense of things.

[801]

GoF Design Patterns

Creational patterns
Creational patterns, as the name suggests, create objects for us, so we do not have
to instantiate them directly. Implementing creation patterns gives our application a
level of flexibility, where the application itself can decide what objects to instantiate
at a given time. The following is a list of patterns we categorize as creational
patterns:

• Abstract factory pattern

• Builder pattern

• Factory method pattern

• Prototype pattern

• Singleton pattern

See https://en.wikipedia.org/wiki/Creational_pattern for
more information about creational design patterns.

Abstract factory pattern
Building portable applications requires a great level of dependencies encapsulation.
The abstract factory facilitates this by abstracting the creation of families of related or
dependent objects. Clients never create these platform objects directly, the factory does
it for them, making it possible to interchange concrete implementations without
changing the code that uses them, even at runtime.

The following is an example of possible abstract factory pattern implementation:

interface Button {

public function render();

}

interface GUIFactory {

public function createButton();

}

class SubmitButton implements Button {

public function render() {

echo 'Render Submit Button';

}

}

[802]

https://en.wikipedia.org/wiki/Creational_pattern

 Chapter 2

class ResetButton implements Button {

public function render() {

echo 'Render Reset Button';

}

}

class SubmitFactory implements GUIFactory {

public function createButton() {

return new SubmitButton();

}

}

class ResetFactory implements GUIFactory {

public function createButton() {

return new ResetButton();

}

}

// Client

$submitFactory = new SubmitFactory();

$button = $submitFactory->createButton();

$button->render();

$resetFactory = new ResetFactory();

$button = $resetFactory->createButton();

$button->render();

We started off by creating an interface Button, which is later implemented by our
SubmitButton and ResetButton concrete classes. GUIFactory and ResetFactory
implement the GUIFactory interface, which specifies the createButton method. The
client then simply instantiates factories and calls for createButton, which returns a
proper button instance that we call the render method.

Builder pattern
The builder pattern separates the construction of a complex object from its
representation, making it possible for the same construction process to create
different representations. While some creational patterns construct a product
in one call, builder pattern does it step by step under the control of the director.

[803]

GoF Design Patterns

The following is an example of builder pattern implementation:

class Car {

public function getWheels() {

/* implementation... */

}

public function setWheels($wheels) {

/* implementation... */

}

public function getColour($colour) {

/* implementation... */

}

public function setColour() {

/* implementation... */

}

}

interface CarBuilderInterface {

public function setColour($colour);

public function setWheels($wheels);

public function getResult();

}

class CarBuilder implements CarBuilderInterface {

private $car;

public function construct() {

$this->car = new Car();

}

public function setColour($colour) {

$this->car->setColour($colour);

return $this;

}

public function setWheels($wheels) {

$this->car->setWheels($wheels);

return $this;

}

[804]

 Chapter 2

public function getResult() {

return $this->car;

}

}

class CarBuildDirector {

private $builder;

public function construct(CarBuilder $builder) {

$this->builder = $builder;

}

public function build() {

$this->builder->setColour('Red');

$this->builder->setWheels(4);

return $this;

}

public function getCar() {

return $this->builder->getResult();

}

}

// Client

$carBuilder = new CarBuilder();

$carBuildDirector = new CarBuildDirector($carBuilder);

$car = $carBuildDirector->build()->getCar();

We started off by creating a concrete Car class with several methods defining some
base characteristics of a car. We then created a CarBuilderInterface that will
control some of those characteristics and get the final result (car). The concrete class
CarBuilder then implemented the CarBuilderInterface, followed by the concrete
CarBuildDirector class, which defined build and the getCar method. The client
then simply instantiated a new instance of CarBuilder, passing it as a constructor
parameter to a new instance of CarBuildDirector. Finally, we called the build and
getCar methods of CarBuildDirector to get the actual car Car instance.

[805]

GoF Design Patterns

Factory method pattern
The factory method pattern deals with the problem of creating objects without
having to specify the exact class of the object that will be created.

The following is an example of factory method pattern implementation:

interface Product {

public function getType();

}

interface ProductFactory {

public function makeProduct();

}

class SimpleProduct implements Product {

public function getType() {

return 'SimpleProduct';

}

}

class SimpleProductFactory implements ProductFactory {

public function makeProduct() {

return new SimpleProduct();

}

}

/* Client */

$factory = new SimpleProductFactory();

$product = $factory->makeProduct();

echo $product->getType(); //outputs: SimpleProduct

We started off by creating a ProductFactory and Product interfaces. The
SimpleProductFactory implements the ProductFactory and returns the
new product instance via its makeProduct method. The SimpleProduct class
implements Product, and returns the product type. Finally, the client creates the
instance of SimpleProductFactory, calling the makeProduct method on it. The
makeProduct returns the instance of the Product, whose getType method returns
the SimpleProduct string.

[806]

 Chapter 2

Prototype pattern
The prototype pattern replicates other objects by use of cloning. What this means
is that we are not using the new keyword to instantiate new objects. PHP provides
a clone keyword which makes a shallow copy of an object, thus providing pretty
much straight forward prototype pattern implementation. Shallow copy does not
copy references, only values to the new object. We can further utilize the magic
 clone method on our class in order to implement more robust clone behavior.

The following is an example of prototype pattern implementation:

class User {

public $name;

public $email;

}

class Employee extends User {

public function construct() {

$this->name = 'Johhn Doe';

$this->email = 'john.doe@fake.mail';

}

public function info() {

return sprintf('%s, %s', $this->name, $this->email);

}

public function clone() {

/* additional changes for (after)clone behavior? */

}

}

$employee = new Employee();

echo $employee->info();

$director = clone $employee;

$director->name = 'Jane Doe';

$director->email = 'jane.doe@fake.mail';

echo $director->info(); //outputs: Jane Doe, jane.doe@fake.mail

We started off by creating a simple User class. The Employee then extends the
User, while setting name and email in its constructor. The client then instantiates
the Employee via the new keyword, and clones it into the director variable. The
$director variable is now a new instance, one made not by the new keyword, but
with cloning, using the clone keyword. Changing name and email on $director,
does not affect $employee.

[807]

mailto:jane.doe@fake.mail

GoF Design Patterns

Singleton pattern
The purpose of singleton pattern is to restrict instantiation of class to a single object. It
is implemented by creating a method within the class that creates a new instance of
that class if one does not exist. If an object instance already exists, the method simply
returns a reference to an existing object.

The following is an example of singleton pattern implementation:

class Logger {

private static $instance;

public static function getInstance() {

if (!isset(self::$instance)) {

self::$instance = new self;

}

return self::$instance;

}

public function logNotice($msg) {

return 'logNotice: ' . $msg;

}

public function logWarning($msg) {

return 'logWarning: ' . $msg;

}

public function logError($msg) {

return 'logError: ' . $msg;

}

}

// Client

echo Logger::getInstance()->logNotice('test-notice');

echo Logger::getInstance()->logWarning('test-warning');

echo Logger::getInstance()->logError('test-error');

// Outputs:

// logNotice: test-notice

// logWarning: test-warning

// logError: test-error

[808]

 Chapter 2

We started off by creating a Logger class with a static $instance member, and the
getInstance method that always returns a single instance of the class. Then we
added a few sample methods to demonstrate the client executing various methods
on a single instance.

Structural patterns
Structural patterns deal with class and object composition. Using interfaces or
abstract classes and methods, they define ways to compose objects, which in
turn obtain new functionality. The following is a list of patterns we categorize
as structural patterns:

• Adapter

• Bridge

• Composite

• Decorator

• Facade

• Flyweight

• Proxy

See https://en.wikipedia.org/wiki/Structural_pattern for
more information about structural design patterns.

Adapter pattern
The adapter pattern allows the interface of an existing class to be used from another
interface, basically, helping two incompatible interfaces to work together by
converting the interface of one class into an interface expected by another class.

The following is an example of adapter pattern implementation:

class Stripe {

public function capturePayment($amount) {

/* Implementation... */

}

public function authorizeOnlyPayment($amount) {

/* Implementation... */

}

[809]

https://en.wikipedia.org/wiki/Structural_pattern

GoF Design Patterns

public function cancelAmount($amount) {

/* Implementation... */

}

}

interface PaymentService {

public function capture($amount);

public function authorize($amount);

public function cancel($amount);

}

class StripePaymentServiceAdapter implements PaymentService {

private $stripe;

public function construct(Stripe $stripe) {

$this->stripe = $stripe;

}

public function capture($amount) {

$this->stripe->capturePayment($amount);

}

public function authorize($amount) {

$this->stripe->authorizeOnlyPayment($amount);

}

public function cancel($amount) {

$this->stripe->cancelAmount($amount);

}

}

// Client

$stripe = new StripePaymentServiceAdapter(new Stripe());

$stripe->authorize(49.99);

$stripe->capture(19.99);

$stripe->cancel(9.99);

We started off by creating a concrete Stripe class. We then defined the
PaymentService interface with some basic payment handling methods. The
StripePaymentServiceAdapter implements the PaymentService interface,
providing concrete implementation of payment handling methods. Finally, the
client instantiates the StripePaymentServiceAdapter and executes the payment
handling methods.

[810]

 Chapter 2

Bridge pattern
The bridge pattern is used when we want to decouple a class or abstraction from its
implementation, allowing them both to change independently. This is useful when
the class and its implementation vary often.

The following is an example of bridge pattern implementation:

interface MailerInterface {

public function setSender(MessagingInterface $sender);

public function send($body);

}

abstract class Mailer implements MailerInterface {

protected $sender;

public function setSender(MessagingInterface $sender) {

$this->sender = $sender;

}

}

class PHPMailer extends Mailer {

public function send($body) {

$body .= "\n\n Sent from a phpmailer.";

return $this->sender->send($body);

}

}

class SwiftMailer extends Mailer {

public function send($body) {

$body .= "\n\n Sent from a SwiftMailer.";

return $this->sender->send($body);

}

}

interface MessagingInterface {

public function send($body);

}

class TextMessage implements MessagingInterface {

public function send($body) {

echo 'TextMessage > send > $body: ' . $body;

}

}

[811]

GoF Design Patterns

class HtmlMessage implements MessagingInterface {

public function send($body) {

echo 'HtmlMessage > send > $body: ' . $body;

}

}

// Client

$phpmailer = new PHPMailer();

$phpmailer->setSender(new TextMessage());

$phpmailer->send('Hi!');

$swiftMailer = new SwiftMailer();

$swiftMailer->setSender(new HtmlMessage());

$swiftMailer->send('Hello!');

We started off by creating a MailerInterface. The concrete Mailer class then
implements the MailerInterface, providing a base class for PHPMailer and
SwiftMailer. We then define the MessagingInterface, which gets implemented by
the TextMessage and HtmlMessage classes. Finally, the client instantiates PHPMailer
and SwiftMailer, passing on instances of TextMessage and HtmlMessage prior to
calling the send method.

Composite pattern
The composite pattern is about treating the hierarchy of objects as a single object,
through a common interface. Where the objects are composed into three structures
and the client is oblivious to changes in the underlying structure because it only
consumes the common interface.

The following is an example of composite pattern implementation:

interface Graphic {

public function draw();

}

class CompositeGraphic implements Graphic {

private $graphics = array();

public function add($graphic) {

$objId = spl_object_hash($graphic);

$this->graphics[$objId] = $graphic;

}

[812]

 Chapter 2

public function remove($graphic) {

$objId = spl_object_hash($graphic);

unset($this->graphics[$objId]);

}

public function draw() {

foreach ($this->graphics as $graphic) {

$graphic->draw();

}

}

}

class Circle implements Graphic {

public function draw()

{

echo 'draw-circle';

}

}

class Square implements Graphic {

public function draw() {

echo 'draw-square';

}

}

class Triangle implements Graphic {

public function draw() {

echo 'draw-triangle';

}

}

$circle = new Circle();

$square = new Square();

$triangle = new Triangle();

$compositeObj1 = new CompositeGraphic();

$compositeObj1->add($circle);

$compositeObj1->add($triangle);

$compositeObj1->draw();

$compositeObj2 = new CompositeGraphic();

$compositeObj2->add($circle);

$compositeObj2->add($square);

$compositeObj2->add($triangle);

$compositeObj2->remove($circle);

$compositeObj2->draw();

[813]

GoF Design Patterns

We started off by creating a Graphic interface. We then created the
CompositeGraphic, Circle, Square, and Triangle, all of which implement the
Graphic interface. Aside from just implementing the draw method from the Graphic
interface, the CompositeGraphic adds two more methods, used to track internal
collection of graphics added to it. The client then instantiates all of these Graphic
classes, adding them all to the CompositeGraphic, which then calls the draw method.

Decorator pattern
The decorator pattern allows behavior to be added to an individual object instance,
without affecting the behavior of other instances of the same class. We can define
multiple decorators, where each adds new functionality.

The following is an example of decorator pattern implementation:

interface LoggerInterface {

public function log($message);

}

class Logger implements LoggerInterface {

public function log($message) {

file_put_contents('app.log', $message, FILE_APPEND);

}

}

abstract class LoggerDecorator implements LoggerInterface {

protected $logger;

public function construct(Logger $logger) {

$this->logger = $logger;

}

abstract public function log($message);

}

class ErrorLoggerDecorator extends LoggerDecorator {

public function log($message) {

$this->logger->log('ERROR: ' . $message);

}

}

class WarningLoggerDecorator extends LoggerDecorator {

public function log($message) {

[814]

 Chapter 2

$this->logger->log('WARNING: ' . $message);

}

}

class NoticeLoggerDecorator extends LoggerDecorator {

public function log($message) {

$this->logger->log('NOTICE: ' . $message);

}

}

$logger = new Logger();

$logger->log('Resource not found.');

$logger = new Logger();

$logger = new ErrorLoggerDecorator($logger);

$logger->log('Invalid user role.');

$logger = new Logger();

$logger = new WarningLoggerDecorator($logger);

$logger->log('Missing address parameters.');

$logger = new Logger();

$logger = new NoticeLoggerDecorator($logger);

$logger->log('Incorrect type provided.');

We started off by creating a LoggerInterface, with a simple log method.
We then defined Logger and LoggerDecorator, both of which implement the
LoggerInterface. Followed by ErrorLoggerDecorator, WarningLoggerDecorator,
and NoticeLoggerDecorator which implement the LoggerDecorator. Finally, the
client part instantiates the logger three times, passing it different decorators.

Facade pattern
The facade pattern is used when we want to simplify the complexities of large
systems through a simpler interface. It does so by providing convenient methods
for most common tasks, through a single wrapper class used by a client.

The following is an example of facade pattern implementation:

class Product {

public function getQty() {

// Implementation

}

}

[815]

GoF Design Patterns

class QuickOrderFacade {

private $product = null;

private $orderQty = null;

public function construct($product, $orderQty) {

$this->product = $product;

$this->orderQty = $orderQty;

}

public function generateOrder() {

if ($this->qtyCheck()) {

$this->addToCart();

$this->calculateShipping();

$this->applyDiscount();

$this->placeOrder();

}

}

private function addToCart() {

// Implementation...

}

private function qtyCheck() {

if ($this->product->getQty() > $this->orderQty) {

return true;

} else {

return true;

}

}

private function calculateShipping() {

// Implementation...

}

private function applyDiscount() {

// Implementation...

}

private function placeOrder() {

// Implementation...

}

}

// Client

$order = new QuickOrderFacade(new Product(), $qty);

$order->generateOrder();

[816]

 Chapter 2

We started off by creating a Product class, with a single getQty method. We then
created a QuickOrderFacade class that accepts product instance and quantity via a
constructor and further provides the generateOrder method that aggregates all
of the order generating actions. Finally, the client instantiates the product, which it
passes onto the instance of QuickOrderFacade, calling the generateOrder on it.

Flyweight pattern
The flyweight pattern is about performance and resource reduction, sharing as much
data as possible between similar objects. What this means is that instances of a class
which are identical are shared in an implementation. This works best when a large
number of same class instances are expected to be created.

The following is an example of flyweight pattern implementation:

interface Shape {

public function draw();

}

class Circle implements Shape {

private $colour;

private $radius;

public function construct($colour) {

$this->colour = $colour;

}

public function draw() {

echo sprintf('Colour %s, radius %s.', $this->colour,

$this->radius);

}

public function setRadius($radius) {

$this->radius = $radius;

}

}

class ShapeFactory {

private $circleMap;

public function getCircle($colour) {

if (!isset($this->circleMap[$colour])) {

$circle = new Circle($colour);

$this->circleMap[$colour] = $circle;

[817]

GoF Design Patterns

}

return $this->circleMap[$colour];

}

}

// Client

$shapeFactory = new ShapeFactory();

$circle = $shapeFactory->getCircle('yellow');

$circle->setRadius(10);

$circle->draw();

$shapeFactory = new ShapeFactory();

$circle = $shapeFactory->getCircle('orange');

$circle->setRadius(15);

$circle->draw();

$shapeFactory = new ShapeFactory();

$circle = $shapeFactory->getCircle('yellow');

$circle->setRadius(20);

$circle->draw();

We started off by creating a Shape interface, with a single draw method. We
then defined the Circle class implementing the Shape interface, followed by the
ShapeFactory class. Within the ShapeFactory, the getCircle method returns
an instance of a new Circle, based on the color option. Finally, the client
instantiates several ShapeFactory objects, passing in different colors to the
getCircle method call.

Proxy pattern
The proxy design pattern functions as an interface to an original object behind
the scenes. It can act as a simple forwarding wrapper or even provide additional
functionality around the object it wraps. Examples of extra added functionality
might be lazy loading or caching that might compensate for resource intense
operations of an original object.

The following is an example of proxy pattern implementation:

interface ImageInterface {

public function draw();

}

[818]

 Chapter 2

class Image implements ImageInterface {

private $file;

public function construct($file) {

$this->file = $file;

sleep(5); // Imagine resource intensive image load

}

public function draw() {

echo 'image: ' . $this->file;

}

}

class ProxyImage implements ImageInterface {

private $image = null;

private $file;

public function construct($file) {

$this->file = $file;

}

public function draw() {

if (is_null($this->image)) {

$this->image = new Image($this->file);

}

$this->image->draw();

}

}

// Client

$image = new Image('image.png'); // 5 seconds

$image->draw();

$image = new ProxyImage('image.png'); // 0 seconds

$image->draw();

We started off by creating an ImageInterface, with a single draw method.
We then defined the Image and ProxyImage classes, both of which extend the
ImageInterface. Within the construct of the Image class, we simulated
the resource intense operation with the sleep method call. Finally, the client
instantiates both Image and ProxyImage, showing the execution time difference
between the two.

[819]

GoF Design Patterns

Behavioral patterns
Behavioral patterns tackle the challenge of communication between various
objects. They describe how different objects and classes send messages to each
other to make things happen. The following is a list of patterns we categorize as
behavioral patterns:

• Chain of responsibility

• Command

• Interpreter

• Iterator

• Mediator

• Memento

• Observer

• State

• Strategy

• Template method

• Visitor

Chain of responsibility pattern
The chain of responsibility pattern decouples the sender of a request from its
receiver, by enabling more than one object to handle requests, in a chain manner.
Various types of handling objects can be added dynamically to the chain. Using a
recursive composition chain allows for an unlimited number of handling objects.

The following is an example of chain of responsibility pattern implementation:

abstract class SocialNotifier {

private $notifyNext = null;

public function notifyNext(SocialNotifier $notifier) {

$this->notifyNext = $notifier;

return $this->notifyNext;

}

final public function push($message) {

$this->publish($message);

if ($this->notifyNext !== null) {

$this->notifyNext->push($message);

[820]

 Chapter 2

}

}

abstract protected function publish($message);

}

class TwitterSocialNotifier extends SocialNotifier {

public function publish($message) {

// Implementation...

}

}

class FacebookSocialNotifier extends SocialNotifier {

protected function publish($message) {

// Implementation...

}

}

class PinterestSocialNotifier extends SocialNotifier {

protected function publish($message) {

// Implementation...

}

}

// Client

$notifier = new TwitterSocialNotifier();

$notifier->notifyNext(new FacebookSocialNotifier())

->notifyNext(new PinterestSocialNotifier());

$notifier->push('Awesome new product available!');

We started off by creating an abstract SocialNotifier class with the abstract
method publish, notifyNext, and push method implementations. We
then defined TwitterSocialNotifier, FacebookSocialNotifier, and
PinterestSocialNotifier, all of which extend the abstract SocialNotifier.
The client starts by instantiating the TwitterSocialNotifier, followed by two
notifyNext calls, passing it instances of two other notifier types before it calls
the final push method.

[821]

GoF Design Patterns

Command pattern
The command pattern decouples the object that executes certain operations from
objects that know how to use it. It does so by encapsulating all of the relevant
information needed for later execution of a certain action. This implies information
about object, method name, and method parameters.

The following is an example of command pattern implementation:

interface LightBulbCommand {

public function execute();

}

class LightBulbControl {

public function turnOn() {

echo 'LightBulb turnOn';

}

public function turnOff() {

echo 'LightBulb turnOff';

}

}

class TurnOnLightBulb implements LightBulbCommand {

private $lightBulbControl;

public function construct(LightBulbControl

$lightBulbControl) {

$this->lightBulbControl = $lightBulbControl;

}

public function execute() {

$this->lightBulbControl->turnOn();

}

}

class TurnOffLightBulb implements LightBulbCommand {

private $lightBulbControl;

public function construct(LightBulbControl

$lightBulbControl) {

$this->lightBulbControl = $lightBulbControl;

}

[822]

 Chapter 2

public function execute() {

$this->lightBulbControl->turnOff();

}

}

// Client

$command = new TurnOffLightBulb(new LightBulbControl());

$command->execute();

We started off by creating a LightBulbCommand interface. We then defined the
LightBulbControl class that provides two simple turnOn / turnOff methods.
Then we defined the TurnOnLightBulb and TurnOffLightBulb classes which
implement the LightBulbCommand interface. Finally, the client is instantiating the
TurnOffLightBulb object with an instance of LightBulbControl, and calling the
execute method on it.

Interpreter pattern
The interpreter pattern specifies how to evaluate language grammar or expressions.
We define a representation for language grammar along with an interpreter.
Representation of language grammar uses composite class hierarchy, where rules
are mapped to classes. The interpreter then uses the representation to interpret
expressions in the language.

The following is an example of interpreter pattern implementation:

interface MathExpression

{

public function interpret(array $values);

}

class Variable implements MathExpression {

private $char;

public function construct($char) {

$this->char = $char;

}

public function interpret(array $values) {

return $values[$this->char];

}

}

[823]

GoF Design Patterns

class Literal implements MathExpression {

private $value;

public function construct($value) {

$this->value = $value;

}

public function interpret(array $values) {

return $this->value;

}

}

class Sum implements MathExpression {

private $x;

private $y;

public function construct(MathExpression $x, MathExpression

$y) {

$this->x = $x;

$this->y = $y;

}

public function interpret(array $values) {

return $this->x->interpret($values) + $this->y->

interpret($values);

}

}

class Product implements MathExpression {

private $x;

private $y;

public function construct(MathExpression $x, MathExpression

$y) {

$this->x = $x;

$this->y = $y;

}

public function interpret(array $values) {

return $this->x->interpret($values) * $this->y->

interpret($values);

}

}

[824]

 Chapter 2

// Client

$expression = new Product(

new Literal(5),

new Sum(

new Variable('c'),

new Literal(2)

)

);

echo $expression->interpret(array('c' => 3)); // 25

We started off by creating a MathExpression interface, with a single interpret
method. We then add Variable, Literal, Sum, and Product classes, all of which
implement the MathExpression interface. The client then instantiates from the
Product class, passing it instances of Literal and Sum, finishing with an interpret
method call.

Iterator pattern
The iterator pattern is used to traverse a container and access its elements. In
other words, one class becomes able to traverse the elements of another class.
The PHP has a native support for the iterator as part of built in \Iterator and
\IteratorAggregate interfaces.

The following is an example of iterator pattern implementation:

class ProductIterator implements \Iterator {

private $position = 0;

private $productsCollection;

public function construct(ProductCollection

$productsCollection) {

$this->productsCollection = $productsCollection;

}

public function current() {

return $this->productsCollection->getProduct($this->

position);

}

public function key() {

return $this->position;

}

[825]

GoF Design Patterns

public function next() {

$this->position++;

}

public function rewind() {

$this->position = 0;

}

public function valid() {

return !is_null($this->productsCollection->

getProduct($this->position));

}

}

class ProductCollection implements \IteratorAggregate {

private $products = array();

public function getIterator() {

return new ProductIterator($this);

}

public function addProduct($string) {

$this->products[] = $string;

}

public function getProduct($key) {

if (isset($this->products[$key])) {

return $this->products[$key];

}

return null;

}

public function isEmpty() {

return empty($products);

}

}

$products = new ProductCollection();

$products->addProduct('T-Shirt Red');

$products->addProduct('T-Shirt Blue');

$products->addProduct('T-Shirt Green');

$products->addProduct('T-Shirt Yellow');

[826]

 Chapter 2

foreach ($products as $product) {

var_dump($product);

}

We started off by creating a ProductIterator which implements the standard PHP
\Iterator interface. We then added the ProductCollection which implements
the standard PHP \IteratorAggregate interface. The client creates an instance of
ProductCollection, stacking values into it via the addProduct method call and
loops through the entire collection.

Mediator pattern
The more classes we have in our software, the more complex their communication
becomes. The mediator pattern addresses this complexity by encapsulating it into
a mediator object. Objects no longer communicate directly, but rather through a
mediator object, therefore lowering the overall coupling.

The following is an example of mediator pattern implementation:

interface MediatorInterface {

public function fight();

public function talk();

public function registerA(ColleagueA $a);

public function registerB(ColleagueB $b);

}

class ConcreteMediator implements MediatorInterface {

protected $talk; // ColleagueA

protected $fight; // ColleagueB

public function registerA(ColleagueA $a) {

$this->talk = $a;

}

public function registerB(ColleagueB $b) {

$this->fight = $b;

}

public function fight() {

echo 'fighting...';

}

[827]

GoF Design Patterns

public function talk() {

echo 'talking...';

}

}

abstract class Colleague {

protected $mediator; // MediatorInterface

public abstract function doSomething();

}

class ColleagueA extends Colleague {

public function construct(MediatorInterface $mediator) {

$this->mediator = $mediator;

$this->mediator->registerA($this);

}

public function doSomething() {

$this->mediator->talk();

}

}

class ColleagueB extends Colleague {

public function construct(MediatorInterface $mediator) {

$this->mediator = $mediator;

$this->mediator->registerB($this);

}

public function doSomething() {

$this->mediator->fight();

}

}

// Client

$mediator = new ConcreteMediator();

$talkColleague = new ColleagueA($mediator);

$fightColleague = new ColleagueB($mediator);

$talkColleague->doSomething();

$fightColleague->doSomething();

[828]

 Chapter 2

We started off by creating a MediatorInterface with several methods,
implemented by the ConcreteMediator class. We then defined the abstract class
Colleague to force the doSomething method implementation on the following
ColleagueA and ColleagueB classes. The client instantiates the ConcreteMediator
first, and passes its instance to the instances of ColleagueA and ColleagueB, upon
which it calls the doSomething method.

Memento pattern
The memento pattern provides the object restore functionality. Implementation is
done through three different objects; originator, caretaker, and a memento, where
the originator is the one preserving the internal state required for a later restore.

The following is an example of memento pattern implementation:

class Memento {

private $state;

public function construct($state) {

$this->state = $state;

}

public function getState() {

return $this->state;

}

}

class Originator {

private $state;

public function setState($state) {

return $this->state = $state;

}

public function getState() {

return $this->state;

}

public function saveToMemento() {

return new Memento($this->state);

}

[829]

GoF Design Patterns

public function restoreFromMemento(Memento $memento) {

$this->state = $memento->getState();

}

}

// Client - Caretaker

$savedStates = array();

$originator = new Originator();

$originator->setState('new');

$originator->setState('pending');

$savedStates[] = $originator->saveToMemento();

$originator->setState('processing');

$savedStates[] = $originator->saveToMemento();

$originator->setState('complete');

$originator->restoreFromMemento($savedStates[1]);

echo $originator->getState(); // processing

We started off by creating a Memento class, which will provide the a current state
of the object through the getState method. We then defined the Originator class
that pushed the state to Memento. Finally, the client takes the role of caretaker by
instantiating Originator, juggling among its few states, saving and restoring them
from memento.

Observer pattern
The observer pattern implements a one-too-many dependency between objects. The
object that holds the list of dependencies is called subject, while the dependents are
called observers. When the subject object changes state, all of the dependents are
notified and updated automatically.

The following is an example of observer pattern implementation:

class Customer implements \SplSubject {

protected $data = array();

protected $observers = array();

public function attach(\SplObserver $observer) {

$this->observers[] = $observer;

}

public function detach(\SplObserver $observer) {

$index = array_search($observer, $this->observers);

[830]

 Chapter 2

if ($index !== false) {

unset($this->observers[$index]);

}

}

public function notify() {

foreach ($this->observers as $observer) {

$observer->update($this);

echo 'observer updated';

}

}

public function set($name, $value) {

$this->data[$name] = $value;

// notify the observers, that user has been updated

$this->notify();

}

}

class CustomerObserver implements \SplObserver {

public function update(\SplSubject $subject) {

/* Implementation... */

}

}

// Client

$user = new Customer();

$customerObserver = new CustomerObserver();

$user->attach($customerObserver);

$user->name = 'John Doe';

$user->email = 'john.doe@fake.mail';

We started off by creating a Customer class which implements the standard PHP
\SplSubject interface. We then defined the CustomerObserver class which
implements the standard PHP \SplObserver interface. Finally, the client instantiates
the Customer and CustomerObserver objects and attaches the CustomerObserver
objects to Customer. Any changes to name and email properties are then caught by
the observer.

[831]

GoF Design Patterns

State pattern
The state pattern encapsulates the varying behavior for the same object based on its
internal state, making an object appear as if it has changed its class.

The following is an example of state pattern implementation:

interface Statelike {

public function writeName(StateContext $context, $name);

}

class StateLowerCase implements Statelike {

public function writeName(StateContext $context, $name)

{ echo strtolower($name);

$context->setState(new StateMultipleUpperCase());

}

}

class StateMultipleUpperCase implements Statelike {

private $count = 0;

public function writeName(StateContext $context, $name) {

$this->count++;

echo strtoupper($name);

/* Change state after two invocations */

if ($this->count > 1) {

$context->setState(new StateLowerCase());

}

}

}

class StateContext {

private $state;

public function setState(Statelike $state) {

$this->state = $state;

}

public function writeName($name) {

$this->state->writeName($this, $name);

}

}

[832]

 Chapter 2

// Client

$stateContext = new StateContext();

$stateContext->setState(new StateLowerCase());

$stateContext->writeName('Monday');

$stateContext->writeName('Tuesday');

$stateContext->writeName('Wednesday');

$stateContext->writeName('Thursday');

$stateContext->writeName('Friday');

$stateContext->writeName('Saturday');

$stateContext->writeName('Sunday');

We started off by creating a Statelike interface, followed by StateLowerCase
and StateMultipleUpperCase which implement that interface. The
StateMultipleUpperCase has a bit of counting logic added to its writeName, so
it kicks off the new state after two invocations. We then defined the StateContext
class, which we will use to switch contexts. Finally, the client instantiates the
StateContext, and passes an instance of StateLowerCase to it through the
setState method, followed by several writeName methods.

Strategy pattern
The strategy pattern defines a family of algorithms, each of which is encapsulated
and made interchangeable with other members within that family.

The following is an example of strategy pattern implementation:

interface PaymentStrategy {

public function pay($amount);

}

class StripePayment implements PaymentStrategy {

public function pay($amount) {

echo 'StripePayment...';

}

}

class PayPalPayment implements PaymentStrategy {

public function pay($amount) {

echo 'PayPalPayment...';

}

}

[833]

GoF Design Patterns

class Checkout {

private $amount = 0;

public function construct($amount = 0) {

$this->amount = $amount;

}

public function capturePayment() {

if ($this->amount > 99.99) {

$payment = new PayPalPayment();

} else {

$payment = new StripePayment();

}

$payment->pay($this->amount);

}

}

$checkout = new Checkout(49.99);

$checkout->capturePayment(); // StripePayment...

$checkout = new Checkout(199.99);

$checkout->capturePayment(); // PayPalPayment...

We started off by creating a PaymentStrategy interface followed with concrete
classes StripePayment and PayPalPayment which implement it. We then defined
the Checkout class with a bit of decision making logic within the capturePayment
method. Finally, the client instantiates the Checkout, passing a certain amount
through its constructor. Based on the amount, the Checkout internally triggers
one or another payment when capturePayment is called.

Template pattern
The template design pattern defines the program skeleton of an algorithm in a
method. It lets us, via use of class overriding, redefine certain steps of an algorithm
without really changing the algorithm's structure.

The following is an example of template pattern implementation:

abstract class Game {

private $playersCount;

abstract function initializeGame();

abstract function makePlay($player);

[834]

 Chapter 2

abstract function endOfGame();

abstract function printWinner();

public function playOneGame($playersCount)

{

$this->playersCount = $playersCount;

$this->initializeGame();

$j = 0;

while (!$this->endOfGame()) {

$this->makePlay($j);

$j = ($j + 1) % $playersCount;

}

$this->printWinner();

}

}

class Monopoly extends Game {

public function initializeGame() {

// Implementation...

}

public function makePlay($player) {

// Implementation...

}

public function endOfGame() {

// Implementation...

}

public function printWinner() {

// Implementation...

}

}

class Chess extends Game {

public function initializeGame() {

// Implementation...

}

public function makePlay($player) {

// Implementation...

}

[835]

GoF Design Patterns

public function endOfGame() {

// Implementation...

}

public function printWinner() {

// Implementation...

}

}

$game = new Chess();

$game->playOneGame(2);

$game = new Monopoly();

$game->playOneGame(4);

We started off by creating an abstract Game class that provides all of the actual
abstract methods encapsulating the game-play. We then defined the Monopoly and
Chess classes, both of which extend from the Game class, implementing game specific
method game-play for each. The client simply instantiates the Monopoly and Chess
objects, calling the playOneGame method on each.

Visitor pattern
The visitor design pattern is a way of separating an algorithm from an object
structure on which it operates. As a result, we are able to add new operations to
existing object structures without actually modifying those structures.

The following is an example of visitor pattern implementation:

interface RoleVisitorInterface {

public function visitUser(User $role);

public function visitGroup(Group $role);

}

class RolePrintVisitor implements RoleVisitorInterface {

public function visitGroup(Group $role) {

echo 'Role: ' . $role->getName();

}

public function visitUser(User $role) {

echo 'Role: ' . $role->getName();

}

}

[836]

 Chapter 2

abstract class Role {

public function accept(RoleVisitorInterface $visitor) {

$klass = get_called_class();

preg_match('#([^\\\\]+)$#', $klass, $extract);

$visitingMethod = 'visit' . $extract[1];

if (!method_exists(NAMESPACE .

'\RoleVisitorInterface', $visitingMethod)) {

throw new \InvalidArgumentException("The visitor you

provide cannot visit a $klass instance");

}

call_user_func(array($visitor, $visitingMethod), $this);

}

}

class User extends Role {

protected $name;

public function construct($name) {

$this->name = (string)$name;

}

public function getName() {

return 'User ' . $this->name;

}

}

class Group extends Role {

protected $name;

public function construct($name) {

$this->name = (string)$name;

}

public function getName() {

return 'Group: ' . $this->name;

}

}

$group = new Group('my group');

$user = new User('my user');

[837]

GoF Design Patterns

$visitor = new RolePrintVisitor;

$group->accept($visitor);

$user->accept($visitor);

We started off by creating a RoleVisitorInterface, followed by
RolePrintVisitor which implements the RoleVisitorInterface itself.
We then defined the abstract class Role, with an accept method taking in the
RoleVisitorInterface parameter type. We further defined the concrete User and
Group classes, both of which extend from Role. The client instantiates User, Group,
and the RolePrintVisitor; passing in the visitor to the accept method call of
User and Group instances.

Summary
Design patterns are a common, high-level language for developers. They enable
a short-hand way of communicating application design among team members.
Understanding how to recognize and implement design patterns shifts our focus to
business requirement solving, rather than tinkering with how to glue our solution
together on a code level.

Coding, like most hand-crafted disciplines, is one of those where you get what
you pay for. While implementing a number of design patterns takes a certain
amount of time, lack of doing so on a larger project will likely catch up with us
in the future, one way or another. Similar to the "use a framework or not" debate,
implementing the right design patterns affects extensibility, re-usability, adaptability,
and maintainability of our code. Therefore, making it more future proof.

Moving forward, in the next chapter, we will look into the SOLID design principles
and the role they play in software development processes.

[838]

SOLID Design Principles
Building modular software requires strong knowledge of the class design. There are
numerous guidelines out there, addressing the way we name our classes, number
of variables they should have, what the size of methods should be, and so on. The
PHP ecosystem managed to pack these into official PSR standard, more precisely
PSR-1: Basic Coding Standard and PSR-2: Coding Style Guide. These are all
general programming guidelines that keep our code readable, understandable,
and maintainable.

Aside from programming guidelines, there are more specific design principles that
we can apply during the class design. Ones that address the notions of low coupling,
high cohesion, and strong encapsulation. We call them SOLID design principles,
a term coined by Robert Cecil Martin in the early 2000s.

SOLID is an acronym for the following five principles:

• S: Single responsibility principle (SRP)

• O: Open/closed principle (OCP)

• L: Liskov substitution principle (LSP)

• I: Interface Segregation Principle (ISP)

• D: Dependency inversion principle (DIP)

Over a decade old, the idea of SOLID principles is far from obsolete, as they are
at the heart of good class design. Throughout this chapter, we will look into each
of these principles, getting to understand them by observing some of the obvious
violations that break them.

[839]

SOLID Design Principles

In this chapter, we will be covering the following topics:

• Single responsibility principle

• Open/closed principle

• Liskov substitution principle

• Interface Segregation Principle

• Dependency inversion principle

Single responsibility principle
The single responsibility principle deals with classes that try to do too much.
The responsibility in this context refers to reason to change. As per the Robert C.
Martin definition:

"A class should have only one reason to change."

The following is an example of a class that violates the SRP:

class Ticket {

const SEVERITY_LOW = 'low';

const SEVERITY_HIGH = 'high';

// ...

protected $title;

protected $severity;

protected $status;

protected $conn;

public function construct(\PDO $conn) {

$this->conn = $conn;

}

public function setTitle($title) {

$this->title = $title;

}

public function setSeverity($severity) {

$this->severity = $severity;

}

public function setStatus($status) {

$this->status = $status;

}

[840]

 Chapter 3

private function validate() {

// Implementation...

}

public function save() {

if ($this->validate()) {

// Implementation...

}

}

}

// Client

$conn = new PDO(/* ... */);

$ticket = new Ticket($conn);

$ticket->setTitle('Checkout not working!');

$ticket->setStatus(Ticket::STATUS_OPEN);

$ticket->setSeverity(Ticket::SEVERITY_HIGH);

$ticket->save();

The Ticket class deals with validation and saving of the ticket entity to the
database. These two responsibilities are its two reasons to change. Whenever the
requirements change regarding the ticket validation, or regarding the saving of the
ticket, the Ticket class will have to be modified. To address the SRP violation here,
we can use the assisting classes and interfaces to split the responsibilities.

The following is an example of refactored implementation, which complies with SRP:

interface KeyValuePersistentMembers {

public function toArray();

}

class Ticket implements KeyValuePersistentMembers {

const STATUS_OPEN = 'open';

const SEVERITY_HIGH = 'high';

//...

protected $title;

protected $severity;

protected $status;

public function setTitle($title) {

$this->title = $title;

}

[841]

SOLID Design Principles

public function setSeverity($severity) {

$this->severity = $severity;

}

public function setStatus($status) {

$this->status = $status;

}

public function toArray() {

// Implementation...

}

}

class EntityManager {

protected $conn;

public function construct(\PDO $conn) {

$this->conn = $conn;

}

public function save(KeyValuePersistentMembers $entity)

{

// Implementation...

}

}

class Validator {

public function validate(KeyValuePersistentMembers $entity) {

// Implementation...

}

}

// Client

$conn = new PDO(/* ... */);

$ticket = new Ticket();

$ticket->setTitle('Payment not working!');

$ticket->setStatus(Ticket::STATUS_OPEN);

$ticket->setSeverity(Ticket::SEVERITY_HIGH);

$validator = new Validator();

[842]

 Chapter 3

if ($validator->validate($ticket)) {

$entityManager = new EntityManager($conn);

$entityManager->save($ticket);

}

Here we introduced a simple KeyValuePersistentMembers interface with a single
toArray method, which is then used with both EntityManager and Validator
classes, both of which take on a single responsibility now. The Ticket class became
a simple data holding model, whereas client now controls instantiation, validation,
and save as three different steps. While this is certainly no universal formula of how
to separate responsibilities, it does provide a simple and clear example of how to
approach it.

Designing with the single responsibilities principle in mind yields smaller classes
with greater readability and easier to test code.

Open/closed principle
The open/closed principle states that a class should be open for extension but closed
for modification, as per the definition found on Wikipedia:

"software entities (classes, modules, functions, etc.) should be open for extension,
but closed for modification"

The open for extension part means that we should design our classes so that new
functionality can be added if needed. The closed for modification part means that
this new functionality should fit in without modifying the original class. The class
should only be modified in case of a bug fix, not for adding new functionality.

The following is an example of a class that violates the open/closed principle:

class CsvExporter {

public function export($data) {

// Implementation...

}

}

class XmlExporter {

public function export($data) {

// Implementation...

}

}

[843]

SOLID Design Principles

class GenericExporter {

public function exportToFormat($data, $format) {

if ('csv' === $format) {

$exporter = new CsvExporter();

} elseif ('xml' === $format) {

$exporter = new XmlExporter();

} else {

throw new \Exception('Unknown export format!');

}

return $exporter->export($data);

}

}

Here we have two concrete classes, CsvExporter and XmlExporter, each with a
single responsibility. Then we have a GenericExporter with its exportToFormat
method that actually triggers the export function on a proper instance type. The
problem here is that we cannot add a new type of exporter to the mix without
modifying the GenericExporter class. To put it in other words, GenericExporter
is not open for extension and closed for modification.

The following is an example of refactored implementation, which complies
with OCP:

interface ExporterFactoryInterface {

public function buildForFormat($format);

}

interface ExporterInterface {

public function export($data);

}

class CsvExporter implements ExporterInterface {

public function export($data) {

// Implementation...

}

}

class XmlExporter implements ExporterInterface {

public function export($data) {

// Implementation...

}

}

[844]

 Chapter 3

class ExporterFactory implements ExporterFactoryInterface {

private $factories = array();

public function addExporterFactory($format, callable $factory)

{

$this->factories[$format] = $factory;

}

public function buildForFormat($format) {

$factory = $this->factories[$format];

$exporter = $factory(); // the factory is a callable

return $exporter;

}

}

class GenericExporter {

private $exporterFactory;

public function construct

(ExporterFactoryInterface $exporterFactory) {

$this->exporterFactory = $exporterFactory;

}

public function exportToFormat($data, $format) {

$exporter = $this->exporterFactory->

buildForFormat($format);

return $exporter->export($data);

}

}

// Client

$exporterFactory = new ExporterFactory();

$exporterFactory->addExporterFactory(

'xml',

function () {

return new XmlExporter();

}

);

$exporterFactory->addExporterFactory(

'csv',

function () {

[845]

SOLID Design Principles

return new CsvExporter();

}

);

$data = array(/* ... some export data ... */);

$genericExporter = new GenericExporter($exporterFactory);

$csvEncodedData = $genericExporter->exportToFormat($data, 'csv');

Here we added two interfaces, ExporterFactoryInterface and
ExporterInterface. We then modified the CsvExporter and XmlExporter to
implement that interface. The ExporterFactory was added, implementing the
ExporterFactoryInterface. Its main role is defined by the buildForFormat
method, which returns the exporter as a callback function. Finally, the
GenericExporter was rewritten to accept the ExporterFactoryInterface via its
constructor, and its exportToFormat method now builds the exporter by use of an
exporter factory and calls the execute method on it.

The client itself has taken a more robust role now, by first instantiating the
ExporterFactory and adding two exporters to it, which it then passed onto
GenericExporter. Adding a new export format to GenericExporter now, no
longer requires modifying it, therefore making it open for extension and closed for
modification. Again, this is by no means a universal formula, rather a concept of
possible approach towards satisfying the OCP.

Liskov substitution principle
The Liskov substitution principle talks about inheritance. It specifies how we
should design our classes so that client dependencies can be replaced by subclasses
without the client seeing the difference, as per the definition found on Wikipedia:

"objects in a program should be replaceable with instances of their subtypes
without altering the correctness of that program"

While there might be some specific functionality added to the subclass, it has to
conform to the same behavior as its base class. Otherwise the Liskov principle
is violated.

When it comes to PHP and sub-classing, we have to look beyond simple concrete
classes and differentiate: concrete class, abstract class, and interface. Each of the three
can be put in the context of a base class, while everything extending or implementing
it can be looked at as a derived class.

[846]

 Chapter 3

The following is an example of LSP violation, where the derived class does not have
an implementation for all methods:

interface User {

public function getEmail();

public function getName();

public function getAge();

}

class Employee implements User {

public function getEmail() {

// Implementation...

}

public function getAge() {

// Implementation...

}

}

Here we see an employee class which does not implement the getName method
enforced by the interface. We could have easily used an abstract class instead of the
interface and abstract method type for the getName method, the effect would have
been the same. Luckily, the PHP would throw an error in this case, warning us that
we haven't really implemented the interface fully.

The following is an example of Liskov principle violation, where different derived
classes return things of different types:

class UsersCollection implements \Iterator {

// Implementation...

}

interface UserList {

public function getUsers();

}

class Emloyees implements UserList {

public function getUsers() {

$users = new UsersCollection();

//...

return $users;

}

}

[847]

SOLID Design Principles

class Directors implements UserList {

public function getUsers() {

$users = array();

//...

return $users;

}

}

Here we see a simple example of an edge case. Calling getUsers on both derived
classes will return a result we can loop through. However, PHP developers tend to
use the count method often on array structures, and using it on Employees instances
the getUsers result will not work. This is because the Employees class returns
UsersCollection which implements Iterator, not the actual array structure. Since
UsersCollection does not implement Countable, we cannot use count on it, which
leads to potential bugs down the line.

We can further spot LSP violations in cases where the derived class behaves less
permissively with regard to method arguments. These can usually be spotted by
use of the instance of type operator, as shown in the following example:

interface LoggerProcessor {

public function log(LoggerInterface $logger);

}

class XmlLogger implements LoggerInterface {

// Implementation...

}

class JsonLogger implements LoggerInterface {

// Implementation...

}

class FileLogger implements LoggerInterface {

// Implementation...

}

class Processor implements LoggerProcessor {

public function log(LoggerInterface $logger) {

if ($logger instanceof XmlLogger) {

throw new \Exception('This processor does not work

with XmlLogger');

} else {

// Implementation...

}

}

}

[848]

 Chapter 3

Here, the derived class Processor puts restrictions on method arguments,
while it should accept everything conforming to the LoggerInterface. By
being less permissive, it alters the behavior implied by the base class, in this
case LoggerInterface.

The outlined examples are merely a fragment of what constitutes a violation
of LSP. To satisfy the principle, we need to make sure that derived classes do not,
in any way, alter the behavior imposed by the base class.

Interface Segregation Principle
The Interface Segregation Principle states that clients should only implement
interfaces they actually use. They should not be forced to implement interfaces
they do not use. As per the definition found on Wikipedia:

"many client-specific interfaces are better than one general-purpose interface"

What this means is that we should split large and fat interfaces into several small and
lighter ones, segregating it so that smaller interfaces are based on groups of methods,
each serving one specific functionality.

Let's take a look at the following leaky abstraction that violates the ISP:

interface Appliance {

public function powerOn();

public function powerOff();

public function bake();

public function mix();

public function wash();

}

class Oven implements Appliance {

public function powerOn() { /* Implement ... */ }

public function powerOff() { /* Implement ... */ }

public function bake() { /* Implement... */ }

public function mix() { /* Nothing to implement ... */ }

public function wash() { /* Cannot implement... */ }

}

class Mixer implements Appliance {

public function powerOn() { /* Implement... */ }

public function powerOff() { /* Implement... */ }

public function bake() { /* Cannot implement... */ }

[849]

SOLID Design Principles

public function mix() { /* Implement... */ }

public function wash() { /* Cannot implement... */ }

}

class WashingMachine implements Appliance {

public function powerOn() { /* Implement... */ }

public function powerOff() { /* Implement... */ }

public function bake() { /* Cannot implement... */ }

public function mix() { /* Cannot implement... */ }

public function wash() { /* Implement... */ }

}

Here we have an interface setting requirements for several appliance related
methods. Then we have several classes implementing that interface. The problem is
quite obvious; not all appliances can be squeezed into the same interface. It makes no
sense for a washing machine to be forced to implement bake and mix methods. These
methods need to be split each into its own interface. That way concrete appliance
classes get to implement only the methods that actually make sense.

Dependency inversion principle
The dependency inversion principle states that entities should depend on
abstractions and not on concretions. That is, a high level module should not
depend on a low level module, rather the abstraction. As per the definition
found on Wikipedia:

"One should depend upon abstractions. Do not depend upon concretions."

This principle is important as it plays a major role in decoupling our software.

The following is an example of a class that violates the DIP:

class Mailer {

// Implementation...

}

class NotifySubscriber {

public function notify($emailTo) {

$mailer = new Mailer();

$mailer->send('Thank you for...', $emailTo);

}

}

[850]

 Chapter 3

Here we can see a notify method within the NotifySubscriber class coding in a
dependency towards the Mailer class. This makes for tightly coupled code, which
is what we are trying to avoid. To rectify the problem, we can pass the dependency
through the class constructor, or possibly via some other method. Furthermore, we
should move away from concrete class dependency towards an abstracted one,
as shown in the rectified example shown here:

interface MailerInterface {

// Implementation...

}

class Mailer implements MailerInterface {

// Implementation...

}

class NotifySubscriber {

private $mailer;

public function construct(MailerInterface $mailer) {

$this->mailer = $mailer;

}

public function notify($emailTo) {

$this->mailer->send('Thank you for...', $emailTo);

}

}

Here we see a dependency being injected through the constructor. The injection is
abstracted by a type hinting interface, and the actual concrete class. This makes our
code loosely coupled. The DIP can be used anytime a class needs to call a method of
another class, or shall we say send a message to it.

Summary
When it comes to modular development, extensibility is something to constantly
think about. Writing a code that locks itself in will likely result in a future failure
to integrate it with other projects or libraries. While SOLID design principles might
look like an overreach for some of the parts, actively applying these principles is
likely to result in components that are easy to maintain and extend over time.

Embracing the SOLID principles for class design prepares our code for future
changes. It does so by localizing and minimizing these changes within our classes,
so any integration using it does not feel the significant impact of the change.

Moving forward, in the next chapter, we will look into defining our application
specification which we will build across all other chapters.

[851]

Requirement Specification for

a Modular Web Shop App
Building a software application from the ground up requires diverse skills, as it
involves more than just writing down a code. Writing down functional requirements
and sketching out a wireframe are often among the first steps in the process,
especially if we are working on a client project. These steps are usually done by
someone other than the developer, as they require certain insight into client business
case, user behavior, and the like. Being part of a larger development team means
that we, as developers, usually get requirements, designs, and wireframes then start
coding against them. Delivering projects by oneself, makes it tempting to skip these
steps and get our hands started with code alone. More often than not, this is an
unproductive approach. Laying down functional requirements and a few wireframes
is a skill worth knowing and following, even if one is just a developer.

Later in this chapter, we will go over a high-level application requirement, alongside
a rough wireframe.

In this chapter, we will be covering the following topics:

• Defining application requirements

• Wireframing

• Defining technology stack:

 Symfony framework

 Foundation framework

[853]

Requirement Specification for a Modular Web Shop App

Defining application requirements
We need to build a simple, but responsive web shop application. In order to do
so, we need to lay out some basic requirements. The types of requirements we
are interested in at the moment are those that touch upon interactions between a
user and a system. The two most common techniques to specify requirements in
regards to user usage are use case and user story. The user stories are a less formal
yet descriptive enough way to outline these requirements. Using user stories, we
encapsulate the customer and store manager actions as mentioned here.

A customer should be able to do the following:

• Browse through static info pages (about us, customer service)

• Reach out to the store owner via a contact form

• Browse the shop categories

• See product details (price, description)

• See the product image with a large view (zoom)

• See items on sale

• See best sellers

• Add the product to the shopping cart

• Create a customer account

• Update customer account info

• Retrieve a lost password

• Check out

• See the total order cost

• Choose among several payment methods

• Choose among several shipment methods

• Get an email notification after an order has been placed

• Check order status

• Cancel an order

• See order history

[854]

 Chapter 4

A store manager should be able to do the following:

• Create a product (with the minimum following attributes: title, price, sku,
url-key, description, qty, category, and image)

• Upload a picture of the product

• Update and delete a product

• Create a category (with the minimum following attributes: title, url-key,
description, and image)

• Upload a picture to a category

• Update and delete a category

• Be notified if a new sales order has been created

• Be notified if a new sales order has been canceled

• See existing sales orders by their statuses

• Update the status of the order

• Disable a customer account

• Delete a customer account

User stories are a convenient high-level way of writing down application
requirements. Especially useful as an agile mode of development.

Wireframing
With user stories laid out, let's shift our focus to actual wireframing. For reasons we
will get into later on, our wireframing efforts will be focused around the customer
perspective.

There are numerous wireframing tools out there, both free and commercial. Some
commercial tools like https://ninjamock.com, which we will use for our examples,
still provide a free plan. This can be very handy for personal projects, as it saves us
a lot of time.

[855]

https://ninjamock.com/

Requirement Specification for a Modular Web Shop App

The starting point of every web application is its home page. The following
wireframe illustrates our web shop app's homepage:

Here we can see a few sections determining the page structure. The header is
comprised of a logo, category menu, and user menu. The requirements don't say
anything about category structure, and we are building a simple web shop app, so
we are going to stick to a flat category structure, without any sub-categories. The
user menu will initially show Register and Login links, until the user is actually
logged in, in which case the menu will change as shown in following wireframes.
The content area is filled with best sellers and on sale items, each of which have an
image, title, price, and Add to Cart button defined. The footer area contains links to
mostly static content pages, and a Contact Us page.

[856]

 Chapter 4

The following wireframe illustrates our web shop app's category page:

The header and footer areas remain conceptually the same across the entire site. The
content area has now changed to list products within any given category. Individual
product areas are rendered in the same manner as it is on the home page. Category
names and images are rendered above the product list. The width of a category
image gives some hints as to what type of images we should be preparing and
uploading onto our categories.

[857]

Requirement Specification for a Modular Web Shop App

The following wireframe illustrates our web shop app's product page:

The content area here now changes to list individual product information. We can
see a large image placeholder, title, sku, stock status, price, quantity field, Add to
Cart button, and product description being rendered. The IN STOCK message is
to be displayed when an item is available for purchase and OUT OF STOCK when
an item is no longer available. This is to be related to the product quantity attribute.
We also need to keep in mind the "See the product image with a big view (zoom)"
requirement, where clicking on an image would zoom into it.

[858]

 Chapter 4

The following wireframe illustrates our web shop app's register page:

The content area here now changes to render a registration form. There are many
ways that we can implement the registration system. More often than not, the
minimal amount of information is asked on a registration screen, as we want to get
the user in as quickly as possible. However, let's proceed as if we are trying to get
more complete user information right here on the registration screen. We ask not
just for an e-mail and password, but for entire address information as well.

[859]

Requirement Specification for a Modular Web Shop App

The following wireframe illustrates our web shop app's login page:

The content area here now changes to render a customer login and forgotten
password form. We provide the user with Email and Password fields in case
of login, or just an Email field in case of a password reset action.

[860]

 Chapter 4

The following wireframe illustrates our web shop app's customer account page:

The content area here now changes to render the customer account area, visible only
to logged in customers. Here we see a screen with two main pieces of information.
The customer information being one, and order history being the other. The
customer can change their e-mail, password, and other address information from this
screen. Furthermore, the customer can view, cancel, and print all of their previous
orders. The My Orders table lists orders top to bottom, from newest to oldest.
Though not specified by the user stories, the order cancelation should work only on
pending orders. This is something that we will touch upon in more detail later on.

This is also the first screen that shows the state of the user menu when the user is
logged in. We can see a dropdown showing the user's full name, My Account, and
Sign Out links. Right next to it, we have the Cart (%s) link, which is to list exact
quantities in a cart.

[861]

Requirement Specification for a Modular Web Shop App

The following wireframe illustrates our web shop app's checkout cart page:

The content area here now changes to render the cart in its current state. If the
customer has added any products to the cart, they are to be listed here. Each item
should list the product title, individual price, quantity added, and subtotal. The
customer should be able to change quantities and press the Update Cart button to
update the state of the cart. If 0 is provided as the quantity, clicking the Update
Cart button will remove such an item from the cart. Cart quantities should at all
time reflect the state of the header menu Cart (%s) link. The right-hand side of a
screen shows a quick summary of current order total value, alongside a big, clear
Go to Checkout button.

[862]

 Chapter 4

The following wireframe illustrates our web shop app's checkout cart shipping page:

The content area here now changes to render the first step of a checkout process,
the shipping information collection. This screen should not be accessible for non-
logged in customers. The customer can provide us with their address details here,
alongside a shipping method selection. The shipping method area lists several
shipping methods. On the right hand side, the collapsible order summary section is
shown, listing current items in the cart. Below it, we have the cart subtotal value and
a big clear Next button. The Next button should trigger only when all of the required
information is provided, in which case it should take us to payment information on
the checkout cart payment page.

[863]

Requirement Specification for a Modular Web Shop App

The following wireframe illustrates our web shop app's checkout cart payment page:

The content area here now changes to render the second step of a checkout process,
the payment information collection. This screen should not be accessible for non-
logged in customers. The customer is presented with a list of available payment
methods. For the simplicity of the application, we will focus only on flat/fixed
payments, nothing robust such as PayPal or Stripe. On the right-hand side of the
screen, we can see a collapsible Order summary section, listing current items in the
cart. Below it, we have the order totals section, individually listing Cart Subtotal,
Standard Delivery, Order Total, and a big clear Place Order button. The Place
Order button should trigger only when all of the required information is provided,
in which case it should take us to the checkout success page.

[864]

 Chapter 4

The following wireframe illustrates our web shop app's checkout success page:

The content area here now changes to output the checkout successful message.
Clearly this page is only visible to logged in customers that just finished the checkout
process. The order number is clickable and links to the My Account area, focusing on
the exact order. By reaching this screen, both the customer and store manager should
receive a notification email, as per the Get email notification after order has been placed
and Be notified if the new sales order has been created requirements.

With this, we conclude our customer facing wireframes.

[865]

Requirement Specification for a Modular Web Shop App

In regards to store manager user story requirements, we will simply define a landing
administration interface for now, as shown in the following screenshot:

Using the framework later on, we will get a complete auto-generated CRUD interface
for the multiple Add New and List & Manage links. The access to this interface and
its links will be controlled by the framework's security component, since this user
will not be a customer or any user in the database as such.

Furthermore, throughout the following chapters, we will split our application into
several modules. In such a setup, each module will take ownership of individual
functionalities, taking care of customer, catalog, checkout, and other requirements.

[866]

 Chapter 4

Defining a technology stack
Once the requirements and wireframes are set, we can focus our attention to
the selection of a technology stack. In Chapter 1, Ecosystem Overview we glossed
over several of the most popular PHP frameworks, pointing out their strengths.
Choosing the right one in this case, is more of a matter of preference, as application
requirements for the most part can be easily met by be met any one of those
frameworks. Our choice, however, falls to Symfony. Aside from PHP frameworks,
we still need a CSS framework to deliver some structure, styling, and responsiveness
within the browser on the client side. Since the focus of this book is on PHP
technologies, let's just say we chose the Foundation CSS framework for that task.

The Symfony framework
The Symfony framework makes a nice choice for our application. It is an enterprise
level framework that has been around for years, and is extremely well documented
and supported. It can be downloaded from the official http://symfony.com page as
shown here:

[867]

http://symfony.com/

Requirement Specification for a Modular Web Shop App

The benefits of using Symfony as part of our technology stack are numerous. The
framework provides robust and well documented:

• Controllers

• Routing

• ORM (via Doctrine)

• Forms

• Validation

• Security

These are essential features required by our application. The ORM in particular,
plays a major role in rapid application development. Having to worry less about
coding, every aspect of CRUD can boost the speed of development by a factor or
two. The great thing about Symfony in this regard is that it allows for automatic
generation of entities and CRUD actions around them by executing two simple
commands such as the following:

php bin/console doctrine:generate:entity

php app/console generate:doctrine:crud

By doing so, Symfony generates entity models and necessary controllers that
empower us to perform the following operations:

• List all records

• Show one given record identified by its primary key

• Create a new record

• Edit an existing record

• Delete an existing record

Basically, we get a minimal store manager interface for free. This alone covers most
of the CRUD related requirements set for the store manager role. We can then easily
modify the generated templates to further integrate the remaining functionality.

On top of that, security components provide authentication and authorization that
we can use to satisfy the customer and store manager logins. So a store manager
will be a fixed, pre-created user attached to Symfony's firewall, the only one having
access to CRUD controller actions.

[868]

 Chapter 4

Foundation framework
Backed by the company Zurb, the Foundation framework makes a great choice
for a modern responsive web application. We might say it is an enterprise level
framework, providing a collection of HTML, CSS, and JavaScript that we can build
upon. It can be downloaded from the official http://foundation.zurb.com page
as shown here:

Foundation comes in three flavors:

• Foundation for sites

• Foundation for e-mail

• Foundation for apps

We are interested in the sites version. Aside from general styling, Foundation for
sites provides a great deal of controls, navigational elements, containers, media
elements, and plugins. These will be particularly useful in our application, for things
like header menus, category product listings, responsive cart tables, and so on.

Foundation is built as a mobile-first framework, where we code for small screens first
and larger screens then inherit those styles. Its default 12-column grid system enables
us to create powerful multi-device layouts quickly and easily.

[869]

http://foundation.zurb.com/

Requirement Specification for a Modular Web Shop App

We will use Foundation simply to provide structure, some basic styling, and
responsiveness to our application, without writing a single line of CSS on our own.
This alone should make our application visually pleasing enough to work with both
on mobile and desktop screens, while still focusing the majority of our coding skills
around backend things.

Aside from providing robust functionality, the company behind Foundation also
provides premium technical support. Though we will not need it as part of this book,
these sorts of things establish confidence when choosing application frameworks.

Summary
Creating web applications can be a tedious and time consuming task, web shops
probably being one of the most robust and intensive type of application out there,
as they encompass a great deal of features. There are many components involved
in delivering the final product; from database, server side (PHP) code to client side
(HTML, CSS, and JavaScript) code. In this chapter, we started off by defining some
basic user stories which in turn defined high-level application requirements for our
small web shop. Adding wireframes to the mix helped us to visualize the customer
facing interface, while the store manager interface is to be provided out of the box by
the framework.

We further glossed over two of the most popular frameworks that support modular
application design. We turned our attention to Symfony as server side technology
and Foundation as a client side responsive framework.

Moving forward, in the next chapter, we will take a more in-depth look into
Symfony. As well as being a set of reusable components, Symfony is also one of the
most robust and popular full-stack PHP frameworks. Therefore, it is an interesting
choice for rapid web application development.

[870]

Symfony at a Glance
Full-stack frameworks like Symfony help ease the process of building modular
applications by providing all of the necessary components, from user interface to
data store. This enables a much rapid cycle of delivering individual bits and pieces
of application as it grows. We will experience this later on by segmenting our
application in several smaller modules, or bundles in Symfony terminology.

Moving forward we will install Symfony, create a blank project, and start looking
into individual framework features essential for building modular application:

• Controller

• Routing

• Templates

• Forms

• The bundle system

• Databases and Doctrine

• Testing

• Validation

Installing Symfony
Installing Symfony is pretty straightforward. We can use the following command to
install Symfony on Linux or Mac OS X:

sudo curl -LsS https://symfony.com/installer -o /usr/local/bin/

symfony

sudo chmod a+x /usr/local/bin/symfony

[871]

Symfony at a Glance

We can use the following command to install Symfony on Windows:

c:\> php -r "file_put_contents('symfony', file_get_contents

('https://symfony.com/installer'));"

Once the command is executed, we can simply move the newly created symfony
file to our project directory and execute it further as symfony, or php symfony
in Windows.

This should trigger an output shown as follows:

Preceding response indicates we have successfully setup Symfony and are now
ready to start creating new projects.

[872]

 Chapter 5

Creating a blank project
Now that we have a Symfony installer all setup, let's go ahead and create a new
blank project. We do so by simply executing a symfony new test-app command,
as shown in the following command line instance:

Here we are creating a new project, called test-app. We can see that the Symfony
installer is downloading the latest Symfony framework from the internet, alongside
outputting a brief instruction on how to run the built in PHP server via Symfony
console application. The whole process might take up to a few minutes.

The structure of newly created test-app directory occurs similar to the following
one:

[873]

Symfony at a Glance

There are numerous files and directories created here for us. Our interest, however,
is focused on app and src directories. The app directory is where the site wide
application configuration resides. Here we can find configuration for database,
routing, security, and other services. Also, this is where default layout and template
file reside, as shown in the following screenshot:

The src directory on the other hand contains already modularized code in form
of the base AppBundle module, as in the following screenshot:

We are going to speak about the role of these files in more details later as we
progress. For now, its worth nothing that pointing our browser to this project
would make DefaultController.php the one to actually render the output.

[874]

 Chapter 5

Using Symfony console
Symfony framework comes with a built-in console tool that we can trigger by simply
executing the following command within our project root directory:

php bin/console

By doing so, an extensive list of available commands is shown on screen, sectioned
into the following groups:

• assets

• cache

• config

• debug

• doctrine

• generate

• lint

• orm

• router

• security

• server

• swiftmailer

• translation

These empower us with various functionalities. Our special interest moving forward
is going to be around doctrine and generate commands. The doctrine command,
more specifically doctrine:generate:crud, generates a CRUD based on an existing
Doctrine entity. Furthermore, the doctrine:generate:entity command generates
a new Doctrine entity inside an existing bundle. These can be extremely handy for
cases where we want a quick and easy entity creation, alongside the entire CRUD
around it. Similarly, generate:doctrine:entity and generate:doctrine:crud
do the same thing.

Before we go ahead and test these commands, we need to make sure we have our
database configuration parameters in place so that Symfony can see and talk to our
database. To do so, we need to set appropriate values in app/config/parameters.
yml file.

[875]

Symfony at a Glance

For the purpose of this section, let's go ahead and create a simple Customer entity
within the default AppBundle bundle, with entire CRUD around it, assuming the
following properties on Customer entity: firstname, lastname, and e-mail. We
start by running the php bin/console generate:doctrine:entity command
from within the project root directory, which results in the following output:

Here we first provided AppBundle:Customer as entity name and confirmed the use
of annotations as configuration format.

Finally, we are asked to start adding the fields to our entity. Typing in the first name
and hitting enter moves us through a series of short questions about our field type,
length, nullable, and unique states, as shown in the following screenshot:

[876]

 Chapter 5

We should now have two classes generated for our Customer entity. Via the help of
Symfony and Doctrine, these classes are put in context of Object Relational Mapper
(ORM), as they link the Customer entity with the proper database table. However,
we haven't yet instructed Symfony to actually create the table for our entity. To do
so, we execute the following command:

php bin/console doctrine:schema:update --force

This should produce the output as shown in the following screenshot:

If we now take a look at the database, we should see a customer table with all the
proper columns created with SQL create dsyntax as follows:

CREATE TABLE `customer` (

`id` int(11) NOT NULL AUTO_INCREMENT,

`firstname` varchar(255) COLLATE utf8_unicode_ci NOT NULL,

`lastname` varchar(255) COLLATE utf8_unicode_ci NOT NULL,

`email` varchar(255) COLLATE utf8_unicode_ci NOT NULL,

PRIMARY KEY (`id`),

[877]

Symfony at a Glance

UNIQUE KEY `UNIQ_81398E09E7927C74` (`email`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8 COLLATE=utf8_unicode_ci;

At this point, we still do not have an actual CRUD functionality in place. We simply
have an ORM empowered Customer entity class and appropriate database table
behind it. The following command will generate the actual CRUD controllers and
templates for us:

php bin/console generate:doctrine:crud

This should produce the following interactive output:

By providing the fully classified entity name AppBundle:Customer, generator
proceeds with a series of additional inputs, from generating write actions, type
of configuration to read, to prefix of route, as shown in the following screenshot:

[878]

 Chapter 5

Once done, we should be able to access our Customer CRUD actions by simply
opening a URL like http://test.app/customer/ (assuming test.app is the
host we set for our example) as shown:

If we click on the Create a new entry link, we will be redirected to the /customer/
new/ URL, as shown in the following screenshot:

Here we can enter the actual values for our Customer entity and click Create button
in order to persist it into the database customer table. After adding a few entities,
the initial /customer/ URL is now able to list them all, as shown in the following
screenshot:

[879]

http://test.app/customer/

Symfony at a Glance

Here we see links to show and edit actions. The show action is what we might
consider the customer facing action, whereas the edit action is the administrator
facing action. Clicking on the edit action, takes us to the URL of the form
/customer/1/edit/, whereas number 1 in this case is the ID of customer entity
in database:

Here we can change the property values and click Edit to persist them back into the
database, or we can click on the Delete button to remove the entity from the database.

If we were to create a new entity with an already existing e-mail, which is flagged
as a unique field, the system would throw a generic error as such the following one:

This is merely default system behavior, and as we progress further we will look into
making this more user friendly. By now, we have seen how powerful Symfony's
console is. With a few simple commands, we were able to create our entity and its
entire CRUD actions. There is plenty more the console is capable of. We can even
create our own console commands as we can implement any type of logic. However,
for the purpose of our needs, current implementation will suffice for a moment.

[880]

 Chapter 5

Controller
Controllers play a major role in web applications by being at the forefront of any
application output. They are the endpoints, the code that executes behind each URL.
In a more technical manner, we can say the controller is any callable (a function,
method on an object, or a closure) that takes the HTTP request and returns an HTTP
response. The response is not bound to a single format like HTML, it can be anything
from XML, JSON, CSV, image, redirect, error, and so on.

Let's take a look at the previously created (partial) src/AppBundle/Controller/
CustomerController.php file, more precisely its newAction method:

/**

* Creates a new Customer entity.

*

* @Route("/new", name="customer_new")

* @Method({"GET", "POST"})

*/

public function newAction(Request $request)

{

//...

return $this->render('customer/new.html.twig', array(

'customer' => $customer,

'form' => $form->createView(),

));

}

If we ignore the actual data retrieval part (//…), there are three important things to
note in this little example:

• @Route: this is the Symfony's annotation way of specifying HTTP endpoint,
the URL we will use to access this. The first "/new" parameter states the
actual endpoint, the second name="customer_new" parameter sets the name
for this route that we can then use as an alias in URL generation functions in
templates and so on. It is worth noting, that this builds upon the @Route("/
customer") annotation set on the actual CustomerController class where
the method is defined, thus making for the full URL to be something like
http://test.app/customer/new.

• @Method: This takes the name of one or more HTTP methods. This means
that the newAction method will trigger only if the HTTP requests match
the previously defined @Route and are of one or more HTTP method types
defined in @Method.

[881]

http://test.app/customer/new

Symfony at a Glance

• $this->render: This returns the Response object. The $this->render
calls the render function of the Symfony\Bundle\FrameworkBundle\
Controller\Controller class, which instantiates new Response(),
sets its content, and returns the whole instance of that object.

Now let's take a look at the editAction method within our controller, as partially
shown in the following code block:

/**

* Displays a form to edit an existing Customer entity.

*

* @Route("/{id}/edit", name="customer_edit")

* @Method({"GET", "POST"})

*/

public function editAction(Request $request, Customer $customer)

{

//...

}

Here we see a route that accepts a singe ID, marked as {id} within the first @Route
annotation parameter. The body of the method (excluded here), does not contain
any direct reference to fetching the id parameter. We can see that the editAction
function accepts two parameters, one being Request, the other being Customer.
But how does the method know to accept the Customer object? This is where
Symfony's @ParamConverter annotation comes into play. It calls converters to
convert the request parameters to objects.

The great thing about @ParamConverter annotation is that we can use it explicitly
or implicitly. That is, if we do not add @ParamConverter annotation but add type
hinting to the method parameter, Symfony is going to try and load the object for us.
This is the exact case we have in our example above, as we did not explicitly type
the @ParamConverter annotation.

Terminology wise, controllers are often exchanged for routing. However, they are
not the same thing.

Routing
In the shortest terms, routing is about linking the controllers with URLs entered in
browser. Todays modern web applications need nice URLs. This means moving
away from URLs like /index.php?product_id=23 to something like /catalog/
product/t-shirt. This is where routing comes in to play.

[882]

 Chapter 5

Symfony has a powerful routing mechanism that enables us to do the following:

• Create complex routes which map to controllers

• Generate URLs inside templates

• Generate URLs inside controllers

• Load routing resources from various locations

The way routing works in Symfony is that all of the requests come through app.
php. Then, the Symfony core asks the router to inspect the request. The router then
matches the incoming URL to a specific route and returns information about the
route. This information, among other things, includes the controller that should
be executed. Finally, the Symfony kernel executes the controller, which returns a
response object.

All of the application routes are loaded from a single routing configuration file,
usually app/config/routing.yml file, as shown by our test app:

app:

resource: "@AppBundle/Controller/"

type: annotation

The app is simply one of many possible entries. Its resource value points to
AppBundle controller directory, and type is set to annotation which means
that the class annotations will be read to specify exact routes.

We can define a route with several variations. One of them is shown in the
following block:

// Basic Route Configuration

/**

* @Route("/")

*/

public function homeAction()

{

// ...

}

// Routing with Placeholders

/**

* @Route("/catalog/product/{sku}")

*/

public function showAction($sku)

{

// ...

}

[883]

Symfony at a Glance

// >>Required<< and Optional Placeholders

/**

* @Route("/catalog/product/{id}")

*/

public function indexAction($id)

{

// ...

}

// Required and >>Optional<< Placeholders

/**

* @Route("/catalog/product/{id}", defaults={"id" = 1})

*/

public function indexAction($id)

{

// ...

}

The preceding examples show several ways we can define our route. The interesting
one is the case with required and optional parameter. If we think about it, removing ID
from the latest example will match the example before it with sku. The Symfony router
will always choose the first matching route it finds. We can solve the problem by
adding regular expression requirements attributed on @Route annotation as follows:

@Route(

"/catalog/product/{id}",

defaults={"id": 1},

requirements={"id": "\d+"}

)

There is more to be said about controllers and routing, as we will see once we start
building our application.

Templates
Previously we said that controllers accept request and return response. The response,
however, can often be any content type. The production of actual content is
something controllers delegate to the templating engine. The templating engine then
has the capability to turn the response into HTML, JSON, XML, CSV, LaTeX, or any
other text-based content type.

In the old days, programmers mixed PHP with HTML into the so called PHP
templates (.php and .phtml). Though still used with some platforms, this kind of
approach is considered insecure and lacking in many aspects. One of which was
cramming business logic into template files.

[884]

 Chapter 5

To address these shortcomings, Symfony packs its own templating language called
Twig. Unlike PHP, Twig is meant to strictly express presentation and not to thinker
about program logic. We cannot execute any of the PHP code within the Twig. And
the Twig code is nothing more than an HTML with a few special syntax types.

Twig defines three types of special syntax:

• {{ ... }}: This outputs variable or the result of an expression to the
template.

• {% ... %}: This tag controls the logic of the template (if and for loops,
and others).

• {# ... #}: It is the equivalent of the PHP /* comment */ syntax. The
Comments content isn't included in the rendered page.

Filters are another nice feature of Twig. They act like chained method calls upon a
variable value, modifying the content before it is outputted, as follows:

<h1>{{ title|upper }}</h1>

{{ filter upper }}

<h1>{{ title }}</h1>

{% endfilter %}

<h1>{{ title|lower|escape }}</h1>

{% filter lower|escape %}

<h1>{{ title }}</h1>

{% endfilter %}

It also supports functions listed as follows:

{{ random(['phone', 'tablet', 'laptop']) }}

The preceding random function call would return one random value from within the
array. With all the built-in list of filters and functions, Twig also allows for writing
our own if needed.

Similar to PHP class inheritance, Twig also supports template and layout inheritance.
Let's take a quick look back at the the app/Resources/views/customer/index.
html.twig file as follows:

{% extends 'base.html.twig' %}

{% block body %}

<h1>Customer list</h1>

…

{% endblock %}

[885]

Symfony at a Glance

Here we see a customer index.html.twig template using the extends tag to extend
a template from another one, in this case base.html.twig found in app/Resources/
views/ directory with content as follows:

<!DOCTYPE html>

<html>

<head>

<meta charset="UTF-8" />

<title>{% block title %}Welcome!{% endblock %}</title>

{% block stylesheets%}{% endblock %}

<link rel="icon" type="image/x-icon"href="{{

asset('favicon.ico') }}" />

</head>

<body>

{% block body %}{% endblock %}

{% block javascripts%}{% endblock %}

</body>

</html>

Here we see several block tags: title, stylesheets, body, and javascripts. We
can declare as many blocks as we want here and name them any way we like. This
makes the extend tag a key to template inheritance. It tells the Twig to first evaluate
the base template, which sets the layout and defines blocks, after which the child
template like customer/index.html.twig fills in the content of these blocks.

Templates live in two locations:

• app/Resources/views/

• bundle-directory/Resources/views/

What this means is in order to render/extend app/Resources/views/base.
html.twig we would use base.html.twig within our template file, and to render/
extend app/Resources/views/customer/index.html.twig we would use the
customer/index.html.twig path.

When used with templates that reside in bundles, we have to reference them
slightly differently. In this case, the bundle:directory:filename string syntax is
used. Take the FoggylineCatalogBundle:Product:index.html.twig path for
example. This would be a full path to use one of the bundles template file. Here
the FoggylineCatalogBundle is a bundle name, Product is a name of a directory
within that bundle Resources/views directory, and index.html.twig is the name
of the actual template within the Product directory.

[886]

 Chapter 5

Each template filename has two extensions that first specify the format and then
the engine for that template; such as *.html.twig, *.html.php, and*.css.twig.

We will get into more details regarding these templates once we move onto building
our app.

Forms
Sign up, sign in, add to cart, checkout, all of these and more are actions that make
use of HTML forms in web shop applications and beyond. Building forms is one of
the most common tasks for developers. One that often takes time to do it right.

Symfony has a form component through which we can build HTML forms in
an OO way. The component itself is also a standalone library that can be used
independently of Symfony.

Let's take a look at the content of the src/AppBundle/Entity/Customer.php file, our
Customer entity class that was auto-generated for us when we defined it via console:

class Customer {

private $id;

private $firstname;

private $lastname;

private $email;

public function getId() {

return $this->id;

}

public function setFirstname($firstname) {

$this->firstname = $firstname;

return $this;

}

public function getFirstname() {

return $this->firstname;

}

public function setLastname($lastname) {

$this->lastname = $lastname;

return $this;

}

public function getLastname() {

[887]

Symfony at a Glance

return $this->lastname;

}

public function setEmail($email) {

$this->email = $email;

return $this;

}

public function getEmail() {

return $this->email;

}

}

Here we have a plain PHP class, which does not extend anything nor is in any other
way linked to Symfony. It represents a single customer entity, for which it sets and
gets the data. With the entity class in place, we would like to render a form that will
pick up all of the relevant data used by our class. This is where the Form component
comes in place.

When we used the CRUD generator via console earlier, it created the Form class for
our Customer entity within the src/AppBundle/Form/CustomerType.php file with
content as follows:

namespace AppBundle\Form;

use Symfony\Component\Form\AbstractType;

use Symfony\Component\Form\FormBuilderInterface;

use Symfony\Component\OptionsResolver\OptionsResolver;

class CustomerType extends AbstractType

{

public function buildForm(FormBuilderInterface $builder, array

$options) {

$builder

->add('firstname')

->add('lastname')

->add('email')

;

}

public function configureOptions(OptionsResolver $resolver) {

$resolver->setDefaults(array(

'data_class' =>'AppBundle\Entity\Customer'

));

}

}

[888]

 Chapter 5

We can see the simplicity behind the form component comes down to the following:

• Extend form type: We extend from Symfony\Component\Form\
AbstractType class

• Implement buildForm method: This is where we add actual fields we want
to show on the form

• Implement configureOptions: This specifies at least the data_class
configuration which points to our Customer entity.

The form builder object is the one doing the heavy lifting here. It does not take much
for it to create a form. With the form class in place, let's take a look at the controller
action in charge of feeding the template with the form. In this case, we will focus on
newAction within the src/AppBundle/Controller/CustomerController.php file,
with content shown as follows:

$customer = new Customer();

$form = $this->createForm('AppBundle\Form\CustomerType',

$customer);

$form->handleRequest($request);

if ($form->isSubmitted() && $form->isValid()) {

$em = $this->getDoctrine()->getManager();

$em->persist($customer);

$em->flush();

return $this->redirectToRoute('customer_show', array('id' =>

$customer->getId()));

}

return $this->render('customer/new.html.twig', array(

'customer' => $customer,

'form' => $form->createView(),

));

The preceding code first instantiates the Customer entity class. The $this-
>createForm(…) is actually calling $this->container->get('form.factory')-
>create(…), passing it our form class name and instance of customer object. We
then have the isSubmitted and isValid check, to see if this is a GET or valid POST
request. Based on that check, the code either returns to customer listing or sets the
form and customer instance to be used with the template customer/new.html.
twig. We will speak more about the actual validation later on.

[889]

Symfony at a Glance

Finally, lets take a look at the actual template found in the app/Resources/views/
customer/new.html.twig file:

{% extends 'base.html.twig' %}

{% block body %}

<h1>Customer creation</h1>

{{ form_start(form) }}

{{ form_widget(form) }}

<input type="submit" value="Create" />

{{ form_end(form) }}

Back to the list

{% endblock %}

Here we see extends and block tags, alongside some form of related functions.
Symfony adds several form rendering function to Twig as follows:

• form(view, variables)

• form_start(view, variables)

• form_end(view, variables)

• form_label(view, label, variables)

• form_errors(view)

• form_widget(view, variables)

• form_row(view, variables)

• form_rest(view, variables)

Most of our application forms will be auto-generated like this one, so we are
able to get a fully functional CRUD without going too deep into the rest of form
functionality.

Configuring Symfony
In order to keep up with modern demands, today's frameworks and applications
require a flexible configuration system. Symfony fulfils this role nicely through its
robust configuration files and environments concept.

[890]

 Chapter 5

The default Symfony configuration file config.yml is located under the app/config/
directory, with (partial) content sectioned as follows:

imports:

- { resource: parameters.yml }

- { resource: security.yml }

- { resource: services.yml }

framework:

…

Twig Configuration

twig:

…

Doctrine Configuration

doctrine:

…

Swiftmailer Configuration

swiftmailer:

…

The top-level entries like framework, twig, doctrine, and swiftmailer define the
configuration of an individual bundle.

Optionally, the configuration file can be of XML or PHP format (config.xml or
config.php). While YAML is simple and readable, XML is more powerful, whereas
PHP is powerful but less readable.

We can use the console tool to dump the entire configuration as shown here:

php bin/console config:dump-reference FrameworkBundle

The preceding example lists the config file for core FrameworkBundle. We can use
the same command to show possible configurations for any bundle that implements
container extension, something we will look into later on.

Symfony has a nice implementation of environment concept. Looking into the
app/config directory, we can see that default Symfony project actually starts
with three different environments:

• config_dev.yml

• config_prod.yml

• config_test.yml

[891]

Symfony at a Glance

Each application can run in various environments. Each environment shares the
same code, but different configuration. Whereas dev environment might make use
of extensive logging, a prod environment might make use of extensive caching.

The way these environments get triggered is via the front controller file, as in the
following partial examples:

web/app.php

…

$kernel = new AppKernel('prod', false);

…

web/app_dev.php

…

$kernel = new AppKernel('dev', true);

…

The test environment is missing here, as it is used only when running automated
tests and cannot be accessed directly via a browser.

The app/AppKernel.php file is the one that actually loads the configuration, whether
it is YAML, XML, or PHP as shown in the following code fragment:

public function registerContainerConfiguration(LoaderInterface

$loader)

{

$loader->load($this->getRootDir().'/config/config_'.

$this->getEnvironment().'.yml');

}

The environments follow the same concept, whereas each environment imports the
base configuration file and then modifies its values to suit the needs of the specific
environment.

The bundle system
Most of the popular frameworks and platforms support some form of modules,
plugins, extensions or bundles. For most of the time, the difference really lies just
in the naming, while the concept of extensibility and modularity is the same. With
Symfony, these modular blocks are called bundles.

Bundles are a first-class citizen in Symfony, as they support all of the operations
available to other components. Everything in Symfony is a bundle, even the core
framework. Bundles enable us to build modularized applications, whereas the
entire code for a given feature is contained within a single directory.

[892]

 Chapter 5

A single bundle holds all its PHP files, templates, style sheets, JavaScript files, tests,
and anything else in one root directory.

When we first setup our test app, it created an AppBundle for us, under the src
directory. As we moved forward with the auto-generated CRUD, we saw our
bundle getting all sorts of directories and files.

For a bundle to be noticed by Symfony, it needs to be added to the app/AppKernel.
php file, with the registerBundles method as shown here:

public function registerBundles()

{

$bundles = [

new Symfony\Bundle\FrameworkBundle\FrameworkBundle(),

new Symfony\Bundle\SecurityBundle\SecurityBundle(),

new Symfony\Bundle\TwigBundle\TwigBundle(),

new

Symfony\Bundle\SwiftmailerBundle\SwiftmailerBundle(),

new Doctrine\Bundle\DoctrineBundle\DoctrineBundle(),

//…

new AppBundle\AppBundle(),

];

//…

return $bundles;

}

Creating a new bundle is as simple as creating a single PHP file. Let's go ahead and
create an src/TestBundle/TestBundle.php file with content that looks like:

namespace TestBundle;

use Symfony\Component\HttpKernel\Bundle\Bundle;

class TestBundle extends Bundle

{

…

}

Once the file is in place, all we need to do is to register it via the registerBundles
method of the app/AppKernel.php file as shown here:

class AppKernel extends Kernel {

//…

public function registerBundles() {

[893]

Symfony at a Glance

$bundles = [

// …

new TestBundle\TestBundle(),

// …

];

return $bundles;

}

//…

}

An even easier way to create a bundle would be to just run a console command
as follows:

php bin/console generate:bundle --namespace=Foggyline/TestBundle

This would trigger a series of questions about bundle that in the end results in
bundle creation that looks like the following screenshot:

[894]

 Chapter 5

Once the process is complete, a new bundle with several directories and files is
created as shown in the following screenshot:

Bundle generator was kind enough to create controller, dependency injection
extension extension, routing, prepare services configuration, templates, and even
tests. Since we chose to share our bundle, Symfony opted for XML as default
configuration format. The dependency extension simply means we can access our
bundle configuration by using foggyline_test as the root element in Symfony's
main config.yml. The actual foggyline_test element is defined within the
DependencyInjection/Configuration.php file.

Databases and Doctrine
Databases are the backbone of almost every web application. Every time we need
to store or retrieve data, we do so with the help of databases. The challenge in the
modern OOP world is to abstract the database so that our PHP code is database
agnostic. MySQL is probably the most known database in the PHP world. PHP
itself has a great support for working with MySQL, whether it is via the mysqli_*
extension or via PDO. However, both approaches are MySQL specific, to o close
to database. Doctrine solves this problem by introducing a level of abstraction,
enabling us to work with PHP objects that represent tables, rows, and their
relations in MySQL.

[895]

Symfony at a Glance

Doctrine is completely decoupled from Symfony, so using it is completely optional.
The great thing about it, however, is that the Symfony console provides great
auto-generated CRUD based on Doctrine ORM, as we saw in previous examples
when creating Customer entity.

As soon as we created the project, Symfony provided us with an auto-generated
app/config/parameters.yml file. This is the file in which we, among other things,
provide database access information as shown in the following example:

parameters:

database_host: 127.0.0.1

database_port: null

database_name: symfony

database_user: root

database_password: mysql

Once we configure proper parameters, we can use console generation features.

It is worth noting that parameters within this file are merely a convention, as
app/config/config.yml is pulling them under doctrine dbal configuration
like the one shown here:

doctrine:

dbal:

driver: pdo_mysql

host: "%database_host%"

port: "%database_port%"

dbname: "%database_name%"

user: "%database_user%"

password: "%database_password%"

charset: UTF8

The Symfony console tool allows us to drop and create a database based on this config,
which comes in handy during development, as shown in the following code block:

php bin/console doctrine:database:drop --force

php bin/console doctrine:database:create

We saw previously how the console tool enables us to create entities and their
mapping into database tables. This will suffice for our needs throughout this book.
Once we have them created, we need to be able to perform CRUD operations on them.
If we gloss over the auto-generated CRUD controller src/AppBundle/Controller/
CustomerController.php file, we can the CRUD related code as follows:

// Fetch all entities

$customers = $em->getRepository('AppBundle:Customer')->findAll();

[896]

 Chapter 5

// Persist single entity (existing or new)

$em = $this->getDoctrine()->getManager();

$em->persist($customer);

$em->flush();

// Delete single entity

$em = $this->getDoctrine()->getManager();

$em->remove($customer);

$em->flush();

There is a lot more to be said about Doctrine, which is far out of the scope of this
book. More information can be found at the official page (http://www.doctrine-
project.org).

Testing
Nowadays testing has become an integral part of every modern web application.
Usually the term testing implies unit and functional testing. Unit testing is about
testing our PHP classes. Every single PHP class is considered to be a unit, thus
the name unit test. Functional tests on the other hand test various layers of our
application, usually concentrated on testing the functionality overall, like the
sign in or sign up process.

The PHP ecosystem has a great unit testing framework called PHPUnit, available
for download at https://phpunit.de. It enables us to write primarily unit, but also
functional type tests. The great thing about Symfony is that it comes with built in
support for PHPUnit.

Before we can start running Symfony's tests, we need to make sure we have PHPUnit
installed and available as console command. When executed, PHPUnit automatically
tries to pick up and read testing configuration from phpunit.xml or phpunit.xml.
dist within the current working directory, if available. By default Symfony comes
with a phpunit.xml.dist file in its root folder, thus making it possible for the
phpunit command to pick up its test configuration.

The following is a partial example of a default phpunit.xml.dist file:

<phpunit … >

<php>

<ini name="error_reporting" value="-1" />

<server name="KERNEL_DIR" value="app/" />

</php>

<testsuites>

[897]

http://www.doctrine-project.org/
http://www.doctrine-project.org/
https://phpunit.de/

Symfony at a Glance

<testsuite name="Project Test Suite">

<directory>tests</directory>

</testsuite>

</testsuites>

<filter>

<whitelist>

<directory>src</directory>

<exclude>

<directory>src/*Bundle/Resources</directory>

<directory>src/*/*Bundle/Resources</directory>

<directory>src/*/Bundle/*Bundle/Resources</directory>

</exclude>

</whitelist>

</filter>

</phpunit>

The testsuites element defines the directory tests, in which all of our tests are
located. The filter element with its children is used to configure the whitelist for
the code coverage reporting. The php element with its children is used to configure
PHP settings, constants, and global variables.

Running a phpunit command against a default project like ours would result in
output like the following:

Note that bundle tests are not automatically picked up. Our src/AppBundle/
Tests/Controller/CustomerControllerTest.php file, which was created for us
automatically when we used auto-generated CRUD, was not executed. Not because
its content is commented out by default, but because the bundle test directory isn't
visible to phpunit. To make it execute, we need to extend the phpunit.xml.dist file
by adding to directory testsuite as follows:

<testsuites>

<testsuite name="Project Test Suite">

<directory>tests</directory>

<directory>src/AppBundle/Tests</directory>

</testsuite>

</testsuites>

[898]

 Chapter 5

Depending on how we build our application, we might want to add all of
our bundles to the testsuite list, even if we plan on distributing bundles
independently.

There is plenty more to be said about testing. We will do so bit by bit as we progress
through further chapters and cover the needs of individual bundles. For the moment,
it is suffice to know how to trigger tests and how to add new locations to testing
configuration.

Validation
Validation plays an essential role in modern applications. When talking about web
applications, we can say we differentiate between two main types of validation; form
data and persisted data validation. Taking input from a user via a web form should
be validated, the same as any persisting data that goes into a database.

Symfony excels here by providing a Validation component based on JSR 303 Bean
Validation drafted and available at http://beanvalidation.org/1.0/spec/. If
we look back at our app/config/config.yml, under the framework root element,
we can see that the validation service is turned on by default:

framework:

validation:{ enable_annotations: true }

We can access the validation service from any controller class by simply calling it
via the $this->get('validator') expression, as shown in the following example:

$customer = new Customer();

$validator = $this->get('validator');

$errors = $validator->validate($customer);

if (count($errors) > 0) {

// Handle error state

}

// Handle valid state

[899]

http://beanvalidation.org/1.0/spec/

Symfony at a Glance

The problem with the example above is that validation would never return any
errors. The reason for this is that we do not have any assertions set on our class. The
console auto-generated CRUD did not really define any constraints on our Customer
class. We can confirm that by trying to add a new customer and typing in any text in
the e-mail field, as we can see the e-mail wont be validated.

Let's go ahead and edit the src/AppBundle/Entity/Customer.php file by adding
the @Assert\Email function to the $email property like the one shown here:

//…

use Symfony\Component\Validator\Constraints as Assert;

//…

class Customer

{

//…

/**

* @var string

*

* @ORM\Column(name="email", type="string", length=255, unique=true)

* @Assert\Email(

* checkMX = true,

* message = "Email '{{ value }}' is invalid.",

*)

*/

private $email;

//…

}

The great thing about assertions constraints is that they accept parameters just as
functions. We can therefore fine-tune individual constraints to our specific needs.
If we now try to skip or add a faulty e-mail address, we would get a message like
Email "john@gmail.test" is invalid.

There are numerous constraints available, for the full list we can consult the
http://symfony.com/doc/current/book/validation.html page.

Constraints can be applied to a class property or a public getter method. While the
property constraints are most common and easy to use, the getter method constraints
allow us to specify more complex validation rules.

[900]

mailto:john@gmail.test
http://symfony.com/doc/current/book/validation.html

 Chapter 5

Let's take look at the newAction method of an src/AppBundle/Controller/
CustomerController.php file as follows:

$customer = new Customer();

$form = $this->createForm('AppBundle\Form\CustomerType',

$customer);

$form->handleRequest($request);

if ($form->isSubmitted() && $form->isValid()) {

// …

Here we see an instance of a CustomerType form being bind to the Customer
instance. The actual GET or POST request data is passed to an instance of a form via
the handleRequest method. The form is now able to understand entity validation
constraints and respond properly via its isValid method call. What this means is
that we do not have to manually validate by using the validation service ourselves,
the forms can do it for us.

We will continue to expand on validation features as we progress through
individual bundles.

Summary
Throughout this chapter we touched on some important functionality, which makes
Symfony so great. Controllers, templates, Doctrine, ORM, forms, and validation
make for a complete solution from data presentation and persistence. We have seen
the flexibility and power behind each of the components. The bundle system takes it
a step further by wrapping these into individual mini applications, or modules. We
are now able to take full control of incoming HTTP requests, manipulate the data
store, and present data to the user, all of this within a single bundle.

Moving forward, in the next chapter, we will utilize the insights and knowledge
gained throughout the previous chapters to finally start building our modular
application according to the requirements.

[901]

Building the Core Module
Up until now we have familiarized ourselves with the latest changes in PHP 7,
design patterns, design principles, and popular PHP frameworks. We also took
a more detailed look into Symfony as our framework of choice moving forward.
We have now finally reached a point where we can start building our modular
application. Building modular applications with Symfony is done via the bundles
mechanism. Terminology-wise, from this point on, we will consider bundle and
module to be the same thing.

In this chapter we will be covering the following topics with respect to the core
module:

• Requirements

• Dependencies

• Implementation

• Unit testing

• Functional testing

Requirements
Looking back in Chapter 4, Requirement Specification for Modular Web Shop App, and the
wireframes presented there, we can outline some of the requirements this module
will have. The core module is going to be used to set general, application-wide
features, as follows:

• Include Foundation CSS for sites to the project

• Build a home page

• Build other static pages

[903]

Building the Core Module

• Build a Contact Us page

• Setup a basic firewall, where admin users can manage all the auto-generated
CRUD from other modules later on

Dependencies
The core module on its own does not have any specific dependencies on other
modules that we are going to write as part of this book, or any other third-party
module outside of standard Symfony installation.

Implementation
We start by creating an entirely new Symfony project, running the following console
command:

symfony new shop

This creates a new shop directory with all of the required files needed to run our
application in the browser. Among these files and directories is the src/AppBundle
directory, which is actually our core module. Before we can run our application in
the browser, we need to map the newly created shop directory to a hostname, let's
say shop.app, so we can access it in the browser via http://shop.app URL. Once
this is done, if we open http://shop.app, we should see Welcome to Symfony 3.1.0
screen as shown here:

Though we have no need for the database just yet, other modules we will develop
later on will assume database connection, so it's worth setting it up right from the
start. We do so by configuring app/config/parameters.yml with proper database
connection parameters.

[904]

http://shop.app/
http://shop.app/

 Chapter 6

We then download Foundation for Sites from http://foundation.zurb.com/
sites.html. Once downloaded, we need to unpack it and copy over the /js
and /css directories into the Symfony /web directory as shown in the following
screenshot:

It is worth noting that this is a simplified setup of Foundation

 that we are using with our module, where we simply use CSS
and JavaScript files without setting up anything relating to Sass.

With Foundation CSS and JavaScript files in place, we edit the app/Resources/
views/base.html.twig file as follows:

<!doctype html>

<html class="no-js"lang="en">

<head>

<meta charset="utf-8"/>

<meta http-equiv="x-ua-compatible" content="ie=edge">

<meta name="viewport" content="width=device-width, initial-

scale=1.0"/>

<title>{% block title %}Welcome!{% endblock %}</title>

<link rel="stylesheet"href="{{ asset('css/foundation.css')

}}"/>

{% block stylesheets%}{% endblock %}

</head>

<body>

<!-- START BODY -->

[905]

http://foundation.zurb.com/sites.html
http://foundation.zurb.com/sites.html

Building the Core Module

<!-- TOP-MENU -->

<!-- SYSTEM-WIDE-MESSAGES -->

<!-- PER-PAGE-BODY -->

<!-- FOOTER -->

<!-- START BODY -->

<script src="{{ asset('js/vendor/jquery.js') }}"></script>

<script src="{{ asset('js/vendor/what-input.js')

}}"></script>

<script src="{{ asset('js/vendor/foundation.js')

}}"></script>

<script>

$(document).foundation();

</script>

{% block javascripts%}{% endblock %}

</body>

</html>

Here we are setting the entire head and before body end areas, with all the necessary
CSS and JavaScript loading. The Twigs asset tag helps us with building URL paths,
where we simply pass on the URL path itself and it builds a complete URL for us. In
regard to the actual body of the page, there are several things to consider here. How
are we going to build category, customer, and checkout menus? At this point we do
not have any of these modules, and neither do we want to make them mandatory for
our core module. So how do we solve the challenge of accounting for something that
is not there yet?

What we can do for category, customer, and checkout menus is to define global
Twig variables for each of those menu items that will then be used to render the
menu. These variables will be filed via proper services. Since the core bundle is not
aware of future catalog, customer, and checkout modules, we will initially create a
few dummy services and hook them to global Twig variables. Later on, when we
develop catalog, customer, and checkout modules, those modules will override the
appropriate services, thus providing the right values for into menus.

This approach might not fit ideally with the notion of modular application, but it will
suffice for our needs, as we are not hard-coding any dependencies as such.

We start off by adding the following entry into the app/config/config.yml file:

twig:

...

globals:

category_menu: '@category_menu'

customer_menu: '@customer_menu'

checkout_menu: '@checkout_menu'

[906]

 Chapter 6

products_bestsellers: '@bestsellers'

products_onsale: '@onsale'

The category_menu_items, customer_menu_items, checkout_menu_items,
products_bestsellers, and products_onsale variables become global Twig
variables that we can use in any Twig template as shown in the following example:

{% for category in category_menu.getItems() %}

{{ category.name }}

{% endfor %}

The @ character in the Twig global variable config is used to denote a beginning
of the service name. This is the service that will provide a value object for our Twig
variable. Next, we go ahead and create the actual category_menu, customer_menu,
checkout_menu, bestsellers, and onsale services by modifying app/config/
services.yml as follows:

services:

category_menu:

class: AppBundle\Service\Menu\Category

customer_menu:

class: AppBundle\Service\Menu\Customer

checkout_menu:

class: AppBundle\Service\Menu\Checkout

bestsellers:

class: AppBundle\Service\Menu\BestSellers

onsale:

class: AppBundle\Service\Menu\OnSale

Furthermore, we create each of the listed service classes under the src/AppBundle/
Service/Menu/ directory. We start with the src/AppBundle/Service/Menu/
Bestsellers.php file with the following content:

namespace AppBundle\Service\Menu;

class BestSellers {

public function getItems() {

// Note, this can be arranged as per some "Product"

interface, so to know what dummy data to return

return array(

ay('path' =>'iphone', 'name' =>'iPhone', 'img' =>

'/img/missing-image.png', 'price' => 49.99,

'add_to_cart_url' =>'#'),

array('path' =>'lg', 'name' =>'LG', 'img' =>

[907]

Building the Core Module

'/img/missing-image.png', 'price' => 19.99,

'add_to_cart_url' =>'#'),

array('path' =>'samsung', 'name' =>'Samsung', 'img'

=>'/img/missing-image.png', 'price' => 29.99,

'add_to_cart_url' =>'#'),

array('path' =>'lumia', 'name' =>'Lumia', 'img' =>

'/img/missing-image.png', 'price' => 19.99,

'add_to_cart_url' =>'#'),

array('path' =>'edge', 'name' =>'Edge', 'img' =>

'/img/missing-image.png', 'price' => 39.99,

'add_to_cart_url' =>'#'),

);

}

}

We then add the src/AppBundle/Service/Menu/Category.php file with content
as follows:

class Category {

public function getItems() {

return array(

array('path' =>'women', 'label' =>'Women'),

array('path' =>'men', 'label' =>'Men'),

array('path' =>'sport', 'label' =>'Sport'),

);

}

}

Following this, we add the src/AppBundle/Service/Menu/Checkout.php file with
content as shown here:

class Checkout

{

public function getItems()

{

// Initial dummy menu

return array(

array('path' =>'cart', 'label' =>'Cart (3)'),

array('path' =>'checkout', 'label' =>'Checkout'),

);

}

}

[908]

 Chapter 6

Once this is done, we will go on and add the following content to the
src/AppBundle/Service/Menu/Customer.php file:

class Customer

{

public function getItems()

{

// Initial dummy menu

return array(

array('path' =>'account', 'label' =>'John Doe'),

array('path' =>'logout', 'label' =>'Logout'),

);

}

}

We then add the src/AppBundle/Service/Menu/OnSale.php file with
the following content:

class OnSale

{

public function getItems()

{

// Note, this can be arranged as per some "Product" interface,

so to know what dummy data to return

return array(

array('path' =>'iphone', 'name' =>'iPhone', 'img' =>

'/img/missing-image.png', 'price' => 19.99,

'add_to_cart_url' =>'#'),

array('path' =>'lg', 'name' =>'LG', 'img' =>

'/img/missing-image.png', 'price' => 29.99,

'add_to_cart_url' =>'#'),

array('path' =>'samsung', 'name' =>'Samsung', 'img'

=>'/img/missing-image.png', 'price' => 39.99,

'add_to_cart_url' =>'#'),

array('path' =>'lumia', 'name' =>'Lumia', 'img' =>

'/img/missing-image.png', 'price' => 49.99,

'add_to_cart_url' =>'#'),

array('path' =>'edge', 'name' =>'Edge', 'img' =>

'/img/missing-image.png', 'price' => 69.99,

'add_to_cart_url' =>'#'),

;

}

}

[909]

Building the Core Module

We have now defined five global Twig variables that will be used to build our
application menus. Even though variables are now hooked to a dummy service
that returns nothing more than a dummy array, we have effectively decoupled
menu items into other soon-to-be built modules. When we get to building our
category, customer, and checkout modules later on, we will simply write a service
override and properly fill the menu items array with real items. This would be the
ideal situation.

Ideally we would want our services to return data as per a
certain interface, to make sure whoever overrides it or
extends it does so by interface. Since we are trying to keep our
application at a minimum, we will proceed with simple arrays.

We can now go back to our app/Resources/views/base.html.twig file and
replace <!-- TOP-MENU --> from the preceding code with the following:

<div class="title-bar" data-responsive-toggle="appMenu" data-hide-

for="medium">

<button class="menu-icon" type="button" data-toggle></button>

<div class="title-bar-title">Menu</div>

</div>

<div class="top-bar" id="appMenu">

<div class="top-bar-left">

{# category_menu is global twig var filled from service,

and later overriden by another module service #}

<ul class="menu">

HOME

{% block category_menu %}

{% for link in category_menu.getItems() %}

{{ link.label }}

{% endfor %}

{% endblock %}

</div>

<div class="top-bar-right">

<ul class="menu">

{# customer_menu is global twig var filled from

service, and later overriden by another module

service #}

{% block customer_menu %}

{% for link in customer_menu.getItems() %}

{{ link.label }}

{% endfor %}

[910]

 Chapter 6

{% endblock %}

{# checkout_menu is global twig var filled from

service, and later overriden by another module service #}

{% block checkout_menu %}

{% for link in checkout_menu.getItems() %}

{{ link.label }}

{% endfor %}

{% endblock %}

</div>

</div>

We can then replace <!-- SYSTEM-WIDE-MESSAGES --> with the following:

<div class="row column">

{% for flash_message in app.session.flashBag.get('alert') %}

<div class="alert callout">

{{ flash_message }}

</div>

{% endfor %}

{% for flash_message in app.session.flashBag.get('warning') %}

<div class="warning callout">

{{ flash_message }}

</div>

{% endfor %}

{% for flash_message in app.session.flashBag.get('success') %}

<div class="success callout">

{{ flash_message }}

</div>

{% endfor %}

</div>

We replace <!-- PER-PAGE-BODY --> with the following:

<div class="row column">

{% block body %}{% endblock %}

</div>

We replace <!-- FOOTER --> with the following:

<div class="row column">

<ul class="menu">

About Us

Customer

Service

Privacy and

[911]

Building the Core Module

Cookie Policy

Orders and

Returns

Contact Us

</div>

Now we can go ahead and edit the src/AppBundle/Controller/
DefaultController.php file and add the following code to it:

/**

* @Route("/", name="homepage")

*/

public function indexAction(Request $request)

{

return $this->render('AppBundle:default:index.html.twig');

}

/**

* @Route("/about", name="about")

*/

public function aboutAction()

{

return $this->render('AppBundle:default:about.html.twig');

}

/**

* @Route("/customer-service", name="customer_service")

*/

public function customerServiceAction()

{

return $this->render('AppBundle:default:

customer-service.html.twig');

}

/**

* @Route("/orders-and-returns", name="orders_returns")

*/

public function ordersAndReturnsAction()

{

return $this->render('AppBundle:default:orders-

returns.html.twig');

}

/**

[912]

 Chapter 6

* @Route("/privacy-and-cookie-policy", name="privacy_cookie")

*/

public function privacyAndCookiePolicyAction()

{

return $this->render('AppBundle:default:privacy-

cookie.html.twig');

}

All of the used template files (about.html.twig, customer-service.html.twig,
orders-returns.html.twig, privacy-cookie.html.twig) residing within the
src/AppBundle/Resources/views/default directory can be similarly defined
as follows:

{% extends 'base.html.twig' %}

{% block body %}

<div class="row">

<h1>About Us</h1>

</div>

<div class="row">

<p>Loremipsum dolor sit amet, consecteturadipiscingelit...</p>

</div>

{% endblock %}

Here we are merely wrapping header and content into the div elements with the
row class, just to give it some structure. The result should be pages similar to those
shown here:

The Contact Us page requires a different approach as it will contain a form.
To build a form we use Symfony's Form component by adding the following
to the src/AppBundle/Controller/DefaultController.php file:

/**

* @Route("/contact", name="contact")

*/

public function contactAction(Request $request) {

// Build a form, with validation rules in place

$form = $this->createFormBuilder()

[913]

Building the Core Module

->add('name', TextType::class, array(

'constraints' => new NotBlank()

))

->add('email', EmailType::class, array(

'constraints' => new Email()

))

->add('message', TextareaType::class, array(

'constraints' => new Length(array('min' => 3))

))

->add('save', SubmitType::class, array(

'label' =>'Reach Out!',

'attr' => array('class' =>'button'),

))

->getForm();

// Check if this is a POST type request and if so, handle form

if ($request->isMethod('POST')) {

$form->handleRequest($request);

if ($form->isSubmitted() && $form->isValid()) {

$this->addFlash(

'success',

'Your form has been submitted. Thank you.'

);

// todo: Send an email out...

return $this->redirect($this->generateUrl('contact'));

}

}

// Render "contact us" page

return $this->render('AppBundle:default:contact.html.twig',

array(

'form' => $form->createView()

));

}

Here we started off by building a form via form builder. The add methods accept
both field definitions and field constraints upon which validation can be based. We
then added a check for the HTTP POST method, in case of which we feed the form
with request parameters and run validation against it.

[914]

 Chapter 6

With the contactAction method in place, we still need a template file to actually
render the form. We do so by adding the src/AppBundle/Resources/views/
default/contact.html.twig file with content that follows:

{% extends 'base.html.twig' %}

{% block body %}

<div class="row">

<h1>Contact Us</h1>

</div>

<div class="row">

{{ form_start(form) }}

{{ form_widget(form) }}

{{ form_end(form) }}

</div>

{% endblock %}

Based on these few tags, Twig handles the form rendering for us. The resulting
browser output is a page as shown in the following:

We are almost there with getting all of our pages ready. One thing is missing,
though, the body area of our home page. Unlike other pages with static content,
this one is actually dynamic, as it lists bestsellers and products on sale. This data is
expected to come from other modules, which are not available yet. Still, this does
not mean we cannot prepare dummy placeholders for them. Let's go ahead and edit
the app/Resources/views/default/index.html.twig file as follows:

{% extends 'base.html.twig' %}

{% block body %}

<!--products_bestsellers -->

[915]

Building the Core Module

<!--products_onsale -->

{% endblock %}

Now we need to replace <!-- products_bestsellers --> with the following:

{% if products_bestsellers %}

<h2 class="text-center">Best Sellers</h2>

<div class="row products_bestsellers text-center small-up-1

medium-up-3 large-up-5" data-equalizer data-equalize-by-

row="true">

{% for product in products_bestsellers.getItems() %}

<div class="column product">

{{ product.name }}

<div>${{ product.price }}</div>

<div><a class="small button"href="{{ product.add_to_cart_url

}}">Add to Cart</div>

</div>

{% endfor %}

</div>

{% endif %}

Now we need to replace <!-- products_onsale -->with the following:

{% if products_onsale %}

<h2 class="text-center">On Sale</h2>

<div class="row products_onsale text-center small-up-1 medium-up-3

large-up-5" data-equalizer data-equalize-by-row="true">

{% for product in products_onsale.getItems() %}

<div class="column product">

{{ product.name }}

<div>${{ product.price }}</div>

<div><a class="small button"

href="{{ product.add_to_cart_url }}"

>Add to Cart</div>

</div>

{% endfor %}

</div>

{% endif %}

The http://dummyimage.com enables us
to create a placeholder images for our app.

[916]

http://dummyimage.com/

 Chapter 6

At this point we should be seeing the home page as shown here:

Configuring application-wide security
What we are trying to achieve as part of our applicationwide security is to set some
basic protection against future customers or any other user being able to access
and use future auto-generated CRUD controllers. We do so by modifying the app/
config/security.yml file. There are several components to the security.yml file
we need to address: Firewalls, access control, providers, and encoders. If we observe
the auto-generated CRUD from the previous test app, it becomes clear that we need
to protect the following from customer access:

• GET|POST /new

• GET|POST /{id}/edit

• DELETE /{id}

[917]

Building the Core Module

In another words, everything that has /new and /edit in the URL, and everything
that is of DELETE method, needs to be protected from the customer. With that in
mind, we will use Symfony security features to create an in-memory user of role
ROLE_ADMIN. We will then create an access control list that allows only ROLE_ADMIN
to access the resources we just mentioned, and a firewall that triggers an HTTP basic
authentication login form when we try to access these resources.

Using an in-memory provider means hard-coding users in our security.yml file.
For purposes of our application, we will do so for the admin type of users. The
actual password, however, does not need to be hard-coded. Assuming we will use
1L6lllW9zXg0 for the password, let's jump to the console and type in the following
command:

php bin/console security:encode-password

This will produce an output as follows.

We can now edit security.yml by adding an in-memory provider and copy-paste
the generated encoded password into it, as shown here:

security:

providers:

in_memory:

memory:

users:

john:

password:

$2y$12$DFozWehwPkp14sVXr7.IbusW8ugvmZs9dQMExlggtyEa/TxZUStnO

roles: 'ROLE_ADMIN'

Here we defined a user john of role ROLE_ADMIN with an encoded 1L6lllW9zXg0
password.

[918]

 Chapter 6

Once we have the providers in place, we can go ahead and add encoders to our
security.yml file. Otherwise Symfony would not know what to make of the
current password assigned to john user:

security:

encoders:

Symfony\Component\Security\Core\User\User:

algorithm: bcrypt

cost: 12

Then we add the firewall as follows:

security:

firewalls:

guard_new_edit:

pattern: /(new)|(edit)

methods: [GET, POST]

anonymous: ~

http_basic: ~

guard_delete:

pattern: /

methods: [DELETE]

anonymous: ~

http_basic: ~

The guard_new_edit and guard_delete names are freely given names to our two
application firewalls. The guard_new_edit firewall will be intercepting all GET
and POST requests to any route containing the /new or /edit string in its URL. The
guard_delete firewall will be intercepting any HTTP DELETE method on any URL.
Once these firewalls kick in, they will show an HTTP basic authentication form, and
only allow access if the user is logged in.

Then we add the access control list as follows:

security:

access_control:

protect any possible auto-generated CRUD actions from

everyone's access

- { path: /new, roles: ROLE_ADMIN }

- { path: /edit, roles: ROLE_ADMIN }

- { path: /, roles: ROLE_ADMIN, methods: [DELETE] }

[919]

Building the Core Module

With these entries in place, an one who tries to access any URL with any
of the patterns defined under access_control will be presented with the
browser login as shown here:

The only user that can login is john with the password 1L6lllW9zXg0. Once
authenticated, the user can access all the CRUD links. This should be enough
for our simple application.

Unit testing
Our current module has no specific classes other than the controller class and the
dummy service class. Therefore, we won't bother ourselves with unit tests here.

Functional testing
Before we start writing our functional tests, we need to edit the phpunit.xml.dist
file by adding our bundle Tests directory to the testsuite paths, as follows:

<testsuites>

<testsuite name="Project Test Suite">

<-- ... other elements ... -->

<directory>src/AppBundle/Tests</directory>

<-- ... other elements ... -->

</testsuite>

</testsuites>

Our functional tests will cover only one controller, since we have no other. We start
off by creating a src/AppBundle/Tests/Controller/DefaultControllerTest.
php file with content as follows:

namespace AppBundle\Tests\Controller;

[920]

 Chapter 6

use Symfony\Bundle\FrameworkBundle\Test\WebTestCase;

class DefaultControllerTest extends WebTestCase

{

//…

}

The next step is to test each and every one of our controller actions. At the very least
we should test if the page content is being outputted properly.

To get an auto-complete in our IDE we can download the
PHPUnitphar file from the official site here https://phpunit.de.
Once downloaded, we can simply add it to the root of our project, so
that IDE, like PHPStorm, picks it up. This makes it easy to follow

up on all those $this->assert method calls and their parameters.

The first thing we want to test is our home page. We do so by adding the following
to the body of the DefaultControllerTest class.

public function testHomepage()

{

// @var \Symfony\Bundle\FrameworkBundle\Client

$client = static::createClient();

/** @var \Symfony\Component\DomCrawler\Crawler */

$crawler = $client->request('GET', '/');

// Check if homepage loads OK

$this->assertEquals(200, $client->getResponse()

->getStatusCode());

// Check if top bar left menu is present

$this->assertNotEmpty($crawler->filter('.top-bar-left li')

->count());

// Check if top bar right menu is present

$this->assertNotEmpty($crawler->filter('.top-bar-right li')

->count());

// Check if footer is present

$this->assertNotEmpty($crawler->filter('.footer li')

->children()->count());

}

[921]

https://phpunit.de/

Building the Core Module

Here we are checking several things at once. We are checking with the page loads
OK, with HTTP 200 status. Then we are grabbing the left and right menu and
counting their the items to see if they have any. If all of the individual checks pass,
the testHomepage test is considered to have passed.

We further test all of the static pages by adding the following to the
DefaultControllerTest class:

public function testStaticPages()

{

// @var \Symfony\Bundle\FrameworkBundle\Client

$client = static::createClient();

/** @var \Symfony\Component\DomCrawler\Crawler */

// Test About Us page

$crawler = $client->request('GET', '/about');

$this->assertEquals(200, $client->getResponse()

->getStatusCode());

$this->assertContains('About Us', $crawler->filter('h1')

->text());

// Test Customer Service page

$crawler = $client->request('GET', '/customer-service');

$this->assertEquals(200, $client->getResponse()

->getStatusCode());

$this->assertContains('Customer Service', $crawler

->filter('h1')->text());

// Test Privacy and Cookie Policy page

$crawler = $client->request('GET', '/privacy-and-cookie-

policy');

$this->assertEquals(200, $client->getResponse()

->getStatusCode());

$this->assertContains('Privacy and Cookie Policy', $crawler

->filter('h1')->text());

// Test Orders and Returns page

$crawler = $client->request('GET', '/orders-and-returns');

$this->assertEquals(200, $client->getResponse()

->getStatusCode());

$this->assertContains('Orders and Returns', $crawler

->filter('h1')->text());

// Test Contact Us page

$crawler = $client->request('GET', '/contact');

[922]

 Chapter 6

$this->assertEquals(200, $client->getResponse()

->getStatusCode());

$this->assertContains('Contact Us', $crawler->filter('h1')

->text());

}

Here we are running the same assertEquals and assertContains functions for all
of our pages. We are merely trying to confirm that each page is loaded with HTTP
200, and that the proper value is returned for the page title, that is to say, the h1
element.

Finally, we address the form submission test which we perform by adding the
following into the DefaultControllerTest class:

public function testContactFormSubmit()

{

// @var \Symfony\Bundle\FrameworkBundle\Client

$client = static::createClient();

/** @var \Symfony\Component\DomCrawler\Crawler */

$crawler = $client->request('GET', '/contact');

// Find a button labeled as "Reach Out!"

$form = $crawler->selectButton('Reach Out!')->form();

// Note this does not validate form, it merely tests against

submission and response page

$crawler = $client->submit($form);

$this->assertEquals(200, $client->getResponse()

->getStatusCode());

}

Here we are grabbing the form element through its Reach Out! submit button.
Once the form is fetched, we trigger the submit method on the client passing it the
instance from element. It is worth noting that the actual form validation is not being
tested here. Even so, the submitted form should result in an HTTP 200 status.

These tests are conclusive. We can write them to be much more robust if we wanted
to, as there are numerous elements we can test against.

[923]

Building the Core Module

Summary
In this chapter we have built our first module, or bundle in Symfony terminology.
The module itself is not really loosely coupled, as it relies on some of the things
within the app directory, such as the app/Resources/views/base.html.twig
layout template. We can get away with this when it comes to core modules, as they
are merely a foundation we are setting up for rest of the modules.

Moving forward, in the next chapter, we will build a catalog module. This will be the
basis of our web shop application.

[924]

Building the Catalog Module
The catalog module is an essential part of every web shop application. At the very
basic level, it is responsible for the management and display of categories and
products. It is a foundation for later modules, such as checkout, that add the
actual sales capabilities to our web shop application.

The more robust catalog features might include mass product imports, product
exports, multi-warehouse inventory management, private members categories,
and so on. These however, are out of the scope of this chapter.

In this chapter, we will be covering following topics:

• Requirements

• Dependencies

• Implementation

• Unit testing

• Functional testing

Requirements
Following the high level application requirements, defined in Chapter 4, Requirement
Specification for Modular Web Shop App, our module will have several entities and
other specific features implemented.

Following is a list of required module entities:

• Category

• Product

[925]

Building the Catalog Module

The Category entity includes the following properties and their data types:

• id: integer, auto-increment

• title: string

• url_key: string, unique

• description: text

• image: string

The Product entity includes the following properties:

• id: integer, auto-increment

• category_id: integer, foreign key that references the category table ID column

• title: string

• price: decimal

• sku: string, unique

• url_key: string, unique

• description: text

• qty: integer

• image: string

• onsale: boolean

Aside from just adding these entities and their CRUD pages, we also need to override
the core module services responsible for building the category menu and on sale
items.

Dependencies
The module has no firm dependencies on any other module. The Symfony
framework service layer enables us to code modules in such a way that, most of
the time, there is no need for a dependency between them. While the module does
override a service defined in the core module, the module itself is not dependent
on it, as nothing will break if the overriding service is missing.

Implementation
We start off by creating a new module called Foggyline\CatalogBundle. We do so
with the help of the console, by running the command as follows:

php bin/console generate:bundle --namespace=Foggyline/CatalogBundle

[926]

 Chapter 7

The command triggers an interactive process that asks us several questions along the
way, as shown in the following screenshot:

[927]

Building the Catalog Module

Once done, the following structure is generated for us:

If we now take a look at the app/AppKernel.php file, we would see the following
line under the registerBundles method:

new Foggyline\CatalogBundle\FoggylineCatalogBundle()

Similarly, the app/config/routing.yml has the following route definition added
to it:

foggyline_catalog:

resource: "@FoggylineCatalogBundle/

Resources/config/routing.xml"

prefix: /

Here we need to change prefix: / into prefix: /catalog/, so we don't collide
with core module routes. Leaving it as prefix: / would simply overrun our core
AppBundle and output Hello World! from the src/Foggyline/CatalogBundle/
Resources/views/Default/index.html.twig template to the browser at this point.
We want to keep things nice and separated. What this means is that the module does
not define the root route for itself.

[928]

 Chapter 7

Creating entities
Let's go ahead and create a Category entity. We do so by using the console, as
shown here:

php bin/console generate:doctrine:entity

[929]

Building the Catalog Module

This creates the Entity/Category.php and Repository/CategoryRepository.
php files within the src/Foggyline/CatalogBundle/ directory. After this, we need
to update the database, so it pulls in the Category entity, as shown in the following
command line instance:

php bin/console doctrine:schema:update --force

This results in a screen that looks similar to the following screenshot:

With entity in place, we are ready to generate its CRUD. We do so by using the
following command:

php bin/console generate:doctrine:crud

This results with interactive output as shown here:

[930]

 Chapter 7

This results in src/Foggyline/CatalogBundle/Controller/
CategoryController.php being created. It also adds an entry to our app/config/
routing.yml file as follows:

foggyline_catalog_category:

resource: "@FoggylineCatalogBundle/Controller/

CategoryController.php"

type: annotation

Furthermore, the view files are created under the app/Resources/views/
category/ directory, which is not what we might expect. We want them under our
module src/Foggyline/CatalogBundle/Resources/views/Default/category/
directory, so we need to copy them over. Additionally, we need to modify all
of the $this->render calls within our CategoryController by appending the
FoggylineCatalogBundle:default: string to each of the template paths.

Next, we go ahead and create the Product entity by using the interactive generator
as discussed earlier:

php bin/console generate:doctrine:entity

We follow the interactive generator, respecting the minimum of the following
attributes: title, price, sku, url_key, description, qty, category, and image.
Aside from price and qty, which are of types decimal and integer, all other
attributes are of type string. Furthermore, sku and url_key are flagged as unique.
This creates the Entity/Product.php and Repository/ProductRepository.php
files within the src/Foggyline/CatalogBundle/ directory.

Similar to what we have done for the Category view templates, we need to do for
the Product view templates. That is, copy them over from the app/Resources/
views/product/ directory to src/Foggyline/CatalogBundle/Resources/
views/Default/product/ and update all of the $this->render calls within our
ProductController by appending the FoggylineCatalogBundle:default:
string to each of the template paths.

At this point, we won't rush updating the schema, as we want to add proper
relations to our code. Each product should be able to have a relation to a single
Category entity. To achieve this, we need to edit Category.php and Product.php
from within the src/Foggyline/CatalogBundle/Entity/ directory, as follows:

// src/Foggyline/CatalogBundle/Entity/Category.php

/**

* @ORM\OneToMany(targetEntity="Product", mappedBy="category")

*/

[931]

Building the Catalog Module

private $products;

public function construct()

{

$this->products = new \Doctrine\Common\Collections\

ArrayCollection();

}

// src/Foggyline/CatalogBundle/Entity/Product.php

/**

* @ORM\ManyToOne(targetEntity="Category", inversedBy="products")

* @ORM\JoinColumn(name="category_id", referencedColumnName="id")

*/

private $category;

We further need to edit the Category.php file by adding the toString method
implementation to it, as follows:

public function toString()

{

return $this->getTitle();

}

The reason we are doing so is that, later on, our Product-editing form would know
what labels to list under the Category selection, otherwise the system would throw
the following error:

Catchable Fatal Error: Object of class

Foggyline\CatalogBundle\Entity\Category could not be converted

to string

With the above changes in place, we can now run the schema update, as follows:

php bin/console doctrine:schema:update --force

If we now take a look at our database, the CREATE command syntax for our product
table looks like the following:

CREATE TABLE `product` (

`id` int(11) NOT NULL AUTO_INCREMENT,

`category_id` int(11) DEFAULT NULL,

`title` varchar(255) COLLATE utf8_unicode_ci NOT NULL,

`price` decimal(10,2) NOT NULL,

`sku` varchar(255) COLLATE utf8_unicode_ci NOT NULL,

`url_key` varchar(255) COLLATE utf8_unicode_ci NOT NULL,

`description` longtext COLLATE utf8_unicode_ci,

[932]

 Chapter 7

`qty` int(11) NOT NULL,

`image` varchar(255) COLLATE utf8_unicode_ci DEFAULT NULL,

PRIMARY KEY (`id`),

UNIQUE KEY `UNIQ_D34A04ADF9038C4` (`sku`),

UNIQUE KEY `UNIQ_D34A04ADDFAB7B3B` (`url_key`),

KEY `IDX_D34A04AD12469DE2` (`category_id`),

CONSTRAINT `FK_D34A04AD12469DE2` FOREIGN KEY (`category_id`)

REFERENCES `category` (`id`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8 COLLATE=utf8_unicode_ci;

We can see two unique keys and one foreign key restraint defined, as per the entries
provided to our interactive entity generator. Now we are ready to generate the
CRUD for our Product entity. To do so, we run the generate:doctrine:crud
command and follow the interactive generator as shown here:

[933]

Building the Catalog Module

Managing image uploads
At this point, if we access either /category/new/ or /product/new/ URL, the
image field is just a simple input text field, not the actual image upload we would
like. To make it into an image upload field, we need to edit the $image property of
Category.php and Product.php as follows:

//…

use Symfony\Component\Validator\Constraints as Assert;

//…

class [Category|Product]

{

//…

/**

* @var string

*

* @ORM\Column(name="image", type="string", length=255,

nullable=true)

* @Assert\File(mimeTypes={ "image/png", "image/jpeg" },

mimeTypesMessage="Please upload the PNG or JPEG image

file.")

*/

private $image;

//…

}

As soon as we do so, the input fields turn into the file upload fields, as shown here:

Next, we will go ahead and implement the upload functionality into the forms.

We do so by first defining the service that will handle the actual upload. Service is
defined by adding the following entry into the src/Foggyline/CatalogBundle/
Resources/config/services.xml file, under the services element:

<service id="foggyline_catalog.image_uploader"

class="Foggyline\CatalogBundle\Service\ImageUploader">

<argument>%foggyline_catalog_images_directory%</argument>

</service>

The %foggyline_catalog_images_directory% argument value is the name of a
parameter the we will soon define.

[934]

 Chapter 7

We then create the src/Foggyline/CatalogBundle/Service/ImageUploader.php
file with content as follows:

namespace Foggyline\CatalogBundle\Service;

use Symfony\Component\HttpFoundation\File\UploadedFile;

class ImageUploader

{

private $targetDir;

public function construct($targetDir)

{

$this->targetDir = $targetDir;

}

public function upload(UploadedFile $file)

{

$fileName = md5(uniqid()) . '.' . $file->guessExtension();

$file->move($this->targetDir, $fileName);

return $fileName;

}

}

We then create our own parameters.yml file within the src/Foggyline/
CatalogBundle/Resources/config directory with content as follows:

parameters:

foggyline_catalog_images_directory: "%kernel.root_dir%/../

web/uploads/foggyline_catalog_images"

This is the parameter our service expects to find. It can easily be overridden with the
same entry under app/config/parameters.yml if needed.

In order for our bundle to see the parameters.yml file, we still need to edit the
FoggylineCatalogExtension.php file within the src/Foggyline/CatalogBundle/
DependencyInjection/ directory, by adding the following loader to the end of
the load method:

$loader = new Loader\YamlFileLoader($container, new

FileLocator(DIR .'/../Resources/config'));

$loader->load('parameters.yml');

[935]

Building the Catalog Module

At this point, our Symfony module is able to read its parameters.yml, thus making
it possible for the defined service to pickup the proper value for its argument. All
that is left is to adjust the code for our new and edit forms, attaching the upload
functionality to them. Since both forms are the same, the following is a Category
example that equally applies to the Product form as well:

public function newAction(Request $request) {

// ...

if ($form->isSubmitted() && $form->isValid()) {

/* @var $image \Symfony\Component\

HttpFoundation\File\UploadedFile */

if ($image = $category->getImage()) {

$name = $this->get('foggyline_catalog.image_uploader')

->upload($image);

$category->setImage($name);

}

$em = $this->getDoctrine()->getManager();

// ...

}

// ...

}

public function editAction(Request $request, Category $category) {

$existingImage = $category->getImage();

if ($existingImage) {

$category->setImage(

new File($this->getParameter

('foggyline_catalog_images_directory') . '/' .

$existingImage)

);

}

$deleteForm = $this->createDeleteForm($category);

// ...

if ($editForm->isSubmitted() && $editForm->isValid()) {

/* @var $image \Symfony\Component\HttpFoundation\

File\UploadedFile */

if ($image = $category->getImage()) {

$name = $this->get('foggyline_catalog.image_uploader')

->upload($image);

$category->setImage($name);

[936]

 Chapter 7

} elseif ($existingImage) {

$category->setImage($existingImage);

}

$em = $this->getDoctrine()->getManager();

// ...

}

// ...

}

Both the new and edit forms should now be able to handle file uploads.

Overriding core module services
Now let's go ahead and address the category menu and the on-sale items. Back
when we were building the core module, we defined the global variables under
the twig:global section of the app/config/config.yml file. These variables were
pointing to services defined in the app/config/services.yml file. In order for us to
change the content of the category menu and the on sale items, we need to override
those services.

We start off by adding the following two service definitions under the src/
Foggyline/CatalogBundle/Resources/config/services.xml file:

<service id="foggyline_catalog.category_menu"

class="Foggyline\CatalogBundle\Service\Menu\Category">

<argument type="service" id="doctrine.orm.entity_manager" />

<argument type="service" id="router" />

</service>

<service id="foggyline_catalog.onsale"

class="Foggyline\CatalogBundle\Service\Menu\OnSale">

<argument type="service" id="doctrine.orm.entity_manager" />

<argument type="service" id="router" />

</service>

Both of the services accept the Doctrine ORM entity manager and router service
arguments, as we will need to use those internally.

We then create the actual Category and OnSale service classes within the src/
Foggyline/CatalogBundle/Service/Menu/ directory as follows:

//Category.php

namespace Foggyline\CatalogBundle\Service\Menu;

[937]

Building the Catalog Module

class Category

{

private $em;

private $router;

public function construct(

\Doctrine\ORM\EntityManager $entityManager,

\Symfony\Bundle\FrameworkBundle\Routing\Router $router

)

{

$this->em = $entityManager;

$this->router = $router;

}

public function getItems()

{

$categories = array();

$_categories = $this->em->getRepository

('FoggylineCatalogBundle:Category')->findAll();

foreach ($_categories as $_category) {

/* @var $_category \Foggyline\CatalogBundle\

Entity\Category */

$categories[] = array(

'path' => $this->router->generate('category_show',

array('id' => $_category->getId())),

'label' => $_category->getTitle(),

);

}

return $categories;

}

}

//OnSale.php

namespace Foggyline\CatalogBundle\Service\Menu;

class OnSale

{

private $em;

private $router;

public function construct(\Doctrine\ORM\

EntityManager $entityManager, $router)

{

[938]

 Chapter 7

$this->em = $entityManager;

$this->router = $router;

}

public function getItems()

{

$products = array();

$_products = $this->em->getRepository

('FoggylineCatalogBundle:Product')->findBy(

array('onsale' => true),

null,

5

);

foreach ($_products as $_product) {

/* @var $_product \Foggyline\CatalogBundle\

Entity\Product */

$products[] = array(

'path' => $this->router->generate('product_show',

array('id' => $_product->getId())),

'name' => $_product->getTitle(),

'image' => $_product->getImage(),

'price' => $_product->getPrice(),

'id' => $_product->getId(),

);

}

return $products;

}

}

This alone won't trigger the override of the core module services. Within the src/
Foggyline/CatalogBundle/DependencyInjection/Compiler/ directory we
need to create an OverrideServiceCompilerPass class that implements the
CompilerPassInterface. Within its process method, we can then change the
definition of the service, as follows:

namespace Foggyline\CatalogBundle\DependencyInjection\Compiler;

use Symfony\Component\DependencyInjection\Compiler\

CompilerPassInterface;

use Symfony\Component\DependencyInjection\ContainerBuilder;

class OverrideServiceCompilerPass implements CompilerPassInterface

{

[939]

Building the Catalog Module

public function process(ContainerBuilder $container)

{

// Override the core module 'category_menu' service

$container->removeDefinition('category_menu');

$container->setDefinition('category_menu',

$container->getDefinition

('foggyline_catalog.category_menu'));

// Override the core module 'onsale' service

$container->removeDefinition('onsale');

$container->setDefinition('onsale',

$container->getDefinition('foggyline_catalog.onsale'));

}

}

Finally, we need to edit the build method of the src/Foggyline/CatalogBundle/
FoggylineCatalogBundle.php file in order to add this compiler pass as shown here:

public function build(ContainerBuilder $container)

{

parent::build($container);

$container->addCompilerPass(new \Foggyline\CatalogBundle\

DependencyInjection\Compiler\OverrideServiceCompilerPass());

}

Now our Category and OnSale services should override the ones defined in the core
module, thus providing the right values for the header Category menu and On Sale
section of the homepage.

Setting up a Category page
The auto-generated CRUD made a Category page for us with the layout as follows:

[940]

 Chapter 7

This is significantly different from the Category page defined under Chapter 4,
Requirement Specification for Modular Web Shop App. We therefore need to make amends
to our Category Show page, by modifying the show.html.twig file within the src/
Foggyline/CatalogBundle/Resources/views/Default/category/ directory. We
do so by replacing the entire content of body block with code as follows:

<div class="row">

<div class="small-12 large-12 columns text-center">

<h1>{{ category.title }}</h1>

<p>{{ category.description }}</p>

</div>

</div>

<div class="row">

<img src="{{ asset('uploads/foggyline_catalog_images/' ~

category.image) }}"/>

</div>

{% set products = category.getProducts() %}

{% if products %}

<div class="row products_onsale text-center small-up-1

medium-up-3 large-up-5" data-equalizer

data-equalize-by-row="true">

{% for product in products %}

<div class="column product">

[941]

Building the Catalog Module

<img src="{{ asset('uploads/

foggyline_catalog_images/' ~ product.image) }}"

alt="missing image"/>

<a href="{{ path('product_show', {'id':

product.id}) }}">{{ product.title }}

<div>${{ product.price }}</div>

<div><a class="small button" href="{{

path('product_show', {'id': product.id})

}}">View</div>

</div>

{% endfor %}

</div>

{% else %}

<div class="row">

<p>There are no products assigned to this category.</p>

</div>

{% endif %}

{% if is_granted('ROLE_ADMIN') %}

<a href="{{ path('category_edit', { 'id': category.id

}) }}">Edit

{{ form_start(delete_form) }}

<input type="submit" value="Delete">

form_end(delete_form) }}

{% endif %}

The body is now sectioned into three areas. First, we are addressing the category
title and description output. We are then fetching and looping through the list of
products assigned to category, rendering each individual product. Finally, we are
using the is_granted Twig extension to check if the current user role is ROLE_ADMIN,
in which case we show the Edit and Delete links for the category.

[942]

 Chapter 7

Setting up a Product page
The auto-generated CRUD made a Product page for us with the layout as follows:

This differs from the Product page defined under Chapter 4, Requirement Specification
for Modular Web Shop App. To rectify the problem, we need to make amends to
our Product Show page, by modifying the show.html.twig file within the src/
Foggyline/CatalogBundle/Resources/views/Default/product/ directory. We
do so by replacing entire content of body block with code as follows:

<div class="row">

<div class="small-12 large-6 columns">

<img class="thumbnail" src="{{ asset('uploads/

foggyline_catalog_images/' ~ product.image) }}"/>

</div>

<div class="small-12 large-6 columns">

<h1>{{ product.title }}</h1>

<div>SKU: {{ product.sku }}</div>

{% if product.qty %}

<div>IN STOCK</div>

{% else %}

<div>OUT OF STOCK</div>

{% endif %}

<div>$ {{ product.price }}</div>

<form action="{{ add_to_cart_url.getAddToCartUrl

[943]

Building the Catalog Module

(product.id) }}" method="get">

<div class="input-group">

Qty

<input class="input-group-field" type="number">

<div class="input-group-button">

<input type="submit" class="button" value=

"Add to Cart">

</div>

</div>

</form>

</div>

</div>

<div class="row">

<p>{{ product.description }}</p>

</div>

{% if is_granted('ROLE_ADMIN') %}

<a href="{{ path('product_edit', { 'id': product.id })

}}">Edit

{{ form_start(delete_form) }}

<input type="submit" value="Delete">

{{ form_end(delete_form) }}

{% endif %}

The body is now sectioned into two main areas. First, we are addressing the product
image, title, stock status, and add to cart output. The add to cart form uses the
add_to_cart_url service to provide the right link. This service is defined under the
core module and, at this point, only provides a dummy link. Later on, when we get
to the checkout module, we will implement an override for this service and inject
the right add to cart link. We then output the description section. Finally, we use the
is_granted Twig extension, like we did on the Category example, to determine if
the user can access the Edit and Delete links for a product.

[944]

 Chapter 7

Unit testing
We now have several class files that are not related to the controllers, meaning we
can run unit tests against them. Still, we won't be going after a full code coverage as
part of this book, rather focus on some of the little-big things, like using containers
within our test classes.

We start of by adding the following line under the testsuites element of our
phpunit.xml.dist file:

<directory>src/Foggyline/CatalogBundle/Tests</directory>

With that in place, running the phpunit command from the root of our shop should
pick up any test we have defined under the src/Foggyline/CatalogBundle/
Tests/ directory.

Now let's go ahead and create a test for our Category service menu. We do so by
creating an src/Foggyline/CatalogBundle/Tests/Service/Menu/CategoryTest.
php file with the following content:

namespace Foggyline\CatalogBundle\Tests\Service\Menu;

use Symfony\Bundle\FrameworkBundle\Test\KernelTestCase;

use Foggyline\CatalogBundle\Service\Menu\Category;

class CategoryTest extends KernelTestCase

{

private $container;

private $em;

private $router;

public function setUp()

{

static::bootKernel();

$this->container = static::$kernel->getContainer();

$this->em = $this->container->get

('doctrine.orm.entity_manager');

$this->router = $this->container->get('router');

}

public function testGetItems()

{

$service = new Category($this->em, $this->router);

$this->assertNotEmpty($service->getItems());

}

[945]

Building the Catalog Module

protected function tearDown()

{

$this->em->close();

unset($this->em, $this->router);

}

}

The preceding example shows the usage of the setUp and tearDown method calls,
which are analogous in behavior to the PHP's construct and destruct
methods. We use the setUp method to set the entity manager and router service that
we can use through out the rest of the class. The tearDown method is merely a clean
up. Now if we run the phpunit command, we should see our test being picked up
and executed alongside other tests.

We can even target this class specifically by executing a phpunit command with the
full class path, as shown here:

phpunit src/Foggyline/CatalogBundle/Tests/Service/

Menu/CategoryTest.php

Similarly to what we did for CategoryTest, we can go ahead and create
OnSaleTest; the only difference between the two being the class name.

Functional testing
The great thing about the auto-generate CRUD tool is that it generates even
the functional tests for us. More specifically, in this case, it generated the
CategoryControllerTest.php and ProductControllerTest.php files
within the src/Foggyline/CatalogBundle/Tests/Controller/ directory.

Auto-generated functional tests have a commented out
methods within class body. This throws an error during
the phpunit run. We need to at least define a dummy
test method in them to allow phpunit to overlook
them.

If we look into these two files, we can see that they both have a single
testCompleteScenario method defined, which is entirely commented out. Let's go
ahead and change the CategoryControllerTest.php content as follows:

// Create a new client to browse the application

$client = static::createClient(

array(), array(

'PHP_AUTH_USER' => 'john',

'PHP_AUTH_PW' => '1L6lllW9zXg0',

[946]

 Chapter 7

)

);

// Create a new entry in the database

$crawler = $client->request('GET', '/category/');

$this->assertEquals(200, $client->getResponse()->getStatusCode(),

"Unexpected HTTP status code for GET /product/");

$crawler = $client->click($crawler->selectLink('Create a new

entry')->link());

// Fill in the form and submit it

$form = $crawler->selectButton('Create')->form(array(

'category[title]' => 'Test',

'category[urlKey]' => 'Test urlKey',

'category[description]' => 'Test description',

));

$client->submit($form);

$crawler = $client->followRedirect();

// Check data in the show view

$this->assertGreaterThan(0, $crawler

->filter('h1:contains("Test")')->count(),

'Missing element h1:contains("Test")');

// Edit the entity

$crawler = $client->click($crawler->selectLink('Edit')->link());

$form = $crawler->selectButton('Edit')->form(array(

'category[title]' => 'Foo',

'category[urlKey]' => 'Foo urlKey',

'category[description]' => 'Foo description',

));

$client->submit($form);

$crawler = $client->followRedirect();

// Check the element contains an attribute with value equals "Foo"

$this->assertGreaterThan(0, $crawler->filter('[value="Foo"]')

->count(), 'Missing element [value="Foo"]');

// Delete the entity

$client->submit($crawler->selectButton('Delete')->form());

$crawler = $client->followRedirect();

[947]

Building the Catalog Module

// Check the entity has been delete on the list

$this->assertNotRegExp('/Foo title/', $client->getResponse()

->getContent());

We started off by setting PHP_AUTH_USER and PHP_AUTH_PW as parameters for the
createClient method. This is because our /new and /edit routes are protected
by the core module security. These settings allow us to pass the basic HTTP
authentication along the request. We then tested if the category listing page can be
accessed and if its Create a new entry link can be clicked. Furthermore, both the
create and edit forms were tested, along with their results.

All that remains is to repeat the approach we just used for
CategoryControllerTest.php with ProductControllerTest.php.
We simply need to change a few labels within the ProductControllerTest
class file to match the product routes and expected results.

Running the phpunit command now should successfully execute our tests.

Summary
Throughout this chapter we have built a miniature, but functional, catalog module.
It allowed us to create, edit, and delete categories and products. By adding a few
custom lines of code on top of the auto-generated CRUD, we were able to achieve
image upload functionality for both categories and products. We also saw how
to override the core module service, by simply removing the existing service
definition and providing a new one. In regard to tests, we saw how we can pass
the authentication along our requests to test for protected routes.

Moving forward, in the next chapter, we will build a customer module.

[948]

Building the

Customer Module
The customer module provides a basis for further sales functionality of our web
shop. At the very basic level, it is responsible for register, login, management and
display of relevant customer information. It is a requirement for the later sales
module, that adds the actual sales capabilities to our web shop application.

In this chapter we will be covering following topics:

• Requirements

• Dependencies

• Implementation

• Unit testing

• Functional testing

Requirements
Following the high level application requirements, defined under Chapter 4,
Requirement Specification for Modular Web Shop App, our module will have a
single Customer entity defined.

The Customer entity includes the following properties:

• id: integer, auto-increment

• email: string, unique

• username: string, unique, needed for login system

• password: string

[949]

Building the Customer Module

• first_name: string

• last_name: string

• company: string

• phone_number: string

• country: string

• state: string

• city: string

• postcode: string

• street: string

Throughout this chapter, aside from just adding the Customer entity and its CRUD
pages, we also need to address the creation of login, register, forgot your password
pages, as well as override a core module service responsible for building a customer
menu.

Dependencies
The module has no firm dependencies on any other module. While it does
override a service defined in core module, the module itself is not dependent on
it. Furthermore, some security config will need to be provided as part of the core
application, as we will see later on.

Implementation
We start of by creating a new module called Foggyline\CustomerBundle. We do so
with the help of console, by running the command as follows:

php bin/console generate:bundle --namespace=Foggyline/CustomerBundle

[950]

 Chapter 8

The command triggers an interactive process asking us several questions along the
way, as shown in the following screenshot:

[951]

Building the Customer Module

Once done, the following structure is generated for us:

If we now take a look at the app/AppKernel.php file, we would see the following
line under the registerBundles method:

new Foggyline\CustomerBundle\FoggylineCustomerBundle()

Similarly, the app/config/routing.yml directory has the following route definition
added to it:

foggyline_customer:

resource: "@FoggylineCustomerBundle/

Resources/config/routing.xml"

prefix: /

Here we need to change prefix: / into prefix: /customer/, so we don't collide
with core module routes. Leaving it as prefix: / would simply overrun our core
AppBundle and output Hello World! from the src/Foggyline/CustomerBundle/
Resources/views/Default/index.html.twig template to the browser at this point.
We want to keep things nice and separated. What this means is that the module does
not define root route for itself.

Creating a customer entity
Let's go ahead and create a Customer entity. We do so by using the console, as
shown here:

php bin/console generate:doctrine:entity

[952]

 Chapter 8

This command triggers the interactive generator, where we need to provide
entity properties. Once done, the generator creates the Entity/Customer.php
and Repository/CustomerRepository.php files within the src/Foggyline/
CustomerBundle/ directory. After this, we need to update the database, so it
pulls in the Customer entity, by running the following command:

php bin/console doctrine:schema:update --force

This results in a screen as shown in the following screenshot:

With entity in place, we are ready to generate its CRUD. We do so by using the
following command:

php bin/console generate:doctrine:crud

This results in an interactive output as shown here:

[953]

Building the Customer Module

This results in the src/Foggyline/CustomerBundle/Controller/
CustomerController.php directory being created. It also adds an entry to our
app/config/routing.yml file as follows:

foggyline_customer_customer:

resource:

"@FoggylineCustomerBundle/Controller/CustomerController.php"

type: annotation

Again, the view files were created under the app/Resources/views/customer/
directory, which is not what we might expect. We want them under our module
src/Foggyline/CustomerBundle/Resources/views/Default/customer/

directory, so we need to copy them over. Additionally, we need to modify all of the
$this->render calls within our CustomerController by appending the Foggyline
CustomerBundle:default: string to each of the template path.

Modifying the security configuration
Before we proceed further with the actual changes within our module, let's imagine
our module requirements mandate a certain security configuration in order to make
it work. These requirements state that we need to apply several changes to the app
/config/security.yml file. We first edit the providers element by adding to it the
following entry:

foggyline_customer:

entity:

class: FoggylineCustomerBundle:Customer

property: username

This effectively defines our Customer class as a security provider, whereas the
username element is the property storing user identity.

We then define the encoder type under the encoders element, as follows:

Foggyline\CustomerBundle\Entity\Customer:

algorithm: bcrypt

cost: 12

This tells Symfony to use the bcrypt algorithm with a value of 12 for algorithmic
cost while encrypting our password. This way our passwords won't end up in clear
text when saved in the database.

We then go ahead and define a new firewall entry under the firewalls element,
as follows:

foggyline_customer:

anonymous: ~

[954]

 Chapter 8

provider: foggyline_customer

form_login:

login_path: foggyline_customer_login

check_path: foggyline_customer_login

default_target_path: customer_account

logout:

path: /customer/logout

target: /

There is quite a lot going on here. Our firewall uses the anonymous: ~ definition
to denote that it does not really need a user to be logged in to see certain pages.
By default, all Symfony users are authenticated as anonymous, as shown in the
following screenshot, on the Developer toolbar:

The form_login definition takes three properties. The login_path and the
check_path point to our custom route foggyline_customer_login. When the
security system initiates the authentication process, it will redirect the user to
the foggyline_customer_login route, where we will soon implement needed
controller logic and view templates in order to handle the login form. Once logged
in, the default_target_path determines where the user will be redirected to.

Finally, we reuse the Symfony anonymous user feature in order to exclude certain
pages from being forbidden. We want our non-authenticated customer to be able to
access login, register, and forgotten password pages. To make that possible, we add
the following entries under the access_control element:

- { path: customer/login, roles: IS_AUTHENTICATED_ANONYMOUSLY }

- { path: customer/register, roles: IS_AUTHENTICATED_ANONYMOUSLY }

- { path: customer/forgotten_password, roles:

IS_AUTHENTICATED_ANONYMOUSLY }

- { path: customer/account, roles: ROLE_USER }

- { path: customer/logout, roles: ROLE_USER }

- { path: customer/, roles: ROLE_ADMIN }

It is worth noting that this approach to handling security between module and
base application is by far the ideal one. This is merely one possible example of
how we can achieve what is needed for this module to make it functional.

[955]

Building the Customer Module

Extending the customer entity
With the preceding security.yml additions in place, we are now ready to actually
start implementing the registration process. First we edit the Customer entity within
the src/Foggyline/CustomerBundle/Entity/ directory, by making it implement
the Symfony\Component\Security\Core\User\UserInterface, \Serializable.
This implies implementation of the following methods:

public function getSalt()

{

return null;

}

public function getRoles()

{

return array('ROLE_USER');

}

public function eraseCredentials()

{

}

public function serialize()

{

return serialize(array(

$this->id,

$this->username,

$this->password

));

}

public function unserialize($serialized)

{

list (

$this->id,

$this->username,

$this->password,

) = unserialize($serialized);

}

[956]

 Chapter 8

Even though all of the passwords need to be hashed with salt, the getSalt function
in this case is irrelevant since bcrypt does this internally. The getRoles function is
the important bit. We can return one or more roles that individual customers will
have. To make things simple, we will only assign one ROLE_USER role to each of
our customers. But this can easily be made much more robust, so that the roles are
stored in the database as well. The eraseCredentials function is merely a cleanup
method, which we left blank.

Since the user object is first unserialized, serialized, and saved to a session per each
request, we implement the \Serializable interface. The actual implementation of
serialize and unserialize can include only a fraction of customer properties, as we do
not need to store everything in the session.

Before we go ahead and start implementing the register, login, forgot your password,
and other bits, let's go ahead and define the needed services we are going to use
later on.

Creating the orders service
We will create an orders service which will be used to fill in the data available under
the My Account page. Later on, other modules can override this service and inject
real customer orders. To define an orders service, we edit the src/Foggyline/
CustomerBundle/Resources/config/services.xml file by adding the following
under the services element:

<service id="foggyline_customer.customer_orders"

class="Foggyline\CustomerBundle\Service\CustomerOrders">

</service>

Then, we go ahead and create the src/Foggyline/CustomerBundle/Service/
CustomerOrders.php directory with content as follows:

namespace Foggyline\CustomerBundle\Service;

class CustomerOrders

{

public function getOrders()

{

return array(

array(

'id' => '0000000001',

'date' => '23/06/2016 18:45',

'ship_to' => 'John Doe',

'order_total' => 49.99,

'status' => 'Processing',

'actions' => array(

[957]

Building the Customer Module

array(

'label' => 'Cancel',

'path' => '#'

),

array(

'label' => 'Print',

'path' => '#'

)

)

),

);

}

}

The getOrders method simply returns some dummy data here. We can easily make
it return an empty array. Ideally, we would want this to return a collection of certain
types of element that conform to some specific interface.

Creating the customer menu service
In the previous module we defined a customer service that filled in the Customer
menu with some dummy data. Now we will create an overriding service that fills the
menu with actual customer data, depending on customer login status. To define a
customer menu service, we edit the src/Foggyline/CustomerBundle/Resources/
config/services.xml file by adding the following under the services element:

<service id="foggyline_customer.customer_menu"

class="Foggyline\CustomerBundle\Service\Menu\CustomerMenu">

<argument type="service" id="security.token_storage"/>

<argument type="service" id="router"/>

</service>

Here we are injecting the token_storage and router objects into our service, as we
will need them to construct the menu based on the login state of a customer.

We then go ahead and create the src/Foggyline/CustomerBundle/Service/Menu/
CustomerMenu.php directory with content as follows:

namespace Foggyline\CustomerBundle\Service\Menu;

class CustomerMenu

{

private $token;

private $router;

public function construct(

[958]

 Chapter 8

$tokenStorage,

\Symfony\Bundle\FrameworkBundle\Routing\Router $router

)

{

$this->token = $tokenStorage->getToken();

$this->router = $router;

}

public function getItems()

{

$items = array();

$user = $this->token->getUser();

if ($user instanceof \Foggyline\CustomerBundle\

Entity\Customer) {

// customer authentication

$items[] = array(

'path' => $this->router->

generate('customer_account'),

'label' => $user->getFirstName() . ' ' . $user->

getLastName(),

);

$items[] = array(

'path' => $this->router->

generate('customer_logout'),

'label' => 'Logout',

);

} else {

$items[] = array(

'path' => $this->router->

generate('foggyline_customer_login'),

'label' => 'Login',

);

$items[] = array(

'path' => $this->router->

generate('foggyline_customer_register'),

'label' => 'Register',

);

}

return $items;

}

}

[959]

Building the Customer Module

Here we see a menu being constructed based on user login state. This way a
customer gets to see the Logout link when logged in, or Login when not logged in.

We then add the src/Foggyline/CustomerBundle/DependencyInjection/
Compiler/OverrideServiceCompilerPass.php directory with content as follows:

namespace Foggyline\CustomerBundle\DependencyInjection\Compiler;

use Symfony\Component\DependencyInjection\Compiler\

CompilerPassInterface;

use Symfony\Component\DependencyInjection\ContainerBuilder;

class OverrideServiceCompilerPass implements CompilerPassInterface

{

public function process(ContainerBuilder $container)

{

// Override the core module 'onsale' service

$container->removeDefinition('customer_menu');

$container->setDefinition('customer_menu', $container->

getDefinition('foggyline_customer.customer_menu'));

}

}

Here we are doing the actual customer_menu service override. However,
this won't kick in until we edit the src/Foggyline/CustomerBundle/
FoggylineCustomerBundle.php directory, by adding the build method
to it as follows:

namespace Foggyline\CustomerBundle;

use Symfony\Component\HttpKernel\Bundle\Bundle;

use Symfony\Component\DependencyInjection\ContainerBuilder;

use Foggyline\CustomerBundle\DependencyInjection\

Compiler\OverrideServiceCompilerPass;

class FoggylineCustomerBundle extends Bundle

{

public function build(ContainerBuilder $container)

{

parent::build($container);;

$container->addCompilerPass(new

OverrideServiceCompilerPass());

}

}

The addCompilerPass method call accepts the instance of our
OverrideServiceCompilerPass, ensuring our service override will kick in.

[960]

 Chapter 8

Implementing the register process
To implement a register page, we first modify the src/Foggyline/
CustomerBundle/Controller/CustomerController.php file as follows:

/**

* @Route("/register", name="foggyline_customer_register")

*/

public function registerAction(Request $request)

{

// 1) build the form

$user = new Customer();

$form = $this->createForm(CustomerType::class, $user);

// 2) handle the submit (will only happen on POST)

$form->handleRequest($request);

if ($form->isSubmitted() && $form->isValid()) {

// 3) Encode the password (you could also do this via Doctrine

listener)

$password = $this->get('security.password_encoder')

->encodePassword($user, $user->getPlainPassword());

$user->setPassword($password);

// 4) save the User!

$em = $this->getDoctrine()->getManager();

$em->persist($user);

$em->flush();

// ... do any other work - like sending them an email, etc

// maybe set a "flash" success message for the user

return $this->redirectToRoute('customer_account');

}

return $this->render(

'FoggylineCustomerBundle:default:

customer/register.html.twig',

array('form' => $form->createView())

);

}

[961]

Building the Customer Module

The register page uses a standard auto-generated Customer CRUD form, simply
pointing it to the src/Foggyline/CustomerBundle/Resources/views/Default/
customer/register.html.twig template file with content as follows:

{% extends 'base.html.twig' %}

{% block body %}

{{ form_start(form) }}

{{ form_widget(form) }}

<button type="submit">Register!</button>

{{ form_end(form) }}

{% endblock %}

Once these two files are in place, our register functionality should be working.

Implementing the login process
We will implement the login page on its own /customer/login URL, thus we edit
the CustomerController.php file by adding the loginAction function as follows:

/**

* Creates a new Customer entity.

*

* @Route("/login", name="foggyline_customer_login")

*/

public function loginAction(Request $request)

{

$authenticationUtils = $this->

get('security.authentication_utils');

// get the login error if there is one

$error = $authenticationUtils->getLastAuthenticationError();

// last username entered by the user

$lastUsername = $authenticationUtils->getLastUsername();

return $this->render(

'FoggylineCustomerBundle:default:

customer/login.html.twig',

array(

// last username entered by the user

'last_username' => $lastUsername,

'error' => $error,

)

);

}

[962]

 Chapter 8

Here we are simply checking if the user already tried to login, and if it did we are
passing that info to the template, along with the potential errors. We then edit the
src/Foggyline/CustomerBundle/Resources/views/Default/customer/login.

html.twig file with content as follows:

{% extends 'base.html.twig' %}

{% block body %}

{% if error %}

<div>{{ error.messageKey|trans(error.messageData,

'security') }}</div>

{% endif %}

<form action="{{ path('foggyline_customer_login') }}"

method="post">

<label for="username">Username:</label>

<input type="text" id="username" name="_username"

value="{{ last_username }}"/>

<label for="password">Password:</label>

<input type="password" id="password" name="_password"/>

<button type="submit">login</button>

</form>

<div class="row">

Forgot

your password?

</div>

{% endblock %}

Once logged in, the user will be redirected to the /customer/account page. We
create this page by adding the accountAction method to the CustomerController.
php file as follows:

/**

* Finds and displays a Customer entity.

*

* @Route("/account", name="customer_account")

* @Method({"GET", "POST"})

*/

public function accountAction(Request $request)

{

if (!$this->get('security.authorization_checker')->

isGranted('ROLE_USER')) {

throw $this->createAccessDeniedException();

}

[963]

Building the Customer Module

if ($customer = $this->getUser()) {

$editForm = $this->createForm('Foggyline\CustomerBundle\

Form\CustomerType', $customer, array

('action' => $this->generateUrl('customer_account')));

$editForm->handleRequest($request);

if ($editForm->isSubmitted() && $editForm->isValid()) {

$em = $this->getDoctrine()->getManager();

$em->persist($customer);

$em->flush();

$this->addFlash('success', 'Account updated.');

return $this->redirectToRoute('customer_account');

}

return $this->render('FoggylineCustomerBundle:default:

customer/account.html.twig', array(

'customer' => $customer,

'form' => $editForm->createView(),

'customer_orders' => $this->

get('foggyline_customer.customer_orders')->

getOrders()

));

} else {

$this->addFlash('notice', 'Only logged in customers can

access account page.');

return $this->redirectToRoute('foggyline_customer_login');

}

}

Using $this->getUser() we are checking if logged in user is set, and if so, passing
its info to the template. We then edit the src/Foggyline/CustomerBundle/
Resources/views/Default/customer/account.html.twig file with content
as follows:

{% extends 'base.html.twig' %}

{% block body %}

<h1>My Account</h1>

{{ form_start(form) }}

<div class="row">

<div class="medium-6 columns">

{{ form_row(form.email) }}

{{ form_row(form.username) }}

{{ form_row(form.plainPassword.first) }}

[964]

 Chapter 8

{{ form_row(form.plainPassword.second) }}

{{ form_row(form.firstName) }}

{{ form_row(form.lastName) }}

{{ form_row(form.company) }}

{{ form_row(form.phoneNumber) }}

</div>

<div class="medium-6 columns">

{{ form_row(form.country) }}

{{ form_row(form.state) }}

{{ form_row(form.city) }}

{{ form_row(form.postcode) }}

{{ form_row(form.street) }}

<button type="submit">Save</button>

</div>

</div>

{{ form_end(form) }}

<!-- customer_orders -->

{% endblock %}

With this we address the actual customer information section of the My Account
page. In its current state, this page should render an Edit form as shown in the
following screenshot, enabling us to edit all of our customer information:

[965]

Building the Customer Module

We then address the <!-- customer_orders -->, by replacing it with the
following bits:

{% block customer_orders %}

<h2>My Orders</h2>

<div class="row">

<table>

<thead>

<tr>

<th width="200">Order Id</th>

<th>Date</th>

<th width="150">Ship To</th>

<th width="150">Order Total</th>

<th width="150">Status</th>

<th width="150">Actions</th>

</tr>

</thead>

<tbody>

{% for order in customer_orders %}

<tr>

<td>{{ order.id }}</td>

<td>{{ order.date }}</td>

<td>{{ order.ship_to }}</td>

<td>{{ order.order_total }}</td>

<td>{{ order.status }}</td>

<td>

<div class="small button-group">

{% for action in order.actions %}

<a class="button" href="{{

action.path }}">{{ action.label

}}

{% endfor %}

</div>

</td>

</tr>

{% endfor %}

/tbody>

</table>

</div>

{% endblock %}

[966]

 Chapter 8

This should now render the My Orders section of the My Account page as
shown here:

This is just dummy data coming from service defined in a src/Foggyline/
CustomerBundle/Resources/config/services.xml. In a later chapter, when we
get to the sales module, we will make sure it overrides the foggyline_customer.
customer_orders service in order to insert real customer data here.

Implementing the logout process
One of the changes we did to security.yml when defining our firewall, was
configuring the logout path, which we pointed to /customer/logout. The
implementation of that path is done within the CustomerController.php file
as follows:

/**

* @Route("/logout", name="customer_logout")

*/

public function logoutAction()

{

}

Note, the logoutAction method is actually empty. There is no implementation as
such. Implementation is not needed, as Symfony intercepts the request and processes
the logout for us. We did, however, need to define this route as we referenced it from
our system.xml file.

Managing forgotten passwords
The forgotten password feature is going to be implemented as a separate page. We
edit the CustomerController.php file by adding the forgottenPasswordAction
function to it as follows:

/**

* @Route("/forgotten_password", name="customer_forgotten_password")

* @Method({"GET", "POST"})

*/

[967]

Building the Customer Module

public function forgottenPasswordAction(Request $request)

{

// Build a form, with validation rules in place

$form = $this->createFormBuilder()

->add('email', EmailType::class, array(

'constraints' => new Email()

))

->add('save', SubmitType::class, array(

'label' => 'Reset!',

'attr' => array('class' => 'button'),

))

->getForm();

// Check if this is a POST type request and if so, handle form

if ($request->isMethod('POST')) {

$form->handleRequest($request);

if ($form->isSubmitted() && $form->isValid()) {

$this->addFlash('success', 'Please check your email

for reset password.');

// todo: Send an email out to website admin or

something...

return $this->redirect($this->

generateUrl('foggyline_customer_login'));

}

}

// Render "contact us" page

return $this->

render('FoggylineCustomerBundle:default:customer/

forgotten_password.html.twig', array(

'form' => $form->createView()

));

}

Here we merely check if the HTTP request is GET or POST, then either send
an e-mail or load the template. For the sake of simplicity, we haven't really
implemented the actual e-mail sending. This is something that needs to be tackled
outside of this book. The rendered template is pointing to the src/Foggyline/
CustomerBundle/Resources/views/Default/customer/ forgotten_password.

html.twig file with content as follows:

{% extends 'base.html.twig' %}

{% block body %}

[968]

 Chapter 8

<div class="row">

<h1>Forgotten Password</h1>

</div>

<div class="row">

{{ form_start(form) }}

{{ form_widget(form) }}

{{ form_end(form) }}

</div>

{% endblock %}

Unit testing
Aside from the auto-generated Customer entity and its CRUD controller, there are
only two custom service classes that we created as part of this module. Since we
are not going after full code coverage, we will merely cover CustomerOrders and
CustomerMenu service classes as part of the unit testing.

We start off by adding the following line under the testsuites element of our
phpunit.xml.dist file:

<directory>src/Foggyline/CustomerBundle/Tests</directory>

With that in place, running the phpunit command from the root of our shop should
pick up any test we have defined under the src/Foggyline/CustomerBundle/
Tests/ directory.

Now let's go ahead and create a test for our CustomerOrders service. We do so by
creating a src/Foggyline/CustomerBundle/Tests/Service/CustomerOrders.php
file with content as follows:

namespace Foggyline\CustomerBundle\Tests\Service;

use Symfony\Bundle\FrameworkBundle\Test\KernelTestCase;

class CustomerOrders extends KernelTestCase

{

private $container;

public function setUp()

{

static::bootKernel();

$this->container = static::$kernel->getContainer();

[969]

Building the Customer Module

}

public function testGetItemsViaService()

{

$orders = $this->container->

get('foggyline_customer.customer_orders');

$this->assertNotEmpty($orders->getOrders());

}

public function testGetItemsViaClass()

{

$orders = new \Foggyline\CustomerBundle\

Service\CustomerOrders();

$this->assertNotEmpty($orders->getOrders());

}

}

Here we have two tests in total, one instantiating the class through the service and
the other directly. We are using the setUp method merely to set the container
property which we then reuse in the testGetItemsViaService method.

Next, we create the CustomerMenu test within the directory as follows:

namespace Foggyline\CustomerBundle\Tests\Service\Menu;

use Symfony\Bundle\FrameworkBundle\Test\KernelTestCase;

class CustomerMenu extends KernelTestCase

{

private $container;

private $tokenStorage;

private $router;

public function setUp()

{

static::bootKernel();

$this->container = static::$kernel->getContainer();

$this->tokenStorage = $this->container->

get('security.token_storage');

$this->router = $this->container->get('router');

}

public function testGetItemsViaService()

{

$menu = $this->container->

get('foggyline_customer.customer_menu');

[970]

 Chapter 8

$this->assertNotEmpty($menu->getItems());

}

public function testGetItemsViaClass()

{

$menu = new \Foggyline\CustomerBundle\

Service\Menu\CustomerMenu(

$this->tokenStorage,

$this->router

);

$this->assertNotEmpty($menu->getItems());

}

}

Now, if we run the phpunit command, we should see our test being picked up and
executed alongside other tests. We can even target these two tests specifically by
executing a phpunit command with full class path, as shown here:

phpunit src/Foggyline/CustomerBundle/Tests/Service/CustomerOrders.php

phpunit src/Foggyline/CustomerBundle/Tests/Service/Menu/

CustomerMenu.php

Functional testing
The auto-generate CRUD tool generated the CustomerControllerTest.php file for
us within the src/Foggyline/CustomerBundle/Tests/Controller/ directory.
In the previous chapter we showed how to pass an authentication parameter to
static::createClient in order to make it simulate user logging. However, that
is not the same login as our customers will be using. We are no longer using a basic
HTTP authentication, rather a full blown login form.

In order to address the login form testing, let's go ahead and edit the src/
Foggyline/CustomerBundle/Tests/Controller/CustomerControllerTest.php

file as follows:

namespace Foggyline\CustomerBundle\Tests\Controller;

use Symfony\Bundle\FrameworkBundle\Test\WebTestCase;

use Symfony\Component\BrowserKit\Cookie;

use Symfony\Component\Security\Core\Authentication\Token

\UsernamePasswordToken;

class CustomerControllerTest extends WebTestCase

{

[971]

Building the Customer Module

private $client = null;

public function setUp()

{

$this->client = static::createClient();

}

public function testMyAccountAccess()

{

$this->logIn();

$crawler = $this->client->request('GET', '/customer/

account');

$this->assertTrue($this->client->getResponse()->

isSuccessful());

$this->assertGreaterThan(0, $crawler->

filter('html:contains("My Account")')->count());

}

private function logIn()

{

$session = $this->client->getContainer()->get('session');

$firewall = 'foggyline_customer'; // firewall name

$em = $this->client->getContainer()->get('doctrine')->

getManager();

$user = $em->getRepository('FoggylineCustomerBundle:

Customer')->findOneByUsername('john@test.loc');

$token = new UsernamePasswordToken($user, null, $firewall,

array('ROLE_USER'));

$session->set('_security_' . $firewall, serialize

($token));

$session->save();

$cookie = new Cookie($session->getName(), $session->

getId());

$this->client->getCookieJar()->set($cookie);

}

}

Here we first created the logIn method, whose purpose is to simulate the login, by
setting up the proper token value into the session, and passing on that session ID to
the client via a cookie. We then created the testMyAccountAccess method, which
first calls the logIn method and then checks if the crawler was able to access the My
Account page. The great thing about this approach is that we did not have to code in
the user password, only its username.

[972]

 Chapter 8

Now, let's go ahead and address the customer registration form, by adding the
following to the CustomerControllerTest:

public function testRegisterForm()

{

$crawler = $this->client->request('GET', '/customer/

register');

$uniqid = uniqid();

$form = $crawler->selectButton('Register!')->form(array(

'customer[email]' => 'john_' . $uniqid . '@test.loc',

'customer[username]' => 'john_' . $uniqid,

'customer[plainPassword][first]' => 'pass123',

'customer[plainPassword][second]' => 'pass123',

'customer[firstName]' => 'John',

'customer[lastName]' => 'Doe',

'customer[company]' => 'Foggyline',

'customer[phoneNumber]' => '00 385 111 222 333',

'customer[country]' => 'HR',

'customer[state]' => 'Osijek',

'customer[city]' => 'Osijek',

'customer[postcode]' => '31000',

'customer[street]' => 'The Yellow Street',

));

$this->client->submit($form);

$crawler = $this->client->followRedirect();

//var_dump($this->client->getResponse()->getContent());

$this->assertGreaterThan(0, $crawler->

filter('html:contains("customer/login")')->count());

}

We have already seen a test similar to this one in the previous chapter. Here we are
merely opening a customer/register page, then finding a button with Register! label,
so we can fetch the entire form through it. We then set all of the required form data,
and simulate the form submit. If successful, we observe for the redirect body and
assert against value expected in it.

Running the phpunit command now should successfully execute our tests.

[973]

Building the Customer Module

Summary
Throughout this chapter we built a miniature but functional customer module. The
module assumed a certain level of setup done on our security.yml file, which
can be covered as part of module documentation if we were to redistribute it.
These changes included defining our own custom firewall, with a custom security
provider. The security provider pointed to our customer class, which in turn was
built in a way that complies to the Symfony UserInterface. We then built a register,
login, and forgot your password form. Though each comes with a minimal set of
functionalities, we saw how simple it is to build a fully custom register and login
system.

Furthermore, we applied some forward thinking, by using the specially defined
service to set up the My Orders section under the My Account page. This is by
far the ideal way of doing it, and it serves a purpose, as we will later override
this service cleanly from the sales module.

Moving forward, in the next chapter, we will build a payment module.

[974]

Building the Payment Module
The payment module provides a basis for further sales functionality in our web
shop. It will enable us to actually choose a payment method when we reach the
checkout process of the upcoming sales module. The payment methods can generally
be of various types. Some can be static, like Check Money and Cash on Delivery,
while others can be regular credit cards like Visa, MasterCard, American Express,
Discover, and Switch/Solo. Throughout this chapter we will address both types.

In this chapter, we will be looking into the following topics:

• Requirements

• Dependencies

• Implementation

• Unit testing

• Functional testing

Requirements
Our application requirements, defined under Chapter 4, Requirement Specification for
Modular Web Shop App, do not really say anything about the type of payment method
we need to implement. Thus, for the purpose of this chapter, we will develop two
payment methods: a card payment and a check money payment. In regards to the
credit card payment, we will not be connecting to a real payment processor, but
everything else will be done as if we are working with a credit card.

Ideally, we want this done by an interface, similar to the following:

namespace Foggyline\SalesBundle\Interface;

interface Payment

{

[975]

Building the Payment Module

function authorize();

function capture();

function cancel();

}

This would then impose the requirement of having the SalesBundle module, which
we still haven't developed. We will therefore proceed with our payment methods
using a simple Symfony controller class that provides its own way to address the
following features:

• function authorize();

• function capture();

• function cancel();

The authorize method is used for cases where we merely want to authorize the
transaction, without actually executing it. The result is a transaction ID that our
future SalesBundle module can store and reuse for further capture and cancel
actions. The capture method takes us a step further by first executing the authorize
action and then capturing the funds. The cancel method performs the cancelation
based on a previously stored authorization token.

We will expose our payment methods through tagged Symfony services. The tagging
of a service is a nice feature which enables us to view the container and all of the
services tagged with the same tag, which is something we can use to fetch all of the
paymentmethod services. The tag naming has to follow a certain pattern, which we
impose on ourselves as application creators. With that in mind, we will tag each
payment service with a name,payment_method.

Later on, the SalesBundle module will fetch and use all of the services tagged with
payment_method and then use them internally to generate a list of available payment
methods that you can work with.

Dependencies
The module has no firm dependencies on any other module. However, it might have
been more convenient to build the SalesBundle module first and then expose a few
interfaces that the payment module might use.

[976]

 Chapter 9

Implementation
We start off by creating a new module called Foggyline\PaymentBundle. We do so
with the help of the console by running the following command:

php bin/console generate:bundle --namespace=Foggyline/PaymentBundle

The command triggers an interactive process which asks us several questions along
the way, shown as follows:

[977]

Building the Payment Module

Once done, files app/AppKernel.php and app/config/routing.yml are modified
automatically. The registerBundles method of an AppKernel class has been added
to the following line under the $bundles array:

new Foggyline\PaymentBundle\FoggylinePaymentBundle(),

The routing.yml has been updated with the following entry:

foggyline_payment:

resource:

"@FoggylinePaymentBundle/Resources/config/routing.xml"

prefix: /

In order to avoid colliding with the core application code, we need to change the
prefix: / to prefix: /payment/.

Creating a card entity
Even though we won't be storing any credit cards in our database as part of this
chapter, we want to reuse the Symfony auto-generate CRUD feature in order for it
to provide us with a credit card model and form. Let's go ahead and create a Card
entity. We will do so by using the console, shown as follows:

php bin/console generate:doctrine:entity

The command triggers the interactive generator, providing it with
FoggylinePaymentBundle:Card for an entity shortcut, where we also need
to provide entity properties. We want to model our Card entity with the
following fields:

• card_type: string

• card_number: string

• expiry_date: date

• security_code: string

Once done, the generator creates Entity/Card.php and Repository/
CardRepository.php within the src/Foggyline/PaymentBundle/ directory.
We can now update the database so it pulls in the Card entity, shown as follows:

php bin/console doctrine:schema:update --force

With the entity in place, we are ready to generate its CRUD. We will do so by using
the following command:

php bin/console generate:doctrine:crud

[978]

 Chapter 9

This results in a src/Foggyline/PaymentBundle/Controller/CardController.
php file being created. It also adds an entry to our app/config/routing.yml file,
as follows:

foggyline_payment_card:

resource:

"@FoggylinePaymentBundle/Controller/CardController.php"

type: annotation

Again, the view files were created under the app/Resources/views/card/
directory. Since we won't actually be doing any CRUD related actions around cards
as such, we can go ahead and delete all of the generated view files, as well as the
entire body of the CardController class. At this point, we should have our Card
entity, CardType form, and empty CardController class.

Creating a card payment service
The card payment service is going to provide the relevant information our future
sales module will need for its checkout process. Its role is to provide the payment
method label, code, and processing URLs of an order, such as authorize, capture,
and cancel.

We will start by defining the following service under the services element of the
src/Foggyline/PaymentBundle/Resources/config/services.xml file:

<service id="foggyline_payment.card_payment"

class="Foggyline\PaymentBundle\Service\CardPayment">

<argument type="service" id="form.factory"/>

<argument type="service" id="router"/>

<tag name="payment_method"/>

</service>

This service accepts two arguments: one being form.factory and the other being
router. form.factory that will be used within service to create a form view for the
CardType form. The tag is a crucial element here, as our SalesBundle module will
be looking for payment methods based on the payment_method tag assigned to the
service.

We now need to create the actual service class within the src/Foggyline/
PaymentBundle/Service/CardPayment.php file as follows:

namespace Foggyline\PaymentBundle\Service;

use Foggyline\PaymentBundle\Entity\Card;

class CardPayment

[979]

Building the Payment Module

{

private $formFactory;

private $router;

public function construct(

$formFactory,

\Symfony\Bundle\FrameworkBundle\Routing\Router $router

)

{

$this->formFactory = $formFactory;

$this->router = $router;

}

public function getInfo()

{

$card = new Card();

$form = $this->formFactory->create('Foggyline\

PaymentBundle\Form\CardType', $card);

return array(

'payment' => array(

'title' =>'Foggyline Card Payment',

'code' =>'card_payment',

'url_authorize' => $this->router->generate

('foggyline_payment_card_authorize'),

'url_capture' => $this->router->generate

('foggyline_payment_card_capture'),

'url_cancel' => $this->router->generate

('foggyline_payment_card_cancel'),

'form' => $form->createView()

)

);

}

}

The getInfo method is what's going to provide the necessary information to our
future SalesBundle module in order for it to construct the payment step of the
checkout process. We are passing on three different types of URLs here: authorize,
capture, and cancel. These routes do not exist just yet, as we will create them soon.
The idea is that we will shift the payment actions and process to the actual payment
method. Our future SalesBundle module will merely be doing an AJAX POST to
these payment URLs, and will expect either a success or error JSON response. A
success response should yield some sort of transaction ID and an error response
should yield a label message to show to the user.

[980]

 Chapter 9

Creating a card payment controller and routes
We will edit the src/Foggyline/PaymentBundle/Resources/config/routing.xml
file by adding the following route definitions to it:

<route id="foggyline_payment_card_authorize"

path="/card/ authorize">

<default key="_controller">FoggylinePaymentBundle:

Card:authorize</default>

</route>

<route id="foggyline_payment_card_capture" path="/card/capture">

<default key="_controller">FoggylinePaymentBundle

:Card:capture</default>

</route>

<route id="foggyline_payment_card_cancel" path="/card/cancel">

<default key="_controller">FoggylinePaymentBundle

:Card:cancel</default>

</route>

We will then edit the body of the CardController class by adding the following to
it:

public function authorizeAction(Request $request)

{

$transaction = md5(time() . uniqid()); // Just a dummy string,

simulating some transaction id, if any

if ($transaction) {

return new JsonResponse(array(

'success' => $transaction

));

}

return new JsonResponse(array(

'error' =>'Error occurred while processing Card payment.'

));

}

public function captureAction(Request $request)

{

$transaction = md5(time() . uniqid()); // Just a dummy string,

simulating some transaction id, if any

if ($transaction) {

[981]

Building the Payment Module

return new JsonResponse(array(

'success' => $transaction

));

}

return new JsonResponse(array(

'error' =>'Error occurred while processing Card payment.'

));

}

public function cancelAction(Request $request)

{

$transaction = md5(time() . uniqid()); // Just a dummy string,

simulating some transaction id, if any

if ($transaction) {

return new JsonResponse(array(

'success' => $transaction

));

}

return new JsonResponse(array(

'error' =>'Error occurred while processing Card payment.'

));

}

We should now be able to access URLs like /app_dev.php/payment/card/
authorize and see the output of authorizeAction. Implementations given here are
dummy ones. For the purpose of this chapter ,we are not going to connect to a real
payment processing API. What is important for us to know is that the sales module
will, during its checkout process, render any possible form view pushed through
the ['payment']['form'] key of the getInfo method of a payment_method tagged
service. Meaning, the checkout process should show a credit card form under card
payment. The behavior of checking out will be coded such that if payment with
a form is selected and the Place Order button is clicked, that payment form will
prevent the checkout process from proceeding until the payment form is submitted
to either authorize or capture the URL defined in the payment itself. We will touch
upon this some more when we get to the SalesBundle module.

Creating a check money payment service
Aside from the credit card payment method, let's go ahead and define one more
static payment, called Check Money.

[982]

 Chapter 9

We will start by defining the following service under the services element of the
src/Foggyline/PaymentBundle/Resources/config/services.xml file:

<service id="foggyline_payment.check_money"

class="Foggyline\PaymentBundle\Service\CheckMoneyPayment">

<argument type="service" id="router"/>

<tag name="payment_method"/>

</service>

The service defined here accepts only one router argument. The tag name is the
same as with the card payment service.

We will then create the src/Foggyline/PaymentBundle/Service/
CheckMoneyPayment.php file, with content as follows:

namespace Foggyline\PaymentBundle\Service;

class CheckMoneyPayment

{

private $router;

public function construct(

\Symfony\Bundle\FrameworkBundle\Routing\Router $router

)

{

$this->router = $router;

}

public function getInfo()

{

return array(

'payment' => array(

'title' =>'Foggyline Check Money Payment',

'code' =>'check_money',

'url_authorize' => $this->router->generate

('foggyline_payment_check_money_authorize'),

'url_capture' => $this->router->generate

('foggyline_payment_check_money_capture'),

'url_cancel' => $this->router->generate

('foggyline_payment_check_money_cancel'),

//'form' =>''

)

);

}

}

[983]

Building the Payment Module

Unlike a card payment, the check money payment has no form key defined under
the getInfo method. This is because there are no credit card entries for it to define.
It is just going to be a static payment method. However, we still need to define the
authorize, capture, and cancel URLs, even though their implementation might be
nothing more than just a simple JSON response with success or error keys.

Creating a check money payment controller

and routes
Once the check money payment service is in place, we can go ahead and create the
necessary routes for it. We will start by adding the following route definitions to the
src/Foggyline/PaymentBundle/Resources/config/routing.xml file:

<route id="foggyline_payment_check_money_authorize"

path="/check_money/authorize">

<default key="_controller">

FoggylinePaymentBundle:CheckMoney:authorize</default>

</route>

<route id="foggyline_payment_check_money_capture"

path="/check_money/capture">

<default key="_controller">

FoggylinePaymentBundle:CheckMoney:capture</default>

</route>

<route id="foggyline_payment_check_money_cancel"

path="/check_money/cancel">

<default key="_controller">

FoggylinePaymentBundle:CheckMoney:cancel</default>

</route>

We will then create the src/Foggyline/PaymentBundle/Controller/
CheckMoneyController.php file, with content as follows:

namespace Foggyline\PaymentBundle\Controller;

use Symfony\Component\HttpFoundation\JsonResponse;

use Symfony\Component\HttpFoundation\Request;

use Symfony\Bundle\FrameworkBundle\Controller\Controller;

class CheckMoneyController extends Controller

{

public function authorizeAction(Request $request)

{

[984]

 Chapter 9

$transaction = md5(time() . uniqid());

return new JsonResponse(array(

'success' => $transaction

));

}

public function captureAction(Request $request)

{

$transaction = md5(time() . uniqid());

return new JsonResponse(array(

'success' => $transaction

));

}

public function cancelAction(Request $request)

{

$transaction = md5(time() . uniqid());

return new JsonResponse(array(

'success' => $transaction

));

}

}

Similar to a card payment, here we added a simple dummy implementation of the
authorize, capture, and cancel methods. The method responses will feed into the
SalesBundle module later on. We can easily implement more robust functionality
from within these methods, but that is out of the scope of this chapter.

Unit testing
Our FoggylinePaymentBundle module is really simple. It provides only two payment
methods: card and check money. It does so via two simple service classes. Since we
are not going after full code coverage tests, we will only cover the CardPayment and
CheckMoneyPayment service classes as part of unit testing.

We will start off by adding the following line under the testsuites element of our
phpunit.xml.dist file:

<directory>src/Foggyline/PaymentBundle/Tests</directory>

With that in place, running the phpunit command from the root of our shop should
pick up any test we have defined under the src/Foggyline/PaymentBundle/
Tests/ directory.

[985]

Building the Payment Module

Now, let's go ahead and create a test for our CardPayment service. We will do so by
creating a src/Foggyline/PaymentBundle/Tests/Service/CardPaymentTest.php
file, with content as follows:

namespace Foggyline\PaymentBundle\Tests\Service;

use Symfony\Bundle\FrameworkBundle\Test\KernelTestCase;

class CardPaymentTest extends KernelTestCase

{

private $container;

private $formFactory;

private $router;

public function setUp()

{

static::bootKernel();

$this->container = static::$kernel->getContainer();

$this->formFactory = $this->container->get

('form.factory');

$this->router = $this->container->get('router');

}

public function testGetInfoViaService()

{

$payment = $this->container->get

('foggyline_payment.card_payment');

$info = $payment->getInfo();

$this->assertNotEmpty($info);

$this->assertNotEmpty($info['payment']['form']);

}

public function testGetInfoViaClass()

{

$payment = new \Foggyline\PaymentBundle\

Service\CardPayment(

$this->formFactory,

$this->router

);

$info = $payment->getInfo();

$this->assertNotEmpty($info);

$this->assertNotEmpty($info['payment']['form']);

}

}

[986]

 Chapter 9

Here, we are running two simple tests to see if we can instantiate a service, either via
a container or directly, and simply call its getInfo method. The method is expected
to return a response that contains the ['payment']['form'] key.

Now, let's go ahead and create a test for our CheckMoneyPayment service. We
will do so by creating a src/Foggyline/PaymentBundle/Tests/Service/
CheckMoneyPaymentTest.php file, with content as follows:

namespace Foggyline\PaymentBundle\Tests\Service;

use Symfony\Bundle\FrameworkBundle\Test\KernelTestCase;

class CheckMoneyPaymentTest extends KernelTestCase

{

private $container;

private $router;

public function setUp()

{

static::bootKernel();

$this->container = static::$kernel->getContainer();

$this->router = $this->container->get('router');

}

public function testGetInfoViaService()

{

$payment = $this->container->get

('foggyline_payment.check_money');

$info = $payment->getInfo();

$this->assertNotEmpty($info);

}

public function testGetInfoViaClass()

{

$payment = new \Foggyline\PaymentBundle\

Service\CheckMoneyPayment(

$this->router

);

$info = $payment->getInfo();

$this->assertNotEmpty($info);

}

}

[987]

Building the Payment Module

Similarly, here we also have two simple tests: one fetching the payment method via
a container, and the other directly via a class. The difference being that we are not
checking for the presence of a form key under the getInfo method response.

Functional testing
Our module has two controller classes that we want to test for responses. We
want to make sure that the authorize, capture, and cancel methods of the
CardController and CheckMoneyController classes are working.

We first create asrc/Foggyline/PaymentBundle/Tests/Controller/
CardControllerTest.php file, with content as follows:

namespace Foggyline\PaymentBundle\Tests\Controller;

use Symfony\Bundle\FrameworkBundle\Test\WebTestCase;

class CardControllerTest extends WebTestCase

{

private $client;

private $router;

public function setUp()

{

$this->client = static::createClient();

$this->router = $this->client->getContainer()->get

('router');

}

public function testAuthorizeAction()

{

$this->client->request('GET', $this->router->generate

('foggyline_payment_card_authorize'));

$this->assertTests();

}

public function testCaptureAction()

{

$this->client->request('GET', $this->router->generate

('foggyline_payment_card_capture'));

$this->assertTests();

}

[988]

 Chapter 9

public function testCancelAction()

{

$this->client->request('GET', $this->router->generate

('foggyline_payment_card_cancel'));

$this->assertTests();

}

private function assertTests()

{

$this->assertSame(200, $this->client->getResponse()->

getStatusCode());

$this->assertSame('application/json', $this->client->

getResponse()->headers->get('Content-Type'));

$this->assertContains('success', $this->client->

getResponse()->getContent());

$this->assertNotEmpty($this->client->getResponse()->

getContent());

}

}

We then create src/Foggyline/PaymentBundle/Tests/Controller/
CheckMoneyControllerTest.php, with content as follows:

namespace Foggyline\PaymentBundle\Tests\Controller;

use Symfony\Bundle\FrameworkBundle\Test\WebTestCase;

class CheckMoneyControllerTest extends WebTestCase

{

private $client;

private $router;

public function setUp()

{

$this->client = static::createClient();

$this->router = $this->client->getContainer()->

get('router');

}

public function testAuthorizeAction()

{

$this->client->request('GET', $this->router->

generate('foggyline_payment_check_money_authorize'));

$this->assertTests();

}

[989]

Building the Payment Module

public function testCaptureAction()

{

$this->client->request('GET', $this->router->

generate('foggyline_payment_check_money_capture'));

$this->assertTests();

}

public function testCancelAction()

{

$this->client->request('GET', $this->router->

generate('foggyline_payment_check_money_cancel'));

$this->assertTests();

}

private function assertTests()

{

$this->assertSame(200, $this->client->getResponse()->

getStatusCode());

$this->assertSame('application/json', $this->client->

getResponse()->headers->get('Content-Type'));

$this->assertContains('success', $this->client->

getResponse()->getContent());

$this->assertNotEmpty($this->client->getResponse()->

getContent());

}

}

Both tests are nearly identical. They contain a test for each of the authorize,
capture, and cancel methods. Since our methods are implemented with a fixed
success JSON response, there are no surprises here. However, we can easily play
around with it by extending our payment methods into something more robust.

[990]

 Chapter 9

Summary
Throughout this chapter we have built a payment module with two payment
methods. The card payment method is made so that it is simulating payment with
the credit cards involved. For that reason, it includes a form as part of its getInfo
method. The check money payment, on the other hand, is simulating a static
payment method - one that does not include any form of credit card. Both methods
are implemented as dummy methods, meaning they are not actually communicating
to any external payment processor.

The idea was to create a minimal structure that showcases how one can develop
a simple payment module for further customization. We did so by exposing each
payment method via a tagged service. Using the payment_method tag was a matter
of consensus, since we are the ones building the full application so we get to choose
how we will implement this in the sales module.By using the same tag name for
each payment method, we effectively created conditions for the future sales module
to pick all of the payments methods and render them under its checkout process.

Moving forward, in the next chapter we will build a shipment module.

[991]

Building the Shipment

Module
The shipment module, alongside the payment module, provides a basis for further
sales functionality in our web shop. It will enable us to choose the shipment method
when we reach the checkout process of the upcoming sales module. Similar to
payment, shipment can be sort of static and dynamic. Whereas static might imply
a fixed pricing value, or even a calculated one by some simple conditions, dynamic
usually implies a connection to external API services.

Throughout this chapter, we will touch base with both types and see how we can set
up a basic structure for implementing the shipment module.

In this chapter, we will be covering the following topics of the shipment module:

• Requirements

• Dependencies

• Implementation

• Unit testing

• Functional testing

Requirements
Application requirements, defined under Chapter 4, Requirement Specification for
Modular Web Shop App, do not give us any specifics as to what type of shipment
we need to implement. Thus, for the purpose of this chapter, we will develop two
shipment methods: dynamic rate shipment and flat rate shipment. Dynamic rate
shipment is used as a way of connecting the shipment method to a real shipment
processor, such as UPS, FedEx, and so on. It will not, however, actually connect to
any of the external APIs.

[993]

Building the Shipment Module

Ideally, we want this done by an interface similar to the following:

namespace Foggyline\SalesBundle\Interface;

interface Shipment

{

function getInfo($street, $city, $country, $postcode, $amount,

$qty);

function process($street, $city, $country, $postcode, $amount,

$qty);

}

The getInfo method can then be used to fetch the available delivery options for the
given order information, while the process method would then process the selected
delivery option. For example, we might have an API return "same day delivery
($9.99)",= and "standard delivery ($4.99)" as delivery options under the dynamic
rate shipment method.

Having such a shipment interface would then impose the requirement of having the
SalesBundle module, which we still haven't developed. We will therefore proceed
with our shipment methods, using a Symfony controller for handling the process
method and a service for handling the getInfo method.

Similarly, as we did with the payment method in the previous chapter, we will
expose our getInfo method through tagged Symfony services. The tag we will be
using for shipment methods is shipment_method. Later on, during the checkout
process, the SalesBundle module will fetch all of the services tagged with
shipment_method and use them internally for a list of available shipment methods
to work with.

Dependencies
We are building the module the other way round. That is, we are building it before
we know anything about the SalesBundle module, which is the only module that
will be using it. With that in mind, the shipment module has no firm dependencies
on any other module. However, it might have been more convenient to build the
SalesBundle module first and then expose a few interfaces that the shipment
module might use.

[994]

 Chapter 10

Implementation
We will start off by creating a new module called Foggyline\ShipmentBundle. We
will do so with the help of the console by running the following command:

php bin/console generate:bundle --namespace=Foggyline/ShipmentBundle

The command triggers an interactive process, which asks us several questions along
the way, shown as follows:

Once done, files app/AppKernel.php and app/config/routing.yml are modified
automatically. The registerBundles method of an AppKernel class has been added
to the following line under the $bundles array:

new Foggyline\PaymentBundle\FoggylineShipmentBundle(),

[995]

Building the Shipment Module

The routing.yml file has been updated with the following entry:

foggyline_payment:

resource: "@FoggylineShipmentBundle/Resources/

config/routing.xml"

prefix: /

In order to avoid colliding with the core application code, we need to change
prefix: /into prefix: /shipment/.

Creating a flat rate shipment service
The flat rate shipment service is going to provide the fixed shipment method that
our sales module is going to use for its checkout process. Its role is to provide the
shipment method labels, code, delivery options, and processing URLs.

We will start by defining the following service under the services element of the
src/Foggyline/ShipmentBundle/Resources/config/services.xml file:

<service id="foggyline_shipment.dynamicrate_shipment"

class="Foggyline\ShipmentBundle\Service\DynamicRateShipment">

<argument type="service" id="router"/>

<tag name="shipment_method"/>

</service>

This service accepts only one argument: the router. The tagname value is set
to shipment_method, as our SalesBundle module will be looking for shipment
methods based on the shipment_method tag assigned to the service.

We will now create the actual service class, within the src/Foggyline/
ShipmentBundle/Service/FlatRateShipment.php file as follows:

namespace Foggyline\ShipmentBundle\Service;

class FlatRateShipment

{

private $router;

public function construct(

\Symfony\Bundle\FrameworkBundle\Routing\Router $router

)

{

$this->router = $router;

}

[996]

 Chapter 10

public function getInfo($street, $city, $country, $postcode,

$amount, $qty)

{

return array(

'shipment' => array(

'title' =>'Foggyline FlatRate Shipment',

'code' =>'flat_rate',

'delivery_options' => array(

'title' =>'Fixed',

'code' =>'fixed',

'price' => 9.99

),

'url_process' => $this->router->

generate('foggyline_shipment_flat_rate_process'),

)

;

}

}

The getInfo method is what's going to provide the necessary information to our
future SalesBundle module in order for it to construct the shipment step of the
checkout process. It accepts a series of arguments:$street, $city, $country,
$postcode, $amount, and $qty. We can consider these to be part of some unified
shipment interface. delivery_options in this case returns a single, fixed value.
url_process is the URL to which we will be inserting our selected shipment
method. Our future SalesBundle module will then merely be doing an AJAX POST
to this URL, expecting either a success or error JSON response, which is quite similar
to what we imagined doing with payment methods.

Creating a flat rate shipment controller and

routes
We edit the src/Foggyline/ShipmentBundle/Resources/config/routing.xml
file by adding the following route definitions to it:

<route id="foggyline_shipment_flat_rate_process"

path="/flat_rate/process">

<default key="_controller">

FoggylineShipmentBundle:FlatRate:process

</default>

</route>

[997]

Building the Shipment Module

We then create a src/Foggyline/ShipmentBundle/Controller/
FlatRateController.php. file with content as follows:

namespace Foggyline\ShipmentBundle\Controller;

use Symfony\Component\HttpFoundation\JsonResponse;

use Symfony\Component\HttpFoundation\Request;

use Symfony\Bundle\FrameworkBundle\Controller\Controller;

class FlatRateController extends Controller

{

public function processAction(Request $request)

{

// Simulating some transaction id, if any

$transaction = md5(time() . uniqid());

return new JsonResponse(array(

'success' => $transaction

));

}

}

We should now be able to access a URL, like /app_dev.php/shipment/flat_rate/
process, and see the output of processAction. Implementations given here are
dummy ones. What is important for us to know is that the sales module will,
during its checkout process, render any possible delivery_options pushed through
the getInfo method of a shipment_method tagged service. Meaning, the checkout
process should show flat rate shipment as an option. The behavior of checking out
will be coded such that if a shipment method is not selected, it will prevent the
checkout process from going any further. We will touch upon this some more
when we get to the SalesBundle module.

Creating a dynamic rate payment service
Aside from the flat rate shipment method, let's go ahead and define one more
dynamic shipment, called Dynamic Rate.

We will start by defining the following service under the services element of the
src/Foggyline/ShipmentBundle/Resources/config/services.xml file:

<service id="foggyline_shipment.dynamicrate_shipment"

class="Foggyline\ShipmentBundle\Service\DynamicRateShipment">

<argument type="service" id="router"/>

<tag name="shipment_method"/>

</service>

[998]

 Chapter 10

The service defined here accepts only one router argument. The tag name
property is the same as with the flat rate shipment service.

We will then create the src/Foggyline/ShipmentBundle/Service/
DynamicRateShipment.php file, with content as follows:

namespace Foggyline\ShipmentBundle\Service;

class DynamicRateShipment

{

private $router;

public function construct(

\Symfony\Bundle\FrameworkBundle\Routing\Router $router

)

{

$this->router = $router;

}

public function getInfo($street, $city, $country, $postcode,

$amount, $qty)

{

return array(

'shipment' => array(

'title' =>'Foggyline DynamicRate Shipment',

'code' =>'dynamic_rate_shipment',

'delivery_options' => $this->getDeliveryOptions

($street, $city, $country, $postcode, $amount, $qty),

'url_process' => $this->router->

generate('foggyline_shipment_dynamic_rate_process'),

)

);

}

public function getDeliveryOptions($street, $city, $country,

$postcode, $amount, $qty)

{

// Imagine we are hitting the API with: $street, $city,

$country, $postcode, $amount, $qty

return array(

array(

'title' =>'Same day delivery',

'code' =>'dynamic_rate_sdd',

'price' => 9.99

),

[999]

Building the Shipment Module

array(

'title' =>'Standard delivery',

'code' =>'dynamic_rate_sd',

'price' => 4.99

),

);

}

}

Unlike the flat rate shipment, here the delivery_options key of the getInfo
method is constructed with the response of the getDeliveryOptions method. The
method is internal to the service and is not imagined as exposed or to be looked at as
part of an interface. We can easily imagine doing some API calls within it, in order to
fetch calculated rates for our dynamic shipment method.

Creating a dynamic rate shipment controller

and routes
Once the dynamic rates shipment service is in place, we can go ahead and create the
necessary route for it. We will start by adding the following route definition to the
src/Foggyline/ShipmentBundle/Resources/config/routing.xml file:

<route id="foggyline_shipment_dynamic_rate_process"

path= "/dynamic_rate/process">

<default key="_controller">FoggylineShipmentBundle:

DynamicRate:process

</default>

</route>

We will then create the src/Foggyline/ShipmentBundle/Controller/
DynamicRateController.php file, with content as follows:

namespace Foggyline\ShipmentBundle\Controller;

use Foggyline\ShipmentBundle\Entity\DynamicRate;

use Symfony\Component\HttpFoundation\JsonResponse;

use Symfony\Component\HttpFoundation\Request;

use Symfony\Bundle\FrameworkBundle\Controller\Controller;

use Symfony\Component\Form\Extension\Core\Type\ChoiceType;

class DynamicRateController extends Controller

{

public function processAction(Request $request)

{

[1000]

 Chapter 10

// Just a dummy string, simulating some transaction id

$transaction = md5(time() . uniqid());

if ($transaction) {

return new JsonResponse(array(

'success' => $transaction

));

}

return new JsonResponse(array(

'error' =>'Error occurred while processing

DynamicRate shipment.'

));

}

}

Similar to the flat rate shipment, here we have added a simple dummy implementation
of the process and method. The incoming $request should contain the same info
as the service getInfo method, meaning, it should have the following arguments
available: $street, $city, $country, $postcode, $amount, and $qty. The method
responses will feed into the SalesBundle module later on. We can easily implement
more robust functionality from within these methods, but that is out of the scope of
this chapter.

Unit testing
The FoggylineShipmentBundle module is quite simple. By providing only two
simple services and two simple controllers, it's easy to test.

We will start off by adding the following line under the testsuites element of our
phpunit.xml.dist file:

<directory>src/Foggyline/ShipmentBundle/Tests</directory>

With that in place, running the phpunit command from root of our shop should pick
up any test we have defined under the src/Foggyline/ShipmentBundle/Tests/
directory.

Now, let's go ahead and create a test for our FlatRateShipment service. We
will do so by creating a src/Foggyline/ShipmentBundle/Tests/Service/
FlatRateShipmentTest.php file, with content as follows:

namespace Foggyline\ShipmentBundle\Tests\Service;

use Symfony\Bundle\FrameworkBundle\Test\KernelTestCase;

[1001]

Building the Shipment Module

class FlatRateShipmentTest extends KernelTestCase

{

private $container;

private $router;

private $street = 'Masonic Hill Road';

private $city = 'Little Rock';

private $country = 'US';

private $postcode = 'AR 72201';

private $amount = 199.99;

private $qty = 7;

public function setUp()

{

static::bootKernel();

$this->container = static::$kernel->getContainer();

$this->router = $this->container->get('router');

}

public function testGetInfoViaService()

{

$shipment = $this->container->get

('foggyline_shipment.flat_rate');

$info = $shipment->getInfo(

$this->street, $this->city, $this->country, $this->

postcode, $this->amount, $this->qty

);

$this->validateGetInfoResponse($info);

}

public function testGetInfoViaClass()

{

$shipment = new \Foggyline\ShipmentBundle\Service\

FlatRateShipment($this->router);

$info = $shipment->getInfo(

$this->street, $this->city, $this->country, $this->

postcode, $this->amount, $this->qty

);

$this->validateGetInfoResponse($info);

}

[1002]

 Chapter 10

public function validateGetInfoResponse($info)

{

$this->assertNotEmpty($info);

$this->assertNotEmpty($info['shipment']['title']);

$this->assertNotEmpty($info['shipment']['code']);

$this->assertNotEmpty

($info['shipment']['delivery_options']);

$this->assertNotEmpty($info['shipment']['url_process']);

}

}

Two simple tests are being run here. One checks if we can instantiate a service
via a container, and the other checks if we can do so directly. Once instantiated,
we simply call the getInfo method of a service, passing it a dummy address and
order information. Although we are not actually using this data within the getInfo
method, we need to pass something along otherwise the test will fail. The method
is expected to return a response that contains several keys under the shipment key,
most notably title, code, delivery_options, and url_process.

Now, let's go ahead and create a test for our DynamicRateShipment service. We
will do so by creating a src/Foggyline/ShipmentBundle/Tests/Service/
DynamicRateShipmentTest.php file, with content as follows:

namespace Foggyline\ShipmentBundle\Tests\Service;

use Symfony\Bundle\FrameworkBundle\Test\KernelTestCase;

class DynamicRateShipmentTest extends KernelTestCase

{

private $container;

private $router;

private $street = 'Masonic Hill Road';

private $city = 'Little Rock';

private $country = 'US';

private $postcode = 'AR 72201';

private $amount = 199.99;

private $qty = 7;

public function setUp()

{

static::bootKernel();

$this->container = static::$kernel->getContainer();

$this->router = $this->container->get('router');

}

[1003]

Building the Shipment Module

public function testGetInfoViaService()

{

$shipment = $this->container->

get('foggyline_shipment.dynamicrate_shipment');

$info = $shipment->getInfo(

$this->street, $this->city, $this->country, $this->

postcode, $this->amount, $this->qty

);

$this->validateGetInfoResponse($info);

}

public function testGetInfoViaClass()

{

$shipment = new \Foggyline\ShipmentBundle\Service\

DynamicRateShipment($this->router);

$info = $shipment->getInfo(

$this->street, $this->city, $this->country, $this->

postcode, $this->amount, $this->qty

);

$this->validateGetInfoResponse($info);

}

public function validateGetInfoResponse($info)

{

$this->assertNotEmpty($info);

$this->assertNotEmpty($info['shipment']['title']);

$this->assertNotEmpty($info['shipment']['code']);

// Could happen that dynamic rate has none?!

//$this->assertNotEmpty($info['shipment']

['delivery_options']);

$this->assertNotEmpty($info['shipment']['url_process']);

}

}

This test is nearly identical to that of the FlatRateShipment service. Here, we also
have two simple tests: one fetching the payment method via a container, and the
other directly via a class. The difference being that we are no longer asserting the
presence of delivery_options not being empty. This is because a real API request
might not return any options for delivery, depending on the given address and
order information.

[1004]

 Chapter 10

Functional testing
Our entire module has only two controller classes that we want to test for responses.
We want to make sure that the process method of the FlatRateController and
DynamicRateController classes are accessible and working.

We will first create an src/Foggyline/ShipmentBundle/Tests/Controller/
FlatRateControllerTest.php file, with content as follows:

namespace Foggyline\ShipmentBundle\Tests\Controller;

use Symfony\Bundle\FrameworkBundle\Test\WebTestCase;

class FlatRateControllerTest extends WebTestCase

{

private $client;

private $router;

public function setUp()

{

$this->client = static::createClient();

$this->router = $this->client->getContainer()->

get('router');

}

public function testProcessAction()

{

$this->client->request('GET', $this->router->

generate('foggyline_shipment_flat_rate_process'));

$this->assertSame(200, $this->client->getResponse()->

getStatusCode());

$this->assertSame('application/json', $this->client->

getResponse()->headers->get('Content-Type'));

$this->assertContains('success', $this->client->

getResponse()->getContent());

$this->assertNotEmpty($this->client->getResponse()->

getContent());

}

}

We will then create a src/Foggyline/ShipmentBundle/Tests/Controller/
DynamicRateControllerTest.php file, with content as follows:

namespace Foggyline\ShipmentBundle\Tests\Controller;

use Symfony\Bundle\FrameworkBundle\Test\WebTestCase;

[1005]

Building the Shipment Module

class DynamicRateControllerTest extends WebTestCase

{

private $client;

private $router;

public function setUp()

{

$this->client = static::createClient();

$this->router = $this->client->getContainer()->get('router');

}

public function testProcessAction()

{

$this->client->request('GET', $this->router->generate

('foggyline_shipment_dynamic_rate_process'));

$this->assertSame(200,

$this->client->getResponse()->getStatusCode());

$this->assertSame('application/json',

$this->client->getResponse()->headers->get('Content-Type'));

$this->assertContains('success',

$this->client->getResponse()->getContent());

$this->assertNotEmpty(

$this->client->getResponse()->getContent());

}

}

Both tests are nearly identical. They contain a test for a single process action method.
As it is coded now, the controller process action simply returns a fixed success JSON
response. We can easily extend it to return more than just a fixed response and can
accompany that change with a more robust functional test.

[1006]

 Chapter 10

Summary
Throughout this chapter we have built a shipment module with two shipment
methods. Each shipment method provided the available delivery options. The flat
rate shipment method has only one fixed value under its delivery options, whereas
the dynamic rate method gets its values from the getDeliveryOptions method. We
can easily embed a real shipping API as part of getDeliveryOptions in order to
provide truly dynamic shipping options.

Obviously, we lack the official interfaces here, as we did with payment methods.
However, this is something we can always come back to and refactor in our
application as we finalize the final module.

Similar to the payment methods, the idea here was to create a minimal structure
that showcases how one can develop a simple shipment module for further
customization. Using the shipment_methodservice tag, we effectively exposed
the shipment methods for the future sales module.

Moving forward, in the next chapter, we will build a sales module, which will
finally make use of our payment and shipment modules.

[1007]

Building the Sales Module
The Sales module is the final one in the series of modules we will build in order to
deliver a simple yet functional web shop application. We will do so by adding the
cart and the checkout features on top of the catalog. The checkout itself will finally
make use of the shipping and payment services defined throughout the previous
chapters. The overall focus here will be on absolute basics, since the real shopping
cart application would take a far more robust approach. However, understanding
how to tie it all together in a simple way is the first step toward opening up a door
for more robust web shop application implementations later on.

In this chapter, we will be covering the following topics of the Sales module:

• Requirements

• Dependencies

• Implementation

• Unit testing

• Functional testing

Requirements
Application requirements, defined in Chapter 4, Requirement Specification for Modular
Web Shop App, give us some wireframes relating to the cart and checkout. Based on
these wireframes, we can speculate about what type of entities we need to create in
order to deliver on functionality.

The following is a list of required module entities:

• Cart

• Cart Item

[1009]

Building the Sales Module

• Order

• Order Item

The Cart entity includes the following properties and their data types:

• id: integer, auto-increment

• customer_id: string

• created_at: datetime

• modified_at: datetime

The Cart Item entity includes the following properties:

• id: integer, auto-increment

• cart_id: integer, foreign key that references the category table id column

• product_id: integer, foreign key that references product table id column

• qty: string

• unit_price: decimal

• created_at: datetime

• modified_at: datetime

The Order entity includes the following properties:

• id: integer, auto-increment

• customer_id: integer, foreign key that references the customer table id
column

• items_price: decimal

• shipment_price: decimal

• total_price: decimal

• status: string

• customer_email: string

• customer_first_name: string

• customer_last_name: string

• address_first_name: string

• address_last_name: string

• address_country: string

• address_state: string

• address_city: string

[1010]

 Chapter 11

• address_postcode: string

• address_street: string

• address_telephone: string

• payment_method: string

• shipment_method: string

• created_at: datetime

• modified_at: datetime

The Order Item entity includes the following properties:

• id: integer, auto-increment

• sales_order_id: integer, foreign key that references the order table
id column

• product_id: integer, foreign key that references product table id column

• title: string

• qty: int

• unit_price: decimal

• total_price: decimal

• created_at: datetime

• modified_at: datetime

Aside from just adding these entities and their CRUD pages, we also need to
override a core module service responsible for building the category menu
and on-sale items.

Dependencies
The Sales module will have several dependencies across the code.
These dependencies are directed toward customer and catalog modules.

Implementation
We start by creating a new module called Foggyline\SalesBundle. We do so with
the help of the console, by running the command as follows:

php bin/console generate:bundle --namespace=Foggyline/SalesBundle

[1011]

Building the Sales Module

The command triggers an interactive process, asking us several questions along the
way, as shown here:

Once done, the app/AppKernel.php and app/config/routing.yml files get
modified automatically. The registerBundles method of an AppKernel class
has been added to the following line under the $bundles array:

new Foggyline\PaymentBundle\FoggylineSalesBundle(),

The routing.yml file has been updated with the following entry:

foggyline_payment:

resource: "@FoggylineSalesBundle/Resources/config/routing.xml"

prefix: /

In order to avoid collision with the core application code, we need to change
prefix: / into prefix: /sales/.

[1012]

 Chapter 11

Creating a Cart entity
Let's go ahead and create a Cart entity. We do so by using the console, as shown
here:

php bin/console generate:doctrine:entity

This triggers the interactive generator as shown in the following sreenshot:

This creates the Entity/Cart.php and Repository/CartRepository.php files
within the src/Foggyline/SalesBundle/ directory. After this, we need to update
the database, so it pulls in the Cart entity, by running the following command:

php bin/console doctrine:schema:update --force

With the Cart entity in place, we can go ahead and generate the CartItem entity.

[1013]

Building the Sales Module

Creating the cart item entity
Let's go ahead and create a CartItem entity. We do so by using the now well-known
console command:

php bin/console generate:doctrine:entity

This triggers the interactive generator as shown in the following screenshot:

[1014]

 Chapter 11

This creates Entity/CartItem.php and Repository/CartItemRepository.php
within the src/Foggyline/SalesBundle/ directory. Once the auto generate has
done its work, we need to go back and edit the CartItem entity to update the cart
field relation as follows:

/**

* @ORM\ManyToOne(targetEntity="Cart", inversedBy="items")

* @ORM\JoinColumn(name="cart_id", referencedColumnName="id")

*/

private $cart;

Here, we have defined the so-called bidirectional one-to-many association. The foreign
key in a one-to-many association is being defined on the many side, which in this
case is the CartItem entity. The bidirectional mapping requires the mappedBy
attribute on the OneToMany association and the inversedBy attribute on the
ManyToOne association. The OneToMany side in this case is the Cart entity, so we
go back to the src/Foggyline/SalesBundle/Entity/Cart.php file and add the
following to it:

/**

* @ORM\OneToMany(targetEntity="CartItem", mappedBy="cart")

*/

private $items;

public function construct() {

$this->items = new \Doctrine\Common\Collections\ArrayCollection();

}

We then need to update the database, so it pulls in the CartItem entity, by running
the following command:

php bin/console doctrine:schema:update --force

With the CartItem entity in place, we can go ahead and generate the Order entity.

[1015]

Building the Sales Module

Creating an Order entity
Let's go ahead and create an Order entity. We do so by using the console, as
shown here:

php bin/console generate:doctrine:entity

If we tried to provide FoggylineSalesBundle:Order as an entity shortcut name,
the generated output would throw an error as shown in the following screenshot:

Instead, we will use SensioGeneratorBundle:SalesOrder for the entity shortcut
name, and follow the generator through as shown here:

[1016]

 Chapter 11

[1017]

Building the Sales Module

This is followed by the rest of the customer-information-related fields. To get a better
idea, look at the following screenshot:

This is followed by the rest of the order-address-related fields as shown here:

[1018]

 Chapter 11

It is worth noting that normally we would like to extract the address information in
its own table, that is make it its own entity. However, to keep things simple, we will
proceed by keeping it as part of the SalesOrder entity.

Once done, this creates Entity/SalesOrder.php and Repository/
SalesOrderRepository.php files within the src/Foggyline/SalesBundle/
directory. After this, we need to update the database, so it pulls in the SalesOrder
entity, by running the following command:

php bin/console doctrine:schema:update --force

With the SalesOrder entity in place, we can go ahead and generate the
SalesOrderItem entity.

Creating a SalesOrderItem entity
Let's go ahead and create a SalesOrderItem entity. We start the code generator by
using the following console command:

php bin/console generate:doctrine:entity

[1019]

Building the Sales Module

When asked for the entity shortcut name, we provide FoggylineSalesBundle:
SalesOrderItem, and then follow the generator field definitions as shown in the
following screenshot:

[1020]

 Chapter 11

This creates Entity/SalesOrderItem.php and Repository/
SalesOrderItemRepository.php files within the src/Foggyline/SalesBundle/
directory. Once the auto-generate has done its work, we need to go back and edit the
SalesOrderItem entity to update the SalesOrder field relation as follows:

/**

* @ORM\ManyToOne(targetEntity="SalesOrder", inversedBy="items")

* @ORM\JoinColumn(name="sales_order_id",
referencedColumnName="id")

*/

private $salesOrder;

/**

* @ORM\OneToOne(targetEntity="Foggyline\CatalogBundle\Entity\
Product")

* @ORM\JoinColumn(name="product_id", referencedColumnName="id")

*/

private $product;

Here, we have defined two types of relations. The first one, relating to $salesOrder,
is the bidirectional one-to-many association, which we saw in the Cart and
CartItem entities. The second one, relating to $product, is the unidirectional one-
to-one association. The reference is said to be unidirectional because CartItem
references Product, while Product won't be referencing CartItem, as we do not
want to change something that is part of another module.

We still need to go back to the src/Foggyline/SalesBundle/Entity/SalesOrder.
php file and add the following to it:

/**

* @ORM\OneToMany(targetEntity="SalesOrderItem",
mappedBy="salesOrder")

*/

private $items;

public function construct() {

$this->items = new \Doctrine\Common\Collections\ArrayCollection();

}

We then need to update the database, so it pulls in the SalesOrderItem entity, by
running the following command:

php bin/console doctrine:schema:update --force

With the SalesOrderItem entity in place, we can go ahead and start building the
cart and checkout pages.

[1021]

Building the Sales Module

Overriding the add_to_cart_url service
The add_to_cart_url service was originally declared in
FoggylineCustomerBundle with dummy data. This is because we needed a way to
build Add to Cart URLs on products before sales functionality was available. While
certainly not ideal, it is one possible way of doing it.

Now we are going to override that service with the one declared in our Sales module
in order to provide correct Add to Cart URLs. We start off by defining the service
within src/Foggyline/SalesBundle/Resources/config/services.xml, by
adding the following service element under the services as follows:

<service id="foggyline_sales.add_to_cart_url"

class="Foggyline\SalesBundle\Service\AddToCartUrl">

<argument type="service" id="doctrine.orm.entity_manager"/>

<argument type="service" id="router"/>

</service>

We then create src/Foggyline/SalesBundle/Service/AddToCartUrl.php with
content as follows:

namespace Foggyline\SalesBundle\Service;

class AddToCartUrl

{

private $em;

private $router;

public function construct(

\Doctrine\ORM\EntityManager $entityManager,

\Symfony\Bundle\FrameworkBundle\Routing\Router $router

)

{

$this->em = $entityManager;

$this->router = $router;

}

public function getAddToCartUrl($productId)

{

return $this->router->generate('foggyline_sales_cart_add',

array('id' => $productId));

}

}

[1022]

 Chapter 11

The router service here expects the route named foggyline_sales_cart_add,
which still does not exist. We create the route by adding the following entry under
the routes element of the src/Foggyline/SalesBundle/Resources/config/
routing.xml file as follows:

<route id="foggyline_sales_cart_add" path="/cart/add/{id}">

<default key="_controller">FoggylineSalesBundle:Cart:add</default>

</route>

Route definition expects to find the addAction function within the cart controller in
the src/Foggyline/SalesBundle/Controller/CartController.php file, which
we define as follows:

namespace Foggyline\SalesBundle\Controller;

use Symfony\Component\HttpFoundation\Request;

use Symfony\Bundle\FrameworkBundle\Controller\Controller;

class CartController extends Controller

{

public function addAction($id)

{

if ($customer = $this->getUser()) {

$em = $this->getDoctrine()->getManager();

$now = new \DateTime();

$product = $em->getRepository

('FoggylineCatalogBundle:Product')->find($id);

// Grab the cart for current user

$cart = $em->getRepository

('FoggylineSalesBundle:Cart')->findOneBy

(array('customer' => $customer));

// If there is no cart, create one

if (!$cart) {

$cart = new \Foggyline\SalesBundle\Entity\Cart();

$cart->setCustomer($customer);

$cart->setCreatedAt($now);

$cart->setModifiedAt($now);

} else {

$cart->setModifiedAt($now);

}

[1023]

Building the Sales Module

$em->persist($cart);

$em->flush();

// Grab the possibly existing cart item

// But, lets find it directly

$cartItem = $em->getRepository

('FoggylineSalesBundle:CartItem')->findOneBy

(array('cart' => $cart, 'product' => $product));

if ($cartItem) {

// Cart item exists, update it

$cartItem->setQty($cartItem->getQty() + 1);

$cartItem->setModifiedAt($now);

} else {

// Cart item does not exist, add new one

$cartItem = new

\Foggyline\SalesBundle\Entity\CartItem();

$cartItem->setCart($cart);

$cartItem->setProduct($product);

$cartItem->setQty(1);

$cartItem->setUnitPrice($product->getPrice());

$cartItem->setCreatedAt($now);

$cartItem->setModifiedAt($now);

}

$em->persist($cartItem);

$em->flush();

$this->addFlash('success', sprintf('%s successfully

added to cart', $product->getTitle()));

return $this->redirectToRoute('foggyline_sales_cart');

} else {

$this->addFlash('warning', 'Only logged in users can

add to cart.');

return $this->redirect('/');

}

}

}

There is quite a bit of logic going on here in the addAction method. We are first
checking whether the current user already has a cart entry in the database; if not,
we create a new one. We then add or update the existing cart item.

[1024]

 Chapter 11

In order for our new add_to_cart service to actually override the one from
the Customermodule, we still need to add a compiler. We do so by defining
the src/Foggyline/SalesBundle/DependencyInjection/Compiler/
OverrideServiceCompilerPass.phpfile with content as follows:

namespace Foggyline\SalesBundle\DependencyInjection\Compiler;

use Symfony\Component\DependencyInjection\Compiler\

CompilerPassInterface;

use Symfony\Component\DependencyInjection\ContainerBuilder;

use Symfony\Component\DependencyInjection\Definition;

class OverrideServiceCompilerPass implements CompilerPassInterface

{

public function process(ContainerBuilder $container)

{

// Override 'add_to_cart_url' service

$container->removeDefinition('add_to_cart_url');

$container->setDefinition('add_to_cart_url', $container->

getDefinition('foggyline_sales.add_to_cart_url'));

// Override 'checkout_menu' service

// Override 'foggyline_customer.customer_orders' service

// Override 'bestsellers' service

// Pickup/parse 'shipment_method' services

// Pickup/parse 'payment_method' services

}

}

Later on, we will add the rest of the overrides to this file. In order to tie things up for
the moment, and make the add_to_cart service override kick in, we need to register
the compiler pass within the build method of our src/Foggyline/SalesBundle/
FoggylineSalesBundle.php file as follows:

public function build(ContainerBuilder $container)

{

parent::build($container);;

$container->addCompilerPass(new

OverrideServiceCompilerPass());

}

The override should now be in effect, and our Sales module should now be
providing valid Add to Cart links.

[1025]

Building the Sales Module

Overriding the checkout_menu service
The checkout menu service defined in the Customer module has a simple purpose
which is to provide a link to the cart and the first step of the checkout process.
Since the Sales module was unknown at the time, the Customer module provided
a dummy link, which we will now override.

We start by adding the following service entry under the services element of the
src/Foggyline/SalesBundle/Resources/config/services.xml file as follows:

<service id="foggyline_sales.checkout_menu" class="Foggyline\

SalesBundle\Service\CheckoutMenu">

<argument type="service" id="doctrine.orm.entity_manager"/>

<argument type="service" id="security.token_storage"/>

<argument type="service" id="router"/>

</service>

We then add the src/Foggyline/SalesBundle/Service/CheckoutMenu.php file
with content as follows:

namespace Foggyline\SalesBundle\Service;

class CheckoutMenu

{

private $em;

private $token;

private $router;

public function construct(

\Doctrine\ORM\EntityManager $entityManager,

$tokenStorage,

\Symfony\Bundle\FrameworkBundle\Routing\Router $router

)

{

$this->em = $entityManager;

$this->token = $tokenStorage->getToken();

$this->router = $router;

}

public function getItems()

{

if ($this->token

&& $this->token->getUser() instanceof

\Foggyline\CustomerBundle\Entity\Customer

) {

$customer = $this->token->getUser();

[1026]

 Chapter 11

$cart = $this->em->getRepository

('FoggylineSalesBundle:Cart')->findOneBy

(array('customer' => $customer));

if ($cart) {

return array(

array('path' => $this->router->generate

('foggyline_sales_cart'), 'label' =>

sprintf('Cart (%s)', count($cart->

getItems()))),

array('path' => $this->router->

generate('foggyline_sales_checkout'),

'label' =>'Checkout'),

);

}

}

return array();

}

}

The service expects two routes, foggyline_sales_cart and foggyline_sales_
checkout, so we need to amend the src/Foggyline/SalesBundle/Resources/
config/routing.xml by file adding the following route definitions to it:

<route id="foggyline_sales_cart" path="/cart/">

<default key="_controller">

FoggylineSalesBundle:Cart:index</default>

</route>

<route id="foggyline_sales_checkout" path="/checkout/">

<default key="_controller">FoggylineSalesBundle:Checkout:index</

default>

</route>

The newly added routes expect the cart and checkout controller. The cart
controller is already in place, so we just need to add the indexAction to it.
At this point, let's just add an empty one as follows:

public function indexAction(Request $request)

{

}

[1027]

Building the Sales Module

Similarly, let's create a src/Foggyline/SalesBundle/Controller/
CheckoutController.php file with content as follows:

namespace Foggyline\SalesBundle\Controller;

use Symfony\Component\HttpFoundation\Request;

use Symfony\Bundle\FrameworkBundle\Controller\Controller;

use Symfony\Component\Form\Extension\Core\Type\TextType;

use Symfony\Component\Form\Extension\Core\Type\CountryType;

class CheckoutController extends Controller

{

public function indexAction()

{

}

}

Later on, we will revert back to these two indexAction methods and add proper
method body implementations.

To conclude the service override, we now amend the previously created
src/Foggyline/SalesBundle/DependencyInjection/Compiler/

OverrideServiceCompilerPass.php file, by replacing the // Override
'checkout_menu' service comment with the following:

$container->removeDefinition('checkout_menu');

$container->setDefinition('checkout_menu', $container->

getDefinition('foggyline_sales.checkout_menu'));

Our newly defined service should now override the one defined in the Customer
module, thus providing the right checkout and cart (with items in the cart count)
URL.

Overriding the customer orders service
The foggyline_customer.customer_orders service was to provide a collection
of previously created orders for currently logged-in customers. The Customer
module defined a dummy service for this purpose, just so we can move forward
with building up the My Orders section under My Account page. We now need to
override this service, making it return proper orders.

[1028]

 Chapter 11

We start by adding the following service element under the services of the
src/Foggyline/SalesBundle/Resources/config/services.xml file as follows:

<service id="foggyline_sales.customer_orders"

class="Foggyline\SalesBundle\Service\CustomerOrders">

<argument type="service" id="doctrine.orm.entity_manager"/>

<argument type="service" id="security.token_storage"/>

<argument type="service" id="router"/>

</service>

We then add the src/Foggyline/SalesBundle/Service/CustomerOrders.php file
with content as follows:

namespace Foggyline\SalesBundle\Service;

class CustomerOrders

{

private $em;

private $token;

private $router;

public function construct(

\Doctrine\ORM\EntityManager $entityManager,

$tokenStorage,

\Symfony\Bundle\FrameworkBundle\Routing\Router $router

)

{

$this->em = $entityManager;

$this->token = $tokenStorage->getToken();

$this->router = $router;

}

public function getOrders()

{

$orders = array();

if ($this->token

&& $this->token->getUser() instanceof

\Foggyline\CustomerBundle\Entity\Customer

) {

$salesOrders = $this->em->

getRepository('FoggylineSalesBundle:SalesOrder')

->findBy(array('customer' => $this->token->

getUser()));

[1029]

Building the Sales Module

foreach ($salesOrders as $salesOrder) {

$orders[] = array(

'id' => $salesOrder->getId(),

'date' => $salesOrder->getCreatedAt()->

format('d/m/Y H:i:s'),

'ship_to' => $salesOrder->

getAddressFirstName() . '' . $salesOrder->

getAddressLastName(),

' 'order_total' => $salesOrder->getTotalPrice(),

'status' => $salesOrder->getStatus(),

'actions' => array(

array(

'label' =>'Cancel',

'path' => $this->router->generate

('foggyline_sales_order_cancel',

array('id' => $salesOrder->getId()))

),

array(

'label' =>'Print',

'path' => $this->router->generate

('foggyline_sales_order_print',

array('id' => $salesOrder->getId()))

)

)

);

}

}

return $orders;

}

}

The route generate method expects to find two routes, foggyline_sales_order_
cancel and foggyline_sales_order_print, which are not yet created.

Let's go ahead and create them by adding the following under the route element of
the src/Foggyline/SalesBundle/Resources/config/routing.xml file:

<route id="foggyline_sales_order_cancel"

path="/order/cancel/{id}">

<default key="_controller">FoggylineSalesBundle:SalesOrder:

cancel</default>

</route>

<route id="foggyline_sales_order_print" path="/order/print/{id}">

<default key="_controller">FoggylineSalesBundle:SalesOrder:

print</default>

</route>

[1030]

 Chapter 11

The routes definition, in turn, expects SalesOrderController to be defined. Since
our application will require an admin user to be able to list and edit the orders, we
will use the following Symfony command to auto-generate the CRUD for our Sales
Orderentity:

php bin/console generate:doctrine:crud

When asked for the entity shortcut name, we simply provide
FoggylineSalesBundle:SalesOrder and proceed, allowing for creation of write
actions. At this point, several files have been created for us, as well as a few entries
outside of the Sales bundle. One of these entries is the route definition within the
app/config/routing.yml file, as follows:

foggyline_sales_sales_order:

resource: "@FoggylineSalesBundle/Controller/SalesOrderController.

php"

type: annotation

We should already have a foggyline_sales entry in there as well. The difference
being that foggyline_sales points to our router.xml file and the newly
created foggyline_sales_sales_order points to the exact newly created
SalesOrderController. For the sake of simplicity, we can keep them both.

The auto-generator also created a salesorder directory under the app/Resources/
views/ directory, which we need to move over into our bundle as the src/
Foggyline/SalesBundle/Resources/views/Default/salesorder/ directory.

We can now address our print and cancel actions by adding the following into the
src/Foggyline/SalesBundle/Controller/SalesOrderController.php file as
follows:

public function cancelAction($id)

{

if ($customer = $this->getUser()) {

$em = $this->getDoctrine()->getManager();

$salesOrder = $em->getRepository

('FoggylineSalesBundle:SalesOrder')

->findOneBy(array('customer' => $customer,

'id' => $id));

if ($salesOrder->getStatus() != \Foggyline\SalesBundle

\Entity\SalesOrder::STATUS_COMPLETE) {

$salesOrder->setStatus(\Foggyline\SalesBundle\

Entity\SalesOrder::STATUS_CANCELED);

$em->persist($salesOrder);

$em->flush();

[1031]

Building the Sales Module

}

}

return $this->redirectToRoute('customer_account');

}

public function printAction($id)

{

if ($customer = $this->getUser()) {

$em = $this->getDoctrine()->getManager();

$salesOrder = $em->getRepository

('FoggylineSalesBundle:SalesOrder')

->findOneBy(array('customer' => $customer, 'id' =>

$id));

return $this->render('FoggylineSalesBundle:default:

salesorder/print.html.twig', array(

'salesOrder' => $salesOrder,

'customer' => $customer

));

}

return $this->redirectToRoute('customer_account');

}

The cancelAction method merely checks whether the order in question belongs
to the currently logged-in customer; if so, a change of order status is allowed. The
printAction method merely loads the order if it belongs to the currently logged-in
customer, and passes it on to a print.html.twig template.

We then create the src/Foggyline/SalesBundle/Resources/views/Default/
salesorder/print.html.twig template with content as follows:

{% block body %}

<h1>Printing Order #{{ salesOrder.id }}</h1>

{#<p>Just a dummy Twig dump of entire variable</p>#}

{{ dump(salesOrder) }}

{% endblock %}

Obviously, this is just a simplified output, which we can further customize to our
needs. The important bit is that we have passed along the order object to our
template, and can now extract any piece of information needed from it.

[1032]

 Chapter 11

Finally, we replace the // Override 'foggyline_customer.customer_orders'
service comment within the src/Foggyline/SalesBundle/DependencyInjection/
Compiler/OverrideServiceCompilerPass.php file with code as follows:

$container->removeDefinition

('foggyline_customer.customer_orders');

$container->setDefinition('foggyline_customer.customer_orders',

$container->getDefinition('foggyline_sales.customer_orders'));

This will make the service override kick in, and pull in all of the changes
we just made.

Overriding the bestsellers service
The bestsellers service defined in the Customer module was supposed to provide
dummy data for the bestsellers feature shown on the homepage. The idea is to
showcase five of the bestselling products in the store. The Sales module now needs
to override this service in order to provide the right implementation, where actual
sold product quantities will affect the content of the bestsellers shown.

We start off by adding the following definition under the service element of the
src/Foggyline/SalesBundle/Resources/config/services.xml file:

<service id="foggyline_sales.bestsellers"

class="Foggyline\SalesBundle\Service\BestSellers">

<argument type="service" id="doctrine.orm.entity_manager"/>

<argument type="service" id="router"/>

</service>

We then define the src/Foggyline/SalesBundle/Service/BestSellers.php file
with content as follows:

namespace Foggyline\SalesBundle\Service;

class BestSellers

{

private $em;

private $router;

public function construct(

\Doctrine\ORM\EntityManager $entityManager,

\Symfony\Bundle\FrameworkBundle\Routing\Router $router

)

{

$this->em = $entityManager;

[1033]

Building the Sales Module

$this->router = $router;

}

public function getItems()

{

$products = array();

$salesOrderItem = $this->em->getRepository

('FoggylineSalesBundle:SalesOrderItem');

$_products = $salesOrderItem->getBestsellers();

foreach ($_products as $_product) {

$products[] = array(

'path' => $this->router->generate('product_show',

array('id' => $_product->getId())),

'name' => $_product->getTitle(),

'img' => $_product->getImage(),

'price' => $_product->getPrice(),

'id' => $_product->getId(),

);

}

return $products;

}

}

Here, we are fetching the instance of the SalesOrderItemRepository class and
calling the getBestsellers method on it. This method still has not been defined.
We do so by adding it to file src/Foggyline/SalesBundle/Repository/
SalesOrderItemRepository.php file as follows:

public function getBestsellers()

{

$products = array();

$query = $this->_em->createQuery('SELECT IDENTITY(t.product),

SUM(t.qty) AS HIDDEN q

FROM Foggyline\SalesBundle\Entity

\SalesOrderItem t

GROUP BY t.product ORDER BY q DESC')

->setMaxResults(5);

$_products = $query->getResult();

foreach ($_products as $_product) {

[1034]

 Chapter 11

$products[] = $this->_em->getRepository

('FoggylineCatalogBundle:Product')

->find(current($_product));

}

return $products;

}

Here, we are using Doctrine Query Language (DQL) in order to build a list
of the five bestselling products. Finally, we need to replace the // Override
'bestsellers' service comment from within the src/Foggyline/SalesBundle/
DependencyInjection/Compiler/OverrideServiceCompilerPass.php file with
code as follows:

$container->removeDefinition('bestsellers');

$container->setDefinition('bestsellers', $container->

getDefinition('foggyline_sales.bestsellers'));

By overriding the bestsellers service, we are exposing the actual sales-based list of
bestselling products for other modules to fetch.

Creating the Cart page
The cart page is where the customer gets to see a list of products added to the cart
via Add to Cart buttons, from either the homepage, a category page, or a product
page. We previously created CartController and an empty indexAction function.
Now let's go ahead and edit the indexAction function as follows:

public function indexAction()

{

if ($customer = $this->getUser()) {

$em = $this->getDoctrine()->getManager();

$cart = $em->getRepository('FoggylineSalesBundle:Cart')->

findOneBy(array('customer' => $customer));

$items = $cart->getItems();

$total = null;

foreach ($items as $item) {

$total += floatval($item->getQty() * $item->

getUnitPrice());

}

return $this->render('FoggylineSalesBundle:default:

cart/index.html.twig', array(

[1035]

Building the Sales Module

'customer' => $customer,

'items' => $items,

'total' => $total,

));

} else {

$this->addFlash('warning', 'Only logged in customers can

access cart page.');

return $this->redirectToRoute('foggyline_customer_login');

}

}

Here, we are checking whether the user is logged in; if they are, we are showing
them the cart with all their items. The non-logged-in user is redirected to a
customer login URL. The indexAction function is expecting the src/Foggyline/
SalesBundle/Resources/views/Default/cart/index.html.twig file, whose
content we define as follows:

{% extends 'base.html.twig' %}

{% block body %}

<h1>Shopping Cart</h1>

<div class="row">

<div class="large-8 columns">

<form action="{{ path('foggyline_sales_cart_update') }}"

method="post">

<table>

<thead>

<tr>

<th>Item</th>

<th>Price</th>

<th>Qty</th>

<th>Subtotal</th>

</tr>

</thead>

<tbody>

{% for item in items %}

<tr>

<td>{{ item.product.title }}</td>

<td>{{ item.unitPrice }}</td>

<td><input name="item[{{ item.id }}]" value="{{ item.qty

}}"/></td>

<td>{{ item.qty * item.unitPrice }}</td>

</tr>

{% endfor %}

</tbody>

[1036]

 Chapter 11

</table>

<button type="submit" class="button">Update Cart</button>

</form>

</div>

<div class="large-4 columns">

<div>Order Total: {{ total }}</div>

<div><a href="{{ path('foggyline_sales_checkout') }}"

class="button">Go to Checkout</div>

</div>

</div>

{% endblock %}

When rendered, the template will show quantity input elements under each added
product, alongside the Update Cart button. The Update Cart button submits the
form, whose action is pointing to the foggyline_sales_cart_update route.

Let's go ahead and create foggyline_sales_cart_update, by adding the following
entry under the route element of the src/Foggyline/SalesBundle/Resources/
config/routing.xml file as follows:

<route id="foggyline_sales_cart_update" path="/cart/update">

<default key="_controller">FoggylineSalesBundle:Cart:update

</default>

</route>

The newly defined route expects to find an updateAction function under the src/
Foggyline/SalesBundle/Controller/CartController.php file, which we add as
follows:

public function updateAction(Request $request)

{

$items = $request->get('item');

$em = $this->getDoctrine()->getManager();

foreach ($items as $_id => $_qty) {

$cartItem = $em->getRepository

('FoggylineSalesBundle:CartItem')->find($_id);

if (intval($_qty) > 0) {

$cartItem->setQty($_qty);

$em->persist($cartItem);

} else {

$em->remove($cartItem);

}

}

// Persist to database

[1037]

Building the Sales Module

$em->flush();

$this->addFlash('success', 'Cart updated.');

return $this->redirectToRoute('foggyline_sales_cart');

}

To remove a product from the cart, we simply insert 0 as the quantity value and click
the Update Cart button. This completes our simple cart page.

Creating the Payment service
In order to move from cart to checkout, we need to sort out payment and shipment
services. The previous Payment and Shipment modules exposed some of their
Payment and Shipment services, which we now need to aggregate into a single
Payment and Shipment service that our checkout process will use.

We start by replacing the previously added // Pickup/parse 'payment_method'
services comment under the src/Foggyline/SalesBundle/DependencyInjection/
Compiler/OverrideServiceCompilerPass.php file with code as follows:

$container->getDefinition('foggyline_sales.payment')

->addArgument(

array_keys($container->findTaggedServiceIds

('payment_method'))

);

The findTaggedServiceIds method returns a key-value list of all the services
tagged with payment_method, which we then pass on as argument to our
foggyline_sales.payment service. This is the only way to fetch the list of services
in Symfony during the compilation time.

We then edit the src/Foggyline/SalesBundle/Resources/config/services.xml
file by adding the following under the service element:

<service id="foggyline_sales.payment"

class="Foggyline\SalesBundle\Service\Payment">

<argument type="service" id="service_container"/>

</service>

Finally, we create the Payment class under the src/Foggyline/SalesBundle/
Service/Payment.php file as follows:

namespace Foggyline\SalesBundle\Service;

class Payment

[1038]

 Chapter 11

{

private $container;

private $methods;

public function construct($container, $methods)

{

$this->container = $container;

$this->methods = $methods;

}

public function getAvailableMethods()

{

$methods = array();

foreach ($this->methods as $_method) {

$methods[] = $this->container->get($_method);

}

return $methods;

}

}

In compliance with the service definition in the services.xml file, our service
accepts two parameters, one being $container and the second one being $methods.
The $methods argument is passed during compilation time, where we are able to
fetch a list of all the payment_method tagged services. This effectively means our
getAvailableMethods is now capable of returning all payment_method tagged
services, from any module.

Creating the Shipment service
The Shipment service is implemented much like the Payment service. The overall
idea is similar, with merely a few differences along the way. We start by replacing
the previously added // Pickup/parse shipment_method' services comment
under the src/Foggyline/SalesBundle/DependencyInjection/Compiler/
OverrideServiceCompilerPass.php file with code as follows:

$container->getDefinition('foggyline_sales.shipment')

->addArgument(

array_keys($container->findTaggedServiceIds

('shipment_method'))

);

[1039]

Building the Sales Module

We then edit the src/Foggyline/SalesBundle/Resources/config/services.xml
file by adding the following under the service element:

<service id="foggyline_sales.shipment"

class="Foggyline\SalesBundle\Service\Payment">

<argument type="service" id="service_container"/>

</service>

Finally, we create the Shipment class under the src/Foggyline/SalesBundle/
Service/Shipment.php file as follows:

namespace Foggyline\SalesBundle\Service;

class Shipment

{

private $container;

private $methods;

public function construct($container, $methods)

{

$this->container = $container;

$this->methods = $methods;

}

public function getAvailableMethods()

{

$methods = array();

foreach ($this->methods as $_method) {

$methods[] = $this->container->get($_method);

}

return $methods;

}

}

We are now able to fetch all the Payment and Shipment services via our unified
Payment and Shipment service, thus making the checkout process easy.

Creating the Checkout page
The checkout page will be constructed out of two checkout steps, the first one being
shipment information gathering, and the second one being payment information
gathering.

[1040]

 Chapter 11

We start off with a shipment step, by changing our src/Foggyline/SalesBundle/
Controller/CheckoutController.php file and its indexAction as follows:

public function indexAction()

{

if ($customer = $this->getUser()) {

$form = $this->getAddressForm();

$em = $this->getDoctrine()->getManager();

$cart = $em->getRepository('FoggylineSalesBundle:Cart')

->findOneBy(array('customer' => $customer));

$items = $cart->getItems();

$total = null;

foreach ($items as $item) {

$total += floatval($item->getQty() * $item->getUnitPrice());

}

return $this->render

('FoggylineSalesBundle:default:checkout/index.html.twig',

array(

'customer' => $customer,

'items' => $items,

'cart_subtotal' => $total,

'shipping_address_form' => $form->createView(),

'shipping_methods' => $this->get

('foggyline_sales.shipment')->getAvailableMethods()

));

} else {

$this->addFlash('warning', 'Only logged in customers can

access checkout page.');

return $this->redirectToRoute('foggyline_customer_login');

}

}

private function getAddressForm()

{

return $this->createFormBuilder()

->add('address_first_name', TextType::class)

->add('address_last_name', TextType::class)

->add('company', TextType::class)

->add('address_telephone', TextType::class)

->add('address_country', CountryType::class)

->add('address_state', TextType::class)

->add('address_city', TextType::class)

[1041]

Building the Sales Module

->add('address_postcode', TextType::class)

->add('address_street', TextType::class)

->getForm();

}

Here, we are fetching the currently logged-in customer cart and passing it onto a
checkout/index.html.twig template, alongside several other variables needed for
the shipment step. The getAddressForm method simply builds an address form for
us. There is also a call toward our newly created the foggyline_sales.shipment
service, which enables us to fetch a list of all available shipment methods.

We then create src/Foggyline/SalesBundle/Resources/views/Default/
checkout/index.html.twig with content as follows:

{% extends 'base.html.twig' %}

{% block body %}

<h1>Checkout</h1>

<div class="row">

<div class="large-8 columns">

<form action="{{ path('foggyline_sales_checkout_payment') }}"

method="post" id="shipping_form">

<fieldset>

<legend>Shipping Address</legend>

{{ form_widget(shipping_address_form) }}

</fieldset>

<fieldset>

<legend>Shipping Methods</legend>

{% for method in shipping_methods %}

{% set shipment = method.getInfo('street', 'city',

'country', 'postcode', 'amount', 'qty')['shipment'] %}

<label>{{ shipment.title }}</label>

{% for delivery_option in shipment.delivery_options %}

<input type="radio" name="shipment_method"

value="{{ shipment.code }}

{{ delivery_option.code }}

{{ delivery_option.price }}">

{{ delivery_option.title }}

({{ delivery_option.price }})

[1042]

 Chapter 11

{% endfor %}

{% endfor %}

</fieldset>

</form>

</div>

<div class="large-4 columns">

{% include

'FoggylineSalesBundle:default:checkout/order_sumarry.html.twig'

%}

<div>Cart Subtotal: {{ cart_subtotal }}</div>

<div><a id="shipping_form_submit" href="#"

class="button">Next

</div>

</div>

</div>

<script type="text/javascript">

var form = document.getElementById('shipping_form');

document.getElementById('shipping_form_submit')

.addEventListener('click', function () {

form.submit();

});

</script>

{% endblock %}

The template lists all of the address-related form fields, alongside available shipment
methods. The JavaScript part handles the Next button click, which basically submits
the form to the foggyline_sales_checkout_payment route.

We then define the foggyline_sales_checkout_payment route by adding the
following entry under the routes element of the src/Foggyline/SalesBundle/
Resources/config/routing.xml file:

<route id="foggyline_sales_checkout_payment"

path="/checkout/payment">

<default

key="_controller">FoggylineSalesBundle:Checkout:payment</default>

</route>

[1043]

Building the Sales Module

The route entry expects to find a paymentAction within CheckoutController,
which we define as follows:

public function paymentAction(Request $request)

{

$addressForm = $this->getAddressForm();

$addressForm->handleRequest($request);

if ($addressForm->isSubmitted() && $addressForm->isValid() &&

$customer = $this->getUser()) {

$em = $this->getDoctrine()->getManager();

$cart = $em->getRepository('FoggylineSalesBundle:Cart')->

findOneBy(array('customer' => $customer));

$items = $cart->getItems();

$cartSubtotal = null;

foreach ($items as $item) {

$cartSubtotal += floatval($item->getQty() * $item->

getUnitPrice());

}

$shipmentMethod = $_POST['shipment_method'];

$shipmentMethod = explode(' ', $shipmentMethod);

$shipmentMethodCode = $shipmentMethod[0];

$shipmentMethodDeliveryCode = $shipmentMethod[1];

$shipmentMethodDeliveryPrice = $shipmentMethod[2];

// Store relevant info into session

$checkoutInfo = $addressForm->getData();

$checkoutInfo['shipment_method'] = $shipmentMethodCode .

' ' . $shipmentMethodDeliveryCode;

$checkoutInfo['shipment_price'] =

$shipmentMethodDeliveryPrice;

$checkoutInfo['items_price'] = $cartSubtotal;

$checkoutInfo['total_price'] = $cartSubtotal +

$shipmentMethodDeliveryPrice;

$this->get('session')->set('checkoutInfo', $checkoutInfo);

return $this->render('FoggylineSalesBundle:default:

checkout/payment.html.twig', array(

'customer' => $customer,

'items' => $items,

'cart_subtotal' => $cartSubtotal,

[1044]

 Chapter 11

'delivery_subtotal' => $shipmentMethodDeliveryPrice,

'delivery_label' =>'Delivery Label Here',

'order_total' => $cartSubtotal +

$shipmentMethodDeliveryPrice,

'payment_methods' => $this->get

('foggyline_sales.payment')->getAvailableMethods()

));

} else {

$this->addFlash('warning', 'Only logged in customers can

access checkout page.');

return $this->redirectToRoute('foggyline_customer_login');

}

}

The preceding code fetches the submission made from the shipment step of the
checkout process, stores the relevant values into the session, fetches the variables
required for the payment step and renders back the checkout/payment.html.twig
template.

We define the src/Foggyline/SalesBundle/Resources/views/Default/
checkout/payment.html.twig file with content as follows:

{% extends 'base.html.twig' %}

{% block body %}

<h1>Checkout</h1>

<div class="row">

<div class="large-8 columns">

<form action="{{ path('foggyline_sales_checkout_process') }}"

method="post" id="payment_form">

<fieldset>

<legend>Payment Methods</legend>

{% for method in payment_methods %}

{% set payment = method.getInfo()['payment'] %}

<input type="radio" name="payment_method"

value="{{ payment.code }}"> {{ payment.title }}

{% if payment['form'] is defined %}

<div id="{{ payment.code }}_form">

{{ form_widget(payment['form']) }}

</div>

{% endif %}

{% endfor %}

[1045]

Building the Sales Module

</fieldset>

</form>

</div>

<div class="large-4 columns">

{% include 'FoggylineSalesBundle:default:checkout/

order_sumarry.html.twig' %}

<div>Cart Subtotal: {{ cart_subtotal }}</div>

<div>{{ delivery_label }}: {{ delivery_subtotal }}</div>

<div>Order Total: {{ order_total }}</div>

<div>Place

Order

</div>

</div>

</div>

<script type="text/javascript">

var form = document.getElementById('payment_form');

document.getElementById('payment_form_submit').

addEventListener('click', function () {

form.submit();

});

</script>

{% endblock %}

Similar to the shipment step, we have a rendering of available payment methods
here, alongside a Place Order button which is handled by JavaScript as the button
is located outside of the submission form. Once an order is placed, the POST
submission is made onto the foggyline_sales_checkout_process route, which
we defined under the routes element of the src/Foggyline/SalesBundle/
Resources/config/routing.xml file as follows:

<route id="foggyline_sales_checkout_process"

path="/checkout/process">

<default

key="_controller">FoggylineSalesBundle:Checkout:process</default>

</route>

The route points to the processAction function within CheckoutController, which
we define as follows:

public function processAction()

{

if ($customer = $this->getUser()) {

$em = $this->getDoctrine()->getManager();

// Merge all the checkout info, for SalesOrder

[1046]

 Chapter 11

$checkoutInfo = $this->get('session')->get

('checkoutInfo');

$now = new \DateTime();

// Create Sales Order

$salesOrder = new \Foggyline\SalesBundle\Entity

\SalesOrder();

$salesOrder->setCustomer($customer);

$salesOrder->setItemsPrice($checkoutInfo['items_price']);

$salesOrder->setShipmentPrice

($checkoutInfo['shipment_price']);

$salesOrder->setTotalPrice($checkoutInfo['total_price']);

$salesOrder->setPaymentMethod($_POST['payment_method']);

$salesOrder->setShipmentMethod

($checkoutInfo['shipment_method']);

$salesOrder->setCreatedAt($now);

$salesOrder->setModifiedAt($now);

$salesOrder->setCustomerEmail($customer->getEmail());

$salesOrder->setCustomerFirstName

($customer->getFirstName());

$salesOrder->setCustomerLastName

($customer->getLastName());

$salesOrder->setAddressFirstName

($checkoutInfo['address_first_name']);

$salesOrder->setAddressLastName

($checkoutInfo['address_last_name']);

$salesOrder->setAddressCountry

($checkoutInfo['address_country']);

$salesOrder->setAddressState

($checkoutInfo['address_state']);

$salesOrder->setAddressCity

($checkoutInfo['address_city']);

$salesOrder->setAddressPostcode

($checkoutInfo['address_postcode']);

$salesOrder->setAddressStreet

($checkoutInfo['address_street']);

$salesOrder->setAddressTelephone

($checkoutInfo['address_telephone']);

$salesOrder->setStatus(\Foggyline\SalesBundle\Entity\

SalesOrder::STATUS_PROCESSING);

$em->persist($salesOrder);

$em->flush();

// Foreach cart item, create order item, and delete cart

item

[1047]

Building the Sales Module

$cart = $em->getRepository('FoggylineSalesBundle:Cart')->

findOneBy(array('customer' => $customer));

$items = $cart->getItems();

foreach ($items as $item) {

$orderItem = new \Foggyline\SalesBundle\Entity

\SalesOrderItem();

$orderItem->setSalesOrder($salesOrder);

$orderItem->setTitle($item->getProduct()->getTitle());

$orderItem->setQty($item->getQty());

$orderItem->setUnitPrice($item->getUnitPrice());

$orderItem->setTotalPrice($item->getQty() * $item-

>getUnitPrice());

$orderItem->setModifiedAt($now);

$orderItem->setCreatedAt($now);

$orderItem->setProduct($item->getProduct());

$em->persist($orderItem);

$em->remove($item);

}

$em->remove($cart);

$em->flush();

$this->get('session')->set('last_order', $salesOrder->

getId());

return $this->redirectToRoute

('foggyline_sales_checkout_success');

} else {

$this->addFlash('warning', 'Only logged in customers can

access checkout page.');

return $this->redirectToRoute('foggyline_customer_login');

}

}

Once the POST submission hits the controller, a new order with all of the related
items gets created. At the same time, the cart and cart items are cleared. Finally, the
customer is redirected to the order success page.

Creating the order success page
The order success page has an important role in full-blown web shop applications. This
is where we get to thank the customer for their purchase and possibly present some
more related or cross-related shopping options, alongside some optional discounts.
Though our application is simple, it's worth building a simple order success page.

[1048]

 Chapter 11

We start by adding the following route definition under the routes element of the
src/Foggyline/SalesBundle/Resources/config/routing.xml file:

<route id="foggyline_sales_checkout_success"

path="/checkout/success">

<default

key="_controller">FoggylineSalesBundle:Checkout:success</default>

</route>

The route points to a successAction function within CheckoutController, which
we define as follows:

public function successAction()

{

return $this->render('FoggylineSalesBundle:default:

checkout/success.html.twig', array(

'last_order' => $this->get('session')->get('last_order')

));

}

Here, we are simply fetching the last created order ID for the currently logged-in
customer and passing the full order object to the src/Foggyline/SalesBundle/
Resources/views/Default/checkout/success.html.twig template as follows:

{% extends 'base.html.twig' %}

{% block body %}

<h1>Checkout Success</h1>

<div class="row">

<p>Thank you for placing your order #{{ last_order }}.</p>

<p>You can see order details <a href="{{

path('customer_account') }}">here.</p>

</div>

{% endblock %}

With this, we finalize the entire checkout process for our web shop. Though it is an
absolutely simplistic one, it sets the foundation for more robust implementations.

Creating a store manager dashboard
Now that we have finalized the checkout Sales module, let's revert quickly to our
core module, AppBundle. As per our application requirements, let's go ahead and
create a simple store manager dashboard.

[1049]

Building the Sales Module

We start by adding the src/AppBundle/Controller/StoreManagerController.
php file with content as follows:

namespace AppBundle\Controller;

use Sensio\Bundle\FrameworkExtraBundle\Configuration\Route;

use Symfony\Bundle\FrameworkBundle\Controller\Controller;

class StoreManagerController extends Controller

{

/**

* @Route("/store_manager", name="store_manager")

*/

public function indexAction()

{

return $this->render

('AppBundle:default:store_manager.html.twig');

}

}

The indexAction function simply returns the src/AppBundle/Resources/views/
default/store_manager.html.twig file, whose content we define as follows:

{% extends 'base.html.twig' %}

{% block body %}

<h1>Store Manager</h1>

<div class="row">

<div class="large-6 columns">

<div class="stacked button-group">

Add new

Category

Add new

Product

Add new

Customer

</div>

</div>

<div class="large-6 columns">

<div class="stacked button-group">

List &

Manage Categories

List &

Manage Products

List &

Manage Customers

[1050]

 Chapter 11

List

& Manage Orders

</div>

</div>

</div>

{% endblock %}

The template merely renders the category, product, customer, and order
management links. The actual access to these links is controlled by the firewall,
as explained in previous chapters.

Unit testing
The Sales module is far more robust than any of the previous modules. There are
several things we can unit test. However, we won't be covering full unit testing as
part of this chapter. We will simply turn our attention to a single unit test, the one
for the CustomerOrders service.

We start off by adding the following line under the testsuites element of our
phpunit.xml.dist file:

<directory>src/Foggyline/SalesBundle/Tests</directory>

With that in place, running the phpunit command from the root of our shop should
pick up any test we have defined under the src/Foggyline/SalesBundle/Tests/
directory.

Now, let's go ahead and create a test for our CustomerOrders service. We do so by
defining the src/Foggyline/SalesBundle/Tests/Service/CustomerOrdersTest.
php file with content as follows:

namespace Foggyline\SalesBundle\Test\Service;

use Symfony\Bundle\FrameworkBundle\Test\KernelTestCase;

use Symfony\Component\Security\Core\Authentication\

Token\UsernamePasswordToken;

class CustomerOrdersTest extends KernelTestCase

{

private $container;

public function setUp()

{

static::bootKernel();

$this->container = static::$kernel->getContainer();

[1051]

Building the Sales Module

}

public function testGetOrders()

{

$firewall = 'foggyline_customer';

$em = $this->container->get

('doctrine.orm.entity_manager');

$user = $em->getRepository

('FoggylineCustomerBundle:Customer')->findOneByUsername

('ajzele@gmail.com');

$token = new UsernamePasswordToken($user, null, $firewall,

array('ROLE_USER'));

$tokenStorage = $this->container->get

('security.token_storage');

$tokenStorage->setToken($token);

$orders = new \Foggyline\SalesBundle\Service

\CustomerOrders(

$em,

$tokenStorage,

$this->container->get('router')

);

$this->assertNotEmpty($orders->getOrders());

}

}

Here, we are using the UsernamePasswordToken function in order to simulate a
customer login. The password token is then passed on to the CustomerOrders
service. The CustomerOrders service then internally checks whether token storage
has a token assigned, flagging it as a logged-in user and returning the list of its
orders. Being able to simulate customer login is essential for any other tests we
might be writing for our sales module.

Functional testing
Similar to unit testing, we will only focus on a single functional test, as doing
anything more robust would be out of the scope of this chapter. We will write a
simple code that adds a product to the cart and accesses the checkout page. In order
to add an item to the cart, here we also need to simulate the user login.

[1052]

 Chapter 11

We write the src/Foggyline/SalesBundle/Tests/Controller/
CartControllerTest.php test as follows:

namespace Foggyline\SalesBundle\Tests\Controller;

use Symfony\Bundle\FrameworkBundle\Test\WebTestCase;

use Symfony\Component\BrowserKit\Cookie;

use Symfony\Component\Security\Core\Authentication\

Token\UsernamePasswordToken;

class CartControllerTest extends WebTestCase

{

private $client = null;

public function setUp()

{

$this->client = static::createClient();

}

public function testAddToCartAndAccessCheckout()

{

$this->logIn();

$crawler = $this->client->request('GET', '/');

$crawler = $this->client->click($crawler->selectLink('Add

to Cart')->link());

$crawler = $this->client->followRedirect();

$this->assertTrue($this->client->getResponse()->

isSuccessful());

$this->assertGreaterThan(0, $crawler->filter

('html:contains("added to cart")')->count());

$crawler = $this->client->request('GET', '/sales/cart/');

$crawler = $this->client->click($crawler->selectLink('Go

to Checkout')->link());

$this->assertTrue($this->client->getResponse()->

isSuccessful());

$this->assertGreaterThan(0, $crawler->filter

('html:contains("Checkout")')->count());

}

[1053]

Building the Sales Module

private function logIn()

{

$session = $this->client->getContainer()->get('session');

$firewall = 'foggyline_customer'; // firewall name

$em = $this->client->getContainer()->get('doctrine')->

getManager();

$user = $em->getRepository

('FoggylineCustomerBundle:Customer')->findOneByUsername

('ajzele@gmail.com');

$token = new UsernamePasswordToken($user, null, $firewall,

array('ROLE_USER'));

$session->set('_security_' . $firewall,

serialize($token));

$session->save();

$cookie = new Cookie($session->getName(), $session->

getId());

$this->client->getCookieJar()->set($cookie);

}

}

Once run, the test will simulate the customer login, add an item to the cart, and try
to access the checkout page. Depending on the actual customers we have in our
database, we might need to change the customer e-mail provided in the preceding
test.

Running the phpunit command now should successfully execute our tests.

[1054]

 Chapter 11

Summary
In this chapter, we built a simple yet functional Sales module. With just four
simple entities (Cart, CartItem, SalesOrder, and SalesOrderItem), we managed
to implement simple cart and checkout features. By doing so, we empowered
customers to actually make a purchase, instead of just browsing the product catalog.
The sales module made use of the payment and shipment services defined in
previous chapters. While the payment and shipment services are implemented as
imaginary, dummy ones, they do provide a basic skeleton that we can use for real
payment and shipment API implementations.

Furthermore, in this chapter, we addressed the admin dashboard, by making a
simple interface that merely aggregates a few of the existing CRUD interfaces. Access
to the dashboard and the management links is protected by entries in app/config/
security.yml, and allowed only for ROLE_ADMIN.

Together, the modules written so far make up a simplified application. Writing
robust web shop applications would normally include tens of other features found in
modern e-commerce platforms such as Magento. These include multiple language,
currency, and website support; robust category, product, and product inventory
management; shopping cart and catalog sales rules; and many others. Modularizing
our application makes development and maintenance processes easier.

Moving forward, in the final chapter, we will look into distributing our modules.

[1055]

Integrating and

Distributing Modules
Throughout a few of the previous chapters, we built a simple web shop application
in a modular manner. Each of the modules play a special role in handling individual
bits and pieces, which add to the overall application. The application itself, though
written in modular, was kept in a Git single version control repository. It would be
a far cleaner separation if each of the modules was provided in its own repository.
This way, we will be able to keep the different module developments as completely
different projects while still being able to use them together. As we move forward, we
will see how we can achieve this via GIT and Composer in two different manners.

In this chapter, we will cover the following tools and services:

• Understanding Git

• Understanding GitHub

• Understanding Composer

• Understanding Packagist

Understanding Git
Originally started by Linus Torvalds, Git version control is currently one of the most
popular version control systems. Overall speed and efficiency with large projects,
alongside a great branching system, has made it popular among developers.

Learning about Git version control itself is out of the scope of this book, for which
recommended reading is the Pro Git book.

[1057]

Integrating and Distributing Modules

The Pro Git book, written by Scott Chacon and Ben Straub, and
published by Apress, is available for free at https://git-scm.
com/book/en/v2.

One neat feature of Git, which we are interested in as part of this chapter, is its
submodules. They enable us to slice larger modular projects, such as our web shop
app, into a series of smaller submodules, whereas each submodule is a Git repository
on its own.

Understanding GitHub
Within three years of Git's appearance, GitHub emerged. GitHub is basically a
web service built on top of the Git version control system. It enables developers to
easily post their code online, where others can simply clone their repository and
use their code. Creating an account on GitHub is free and can be done by following
instructions on their official homepage (https://github.com).

Currently, our application is structured as per the following image:

What we want to do is to split it into six different Git repositories, as follows:

• core

• catalog

• customer

[1058]

https://git-scm.com/book/en/v2
https://git-scm.com/book/en/v2
https://github.com/

 Chapter 12

• payment

• sales

• shipment

The core repository is to contain everything except the content of the
src/Foggyline directory.

Assuming we created an empty core repository on GitHub, and our local all-in-one
app is currently held in the shop directory, we initialize the following commands on
our computer:

cp -R shop core-repository

rm -Rfcore-repository/.git/

rm -Rfcore-repository/src/Foggyline/*

touch core-repository/src/Foggyline/.gitkeep

cd core-repository

git init

git remote add origin git@github.com:<user>/<core-repository>.git

git add --all

git commit -m "Initial commit of core application"

git push origin master

At this point, we merely pushed the core application part of our all-in-one web shop
app into the core repository on GitHub. The src/Foggyline/ directory does not
contain any modules in it.

Now, let's go back to GitHub and create an appropriate empty repository for each
of the five modules, that is, catalog, customer, payment, sales, and shipment. We
can now execute a set of console commands for each of the modules, as shown in the
following CatalogBundle example:

cp -R shop/src/Foggyline/CatalogBundle catalog-repository

cd catalog-repository

git init

git remote add origin git@github.com:<user>/<catalog-repository>.git

git add --all

git commit -m "Initial commit of catalog module"

git push origin master

[1059]

mailto:git@github.com
mailto:git@github.com

Integrating and Distributing Modules

Once all of the five modules are pushed to a repository, we can finally treat them as
submodules, as shown here:

cd core-repository

git submodule add git@github.com:<user>/<catalog-repository>.git

src/Foggyline/CatalogBundle

git submodule add git@github.com:<user>/<customer-repository>.git

src/Foggyline/CustomerBundle

git submodule add git@github.com:<user>/<payment-repository>.git

src/Foggyline/PaymentBundle

git submodule add git@github.com:<user>/<sales-repository>.git

src/Foggyline/SalesBundle

git submodule add git@github.com:<user>/<shipment-repository>.git

src/Foggyline/ShipmentBundle

If we were to run the ls-al command within the core repository directory now, we
should be able to see a .gitmodules file in there with the following content:

[submodule "src/Foggyline/CatalogBundle"]

path = src/Foggyline/CatalogBundle

url = git@github.com:<user>/<catalog-repository>.git

[submodule "src/Foggyline/CustomerBundle"]

path = src/Foggyline/CustomerBundle

url = git@github.com:<user>/<customer-repository>.git

[submodule "src/Foggyline/PaymentBundle"]

path = src/Foggyline/PaymentBundle

url = git@github.com:<user>/<payment-repository>.git

[submodule "src/Foggyline/SalesBundle"]

path = src/Foggyline/SalesBundle

url = git@github.com:<user>/<sales-repository>.git

[submodule "src/Foggyline/ShipmentBundle"]

path = src/Foggyline/ShipmentBundle

url = git@github.com:<user>/<shipment-repository>.git

[1060]

mailto:git@github.com
mailto:git@github.com
mailto:git@github.com
mailto:git@github.com
mailto:git@github.com
mailto:git@github.com
mailto:git@github.com
mailto:git@github.com
mailto:git@github.com
mailto:git@github.com

 Chapter 12

The .gitmodules file, basically, contains the list of all of the submodules added to
our core project, that is, core application. We should commit and push this file to
the core repository now. Assuming that the .gitmodules file is pushed to the core
repository, we can easily delete all directories created so far and initiate the project
with one simple command, as follows:

git clone --recursive git@github.com:<user>/<core-repository>.git

The --recursive argument to the git clone command automatically initializes
and updates each submodule in the repository based on the .gitmodules file.

Understanding Composer
Composer is a dependency management tool for PHP. By default, it does not install
anything global but rather on a per-project basis. We can use it to redistribute
our project in order to define which libraries and packages it needs for it to be
successfully executed. Using Composer is quite simple. All it creating is to create
a composer.json file in the root directory of our project with similar content, as
follows:

{

"require": {

"twig/twig": "~1.0"

}

}

If we were to create the preceding composer.json file in some empty directory and
execute the composer install command within that directory, Composer will
pickup the composer.json file and install the defined dependencies for our project.
The actual install action implies on downloading the required code from a remote
repository to our machine. In doing so, the install command creates the composer.
lock file, which writes a list of the exact versions of dependencies installed.

We can also simply execute the command twig/twig:~1.0 that a Composer
requires, which does the same thing but with a different approach. It does not
require us to write a composer.json file, and if one exists, it will update it.

Learning about Composer itself is out of the scope of this book, for which the
recommended official documentation is available at https://getcomposer.org/
doc.

Composer allows packaging and formal dependency management, making it a great
choice to slice our all-in-one modular application into a series of Composer packages.
These packages need a repository.

[1061]

mailto:git@github.com
https://getcomposer.org/doc
https://getcomposer.org/doc

Integrating and Distributing Modules

Understanding Packagist
The main repository, when it comes to Composer packages, is Packagist (https://
packagist.org). It is a web service that we can access through our browser, open an
account on for free, and start submitting our packages to the repository. We can also
use it to search through already existing packages.

Packagist is generally used for free open source packages, though we can attach
privateGitHub and BitBucket repositories to it in the same manner, the only
difference being that the private repositories require SSH keys in order to work.

There are more convenient commercial installations of the Composer packager,
such as Toran Proxy (https://toranproxy.com). This allows easier hosting of
private packages, higher bandwidth for faster package installations, and commercial
support.

Up to this point, we sliced our applications into six different Git repositories, one
for core application and the remaining five for each module (catalog, customer,
payment, sales, and shipment) individually. Now, let's take the final step and see
how we can move away from the Git submodules to the Composer packages.

Assuming we created an account on https://packagist.org and successfully
logged in, we will start by clicking on the Submit button, which should land us
on a screen similar to the following screenshot:

[1062]

https://packagist.org/
https://packagist.org/
https://toranproxy.com/
https://packagist.org/

 Chapter 12

Here, we need to provide a link to our existing Git, SVN, or Mercurial (HG) repository.
The preceding example provides a link (https://github.com/ajzele/B05460_
CatalogBundle) to the Git repository. Before we press the Check button, we will
need to make sure that our repository has a composer.json file defined in its root,
otherwise an error similar to the one shown in the following screenshot will be thrown.

We will then create the composer.json file for our CatalogBundle with the
following content:

{

"name": "foggyline/catalogbundle",

"version" : "1.0.0",

"type": "library",

"description": "Just a test module for web shop application.",

"keywords": [

"catalog"

],

"homepage": "https://github.com/ajzele/B05460_CatalogBundle",

"license": "MIT",

"authors": [

{

"name": "Branko Ajzele",

"email": "ajzele@gmail.com",

"homepage": "http://foggyline.net",

"role": "Developer"

}

],

"minimum-stability": "dev",

"prefer-stable": true,

"autoload": {

"psr-0": {

"Foggyline\\CatalogBundle\\": ""

}

},

"target-dir": "Foggyline/CatalogBundle"

}

[1063]

https://github.com/ajzele/B05460_CatalogBundle
https://github.com/ajzele/B05460_CatalogBundle
mailto:ajzele@gmail.com
http://foggyline.net/

Integrating and Distributing Modules

There are quite a lot of attributes here, all of which are fully documented over on the
https://getcomposer.org/doc/04-schema.md page.

With the preceding composer.json file in place, running the composer
install command on console will pull in the code under the vendor/
foggyline/catalogbundle directory, making for a full path of our bundle
file under vendor/foggyline/catalogbundle/Foggyline/CatalogBundle/
FoggylineCatalogBundle.php.

Once we add the preceding composer.json file to our Git repository, we can go back
to Packagist and proceed with clicking the Check button, which should result in a
screen similar to the following screenshot:

Finally, when we click the Submit button, a screen similar to the following
screenshot should appear:

[1064]

https://getcomposer.org/doc/04-schema.md

 Chapter 12

Our package is now added to Packagist, and running the following command on
console will install it to into the project:

composer require foggyline/catalogbundle:dev-master

Similarly, we can just add the proper entry to the existing project's composer.json
file, as shown in the following code block:

{

"require": {

"foggyline/catalogbundle": "dev-master"

},

}

[1065]

Integrating and Distributing Modules

Now that we know how to slice out the application across several Git repositories
and Composer packages, we need to do the same for the remaining modules within
the src/Foggyline/ directory, as only those modules will be registered as the
Composer packages.

During the sales module development, we noticed that it depends on several other
modules, such as catalog and customer. We can use the require attribute of the
composer.json file to outline this dependency.

Once all of the Git repositories for the src/Foggyline/ modules are updated with
the proper composer.json definitions, we can go back to our core application
repository and update the require attribute in its composer.json file, as follows:

{

"require": {

// ...

"foggyline/catalogbundle": "dev-master"

"foggyline/customerbundle": "dev-master"

"foggyline/paymentbundle": "dev-master"

"foggyline/salesbundle": "dev-master"

"foggyline/shipmentbundle": "dev-master"

// ...

},

}

The difference between using submodules and packages might not be that obvious at
this point. However, packages, unlike submodules, allow versioning. Though all of
our packages are pulled in from dev-master, we could have easily targeted specific
versions of packages, if any.

[1066]

 Chapter 12

Summary
Throughout this chapter, we took a quick look at Git and Composer and how we can
integrate and distribute our modules via GitHub and Packagist as their respectful
services. Publishing packages under Packagist has been shown to be a pretty
straightforward and easy process. All it took was a public link to the version control
system repository and a composer.json file definition within the root of our project.

Writing our own applications from ground up does not necessarily mean we need to
use the Git submodules or the Composer packages, as presented in this chapter. The
Symfony application, on its own, is structured modularly via bundles. The version
control system, when used on a Symfony project, is supposed to save only our code,
which means all of the Symfony libraries and other dependencies are to be pulled
in via Composer when the project is being set. The examples shown in this chapter
merely show what can be accomplished if we are after writing modular components
that are to be shared with others. As an example, if we were really working on a
robust catalog module, others interested in coding their own web shop might
find it interesting to require and use it in their project.

This book started by looking into the current state of the PHP ecosystem. We then
touched upon design patterns and principles, as a foundation of professional
programming. Then we moved onto writing a brief, more visual, specification for our
web shop application. Finally, we split our application into core and several other
smaller modules, which we then coded following the specification. Along the way, we
familiarized ourselves with some of the most commonly used Symfony features. The
overall application we wrote is far from being robust. It is a web shop in its simplest
form, which leaves much to be desired on a feature side. However, the concepts
applied showcase how easy and quick it can be to write modular applications in PHP.

[1067]

Chapter No.

Bibliography

This Learning Path is a blend of content, all packaged up keeping your journey in
mind. It includes content from the following Packt products:

• PHP 7 Programming Cookbook, Doug Bierer

• Learning PHP 7 High Performance, Altaf Hussain

• Modular Programming with PHP 7, Branko Ajzele

[1069]

Thank you for buying

PHP 7: Real World Application
Development

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

http://www.packtpub.com/
mailto:author@packtpub.com

	A course in three modules
	BIRMINGHAM - MUMBAI
	Copyright © 2016 Packt Publishing
	All rights reserved. No part of this course may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical...
	Every effort has been made in the preparation of this course to ensure the accuracy of the information presented. However, the information contained in this course
	is sold without warranty, either express or implied. Neither the authors, nor Packt Publishing, and its dealers and distributors will be held liable for any damages caused or alleged to be caused directly or indirectly by this course.
	Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this course by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.
	Published on: Month 2011
	Published by Packt Publishing Ltd. Livery Place
	35 Livery Street Birmingham B3 2PB, UK.
	ISBN 978-1-78712-900-9
	PHP 7 has taken the open source community by storm, breaking records for speed, which is, metaphorically, causing heads to turn. In its most fundamental sense,
	the core engineering team has effected a major rewrite of the language but has still managed to maintain backward compatibility to a high degree. PHP is a great language for developing web applications. It is essentially a server-side scripting langua...
	version, providing major backward-compatibility breaks and focusing on improved performance and speed. This means you can maintain high traffic on your websites with low-cost hardware and servers through a multithreading web server.
	Module 1, PHP 7 Programming Cookbook, This module demonstrates intermediate to advanced PHP techniques with a focus on PHP 7. Each recipe is designed to solve practical, real-world problems faced by PHP developers like yourself every day. It also cove...
	7. In addition, we discuss backward-compatibility breaks and give you plenty of guidance on when and where PHP 5 code needs to be changed to produce the correct results when running under PHP 7. This module also incorporates the latest PHP
	7.x features.By the end of the module, you will be equipped with the tools and skills
	required to deliver efficient applications for your websites and enterprises
	Module 2, Learning PHP 7 High Performance, This module is fast-paced introduction to PHP 7 will improve your productivity and coding skills. The concepts covered will allow you, as a PHP programmer, to improve the performance standards of your applica...
	Module 3, Modular Programming with PHP 7, This module will introduce you to modular design technique which will help you build readable, manageable, reusable, and more efficient codes. PHP 7, which is a popular open source scripting language, is used ...
	This module will start with a brief introduction to the new features of PHP 7, some of which open a door to new concepts used in modular development. With design patterns being at the heart of all modular PHP code, you will learn about the GoF design ...
	Throughout the rest of the module , you will build different working modules of a modern web shop application using the Symfony framework, which will give you a deep understanding of modular application development using PHP 7.
	Module 1:
	All you need, to successfully implement the recipes presented in this module will be a computer, 100MB of extra disk space, and a text or code editor (not a
	word processor!). The first chapter will cover how to set up a PHP 7 development environment. Having a web server is optional as PHP 7 includes a development web server. An Internet connection is not required, but it might be useful to download code (...
	Module 2:
	Any hardware specification that is compliant to run the latest versions of the
	following software should be enough to get through this module:
	• Operating systems: Debian or Ubuntu
	• Software: NGINX, PHP 7, MySQL, PerconaDB, Redis, Memcached, Xdebug, Apache JMeter, ApacheBench, Siege, and Git
	Module 3:
	In order to successfully run all the examples provided in this book, you will need either your own web server or a third-party web-hosting solution. The high-level technology stack includes PHP 7.0 or greater, Apache/Nginx, and MySQL.
	The Symfony framework itself comes with a detailed list of system requirements that can be found at http://symfony.com/doc/current/reference/ requirements.html. This book assumes that the reader is familiar with setting up the complete development env...
	If you are an aspiring web developer, mobile developer, or back-end programmer, who has basic experience in PHP programming and wants to develop performance- critical applications, then this course is for you. It will take your PHP programming skills ...
	Feedback from our readers is always welcome. Let us know what you think about this course—what you liked or disliked. Reader feedback is important for us as it helps us develop titles that you will really get the most out of.
	To send us general feedback, simply e-mail feedback@packtpub.com, and mention the course’s title in the subject of your message.
	If there is a topic that you have expertise in and you are interested in either writing or contributing to a course, see our author guide at www.packtpub.com/authors.
	Now that you are the proud owner of a Packt course, we have a number of things to help you to get the most from your purchase.
	You can download the code files by following these steps:
	1. Log in or register to our website using your e-mail address and password.
	2. Hover the mouse pointer on the SUPPORT tab at the top.
	4. Enter the name of the course in the Search box.
	5. Select the course for which you’re looking to download the code files.
	6. Choose from the drop-down menu where you purchased this course from.
	You can also download the code files by clicking on the Code Files button on the course’s webpage at the Packt Publishing website. This page can be accessed by entering the course’s name in the Search box. Please note that you need to be logged in to ...
	Once the file is downloaded, please make sure that you unzip or extract the folder
	using the latest version of:
	• WinRAR / 7-Zip for Windows
	• Zipeg / iZip / UnRarX for Mac
	• 7-Zip / PeaZip for Linux
	Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you find a mistake in one of our courses—maybe a mistake in the text or the code—we would be grateful if you could report this to us. By doing so, you can ...
	Piracy of copyrighted material on the Internet is an ongoing problem across all media. At Packt, we take the protection of our copyright and licenses very seriously. If you come across any illegal copies of our works in any form on the Internet, pleas...
	We appreciate your help in protecting our authors and our ability to bring you valuable content.
	If you have a problem with any aspect of this course, you can contact us at
	Table of Contents
	Table of Contents (1)
	Table of Contents (2)

	Module 2: Learning PHP 7 High Performance
	Table of Contents
	Table of Contents (1)

	Module 3: Modular Programming with PHP 7
	Table of Contents
	PHP 7 Programming Cookbook
	Over 80 recipes that will take your PHP 7 web development skills to the next level!
	In this chapter, we will cover the following topics:
	f PHP 7 installation considerations f Using the built-in PHP web server f Defining a test MySQL database f Installing PHPUnit
	f Implementing class autoloading
	f Hoovering a website
	f Building a deep web scanner
	f Creating a PHP 5 to PHP 7 code converter

	Introduction
	This chapter is designed as a quick start that will get you up and running on PHP 7 so that you can start implementing the recipes right away. The underlying assumption for this book is that you already have a good knowledge of PHP and programming. Al...
	There are three primary means of acquiring PHP 7:
	f Downloading and installing directly from the source code
	f Installing a *AMP package (that is, XAMPP, WAMP, LAMP, MAMP, and so on)
	Building a Foundation

	How to do it…
	The three methods are listed in order of difficulty. However, the first approach, although
	tedious, will give you the most finite control over extensions and options.
	Installing directly from source
	In order to utilize this approach, you will need to have a C compiler available. If you are running Windows, MinGW is a free compiler that has proven popular. It is based on the GNU Compiler Collection (GCC) compiler provided by the GNU project. Non-f...
	by Windows developers is Visual Studio. The latter, however, is designed mainly for C++ development, so when you compile PHP, you will need to specify C mode.
	When working on an Apple Mac, the best solution is to install the Apple Developer Tools. You can use the Xcode IDE to compile PHP 7, or run gcc from a terminal window. In a Linux environment, from a terminal window, run gcc.
	When compiling from a terminal window or command line, the normal procedure is as follows:
	For information on configuration options (that is, when running configure), use the help
	option:
	Errors you might encounter during the configuration stage are mentioned in the following
	table:
	Chapter 1

	Installing PHP 7 from pre-compiled binaries
	As the title implies, pre-compiled binaries are a set of binary files that somebody else has kindly compiled from PHP 7 source code and has made available.
	In the case of Windows, go to http://windows.php.net/. You will find a good set of tips in the left column that pertain to which version to choose, thread safe versus non-read safe, and so forth. You can then click on Downloads and look for the ZIP fi...
	To install the pre-compiled binaries on a Mac OS X system, it is best to involve a package management system. The ones recommended for PHP include the following:
	f MacPorts
	f Homebrew
	In the case of Linux, the packaging system used depends on which Linux distribution you are using. The following table, organized by Linux distribution, summarizes where to look for the PHP 7 package.
	Building a Foundation

	Installing a *AMP package
	AMP refers to Apache, MySQL, and PHP (also Perl and Python). The * refers to Linux, Windows, Mac, and so on (that is, LAMP, WAMP, and MAMP). This approach is often the easiest, but gives you less control over the initial PHP installation. On the other...
	Chapter 1

	In the preceding table, we've enlisted the *AMP packages where * is replaced by W for
	Windows, M for Mac OS X, and L for Linux.

	There's more…
	When you install a pre-compiled binary from a package, only core extensions are installed. Non-core PHP extensions must be installed separately.
	It's worth noting that PHP 7 installation on cloud computing platforms will often follow the installation procedure outlined for pre-compiled binaries. Find out if your cloud environment uses Linux, Mac, or Windows virtual machines, and then follow th...

	See also
	Instructions on how to compile a C program using Visual Studio can be found at
	Another possible way to test PHP 7 is by using a virtual machine. Here are a couple of tools with their links, which might prove useful:
	Building a Foundation

	Aside from unit testing and running PHP directly from the command line, the obvious way to test your applications is to use a web server. For long-term projects, it would be beneficial to develop a virtual host definition for a web server that most cl...

	How to do it… (1)
	1. To activate the PHP web server, first change to the directory that will serve as the base for your code.
	2. You then need to supply the hostname or IP address and, optionally, a port. Here is an example you can use to run the recipes supplied with this book:
	You will see output on your screen that looks something like this:
	Chapter 1

	3. As the built-in web server continues to service requests, you will also see access information, HTTP status codes, and request information.
	4. If you need to set the web server document root to a directory other than the current one, you can use the -t flag. The flag must then be followed by a valid directory path. The built-in web server will treat this directory as if it were the web do...
	Here is an example using the -t flag:
	Here is an example of the output:
	Building a Foundation

	How to do it… (2)
	1. Define a MySQL database, php7cookbook. Also assign rights to the new database to a user called cook with the password book. The following table summarizes these settings:
	2. Here is an example of SQL needed to create the database:
	Unit testing is arguably the most popular means of testing PHP code. Most developers will agree that a solid suite of tests is a requirement for any properly developed project. Few developers actually write these tests. A lucky few have an independent...
	The place to find the latest version of PHPUnit is https://phpunit.de/. PHPUnit5.1 and above support PHP 7. Click on the link for the desired version, and you will download a phpunit.phar file. You can then execute commands using the archive, as follows:
	Chapter 1

	When developing PHP using an object-oriented programming (OOP) approach, the recommendation is to place each class in its own file. The advantage of following this recommendation is the ease of long-term maintenance and improved readability. The disad...

	Getting ready
	The minimum requirement for PHP autoloading is to define a global autoload() function. This is a magic function called automatically by the PHP engine when a class is requested but where said class has not been included. The name of the requested clas...
	autoload() is a function, it must be in the global namespace; however, there are limitations on its use. Accordingly, in this recipe, we will make use of the spl_autoload_register() function, which gives us more flexibility.

	How to do it… (3)
	2. The first method we will present simply loads a file. We use file_exists() to check before running require_once(). The reason for this is that if the file is not found, require_once() will generate a fatal error that cannot be caught using PHP 7's ...
	3. We can then test the return value of loadFile() in the calling program and loop through a list of alternate directories before throwing an Exception if it's ultimately unable to load the file.
	Building a Foundation

	4. Next, we define the method that calls loadFile() and actually performs the logic to locate the file based on the namespaced classname. This method derives a filename by converting the PHP namespace separator \ into the directory separator appropria...
	5. Next, the method loops through an array of directories we call self::$dirs, using each directory as a starting point for the derived filename. If not successful, as a last resort, the method attempts to load the file from the current directory. If ...
	6. Next, we need a method that can add more directories to our list of directories to test. Notice that if the value provided is an array, array_merge() is used. Otherwise, we simply add the directory string to the self::$dirs array:
	Chapter 1

	This allows us to also create an instance of Loader if desired:

	How it works…
	In order to use the autoloader class that we just defined, you will need to require Loader. php. If your namespace files are located in a directory other than the current one, you should also run Loader::init() and supply additional directory paths.
	In order to make sure the autoloader works, we'll also need a test class. Here is a definition of
	Building a Foundation

	Next, get an instance of a class that has not already been loaded:
	Finally, try to get a fake class that does not exist. Note that this will throw an error:
	Very frequently, it is of interest to scan a website and extract information from specific tags. This basic mechanism can be used to trawl the web in search of useful bits of information. At other times you need to get a list of tags and the SRC...

	How to do it… (4)
	1. First of all, we need to grab the contents of the target website. At first glance it seems that we should make a cURL request, or simply use file_get_contents().
	The problem with these approaches is that we will end up having to do a massive
	amount of string manipulation, most likely having to make inordinate use of the dreaded regular expression. In order to avoid all of this, we'll simply take advantage of an already existing PHP 7 class DOMDocument. So we create a DOMDocument instance,...
	Chapter 1

	2. Next, we need to extract the tags which are of interest. We use the getElementsByTagName() method for this purpose. If we wish to extract all tags, we can supply * as an argument:
	3. It might also be of interest to extract certain attributes rather than tags. Accordingly, we define another method for this purpose. In this case, we need to parse through all tags and use getAttribute(). You'll notice that there is a parameter for...
	Building a Foundation

	How it works… (1)
	In order to use the new Hoover class, initialize the autoloader (described previously) and create an instance of the Hoover class. You can then run the Hoover::getTags() method to produce an array of tags from the URL you specify as an argument.
	class to scan the O'Reilly website for <A> tags:
	Chapter 1

	The output will look something like this:

	See also (1)
	Sometimes you need to scan a website, but go one level deeper. For example, you want to build a web tree diagram of a website. This can be accomplished by looking for all <A> tags and following the HREF attributes to the next web page. Once you have a...
	Building a Foundation

	How to do it… (5)
	1. A core component of a deep web scanner is a basic Hoover class, as described previously. The basic procedure presented in this recipe is to scan the target website and hoover up all the HREF attributes. For this purpose, we define a Application\ We...
	2. Next, we define a method that will hoover the tags for each website represented in the scan list. In order to prevent the scanner from trawling the entire World Wide Web (WWW), we've limited the scan to the target domain. The reason why yield from ...
	3. In order to keep within the same domain, we need a method that will return the domain from the URL. We use the convenient parse_url() function for this purpose:
	Chapter 1

	How it works… (2)
	autoloading (as described earlier in this chapter):
	Next, get an instance of our new class:
	At this point, you can retrieve URL and tag information from URL parameters. The PHP 7 null coalesce operator is useful for establishing fallback values:
	Some simple HTML will display results:

	See also (2)
	For more information on generators and yield from, please see the article at
	Building a Foundation

	For the most part, PHP 5.x code can run unchanged on PHP 7. There are a few changes, however, that are classified as backwards incompatible. What this means is that if your PHP 5 code is written in a certain way, or uses functions that have been remov...

	Getting ready (1)
	f Scans your code file and converts PHP 5 functionality that has been removed to its
	equivalent in PHP 7
	f Adds comments with // WARNING where changes in language usage have occurred, but where a re-write is not possible
	The core of this recipe is the new PHP 7 preg_replace_callback_array() function. What this amazing function allows you to do is to present an array of regular expressions as keys, with the value representing an independent callback. You can then pass ...

	How to do it… (6)
	1. In a new class Application\Parse\Convert, we begin with a scan() method, which accepts a filename as an argument. It checks to see if the file exists. If so, it calls the PHP file() function, which loads the file into an array, with each array elem...
	Chapter 1

	2. Next, we start passing a series of key/value pairs. The key is a regular expression, which is processed against the string. Any matches are passed to the callback, which is represented as the value part of the key/value pair. We check for opening a...
	3. Next is a series of warnings when certain operations are detected and there is a potential code-break between how they're handled in PHP 5 versus PHP 7. In all these cases, the code is not re-written. Instead, an inline comment with the word WARNIN...
	Building a Foundation
	Chapter 1
	Building a Foundation (1)

	How it works… (3)
	Chapter 1
	To use the converter, run the following code from the command line. You'll need to supply the filename of the PHP 5 code to be scanned as an argument.

	See also (3)
	In this chapter we will discuss and understand the syntax differences between PHP 5 and
	PHP 7, featuring the following recipes:
	f Understanding the abstract syntax tree
	f Understanding differences in parsing
	f Understanding differences in foreach() handling f Improving performance using PHP 7 enhancements f Iterating through a massive file
	f Uploading a spreadsheet into a database
	f Recursive directory iterator
	In this chapter we will move directly into PHP 7, presenting recipes that take advantage of new high performance features. First, however, we will present a series of smaller recipes that serve to illustrate the differences in how PHP 7 handles parame...
	PHP 7 introduced a new layer referred to as the Abstract Syntax Tree (AST), which effectively decouples the parsing process from the pseudo-compile process. Although the new layer has little or no impact on performance, it gives the language a new uni...
	Using PHP 7 High Performance Features

	Another benefit of AST is the process of dereferencing. Dereferencing, simply put, refers to the ability to immediately acquire a property from, or run a method of, an object, immediately access an array element, and immediately execute a callback. In...
	As a developer, it might be of interest for you to be free from certain syntax restrictions imposed in PHP 5 and earlier. Aside from the uniformity of the syntax mentioned previously, where you'll see the most improvement in syntax is the ability to c...

	How to do it… (7)
	1. Any function or method that returns a callback can be immediately executed by simply appending parentheses () (with or without parameters). An element can be immediately dereferenced from any function or method that returns an array by simply indic...
	Chapter 2

	 [1] dereferences array element 1, which returns a callback
	 () executes this callback, which returns an array of two elements
	 [2] dereferences array element 2, which returns a callback
	 (100) executes this callback, supplying a value of 100, which returns
	3. The following is a more substantive example that takes advantage of AST syntax to define a data filtering and validating class. First of all, we define the Application\ Web\Securityclass. In the constructor, we build and define two arrays. The firs...
	4. We want to be able to call this functionality in a developer-friendly manner. Thus, if we want to filter digits, then it would be ideal to run a command such as this:
	5. To accomplish this we define the magic method call(), which gives us access to
	non-existent methods:
	Using PHP 7 High Performance Features

	$this->validate. If both sub-patterns produce a sub-match, we assign the first sub-match to $prefix, and the second sub-match $function. These end up as variable parameters when executing the appropriate callback.

	How it works… (4)
	Next, we define a block of test data:
	Finally, we call each filter and validator for each item of test data:
	Chapter 2

	Here is the output of some input strings:
	Using PHP 7 High Performance Features

	See also (4)
	In PHP 5, expressions on the right side of an assignment operation were parsed right-to-left. In PHP 7, parsing is consistently left-to-right.

	How to do it… (8)
	1. A variable-variable is a way of indirectly referencing a value. In the following example, first $$foo is interpreted as ${$bar}. The final return value is thus the value of
	2. In the next example we have a variable-variable $$foo, which references a multi-
	3. In PHP 5, parsing occurs right-to-left, which means the PHP engine would be looking for an $foo array, with a bar key and a baz. sub-key The return value of the element would then be interpreted to obtain the final value ${$foo['bar'] ['baz']}.
	4. In PHP 7, however, parsing is consistently left-to-right, which means that $foo is
	5. In the next example you can see that $foo->$bar['bada'] is interpreted quite differently in PHP 5, compared with PHP 7. In the following example, PHP 5 would first interpret $bar['bada'], and reference this return value against a $foo object instan...
	Chapter 2

	6. The last example is the same as the one immediately above, except that the return value is expected to be a callback, which is then immediately executed as follows:

	How it works… (5)
	Place the code examples illustrated in 1 and 2 into a single PHP file that you can call chap_02_understanding_diffs_in_parsing.php. Execute the script first using PHP 5, and you will notice that a series of errors will result, as follows:
	Using PHP 7 High Performance Features

	The reason for the errors is that PHP 5 parses inconsistently, and arrives at the wrong conclusion regarding the state of the variable variables requested (as previously mentioned). Now you can go ahead and add the remaining examples, as shown in step...

	See also (5)
	In certain relatively obscure circumstances, the behavior of code inside a foreach()
	loop will vary between PHP 5 and PHP 7. First of all, there have been massive internal improvements, which means that in terms of sheer speed, processing inside the foreach() loop will be much faster running under PHP 7, compared with PHP 5. Problems ...

	How to do it… (9)
	1. Consider the following block of code:
	Chapter 2

	2. In both PHP 5 and 7, the output would appear as follows:
	3. If you add an assignment before the loop, however, the behavior changes:
	4. Compare the output of PHP 5 and 7:
	5. Working with functions that reference the internal array pointer also caused inconsistent behavior in PHP 5. Take the following code example:
	6. Notice that the output running in PHP 7 is normalized and consistent:
	Using PHP 7 High Performance Features

	7. Adding a new element inside the foreach() loop, once the array iteration by reference is complete, is also problematic in PHP 5. This behavior has been made consistent in PHP 7. The following code example demonstrates this:
	8. We will observe the following output:
	Have a look at this example:
	10. You will observe the following output:
	11. Finally, we have a case where you are iterating through an array by reference, with a nested foreach() loop, which itself iterates on the same array by reference. In PHP 5 this construct simply did not work. In PHP 7 this has been fixed. The follo...
	Chapter 2

	12. And here is the output:

	How it works… (6)
	Add these code examples to a single PHP file, chap_02_foreach.php. Run the script under PHP 5 from the command line. The expected output is as follows:
	Using PHP 7 High Performance Features

	Run the same script under PHP 7 and notice the difference:

	See also (6)
	For more information, consult the RFC addressing this issue, which was accepted. A write-up
	One trend that developers are taking advantage of is the use of anonymous functions. One classic problem, when dealing with anonymous functions, is to write them in such a way that any object can be bound to $this and the function will still work. The...

	How to do it… (10)
	To take advantage of call(), execute an anonymous function in a lengthy loop. In this example, we will demonstrate an anonymous function, that scans through a log file, identifying IP addresses sorted by how frequently they appear:
	Chapter 2

	we accept a filename as an argument. The log file is opened as an SplFileObject
	2. Next, we define a generator that iterates through the file, line by line:
	3. Finally, we define a method that looks for, and extracts as a sub-match, an IP
	address:
	Using PHP 7 High Performance Features

	How it works… (7)
	Next we define the anonymous function, which processes one line in the log file. If an IP address is detected, it becomes a key in the $frequency array, and the current value for this key is incremented:
	We then loop through the iteration of lines in each log file found, processing IP addresses:
	Chapter 2

	Finally, we reverse-sort the array, but maintain the keys. The output is produced in a simple
	The output will vary depending on which access.log you process. Here is a sample:
	Using PHP 7 High Performance Features

	There's more… (1)
	Many of the PHP 7 performance improvements have nothing to do with new features and functions. Rather, they take the form of internal improvements, which are invisible until you start running your programs. Here is a short list of improvements that fa...
	Chapter 2

	Functions such as file_get_contents() and file() are quick and easy to use however, owing to memory limitations, they quickly cause problems when dealing with massive files.
	The default setting for the php.ini memory_limit setting is 128 megabytes. Accordingly, any file larger than this will not be loaded.
	Another consideration when parsing through massive files is how quickly does your function or class method produce output? When producing user output, for example, although it might at first glance seem better to accumulate output in an array. You wou...
	immediate results.

	How to do it… (11)
	As mentioned before, the file* functions (that is, file_get_contents()), are not suitable for large files. The simple reason is that these functions, at one point, have the entire contents of the file represented in memory. Accordingly, the focus of t...
	Using PHP 7 High Performance Features

	In a slight twist, however, instead of using the f* functions directly, instead we will use the
	2. We then define a construct() method that accepts a filename as an argument and populates the $file property with an SplFileObject instance. This is also a good place to throw an exception if the file does not exist:
	3. Next we define a method fileIteratorByLine()method which uses fgets() to read one line of the file at a time. It's not a bad idea to create a complimentary fileIteratorByLength()method that does the same thing but uses fread() instead. The method t...
	Chapter 2

	instance. This method accepts as arguments either ByLine or ByLength, which refer to the two methods defined in the previous step. This method also needs to accept $numBytes in case ByLength is called. The reason we need a
	file only in one direction in this example:

	How it works… (8)
	Using PHP 7 High Performance Features
	We then provide an example of something useful to do, in this case, defining an average of
	words per line:
	The expected output (too large to show here!) shows us that there are 566,095 words in the project Gutenberg version of War and Peace. Also, we find the average number of words per line is eight.
	Although PHP does not have any direct capability to read a specific spreadsheet format (that is, XLSX, ODS, and so on), it does have the ability to read (CSV Comma Separated Values) files. Accordingly, in order to process customer spreadsheets, you wi...

	Getting ready…
	When uploading a spreadsheet (that is, a CSV file) into a database, there are three major
	considerations:
	f Iterating through a (potentially) massive file
	f Extracting each spreadsheet row into a PHP array
	f Inserting the PHP array into the database
	Chapter 2

	Massive file iteration will be handled using the preceding recipe. We will use the fgetcsv() function to convert a CSV row into a PHP array. Finally, we will use the (PDO PHP Data Objects) class to make a database connection and perform the insert.

	How to do it… (12)
	instance based on a set of parameters supplied to the constructor:
	Using PHP 7 High Performance Features

	3. We also need to add Csv to the list of allowed iterator methods:

	How it works… (9)
	Chapter 2
	This allows us to catch both exceptions and errors:
	We then take advantage of the PDO prepare/execute functionality. The SQL for the prepared
	statement uses ? to represent values that are supplied in a loop:
	We then use foreach() to loop through the file iterator. Each yield statement produces
	an array of values that represents a row in the database. We can then use these values with PDOStatement::execute() to execute the prepared statement, inserting the row of values into the database:
	You can then examine the database to verify that the data was successfully inserted.
	Getting a list of files in a directory is extremely easy. Traditionally, developers have used the
	glob() function for this purpose. To recursively get a list of all files and directories from a specific point in a directory tree is more problematic. This recipe takes advantage of an
	purpose admirably.
	Using PHP 7 High Performance Features

	What this class does is to parse the directory tree, finding the first child, then it follows the branches, until there are no more children, and then it stops! Unfortunately this is not what we want. Somehow we need to get the RecursiveDirectoryItera...

	How to do it… (13)
	Chapter 2
	3. Next, we decide what to do with the iteration. One possibility is to mimic the output of the Linux ls -l -R command. Notice that we use the yield keyword, effectively making this method into a Generator, which can then be called from the outside. E...
	Using PHP 7 High Performance Features

	4. You may have noticed that the method call includes a file pattern. We need a way of filtering the recursion to only include files that match. There is another iterator available from the SPL that perfectly suits this need: the RegexIterator class:
	5. Finally, here is another method, but this time we will mimic the dir /s command:

	How it works… (10)
	Chapter 2
	The output for ls() will look something like this:
	The output for dir() will appear as follows:
	In this chapter we will cover the following topics:
	f Developing functions
	f Hinting at data types
	f Using return value data typing
	f Using iterators
	f Writing your own iterator using generators
	in PHP version 4. Functional programming is a programming paradigm—a style of building the structure and elements of computer programs—that treats computation as the evaluation of mathematical functions and avoids changing-state and mutable data. This...
	Working with PHP Functions

	The most difficult aspect is deciding how to break up programming logic into functions. The mechanics of developing a function in PHP, on the other hand, are quite easy. Just use the function keyword, give it a name, and follow it with parentheses.

	How to do it… (14)
	1. The code itself goes inside curly braces as follows:
	2. You can define one or more parameters. To make one of them optional, simply assign
	a default value. If you are not sure what default value to assign, use NULL:
	Chapter 3

	3. If you don't know how many parameters will be supplied to your function, or if you want to allow for an infinite number of parameters, use ... followed by a variable name. All parameters supplied will appear as an array in the variable:
	4. A function can call itself. This is referred to as recursion. The following function
	performs a recursive directory scan:
	5. Functions are constrained when defined within a PHP namespace. This characteristic can be used to your advantage to provide additional logical separation between libraries of functions. In order to anchor the namespace, you need to add the use keyw...
	Working with PHP Functions

	namespace name:

	How it works… (11)
	Chapter 3
	It is considered best practice to place all logically related functions into a separate PHP file. Create a file called chap_03_developing_functions_library.php and place these functions (described previously) inside:
	This file is then included in the code that uses these functions.
	To call the someName() function, use the name and supply the parameter.
	You can call the someOtherName() function using one or two parameters, as shown here:
	The someInfinite() function accepts an infinite (or variable) number of parameters. Here are a couple of examples calling this function:
	Working with PHP Functions

	The output looks like this:
	We can call someInfinite() as follows:
	The output looks like this: (1)
	Chapter 3

	In many cases when developing functions, you might reuse the same library of functions in other projects. Also, if you work with a team, your code might be used by other developers. In order to control the use of your code, it might be appropriate to ...

	How to do it… (15)
	1. Parameters in functions can be prefixed by a type hint. The following type hints are
	available in both PHP 5 and PHP 7:
	 Array
	 Class
	 Callable
	2. If a call to the function is made, and the wrong parameter type is passed, a TypeError is thrown. The following example requires an array, an instance of DateTime, and an anonymous function:
	3. In PHP 7, presuming the appropriate declare() directive is made, scalar (that is, integer, float, boolean, and string) type hints are allowed. Another function demonstrates how this is accomplished. At the top of the code library file which contain...
	Working with PHP Functions

	4. Now you can define a function that includes scalar type hints:
	5. In PHP 7, assuming strict type hinting has been declared, boolean type hinting works a bit differently from the other three scalar types (that is, integer, float, and
	string). You can supply any scalar as an argument and no TypeError will be thrown! However, the incoming value will automatically be converted to the boolean data type once passed into the function. If you pass any data type other than scalar (that is...

	How it works… (12)
	In our calling code, you would then include the file:
	Chapter 3

	As you can see from the output shown at the end of this sub-section, when passing the correct data types there is no problem. When passing the incorrect types, a TypeError is thrown.
	As expected, the first call to the function works, and the second throws a TypeError. When type hinting for boolean values, any scalar value passed will not cause a TypeError
	to be thrown! Instead, the value will be interpreted into its boolean equivalent. If you subsequently return this value, the data type will be changed to boolean.
	To test this, call the someBoolHint() function defined previously, and pass any scalar value in as an argument. The var_dump() method reveals that the data type is always boolean:
	Working with PHP Functions

	If you now try the same function call, but pass in a non-scalar data type, a TypeError
	is thrown:
	Here is the overall output:
	Chapter 3

	See also (7)
	Generators as arguments. See this for more information:
	For a background discussion on the rationale behind the implementation of scalar type hinting, have a look at this article:
	PHP 7 allows you to specify a data type for the return value of a function. Unlike scalar type hinting, however, you don't need to add any special declarations.

	How to do it… (16)
	1. This example shows you how to assign a data type to a function return value. To assign a return data type, first define the function as you would normally. After the closing parenthesis, add a space, followed by the data type and a colon:
	2. Anything returned by the function, regardless of its data type inside the function, will be converted to the declared data type as a return value. Notice, in this example, the values of $a, $b, and $c are added together to produce a single sum, whi...
	In this case, however, the return data type is declared as string, which overrides
	PHP's type-juggling process:
	Working with PHP Functions

	3. You can also assign classes as a return data type. In this example, we assign a return type of DateTime, part of the PHP DateTime extension:
	4. If a function has a return data type, and you return the wrong data type in your function code, a TypeError will be thrown at runtime. This function assigns a return type of DateTime, but returns a string instead. A TypeError will be thrown, but no...

	How it works… (13)
	Chapter 3
	As expected, the output is a string:
	Now you can call convertsToString() and supply three integers as arguments. Notice that the return type is string:
	To demonstrate that, you can assign a class as a return value, call makesDateTime() with three integer parameters:
	Working with PHP Functions

	There's more… (2)
	See also (8)
	For more information on return type declarations, see the following articles:
	Chapter 3

	For information on nullable types, please refer to this article:
	An iterator is a special type of class that allows you to traverse a container or list. The keyword here is traverse. What this means is that the iterator provides the means to go through a list, but it does not perform the traversal itself.
	The SPL provides a rich assortment of generic and specialized iterators designed for different contexts. The ArrayIterator, for example, is designed to allow object-oriented traversal of arrays. The DirectoryIterator is designed for filesystem scanning.
	Certain SPL iterators are designed to work with others, and add value. Examples include FilterIterator and LimitIterator. The former gives you the ability to remove unwanted values from the parent iterator. The latter provides a pagination capability ...
	Finally, there are a series of recursive iterators, which allow you to repeatedly call the parent iterator. An example would be RecursiveDirectoryIterator which scans a directory tree all the way from a starting point to the last possible subdirectory.

	How to do it… (17)
	1. We first examine the ArrayIterator class. It's extremely easy to use. All you need to do is to supply an array as an argument to the constructor. After that you can use any of the methods that are standard to all SPL-based iterators, such as curren...
	2. As an example of a practical use for the iterator, have a look at this example. It takes an iterator and produces a series of HTML and tags:
	Working with PHP Functions

	3. Alternatively, you can simply wrap the ArrayIterator instance into a simple
	Chapter 3

	6. LimitIterator adds a basic pagination aspect to your applications. To use this iterator, you only need to supply the parent iterator, an offset, and a limit.
	LimitIterator will then only produce a subset of the entire data set starting at the offset. Taking the same example mentioned in step 2, we'll paginate the results coming from our database query. We can do this quite simply by wrapping the iterator p...
	8. Next, we plug the ArrayIterator into a FilterIterator instance. Note that we are using the new PHP 7 anonymous class feature. In this case the anonymous
	and provide an offset (2 in this example) and a limit (6 in this example):
	Working with PHP Functions

	10. We could then define a simple function to display output, and call each iterator in turn to see the results on a simple array produced by range('A', 'Z'):
	11. Here is a variation that produces every other letter by stacking a FilterIterator
	Chapter 3

	13. Returning to our example that produces a list of country names, suppose, instead of only the country name, we wished to iterate through a multi-dimensional array consisting of country names and ISO codes. The simple iterators mentioned so far woul...
	14. First of all, we need to define a method that uses the database connection class mentioned previously to pull all columns from the database. As before, we return an ArrayIterator instance populated with data from the query:
	15. At first glance one would be tempted to simply wrap a standard ArrayIterator instance inside RecursiveArrayIterator. Unfortunately, this approach only performs a shallow iteration, and doesn't give us what we want: an iteration through all element...
	16. Although this returns an iteration where each item represents a row from the database query, in this case we wish to provide an iteration that will iterate through all columns of all rows returned by the query. In order to accomplish this, we'll n...

	How it works… (14)
	Working with PHP Functions
	Next, you can process input parameters for the country name and the number of items per page. The current page number will start at 0 and can be incremented (next page) or decremented (previous page):
	Now you're ready to fire up the database connection and run a simple SELECT query. This should be placed in a try {} catch {} block. You can then place the iterators to be stacked inside the try {} block:
	Now we're ready for the HTML. In this simple example we present a form that lets the user select the number of items per page and the country name:
	Chapter 3

	The output will look something like this:
	Finally, in order to test the recursive iteration of the country database lookup, you will need to include the iterator's library file, as well as the Application\Database\Connection class:
	Working with PHP Functions

	As before, you should wrap your database query in a try {} catch {} block. You can then
	place the code to test the recursive iteration inside the try {} block:
	Chapter 3

	In the preceding set of recipes we demonstrated the use of iterators provided in the PHP 7 SPL. But what if this set doesn't provide you with what is needed for a given project? One solution would be to develop a function that, instead of building an ...
	is referred to as a generator. In fact, in the background, the PHP engine will automatically
	convert your function into a special built-in class called Generator.
	There are several advantages to this approach. The main benefit is seen when you have a large container to traverse (that is, parsing a massive file). The traditional approach has
	been to build up an array, and then return that array. The problem with this is that you are effectively doubling the amount of memory required! Also, performance is affected in that results are only achieved once the final array has been returned.
	Working with PHP Functions

	How to do it… (18)
	1. In this example we build on the library of iterator-based functions, adding a generator of our own design. In this case we will duplicate the functionality described in the section above on iterators where we stacked an ArrayIterator, FilterIterato...
	2. Because we need access to the source array, the desired filter, page number, and number of items per page, we include the appropriate parameters into a single filteredResultsGenerator() function. We then calculate the offset based on the page numbe...
	through the array, apply the filter, and continue the loop if the offset has not yet been reached, or break if the limit has been reached:
	3. You'll notice the primary difference between this function and others is the yield keyword. The effect of this keyword is to signal the PHP engine to produce a Generator instance and encapsulate the code.

	How it works… (15)
	To demonstrate the use of the filteredResultsGenerator() function we'll have you implement a web application that scans a web page and produces a filtered and paginated list of URLs hoovered from HREF attributes.
	Chapter 3

	You will then need to gather input from the user regarding which URL to scan, what string to use as a filter, how many items per page, and the current page number.
	You are then in a position to define variables used in links for previous and next pages in the paginated list. Note that you could also apply a sanity check to make sure the next page doesn't go off the end of the result set. For the sake of brevity,...
	from the target URL:
	Working with PHP Functions

	Finally, we define HTML output that renders an input form and runs our generator through the
	Chapter 3

	Here is an example of the output:
	In this chapter we will cover:
	f Developing classes
	f Extending classes
	f Using static properties and methods
	f Using namespaces
	f Defining visibility f Using interfaces f Using traits
	f Implementing anonymous classes
	In this chapter, we will consider recipes that take advantage of the object-oriented programming (OOP) capabilities available in PHP 7.0, 7.1, and above. Most of the OOP functionality available in PHP 7.x is also available in PHP 5.6. A new feature in...
	Working with PHP Object-Oriented Programming

	Developing classes
	The traditional development approach is to place the class into its own file. Typically, classes contain logic that implements a single purpose. Classes are further broken down into
	How to do it...
	1. Create a file to contain the class definition. For the purposes of autoloading it is recommended that the filename match the classname. At the top of the file, before the keyword class, add a DocBlock. You can then define properties and methods. In...
	Chapter 4

	2. It's possible to define more than one class per file, but is not considered best practice. In this example we create a file, NameAddress.php, which defines two classes, Name and Address:
	Working with PHP Object-Oriented Programming

	3. Class names are case-insensitive. Duplications will be flagged as errors. In this example, in a file TwoClass.php, we define two classes, TwoClass and twoclass:
	Chapter 4

	4. PHP 7.1 has addressed inconsistent behavior in the use of the keyword $this. Although permitted in PHP 7.0 and PHP 5.x, any of the following uses of $this will now generate an error as of PHP 7.1, if $this is used as:
	 A parameter
	 Indirectly via reference
	5. If you need to create an object instance but don't care to define a discreet class, you can use the generic stdClass which is built into PHP. stdClass allows you to define properties on the fly without having to define a discreet class that extends...
	6. This facility is used in a number of different places in PHP. As an example, when you use PHP Data Objects (PDO) to do a database query, one of the fetch modes is

	How it works...
	Working with PHP Object-Oriented Programming
	The output will show the initial value of the $test property, followed by the new value modified by calling setTest():
	The next example has you define two classes, Name and Address in a single file
	NameAddress.php. You can call and use these two classes with the following code:
	Chapter 4

	The output from this example is shown next:
	Step 3 also shows two class definitions in one file. In this case, however, the objective is to demonstrate that classnames in PHP are case-insensitive. Place the code into a file, TwoClass.php. When you try to include the file, an error is generated:
	To demonstrate the direct use of stdClass, create an instance, assign a value to a property, and use var_dump()to display the results. To see how stdClass is used internally, use var_dump() to display the results of a PDO query where the fetch mode is...
	Working with PHP Object-Oriented Programming

	Enter the following code:
	Here is the output:

	See also…
	For more information on refinements in PHP 7.1 on the keyword $this, please see

	Extending classes
	One of the primary reasons developers use OOP is because of its ability to re-use existing code, yet, at the same time, add or override functionality. In PHP, the keyword extends is used to establish a parent/child relationship between classes.
	How to do it...
	Chapter 4
	2. You can force any developer using your class to define a method by marking it abstract. In this example, the Base class defines as abstract the validate() method. The reason why it must be abstract is because it would be impossible to determine exa...
	Working with PHP Object-Oriented Programming

	3. PHP only supports a single line of inheritance. The next example shows a class,
	Chapter 4

	4. To satisfy a type-hint, any child of the target class can be used. The test() function, shown in the following code snippet, requires an instance of the Base class as an argument. Any class within the line of inheritance can be accepted as an argum...

	How it works...
	In the first bullet point, a Base class and a Customer class were defined. For the sake of demonstration, place these two class definitions in a single file, chap_04_oop_extends. php, and add the following code:
	Working with PHP Object-Oriented Programming

	To illustrate the use of an abstract method, imagine that you wish to add some sort of validation capability to any class that extends Base. The problem is that there is no way to know what might be validated in the inherited classes. The only thing t...
	Take the same Base class mentioned in the preceding explanation and add a new method, validate(). Label the method as abstract, and do not define any code. Notice what happens when the child Customer class extends Base.
	Chapter 4

	You can then add the following procedural code to test the results:
	Here is the output:
	To show a single line of inheritance, add a new Member class to the first example of Base and
	Working with PHP Object-Oriented Programming

	Create an instance of Member, and notice, in the following code, that all properties and
	methods are available from every inherited class, even if not directly inherited:
	Here is the output: (1)
	Now define a function, test(), which takes an instance of Base as an argument:
	Chapter 4

	Here is the output: (2)
	However, if you try to run test() with an object instance that is not in the line of inheritance, a TypeError is thrown:
	Working with PHP Object-Oriented Programming

	We can observe this in the following image:

	Using static properties and methods
	PHP lets you access properties or methods without having to create an instance of the class. The keyword used for this purpose is static.
	How to do it...
	1. At its simplest, simply add the static keyword after stating the visibility level when declaring an ordinary property or method. Use the self keyword to reference the property internally:
	Chapter 4

	2. The self keyword will bind early, which will cause problems when accessing static information in child classes. If you absolutely need to access information from the child class, use the static keyword in place of self. This process is referred to ...
	4. In many cases, the Factory design pattern is used in conjunction with static methods to produce instances of objects given different parameters. In this example, a static method factory() is defined which returns a PDO connection:
	Working with PHP Object-Oriented Programming

	How it works...
	You will see this output:
	To illustrate Late Static Binding, based on the classes Test2 and Child shown previously, try
	this code:
	The output illustrates the difference between self and static:
	Chapter 4

	You will see a list of countries pulled from the sample database:
	Working with PHP Object-Oriented Programming

	See also
	For more information on Late Static Binding, see this explanation in the PHP documentation:

	Using namespaces
	An aspect that is critical to advanced PHP development is the use of namespaces. The arbitrarily defined namespace becomes a prefix to the class name, thereby avoiding the problem of accidental class duplication, and allowing you extraordinary freedom of
	development. Another benefit to the use of a namespace, assuming it matches the directory
	How to do it...
	1. To define a class within a namespace, simply add the keyword namespace at the top
	of the code file:
	2. The only PHP code that should precede the keyword namespace would be a
	comment and/or the keyword declare:
	Chapter 4

	3. In PHP 5, if you needed to access a class in an external namespace you could prepend a use statement containing only the namespace. You would need to then prefix any class reference within this namespace with the last component of the namespace:
	4. Alternatively, you could distinctly specify all three classes:
	5. PHP 7 has introduced a syntactical improvement referred to as group use which
	greatly improves code readability:
	6. As mentioned in Chapter 1, Building a Foundation, namespaces form an integral part of the autoloading process. This example shows a demonstration autoloader which echoes the argument passed, and then attempts to include a file based on the namespac...
	Working with PHP Object-Oriented Programming

	How it works...
	For illustration purposes, define a directory structure that matches the Application* namespace. Create a base folder Application, and a sub-folder Entity. You can also include any sub-folders as desired, such as Database and Generic, used in other c...
	Chapter 4

	You can then either use the autoloader defined in Chapter 1, Building a Foundation, or use the simple autoloader mentioned previously. Place the commands to set up autoloading in a file, chap_04_oop_namespace_example_1.php. In this file, you can then ...
	Here is the output:
	Working with PHP Object-Oriented Programming

	You can now create class instances using only the class name:
	When you run this script, here is the output:
	Chapter 4

	Again, when you run this block of code, the output will be the same as the preceding output:

	Defining visibility
	Deceptively, the word visibility has nothing to do with application security! Instead it is simply a mechanism to control the use of your code. It can be used to steer an inexperienced developer away from the public use of methods that should only be ...
	How to do it...
	2. In this example, a Base class is defined with a protected property $id. In order to access this property, the getId() and setId() public methods are defined. The protected method generateRandId() can be used internally, and is inherited in the Cust...
	Working with PHP Object-Oriented Programming

	3. Mark a property or method as private to prevent it from being inherited or visible from outside the class definition. This is a good way to create a class as a singleton.
	4. The next code example shows a class Registry, of which there can only be one instance. Because the constructor is marked as private, the only way an instance can be created is through the static method getInstance():
	Chapter 4
	Working with PHP Object-Oriented Programming

	How it works...
	Customer. Next, write code to create instances of each:
	Notice that the following code works OK, and is in fact considered the best practice:
	Even though $id is protected, the corresponding methods, getId() and setId(), are both public, and therefore accessible from outside the class definition. Here is the output:
	Chapter 4

	are not accessible from outside the class definition:
	The following output shows the expected errors:

	See also

	Using interfaces
	Interfaces are useful tools for systems architects and are often used to prototype an Application Programming Interface (API). Interfaces don't contain actual code, but can contain names of methods as well as method signatures.
	Working with PHP Object-Oriented Programming

	How to do it...
	1. Methods identified by the interface cannot contain actual code implementations. You can, however, specify the data types of method arguments.
	Chapter 4

	4. Interfaces can be used to satisfy a type hint. The following class, ListFactory, contains a factory() method, which initializes any class that implements ConnectionAwareInterface. The interface is a guarantee that the setConnection() method is defi...
	Working with PHP Object-Oriented Programming

	5. If a class implements multiple interfaces, a naming collision occurs if method signatures do not match. In this example, there are two interfaces, DateAware and TimeAware. In addition to defining the setDate() and setTime() methods, they both defin...
	Chapter 4

	6. As the code block stands, a fatal error will be generated (which cannot be caught!). To resolve the problem, the preferred approach would be to remove the definition of setBoth() from one or the other interface. Alternatively, you could adjust the ...

	How it works...
	The database parameters in this example are assumed to be in a database configuration file indicated by the DB_CONFIG_FILE constant.
	Working with PHP Object-Oriented Programming

	Here is the output for country list:
	Chapter 4

	If you want to examine what happens when multiple interfaces are implemented, but where the method signature differs, enter the code shown in the preceding step 4 into a file, chap_04_oop_interfaces_collisions.php. When you try to run the file, an err...
	If you make the following adjustment in the TimeAware interface, no errors will result:

	Using traits
	If you have ever done any C programming, you are perhaps familiar with macros. A macro is a predefined block of code that expands at the line indicated. In a similar manner, traits can contain blocks of code that are copied and pasted into a class at ...
	Working with PHP Object-Oriented Programming

	How to do it...
	1. Traits are identified with the keyword trait, and can contain properties and/or methods. You may have noticed duplication of code when examining the previous recipe featuring the CountryList and CustomerList classes. In this example, we will re-fac...
	2. Traits are used in situations where there is duplication of code between classes. Please note, however, that the conventional approach to creating an abstract class and extending it might have certain advantages over using traits. Traits cannot be ...
	Chapter 4

	6. Methods in traits override inherited methods.
	7. In the following example, you will notice that the return value for the setId() method differs between the Base parent class and the Test trait. The Customer class inherits from Base, but also uses Test. In this case, the method defined in the trai...
	Working with PHP Object-Oriented Programming

	8. Methods directly defined in the class that use the trait override duplicate methods defined in the trait.
	Chapter 4

	10. Use the insteadof keywords to resolve method name conflicts when using multiple traits. In conjunction, use the as keyword to alias method names.
	Working with PHP Object-Oriented Programming

	How it works...
	From step 1, you learned that traits are used in situations where there is duplication of code. You need to gauge whether or not you could simply define a base class and extend it, or whether using a trait better serves your purposes. Traits are espec...
	As you can see from the output (shown next), the property $id is stored as an instance of
	stdClass(), which is the behavior defined in the trait:
	Chapter 4

	As you can see from the following output, the $id property is stored as an integer, as defined
	Working with PHP Object-Oriented Programming

	In step 10, you learned how to resolve duplicate method name conflicts when using multiple traits. Copy the block of code shown in step 11 into a separate file, chap_04_oop_trait_ multiple.php. Add the following code:

	Implementing anonymous classes
	PHP 7 introduced a new feature, anonymous classes. Much like anonymous functions, anonymous classes can be defined as part of an expression, creating a class that has no name. Anonymous classes are used in situations where you need to create an object...
	Chapter 4

	How to do it...
	1. An alternative to stdClass is to define an anonymous class.
	In the definition, you can define any properties and methods (including magic methods). In this example, we define an anonymous class with two properties and a magic method, construct():
	2. An anonymous class can extend any class.
	In this example, an anonymous class extends FilterIterator, and overrides both the construct() and accept() methods. As an argument, it accepts ArrayIterator $b, which represents an array of 10 to 100 in increments of 10. The second argument serves as...
	3. An anonymous class can implement an interface.
	In this example, an anonymous class is used to generate an HTML color code chart.
	The class implements the built-in PHP Countable interface. A count() method is defined, which is called when this class is used with a method or function that requires Countable:
	Working with PHP Object-Oriented Programming

	4. Anonymous classes can use traits.
	5. This last example is a modification from the preceding one defined immediately. Instead of defining a class Test, we define an anonymous class instead:

	How it works...
	Chapter 4
	In an anonymous class you can define any properties or methods. Using the preceding example, you could define an anonymous class that accepts constructor arguments, and where you can access properties. Place the code described in step 2 into a test sc...
	Here is the output from the anonymous class:
	In order to use FilterIterator you must override the accept() method. In this method, you define criteria for which elements of the iteration are to be included as output. Go ahead now and add the code shown in step 4 to the test script. You can then ...
	Working with PHP Object-Oriented Programming

	In this example, a limit of 50 is established. The original ArrayIterator contains an array
	of values, 10 to 100, in increments of 10, as seen in the following output:
	Next, add code that lets you paginate through the HTML color chart:
	Finally, go ahead and present the HTML color chart as a web page:
	Chapter 4

	Notice that you can take advantage of the Countable interface by passing the instance of the anonymous class into the count() function (shown between <H1> tags). Here is the output shown in a browser window:
	Remove this line:
	Working with PHP Object-Oriented Programming

	When you run the code, you will see exactly the same output as shown in the preceding screenshot, except that the class reference will be anonymous:
	In this chapter, we will cover the following topics:
	f Using PDO to connect to a database f Building an OOP SQL query builder f Handling pagination
	f Defining entities to match database tables
	f Tying entity classes to RDBMS queries
	f Embedding secondary lookups into query results
	f Implementing jQuery DataTables PHP lookups

	Introduction (1)
	In this chapter, we will cover a series of database connectivity recipes that take advantage of the PHP Data Objects (PDO) extension. Common programming problems such as Structured Query Language (SQL) generation, pagination, and tying objects to data...
	Interacting with a Database

	Using PDO to connect to a database
	PDO is a highly performant and actively maintained database extension that has a unique advantage over vendor-specific extensions. It has a common Application Programming Interface (API) that is compatible with almost a dozen different Relational Data...
	PDO is subdivided into four main classes, as summarized in the following table:
	How to do it…
	1. Set up the database connection by creating a PDO instance.
	2. You need to construct a Data Source Name (DSN). The information contained in the DSN varies according to the database driver used. As an example, here is a DSN used to connect to a MySQL database:
	Chapter 5

	3. On the other hand, SQlite, a simpler extension, only requires the following command:
	4. PostgreSQL, on the other hand, includes the username and password directly in the DSN:
	5. The DSN could also include server-specific directives, such as unix_socket, as
	shown in the following example:
	Interacting with a Database

	6. Send an SQL command using PDO::query(). A PDOStatement instance is returned, against which you can fetch results. In this example, we are looking for the first 20 customers sorted by ID:
	Chapter 5

	8. Set the fetch mode to PDO::FETCH_OBJ to return results as a stdClass instance. Here you will note that the while() loop takes advantage of the fetch mode, PDO::FETCH_OBJ. Notice that the printf() statement refers to object properties, in contrast w...
	9. If you want to create an instance of a specific class while processing a query, set the fetch mode to PDO::FETCH_CLASS. You must also have the class definition available, and PDO::query() should set the class name. As you can see in the following c...
	10. When fetching objects, a simpler alternative to the technique shown in step 5 is to
	11. You could also use PDO::FETCH_INTO, which is essentially the same as PDO::FETCH_CLASS, but you need an active object instance instead of a class reference. Each iteration through the loop re-populates the same object instance with the current info...
	Interacting with a Database

	existing instance.
	13. Let us assume you have the following DSN and SQL (before you start thinking that this is a new form of SQL, please be assured: this SQL statement will not work!):
	14. If you then formulate your PDO connection using the default error mode, the only clue that something is wrong is that instead of producing a PDOStatement instance, the PDO::query() will return a boolean FALSE:
	15. The next example shows setting the error mode to WARNING using the constructor approach:
	16. If you need full separation of the prepare and execute phases, use PDO::prepare() and PDOStatement::execute() instead. The statement is then sent to the database server to be pre-compiled. You can then execute the statement as many times as is war...
	17. The first argument to PDO::prepare() can be an SQL statement with placeholders in place of actual values. An array of values can then be supplied to
	Chapter 5

	18. To iterate through the results in reverse, you can change the orientation of the scrollable cursor. Alternatively, and probably more easily, just reverse the ORDER BY from ASC to DESC. This line of code sets up a PDOStatement object requesting a s...
	19. You also need to specify cursor instructions during the fetch operation. This example gets the last row in the result set, and then scrolls backwards:
	20. Neither MySQL nor SQLite support scrollable cursors! To achieve the same results, try the following modifications to the preceding code:
	Interacting with a Database

	21. PDO provides support for transactions. Borrowing the code from step 9, we can wrap
	the INSERT series of commands into a transactional block:
	22. Finally, to keep everything modular and re-usable, we can wrap the PDO connection
	into a separate class Application\Database\Connection. Here, we build a connection through the constructor. Alternatively, there is a static factory() method that lets us generate a series of PDO instances:
	Chapter 5

	23. An important component of this Connection class is a generic method that can be used to construct a DSN. All we need for this to work is to establish the PDODriver as a prefix, followed by ":". After that, we simply append key/value pairs from our...
	Interacting with a Database

	How it works...
	First of all, you can copy the initial connection code from step 1 into a chap_05_pdo_ connect_mysql.php file. For the purposes of this illustration, we will assume you have created a MySQL database called php7cookbook, with a username of cook and a p...
	Chapter 5

	Here is the resulting output:
	Add the option to the PDO constructor, which sets the error mode to EXCEPTION. Now alter the SQL statement and observe the resulting error message:
	You will observe something like this:
	Placeholders can be named or positional. Named placeholders are preceded by a colon (:) in the prepared SQL statement, and are references as keys in an associative array provided to execute(). Positional placeholders are represented as question marks ...
	Interacting with a Database

	In the following example, named placeholders are used to represent values in a WHERE
	clause:
	This example shows using positional placeholders in an INSERT operation. Notice that the data to be inserted as the fourth customer includes a potential SQL injection attack. You will also notice that some awareness of the SQL syntax for the database ...
	Chapter 5

	To test the use of a prepared statement with named parameters, modify the SQL statement to add a WHERE clause that checks for customers with a balance less than a certain amount, and a level equal to either BEG, INT, or ADV (that is, beginning, interm...
	Here is the resulting output: (1)
	Instead of providing parameters when calling PDOStatement::execute(), you could alternatively bind parameters. This allows you to assign variables to placeholders. At the time of execution, the current value of the variable is used.
	Interacting with a Database

	In this example, we bind the variables $min, $max, and $level to the prepared statement:
	When the values of these variables change, the next execution will reflect the modified criteria.

	See also
	Chapter 5
	For information on the syntax and unique behavior associated with different vendor-specific PDO drivers, have a look this article:
	For a summary of PDO predefined constants, including fetch modes, cursor orientation, and
	attributes, see the following article:

	Building an OOP SQL query builder
	PHP 7 implements something called a context sensitive lexer. What this means is that words that are normally reserved can be used if the context allows. Thus, when building an object- oriented SQL builder, we can get away with using methods named and,...
	How to do it…
	Interacting with a Database
	Chapter 5
	2. Each function used to generate an SQL fragment returns the same property,
	$instance. This allows us to represent the code using a fluent interface, such as this:

	How it works…
	Interacting with a Database
	Here is the result of the precding code:

	See also
	For more information on the context-sensitive lexer, have a look at this article:

	Handling pagination
	Pagination involves providing a limited subset of the results of a database query. This is usually done for display purposes, but could easily apply to other situations. At first glance, it would seem the LimitIterator class is ideally suited for the ...
	In cases where the potential result set could be massive; however, LimitIterator is not
	such an ideal candidate, as you would need to supply the entire result set as an inner iterator, which would most likely exceed memory limitations. The second and third arguments to
	the LimitIterator class constructor are offset and count. This suggests the pagination solution we will adopt, which is native to SQL: adding LIMIT and OFFSET clauses to a given SQL statement.
	How to do it…
	pagination logic. We add properties to represent values associated with pagination,
	Chapter 5

	2. Next, we define a construct() method that accepts a base SQL statement, the current page number, and the number of lines per page as arguments. We then need to refactor the SQL string modifying or adding the LIMIT and OFFSET clauses.
	3. In the constructor, we need to calculate the offset using the current page number and the number of lines per page. We also need to check to see if LIMIT and OFFSET are already present in the SQL statement. Finally, we need to revise the statement ...
	5. In our new pagination class, we add a paginate() method, which takes a Connection instance as an argument. We also need the PDO fetch mode, and optional prepared statement parameters:
	Interacting with a Database

	6. It might not be a bad idea to provide support for the query builder class mentioned in the previous recipe. This will make updating LIMIT and OFFSET much easier. All we need to do to provide support for Application\Database\Finder is to use the cla...
	7. Now all that remains to be done is to add a getSql() method in case we need to
	confirm that the SQL statement was correctly formed:

	How it works…
	Chapter 5
	We can now get the page number and balance from $_GET parameters, and create the
	In the output portion of the script, we simply iterate through the pagination using a simple
	Interacting with a Database

	Here is page 3 of the output, where the balance is less than 1,000:

	See also
	For more information on the LimitIterator class, refer to this article:

	Defining entities to match database tables
	A very common practice among PHP developers is to create classes that represent database tables. Such classes are often referred to as entity classes, and form the core of the domain model software design pattern.
	How to do it…
	1. First of all, we will establish some common features of a series of entity classes. These might include common properties and common methods. We will put these into a Application\Entity\Base class. All future entity classes will then extend Base.
	Chapter 5

	2. For the purposes of this illustration, let's assume all entities will have two properties in common: $mapping (discussed later), and $id (with its corresponding getter and setter):
	3. It's not a bad idea to define a arrayToEntity() method, which converts an array to an instance of the entity class, and vice versa (entityToArray()). These methods implement a process often referred to as hydration. As these methods should be gener...
	4. In the following methods, the $mapping property is used to translate between database column names and object property names. arrayToEntity() populates values of this object instance from an array. We can define this method as static in case we nee...
	Interacting with a Database

	6. To build the specific entity, you need to have the structure of the database table you plan to model at hand. Create properties that map to the database columns. The initial values assigned should reflect the ultimate data-type of the database column.
	7. In this example we'll use the customer table. Here is the CREATE statement from a
	MySQL data dump, which illustrates its data structure:
	8. We are now in a position to flesh out the class properties. This is also a good place to identify the corresponding table. In this case, we will use a TABLE_NAME class constant:
	Chapter 5

	9. It is considered a best practice to define the properties as protected. In order to access these properties, you will need to design public methods that get and set the properties. Here is a good place to put to use the PHP 7 ability to data-type t...
	10. In the following block of code, we have defined getters and setters for $name and
	$balance. You can imagine how the remainder of these methods will be defined:
	11. If the property names do not exactly match the corresponding database column, you should consider creating a mapping property, an array of key/value pairs where the key represents the database column name and the value the property name.
	Interacting with a Database

	How it works…
	Next, get a database connection, and use the connection to acquire an associative array of
	data for one customer at random:
	Chapter 5

	to view the result:
	Here is the output of the preceding code:

	See also
	There are many good works that describe the domain model. Probably the most influential

	Tying entity classes to RDBMS queries
	Most commercially viable RDBMS systems evolved at a time when procedural programming was at the fore. Imagine the RDBMS world as two dimensional, square, and procedurally oriented. In contrast, entities could be thought of as round, three dimensional,...
	Interacting with a Database

	How to do it…
	Chapter 5
	3. Another approach for the fetchById() method is to create the object instance first, thereby running its constructor, and setting the fetch mode to PDO::FETCH_INTO, as shown in the following example:
	4. Here again, however, we encounter a problem: fetch(), unlike fetchObject(), is not able to overwrite protected properties; the following error message is generated if it tries. This means we will either have to define all properties as public, or c...
	Interacting with a Database

	5. The last approach we will consider will be to fetch the results in the form of an array, and manually hydrate the entity. Even though this approach is slightly more costly in terms of performance, it allows any potential entity constructor to run p...
	6. To process a query that produces multiple results, all we need to do is to produce an iteration of populated entity objects. In this example, we implement a
	fetchByLevel() method that returns all customers for a given level, in the form of
	7. The next method we wish to implement is save(). Before we can proceed, however,
	some thought must be given to what value will be returned if an INSERT takes place.
	8. Normally, we would return the newly completed entity class after an INSERT. There is a convenient PDO::lastInsertId() method which, at first glance, would seem to do the trick. Further reading of the documentation reveals, however, that not all dat...
	9. In this example we have chosen the email column, and thus need to implement a
	Chapter 5

	10. Now we are ready to define the save() method. Rather than distinguish between INSERT and UPDATE, we will architect this method to update if the ID already exists, and otherwise do an insert.
	12. Next, we define doUpdate(), which pulls Customer entity object properties into an array, builds an initial SQL statement, and calls a flush() method, which pushes data to the database. We do not want the ID field updated, as it's the primary key. ...
	Interacting with a Database

	13. The doInsert() method is similar, except that the initial SQL needs to start with INSERT INTO ... and the id array element needs to be unset. The reason for the latter is that we want this property to be auto-generated by the database. If this is ...
	14. Finally, we are in a position to define flush(), which does the actual preparation
	and execution:
	Chapter 5

	15. To round off the discussion, we need to define a remove() method, which deletes a customer from the database. Again, as with the save() method defined previously, we use fetchById() to ensure the operation was successful:

	How it works…
	You can now create an instance of the service, and fetch a single customer at random. The service will then return a customer entity as a result:
	Interacting with a Database

	Here is the output:
	Now copy the code shown in steps 6 to 15 into the service class. Add the data to insert to the chap_05_entity_to_query.php calling program. We then generate a Customer entity instance using this data:
	We can then examine the ID before and after the call to save():
	Chapter 5

	Finally, we modify the balance, and again call save(), viewing the results:
	Here is the output from the calling program:

	There's more…
	Interacting with a Database
	On the road towards implementing relationships between entity classes, let us first take a look
	at how we can embed the code needed to perform a secondary lookup. An example of such a lookup is when displaying information on a customer, have the view logic perform a second lookup that gets a list of purchases for that customer.

	How to do it… (1)
	Chapter 5
	3. We now expand the original findCustomerById() function, defining the secondary lookup in the form of an anonymous function, which can then be executed in a view script. The anonymous function is assigned to the $results['purchases'] element:
	4. Assuming we have successfully retrieved customer information into a $results array, in the view logic, all we need to do is to loop through the return value of the anonymous function. In this example, we retrieve customer information at random:
	Interacting with a Database

	5. In the view logic, we loop through the results returned by the secondary lookup. The call to the embedded anonymous function is highlighted in the following code:

	How it works… (1)
	for a random customer, ending the PHP part of the calling program:
	Chapter 5

	For the view logic, you can display core customer information as shown in several of the
	preceding recipes:
	You can display information on purchases like so:
	Interacting with a Database

	Another approach to secondary lookups is to have the frontend generate the request. In this recipe, we will make a slight modification to the secondary lookup code presented in the preceding recipe, Embedding secondary lookups into QueryResults. In th...

	How to do it… (2)
	1. First we need to spin-off the secondary lookup logic (discussed in the recipe above) into a separate PHP file. The purpose of this new script is to perform the secondary lookup and return a JSON array.
	Chapter 5

	3. Next, we need to modify the function that retrieves customer information by ID, removing the secondary lookup embedded in the previous recipe:
	4. After that, in the view logic, we import the minimum jQuery, DataTables, and stylesheets for a zero configuration implementation. At a minimum, you will need jQuery itself (in this example jquery-1.12.0.min.js) and DataTables (jquery. dataTables.js...
	5. We then define a jQuery document ready function, which associates a table with DataTables. In this case, we assign an id attribute of customerTable to the table element that will be assigned to DataTables. You'll also notice that we specify the AJA...
	Interacting with a Database

	6. In the body of the view logic, we define the table, making sure the id attribute matches the one specified in the preceding code. We also need to define headers that will match the data presented in response to the AJAX request:
	7. Now, all that remains to do is to load the page, choose the customer ID (in this case, at random), and let jQuery make the request for the secondary lookup.

	How it works… (2)
	Chapter 5
	The calling program will also contain the view logic that imports the minimum JavaScript to implement jQuery DataTables. You can add the code shown in step 3 of the preceding code. Then, add the document ready function and the display logic shown in s...
	Here is the output:

	There's more… (1)
	In this chapter, we will cover the following topics:
	f Creating a generic form element generator f Creating an HTML radio element generator f Creating an HTML select element generator f Implementing a form factory
	f Tying validation to a form

	Introduction (2)
	In this chapter, we will show you how to build classes that generate HTML form elements. The generic element generator can be used for text, text areas, passwords, and similar HTML input types. After that, we will show variations that allow you to pre...
	to render an entire form using a single configuration array. Finally, we introduce recipes that allow filtering and the validation of incoming $_POST data.
	Building Scalable Websites

	Creating a generic form element generator
	It's pretty easy to create a function that simply outputs a form input tag such as <input type="text" name="whatever" >. In order to make a form generator generically useful, however, we need to think about the bigger picture. Here are some other cons...
	f The form input tag and its associated HTML attributes
	f A label that tells the user what information they are entering
	f The ability to display entry errors following validation (more on that later!)
	f Some sort of wrapper, such as a <div> tag, or an HTML table <td> tag
	How to do it…
	a base class for specialized form elements:
	2. Next, we define some class constants, which will be generally useful in form element generation.
	3. The first three will become keys associated with the major components of a single form element. We then define supported input types and defaults:
	Chapter 6

	4. Next, we can define properties and a constructor that sets them.
	5. In this example, we require two properties, $name and $type, as we cannot effectively use the element without these attributes. The other constructor arguments are optional. Furthermore, in order to base one form element on another, we include a pr...
	Building Scalable Websites

	6. Before defining the core methods that will produce HTML for the label, input tag, and errors, we should define a getWrapperPattern() method, which will produce the appropriate wrapping tags for the label, input, and error display.
	7. If, for example, the wrapper is defined as <div>, and its attributes include ['class'
	9. We are now ready to define the getLabel() method. All this method needs to do is
	to plug the label into the wrapper using sprintf():
	10. In order to produce the core input tag, we need a way to assemble the attributes. Fortunately, this is easily accomplished as long as they are supplied to the constructor in the form of an associative array. All we need to do, in this case, is to ...
	Chapter 6

	11. If the element includes either the value or href attribute, for security reasons we should escape the values on the assumption that they are, or could be, user-supplied (and therefore suspect). Accordingly, we need to add an if statement that chec...
	12. For the core input tag, we split the logic into two separate methods. The primary method, getInputOnly(), produces only the HTML input tag. The second method, getInputWithWrapper(), produces the input embedded in a wrapper. The reason for the spli...
	Building Scalable Websites

	13. We now define a method that displays element validation errors. We will assume that the errors will be supplied in the form of an array. If there are no errors, we return an empty string. Otherwise, errors are rendered as error 1</ li>...
	14. For certain attributes, we might need more finite control over various aspects of the property. As an example, we might need to add a single error to the already existing array of errors. Also, it might be useful to set a single attribute:
	15. Finally, we define getters and setters that allow us to retrieve or set the values of properties. For example, you might have noticed that the default value for $pattern is <input type="%s" name="%s" %s>. For certain tags (for example, select and ...
	Chapter 6

	16. We also need to add methods that will give the label value (not the HTML), as well as the errors array:

	How it works…
	Next, define the wrappers. For illustration, we'll use HTML table data and header tags. Note
	that the label uses TH, whereas input and errors use TD:
	You can now define an email element by passing parameters to the constructor:
	Building Scalable Websites

	Alternatively, define the password element using setters:
	Lastly, be sure to define a submit button:
	The actual display logic might look like this:
	Chapter 6

	Here is the actual output:

	Creating an HTML radio element generator
	A radio button element generator will share similarities with the generic HTML form element generator. As with any generic element, a set of radio buttons needs the ability to display an overall label and errors. There are two major differences, however:
	f Typically, you will want two or more radio buttons
	f Each button needs to have its own label
	How to do it…
	2. Next, we define class constants and properties that pertain to the special needs of a set of radio buttons.
	Building Scalable Websites

	3. In this illustration, we will need a spacer, which will be placed between the radio button and its label. We also need to decide whether to place the radio button label before or after the actual button, thus, we use the $after flag. If we need a
	default, or if we are re-displaying existing form data, we need a way of designating the selected key. Finally, we need an array of options from which we will populate the list of buttons:
	4. Given that we are extending Application\Form\Generic, we have the option of expanding the construct() method, or, alternatively, simply defining a method that can be used to set specific options. For this illustration, we have chosen the latter cou...
	5. To ensure the property $this->options is populated, the first parameter ($options) is defined as mandatory (without a default). All other parameters are optional.
	7. We save the id attribute into an independent variable, $baseId, and later combine it with $count so that each id attribute is unique. If the option associated with the selected key is defined, it is assigned as the value; otherwise, we use the defa...
	Chapter 6

	8. Inside the foreach() loop we check to see if the key is the one selected. If so,
	the checked attribute is added for that radio button. We then call the parent class getInputOnly() method to return the HTML for each button. Note that the value attribute of the input element is the options array key. The button label is the options ...

	How it works…
	Next, define the wrappers using the $wrappers array defined in the previous recipe.
	Then you can define a $status array and create an element instance by passing parameters
	to the constructor:
	Building Scalable Websites

	Now you can see if there is any status input from $_GET and set the options. Any input will become the selected key. Otherwise, the selected key is the default:
	Lastly, don't forget to define a submit button:
	The display logic might look like this:
	Chapter 6

	Here is the actual output:

	There's more…
	A checkbox element generator would be almost identical to the HTML radio button generator. The main difference is that a set of checkboxes can have more than one value checked.
	Accordingly, you would use PHP array notation for the element names. The element type

	Creating an HTML select element generator
	Generating an HTML single select element is similar to the process of generating radio buttons. The tags are structured differently, however, in that both a SELECT tag and a series of OPTION tags need to be generated.
	How to do it…
	2. The reason why we extend Generic rather than Radio is because the structuring of
	the element is entirely different:
	Building Scalable Websites

	3. The class constants and properties will only need to add slightly to Application\ Form\Generic. Unlike radio buttons or checkboxes, there is no need to account for spacers or the placement of the selected text:
	4. Now we turn our attention to setting options. As an HTML select element can select single or multiple values, the $selectedKey property could be either a string or an array. Accordingly, we do not add a type hint for this property. It is important,...
	5. If the multiple attribute has been set, it's important to formulate the name attribute as an array. Accordingly, we would append [] to the name if this were the case:
	Chapter 6

	7. We replace the default value for $pattern with <select name="%s" %s>. We then loop through the attributes, adding them as key-value pairs with spaces in between:
	8. Next, we define a method to obtain the option tags that will be associated with the
	9. As you will recall, the key from the $this->options array represents the return value, whereas the value part of the array represents the text that will appear on screen. If $this->selectedKey is in array form, we check to see if the value is in th...
	11. You will note that the logic for this method only needs to capture the return values from the getSelect() and getOptions() methods described in the preceding code. We also need to add the closing </select> tag:
	Building Scalable Websites

	How it works…
	See if there is any status input from $_GET and set the options. Any input will become the selected key. Otherwise, the selected key is the default. As you will recall, the second instance is multiple select, so the value obtained from $_GET and the d...
	Chapter 6

	The actual display logic is identical to the radio button recipe, except that we need to render
	two separate HTML select instances:
	Here is the actual output:
	Building Scalable Websites

	Also, you can see how the elements appear in the view source page:

	Implementing a form factory
	The purpose of a form factory is to generate a usable form object from a single configuration array. The form object should have the ability to retrieve the individual elements it contains so that output can be generated.
	How to do it…
	Chapter 6
	2. Before we define the primary form generation method, it's important to consider what configuration format we plan to receive, and what exactly the form generation will produce. For this illustration, we will assume that the generation will produce ...
	the $elements array. The new method will accept the configuration array as an argument. It is convenient to define this method as static so that we can generate as many instances as are needed using different blocks of configuration.
	through the configuration array:
	5. Next, we check for parameters that are optional in the constructor for the
	6. Now that all the constructor parameters are in place, we can create the form element
	7. Next, we turn our attention to options. If the options parameter is set, we extract the array values into variables using list(). We then test the element type using switch() and run setOptions() with the appropriate number of parameters:
	Building Scalable Websites

	8. Finally, we return the form object and close out the method:
	9. Theoretically, at this point, we could easily render the form in our view logic by simply iterating through the array of elements and running the render() method. The view logic might look like this:
	10. Finally, we return the form object and close out the method.
	Chapter 6

	12. Returning to the Application\Form\Factory class, we now need to define a simple method that returns a sprintf() wrapper pattern that will serve as an envelope for input. As an example, if the wrapper is div with an attribute
	13. Finally, we are ready to define a method that does overall form rendering. We obtain wrapper sprintf() patterns for each form row. We then loop through the elements, render each one, and wrap the output in the row pattern. Next, we generate an App...
	Building Scalable Websites

	How it works…
	Next, define the wrappers using the $wrappers array defined in the first recipe. You can also
	See if there is any status input from $_POST. Any input will become the selected key. Otherwise, the selected key is the default.
	Now you can define the overall form configuration. The name and attributes parameters are used to configure the form tag itself. The other two parameters represent form-level and row-level wrappers. Lastly, we provide a form_tag_inside_wrapper flag to...
	Chapter 6

	Next, define an array that holds parameters for each form element to be created by the factory. The array key becomes the name of the form element, and must be unique:
	Lastly, be sure to generate the form:
	The actual display logic is extremely simple, as we simply call the form level render()
	method:
	Building Scalable Websites

	Here is the actual output:

	Chaining $_POST filters
	Proper filtering and validation is a common problem when processing data submitted by users from an online form. It is arguably also the number one security vulnerability for a website.
	Furthermore, it can be quite awkward to have the filters and validators scattered all over the application. A chaining mechanism would resolve these issues neatly, and would also allow you to exert control over the order in which the filters and valid...
	How to do it…
	1. There is a little-known PHP function, filter_input_array(), that, at first glance, seems well suited for this task. Looking more deeply into its functionality, however, it soon becomes apparent that this function was designed in the early days, and...
	Chapter 6

	2. In order to increase flexibility, we will make our base filter and validation classes relatively light. By this, we mean not defining any specific filters or validation methods. Instead, we will operate entirely on the basis of a configuration arra...
	3. The primary function of the Result class will be to hold a $item value, which would be the filtered value or a boolean result of validation. Another property, $messages, will hold an array of messages populated during the filtering or validation op...
	4. We also define a method that allows us to merge this Result instance with another.
	This is important as at some point we will be processing the same value through a chain of filters. In such a case, we want the newly filtered value to overwrite the existing one, but we want the messages to be merged:
	Building Scalable Websites

	5. Finally, to finish the methods for this class, we add a method that merges validation results. The important consideration here is that any value of FALSE, up or down the validation chain, must cause the entire result to be FALSE:
	6. Next, to make sure that the callbacks produce compatible results, we will define an Application\Filter\CallbackInterface interface. You will note that we are taking advantage of the PHP 7 ability to data type the return value to ensure that we are ...
	7. Each callback should reference the same set of messages. Accordingly, we define
	Chapter 6

	8. We are now in a position to define a Application\Web\AbstractFilter class that implements core functionality. As mentioned previously, this class will be relatively lightweight and we do not need to worry about specific
	9. First, we define useful class constants that hold various housekeeping values. The last four shown here control the format of messages to be displayed, and how to describe missing data:
	10. Next, we define core properties. $separator is used in conjunction with filtering and validation messages. $callbacks represents the array of callbacks that perform filtering and validation. $assignments map data fields to filters and/or validators.
	Building Scalable Websites

	11. At this point, we can build the construct() method. Its main function is to set the array of callbacks and assignments. It also either sets values or accepts defaults for the separator (used in message display), and the missing message:
	12. Next, we define a series of methods that allow us to set or remove callbacks. Notice that we allow the getting and setting of a single callback. This is useful if you have a generic set of callbacks, and need to modify just one. You will also note...
	Chapter 6

	14. Retrieving messages is just a matter of looping through the array of $this
	Building Scalable Websites

	15. Lastly, we define a mixed group of useful getters and setters:
	16. Filtering and validation, although often performed together, are just as often performed separately. Accordingly, we define discrete classes for each. We'll start with Application\Filter\Filter. We make this class extend AbstractFilter in order to...
	Chapter 6

	17. Within this class we define a core process() method that scans an array of data and applies filters as per the array of assignments. If there are no assigned filters for this data set, we simply return NULL:
	20. Finally, we loop through any remaining assignments, calling
	21. As you will recall, each assignment is keyed to the data field, and represents an array of callbacks for that field. Thus, in processGlobalAssignment() we need to loop through the array of callbacks. In this case, however, because these assignment...
	Building Scalable Websites

	How it works…
	Chapter 6
	code from the preceding steps:
	Next, create a chap_06_post_data_config_callbacks.php callback configuration file that contains configuration for filtering callbacks, as described in step 4. Each callback should follow this generic template:
	Building Scalable Websites

	The callbacks themselves must implement the interface and return a Result instance. We can take advantage of the PHP 7 anonymous class capability by having our callbacks return an anonymous class that implements CallbackInterface. Here is how an array...
	Chapter 6

	For test purposes, we will use the prospects table as a target. Instead of providing data from
	autoloading, includes the messages and callbacks configuration files:
	You then need to define assignments that represent a mapping between the data fields and filter callbacks. Use the * key to define a global filter that applies to all data:
	Building Scalable Websites
	Chapter 6

	Processing good data produces no messages other than one indicating that the value for the float field was converted from string to float. The bad data, on the other hand, produces the following output:

	There's more…
	The filter_input_array() function takes two arguments: the input source (in the form of a pre-defined constant used to indicate one of the $_* PHP super-globals, that is,
	$_POST), and an array of matching field definitions as keys and filters or validators as values. This function performs not only filtering operations, but validation as well. The flags labeled sanitize are actually filters.

	See also
	Building Scalable Websites

	Chaining $_POST validators
	How to do it…
	1. Look over the preceding recipe, Chaining $_POST filters. We will be using all of the classes and configuration files in this recipe, except where noted here.
	3. Next, we define a Application\Filter\Validator class, which loops through the array of assignments, testing each data item against its assigned validator callbacks. We make this class extend AbstractFilter in order to provide the core functionality...
	Chapter 6

	4. Within this class, we define a core process() method that scans an array of data and applies validators as per the array of assignments. If there are no assigned validators for this data set, we simply return the current status of $valid (which is ...
	7. Finally, we loop through any remaining assignments, calling processAssignment(). This is an ideal place to check to see if any fields present in the assignments array is missing from the data. Note that we set $valid to FALSE if any validation call...
	Building Scalable Websites

	8. As you will recall, each assignment is keyed to the data field, and represents an array of callbacks for that field. Thus, in processGlobalAssignment(), we need to loop through the array of callbacks. In this case, however, because these assignment...

	How it works…
	As with the preceding recipe, be sure to define the following classes:
	Chapter 6

	Next, create a chap_06_post_data_config_callbacks.php callback configuration file that contains configurations for validation callbacks, as described in step 2. Each callback should follow this generic template:
	autoloading and includes the configuration scripts:
	Next, define an array of assignments, mapping data fields to validator callback keys:
	Building Scalable Websites

	As expected, the good data does not produce any validation errors. The bad data, on the other hand, generates the following output:
	Chapter 6

	the missing item message.

	Tying validation to a form
	When a form is first rendered, there is little value in having a form class (such as Application\Form\Factory, described in the previous recipe) tied to a class that can perform filtering or validation (such as the Application\Filter* described in th...
	How to do it…
	Building Scalable Websites
	$data and $validator exist. If not, the appropriate exceptions are thrown with instructions on which method needs to be run first:
	4. After calling the process() method, we associate validation result messages with form element messages. Note that the process() method returns a boolean value that represents the overall validation status of the data set. When the form is re-displa...
	Chapter 6

	6. We then run the process() method, which produces an array of Result objects where the $item property represents the end result of the filter chain. We then loop through the results, and, if the corresponding $element key matches, set the value attr...
	Building Scalable Websites

	How it works…
	You can start by making the changes to Application\Form\Factory as described above. For a test target you can use the prospects database table shown in the How it works… section of the Chaining $_POST filters recipe. The various column settings should...
	Chapter 6
	Building Scalable Websites

	Next, you can create instances of the form factory, filter, and validator classes:
	You can then check to see if there is any $_POST data. If so, perform validation and filtering:
	The view logic is extremely simple: just render the form. Any validation messages and values
	for the various elements will be assigned as part of validation and filtering:
	Chapter 6

	Here is an example using bad form data:
	Notice the filtering and validation messages. Also notice the bad tags:
	In this chapter, we will cover the following topics:
	f Converting between PHP and XML
	f Creating a simple REST client f Creating a simple REST server f Creating a simple SOAP client f Creating a simple SOAP server

	Introduction (3)
	Making background queries to external web services is becoming an ever-increasing part
	of any PHP web practice. The ability to provide appropriate, timely, and plentiful data means more business for your customers and the websites you develop. We start with a couple

	Converting between PHP and XML
	When considering a conversion between PHP native data types and XML, we would normally consider an array as the primary target. With this in mind, the process of converting from a PHP array to XML differs radically from the approach needed to do the r...
	Accessing Web Services

	How to do it…
	Chapter 7
	3. For the reverse process, also called recursively, we define two methods. The first method, arrayToXml(), sets up an initial SimpleXMLElement instance, and then calls the second method, phpToXml():
	4. Note that in the second method, we use get_object_vars() in case one of the array elements is an object. You'll also note that numbers alone are not allowed as XML tags, which means adding some text in front of the number:
	Accessing Web Services

	How it works…
	The resulting array is shown here:
	To do the reverse, use the arrayToXml() method described in this recipe. As a source document, you can use a source/data/mongo.db.global.php file that contains an outline for a training video on MongoDB available through O'Reilly Media (disclaimer: by...
	Chapter 7

	Here is the output in a browser:

	Creating a simple REST client
	REST clients use HyperText Transfer Protocol (HTTP) to generate requests to external web services. By changing the HTTP method, we can cause the external service to perform
	different operations. Although there are quite a few methods (or verbs) available, we will only focus on GET and POST. In this recipe, we will use the Adapter software design pattern to present two different ways of implementing a REST client.
	How to do it…
	1. Before we can define REST client adapters, we need to define common classes to represent request and response information. First, we will start with an abstract class that has methods and properties needed for either a request or response:
	Accessing Web Services

	2. Next, we define class constants that represent HTTP information:
	3. We then define properties that are needed for either a request or a response:
	4. It logically follows to define getters and setters for these properties:
	5. Some properties require access by key. For this purpose, we define getXxxByKey()
	Chapter 7

	6. In some cases, the request will require parameters. We will assume that the parameters will be in the form of a PHP array stored in the $data property. We can then build the request URL using the http_build_query() function:
	7. Finally, we set $transport based on the original request:
	Accessing Web Services

	8. In this recipe, we will define a Application\Web\Request class that can accept parameters when we wish to generate a request, or, alternatively, populate properties with incoming request information when implementing a server that accepts requests:
	9. Now we can turn our attention to a response class. In this case, we will define an Application\Web\Received class. The name reflects the fact that we are re- packaging data received from the external web service:
	Creating a streams-based REST client
	Chapter 7
	We are now ready to consider two different ways to implement a REST client. The first approach is to use an underlying PHP I/O layer referred to as Streams. This layer provides a series of wrappers that provide access to external streaming resources. ...
	2. Next, we define a method to send the request to the external web service. In the case of GET, we add the parameters to the URI. In the case of POST, we create a stream context that contains metadata instructing the remote service that we are supply...
	Accessing Web Services

	3. Finally, we have a look at retrieving and packaging results into a Received object. You will notice that we added a provision to decode data received in JSON format:

	Defining a cURL-based REST client
	Chapter 7
	We will now have a look at our second approach for a REST client, one of which is based on the cURL extension:
	1. For this approach, we will assume the same request and response classes. The initial class definition is much the same as for the Streams client discussed previously:
	2. The send() method is quite a bit simpler than when using Streams. All we need to do is to define an array of options, and let cURL do the rest:
	3. POST requires slightly different cURL parameters:
	Accessing Web Services

	4. We then execute a series of cURL functions and run the results through

	How it works…
	Be sure to copy all the preceding code into these classes:
	Chapter 7

	For this illustration, you can make a REST request to the Google Maps API to obtain
	You can then get the origin and destination:
	You are now in a position to populate the Request object, and use it to generate the request:
	For the purposes of illustration, you could also define a template that represents view logic to display the results of the request:
	Accessing Web Services

	Here are the results of the request as seen in a browser:

	There's more…
	Chapter 7

	See also

	Creating a simple REST server
	There are several considerations when implementing a REST server. The answers to these three questions will then let you define your REST service:
	f How is the raw request captured?
	f How do you plan to map HTTP verbs (for example, GET, PUT, POST, and DELETE) to API methods?
	How to do it…
	1. We will implement our REST server by building onto the request and response classes defined in the previous recipe, Creating a simple REST client. Review the classes discussed in the previous recipe, including the following:
	Accessing Web Services
	Chapter 7

	3. We are now in a position to define the Application\Web\Rest\Server class. You may be surprised at how simple it is. The real work is done in the associated API class:
	4. Next, we define a listen() method that serves as a target for the request. The
	heart of the server implementation is this line of code:
	5. This captures raw input, which is assumed to be in JSON format:
	Accessing Web Services

	7. Finally, we package the response and send it out, JSON-encoded:
	Chapter 7

	9. As mentioned earlier, the real work is done by the API class. We start by defining an abstract class that ensures the primary methods get(), put(), and so on are represented, and that all such methods accept request and response objects as argument...
	10. We also define a corresponding interface that can be used for architectural
	and design purposes, as well as code development control:
	Accessing Web Services

	12. All methods receive request and response as arguments. You will notice the use of getDataByKey() to retrieve data items. The actual database interaction is performed by the service class. You might also notice that in all cases, we set an
	HTTP status code to inform the client of success or failure. In the case of get(), we look for an ID parameter. If received, we deliver information on a single customer only. Otherwise, we deliver a list of all customers using limit and offset:
	Chapter 7

	13. The put() method is used to insert customer data:
	14. The post() method is used to update existing customer entries:
	Accessing Web Services

	15. As the name implies, delete() removes a customer entry:
	mechanism to protect API usage:
	Chapter 7

	How it works…
	Define the following classes, which were discussed in the previous recipe:
	You can then define the following classes, described in this recipe, summarized in this table:
	You can then use the built-in PHP 7 development server to listen on port 8080
	for REST requests:
	Accessing Web Services

	You can then use a generic API client (such as the one described in the previous recipe),
	for more information) to generate sample requests. Make sure you include the token for your
	request, otherwise the API as defined will reject the request.

	There's more…
	Various frameworks, such as CodeIgniter and Zend Framework, also have REST server implementations.
	Chapter 7

	Creating a simple SOAP client
	Using SOAP, in contrast to the process of implementing a REST client or server, is quite easy as there is a PHP SOAP extension that provides both capabilities.
	How to do it…
	For this example, we will make a SOAP request for an existing SOAP service offered by the United States National Weather service:
	1. The first consideration is to identify the WSDL document. The WSDL is an XML
	document that describes the service:
	3. We are then free to initialize some variables in anticipation of a weather forecast
	request:
	4. We can then make a LatLonListCityNames() SOAP request, identified as an operation in the WSDL, for a list of cities supported by the service. The request is returned in XML format, which suggests creating a SimpleXLMElement instance:
	Accessing Web Services

	5. Unfortunately, the list of cities and their corresponding latitude and longitude are in separate XML nodes. Accordingly, we use the array_combine() PHP function to create an associative array where latitude/longitude is the key, and the city name i...
	6. We can then get city data from a web request as follows:
	7. The SOAP call we wish to make is NDFDgenByDay(). We can determine the nature of the parameters supplied to the SOAP server by examining the WSDL:
	8. If the value of $currentLatLon is set, we can process the request. We wrap the

	How it works…
	Chapter 7
	Here is the result, in a browser, of requesting the weather forecast for Cleveland, Ohio:
	Accessing Web Services

	See also

	Creating a simple SOAP server
	As with the SOAP client, we can use the PHP SOAP extension to implement a SOAP server. The most difficult part of the implementation will be generating the WSDL from the API class. We do not cover that process here as there are a number of good WSDL g...
	How to do it…
	2. We then define methods that correspond to create, read, update, and delete.
	In this example, the methods are named put(), get(), post(), and delete(). These, in turn, call methods that generate SQL requests that are executed from a PDO instance. An example for get() is as follows:
	Chapter 7

	3. You can then generate a WSDL from your API. There are quite a few PHP-based WSDL generators available (see the There's more… section). Most require that you add phpDocumentor tags before the methods that will be published. In our example, the two a...
	Accessing Web Services

	4. Next, create a chap_07_simple_soap_server.php file, which will execute the SOAP server. Start by defining the location of the WSDL and any other necessary files (in this case, one for database configuration). If the wsdl parameter is set, deliver t...
	a simple API key to authenticate requests. We then create a SOAP server instance, assign an instance of our API class, and run handle():
	Chapter 7

	How it works…
	You can easily test this recipe by first creating your target API class, and then generating a WSDL. You can then use the built-in PHP webserver to deliver the SOAP service with this command:
	You can then use the SOAP client discussed in the previous recipe to make a call to test the SOAP service:
	Accessing Web Services

	See also
	Chapter 7
	In this chapter, we will cover the following topics:
	f Using emoticons or emoji in a view script
	f Converting complex characters
	f Getting the locale from browser data
	f Formatting numbers by locale
	f Handling currency by locale
	f Formatting date/time by locale
	f Creating an HTML international calendar generator
	f Building a recurring events generator
	f Handling translation without gettext

	Introduction (4)
	We will start this chapter with two recipes that take advantage of a new Unicode escape syntax introduced with PHP 7. After that, we will cover how to determine a web visitor's locale from browser data. The next few recipes will cover the creation of ...
	Finally, we will cover recipes that demonstrate how to generate an internationalized calendar,
	handle recurring events, and perform translation without having to use gettext.
	Working with Date/Time and International Aspects

	Using emoticons or emoji in a view script
	The word emoticons is a composite of emotion and icon. Emoji, originating from Japan, is another, larger, widely used set of icons. These icons are the little smiley faces, tiny ninjas, and rolling-on-the-floor-laughing icons that are so popular on an...
	How to do it...
	1. First and foremost, you need to know the Unicode for the icon you wish to present. A quick search on the Internet will direct you to any one of several excellent charts. Here are the codes for the three hear-no-evil, see-no-evil, and speak-no-evil ...
	2. Any Unicode output to the browser must be properly identified. This is most often done by way of a meta tag. You should set the character set to UTF-8. Here is an example:
	3. The traditional approach was to simply use HTML to display the icons. Thus, you could do something like this:
	Chapter 8

	4. As of PHP 7, you can now construct full Unicode characters using this syntax:
	"\u{xxx}". Here is an example with the same three icons as in the preceding bullet:

	How it works...
	In PHP 7, a new syntax was introduced that lets you render any Unicode character. Unlike other languages, the new PHP syntax allows for a variable number of hex digits. The basic format is this:
	The entire construct must be double quoted (or use heredoc). xxxx could be any combination of hex digits, 2, 4, 6, and above.
	that signals the browser that UTF-8 character encoding is being used:
	Next, set up a basic HTML table, and display a row of emoticons/emoji:
	Working with Date/Time and International Aspects

	Now add a row using PHP to emit emoticons/emoji:
	Here is the output seen from Firefox:

	See also

	Converting complex characters
	The ability to access the entire Unicode character set opens up many new possibilities for rendering complex characters, especially characters in alphabets other than Latin-1.
	How to do it...
	Chapter 8
	1. Some languages are read right-to-left instead of left-to-right. Examples include Hebrew and Arabic. In this example, we show you how to present reverse text using the U+202E Unicode character for right-to-left override. The following line of code p...
	2. Another consideration is the use of composed characters. One such example is ñ (the letter n with a tilde ~ floating above). This is used in words such as mañana (the Spanish word for morning or tomorrow, depending on the context). There is a compo...
	3. This could potentially impact search possibilities, however. Imagine that your customers do not have a keyboard with this composed character. If they start to type man in an attempt to search for mañana, they will be unsuccessful.
	4. Having access to the full Unicode set offers other possibilities. Instead of using the composed character, you can use a combination of the original letter n along with the Unicode combining code, which places a floating tilde on top of the letter....
	5. A similar application could be made for accents. Consider the French word élève (student). You could render it using composed characters, or by using combining codes to float the accents above the letter. Consider the two following examples. Both e...
	Working with Date/Time and International Aspects

	How it works...
	the meta tag that signals the browser that UTF-8 character encoding is being used:
	Next, set up basic PHP and HTML to display the examples discussed previously:
	Here is the output from a browser:
	Chapter 8

	In order to improve the user experience on a website, it's important to display information in a format that is acceptable in the user's locale. Locale is a generic term used to indicate
	an area of the world. An effort in the I.T. community has been made to codify locales using a two-part designation consisting of codes for both language and country. But when a person visits your website, how do you know their locale? Probably the mos...

	How to do it... (1)
	1. In order to encapsulate locale functionality, we will assume a class, Application\ I18n\Locale. We will have this class extend an existing class, Locale, which is part of the PHP Intl extension.
	2. To get an idea of what an incoming request looks like, use phpinfo(INFO_ VARIABLES). Be sure to disable this function immediately after testing as it gives away too much information to potential attackers:
	Working with Date/Time and International Aspects

	4. There can easily be more than one locale listed. For example, the website visitor could have multiple languages installed on their computer. It so happens that the PHP Locale class has a method, acceptFromHttp(), which reads the Accept- language he...
	Chapter 8

	6. Next we define a constructor that allows us to "manually" set the locale. Otherwise,
	the locale information is drawn from the browser:
	7. Now comes the big decision: what to do with this information! This is covered in the next few recipes.

	How it works... (1)
	In this illustration, let's take three examples:
	f information derived from the browser
	Now you can define an array with the three test locale strings:
	Working with Date/Time and International Aspects

	Finally, loop through the three locale strings, creating instances of the new class. Echo the
	Here is the result (with a little bit of styling):

	See also
	Numeric representations can vary by locale. As a simple example, in the UK one would see the number three million, eighty thousand, five hundred and twelve, and ninety-two one hundredths as follows:
	In France, however, the same number might appear like so:

	How to do it... (2)
	Chapter 8
	Before you can represent a number in a locale-specific manner, you need to determine the locale. This can be accomplished using the Application\I18n\Locale class discussed in the previous recipe. The locale can be set manually or from header information.
	1. Next, we will make use of the format() method of the NumberFormatter class, to both output and parse numbers in a locale-specific format. First we add a property that will contain an instance of the NumberFormatter class:
	2. Normally, the next step would be to set $numberFormatter in the constructor. The problem with this approach, in the case of our Application\I18n\ Locale class, is that we would end up with a top-heavy class, as we will also need to perform currency...
	3. We then add a method that, given any number, will produce a string that represents
	that number formatted according to the locale:
	Working with Date/Time and International Aspects

	4. Next we add a method that can be used to parse numbers according to the locale, producing a native PHP numeric value. Please note that the result might not return FALSE on parse failure depending on the server's ICU version:

	How it works... (2)
	For this illustration, create two Locale instances, one for the UK, the other for France. You
	can also designate a large number to be used for testing:
	appropriate HTML display logic and view the results:
	Chapter 8
	Working with Date/Time and International Aspects

	Here is the result as seen from a browser:

	See also (1)
	The technique for handling currency is similar to that for numbers. We will even use the same NumberFormatter class! There is one major difference, however, and it is a show stopper: in order to properly format currency, you will need to have on hand ...

	How to do it... (3)
	Chapter 8
	1. The first order of business is to have the currency codes available in some format. One possibility is to simply add the currency code as an Application\I18n\ Locale class constructor argument:
	2. We will first need to establish some sort of lookup mechanism, where, given a country code, we can obtain its predominant currency code. For this illustration, we will use the Adapter software design pattern. According to this pattern, we should be...
	Working with Date/Time and International Aspects

	4. Now we are ready to build a lookup adapter class, which we will call Application\ I18n\IsoCodesDb. It implements the abovementioned interface, and accepts
	column that represents the ISO2 code. The lookup method required by the interface then issues an SQL statement and returns an array, which is then used to build an IsoCodes instance:
	Chapter 8

	add a couple of new properties and class constants:
	6. We add new method that retrieves the country code from the locale string. We can leverage the getRegion() method, which comes from the PHP Locale class (which we extend). Just in case it's needed, we also add a method, getCurrencyCode():
	Working with Date/Time and International Aspects

	8. We then add a currency code lookup to the class constructor if the lookup class has been defined:
	9. Then add the appropriate currency format and parse methods. Note that parsing currency, unlike parsing numbers, will return FALSE if the parsing operation is not successful:

	How it works... (3)
	Create the following classes, as covered in the first several bullet points:
	Chapter 8

	We will assume, for the purposes of this illustration, that we have a populated MySQL
	For this illustration, create two Locale instances, one for the UK, the other for France. You
	can also designate a large number to be used for testing:
	Working with Date/Time and International Aspects

	Finally, you can wrap the formatCurrency() and parseCurrency() methods in the appropriate HTML display logic and view the results. Base your view logic on that presented in the How it works… section of the previous recipe (not repeated here to save tr...

	See also (2)
	The formatting of date and time varies region to region. As a classic example, consider the year 2016, month April, day 15 and a time in the evening. The format preferred by denizens of the United States would be 7:23 PM, 4/15/2016, whereas in China y...

	How to do it... (4)
	Chapter 8
	series of predefined constants:
	Working with Date/Time and International Aspects

	4. Next we define a method that produces a locale formatted date. Defining the format of the incoming $date is a bit tricky. It cannot be locale-specific, otherwise we will need to parse it according to locale rules, with unpredictable results. A bett...
	as integers. As a fallback, we will accept a string but only in this format: YYYY-mm- dd HH:ii:ss. Time zone is optional, and can be set separately. First we initialize variables:
	5. After that we produce a breakdown of values that represent year, month, day, and so
	on:
	6. Next we create an IntlCalendar instance, which will serve as an argument when running format(). We set the date using the discreet integer values:
	Chapter 8

	7. Finally, we obtain the date formatter instance, and produce the result:
	8. The parseDate() method is actually simpler than formatting. The only complication is what to do if the type is not specified (which will be the most likely case). All we need to do is to loop through all possible types (of which there are only four...

	How it works... (4)
	Working with Date/Time and International Aspects
	An example of the output is shown here:

	See also (3)
	f ISO 8601 gives precise definitions for all aspects of date and time. There is also
	Creating a program to display a calendar is something you would most likely do as a student at secondary school. A nested for() loop, where the inside loop generates a list of seven days, will generally suffice. Even the problem of how many days there...
	to figure out, for any given year, on what day of the week does the 1st of January fall. Also, what if you want to represent the months and days of the week in a language and format acceptable to a specific locale? As you have probably guessed, we wil...

	How to do it... (5)
	Chapter 8
	1. First we need to create a generic class that will hold information for a single day. Initially it will only hold an integer value, $dayOfMonth. Later, in the next recipe, we'll expand it to include events. As the primary purpose of this class will ...
	$dayOfMonth, we'll incorporate this value into its constructor, and define
	2. Create a new class that will hold the appropriate calendar-generation methods. It will accept an instance of Application\I18n\Locale, and will define a couple of class constants and properties. The format codes, such as EEEEE and MMMM, are drawn fr...
	Working with Date/Time and International Aspects

	locale class. This is stored in a class property, as it will be used frequently:
	4. Next we define a core method, buildMonthArray(), which creates a multi- dimensional array where the outer key is the week of the year, and the inner array is seven elements representing the days of the week. We accept the year, month, and optional ...
	Chapter 8

	5. We then create an IntlCalendar instance, and use it to determine how many days
	are in this month:
	6. After that we use our IntlDateFormatter instance to determine what day of the week equates to the 1st of this month. After that, we set the pattern to w, which will subsequently give us the week number:
	7. We are now ready to loop through all days in the month with nested loops. An outer while() loop ensures we don't go past the end of the month. The inner loop represents the days of the week. You will note that we take advantage of IntlCalendar::get...
	8. We then check to see whether $first is still set TRUE. If so, we start adding day numbers to the array. Otherwise, the array value is set to NULL. We then close all open statements and return the array. Note that we also need to make sure the inner...
	Working with Date/Time and International Aspects

	Refining internationalized output
	1. First, a series of small methods, starting with one that extracts the internationally formatted day based on type. The type determines whether we deliver the full name of the day, an abbreviation, or just a single letter, all appropriate for that l...
	2. Next we need a method that returns an HTML row of day names, calling the newly defined getDay() method. As mentioned previous, the type dictates the appearance of the days:
	Chapter 8

	3. After that, we define a very simple method to return a row of week dates. Note that we take advantage of Day:: invoke() using: $day():
	4. And finally, a method that puts the smaller methods together to generate a calendar for a single month. First we build the month array, but only if $yearArray is not already available:
	5. The month needs to be decremented by 1 as IntlCalendar months are 0-based: Jan = 0, Feb = 1, and so on. We then build an IntlCalendar instance using the time zone (if any), and the locale. We next create a IntlDateFormatter instance to retrieve the...
	Working with Date/Time and International Aspects

	6. We then loop through the month array, and call the smaller methods just mentioned to build the final output:
	7. In order to generate a calendar for the entire year, it's a simple matter of looping through months 1 to 12. To facilitate outside access, we first define a method that builds a year array:
	Chapter 8

	How it works... (5)
	Working with Date/Time and International Aspects
	You can then develop appropriate view logic to display the different calendars. For example, you can include parameters to display the full month and day names:
	With a couple of modifications, you can also display a calendar for the entire year:
	Chapter 8

	Here is the browser output showing a full year calendar in Spanish:

	See also (4)
	A very common need related to generating a calendar is the scheduling of events. Events can be in the form of one-off events, which take place on one day, or on a weekend. There is a much greater need, however, to track events that are recurring. We n...
	Working with Date/Time and International Aspects

	How to do it... (6)
	1. Before anything else, it would be an excellent idea to create a class that represents an event. Ultimately you'll probably end up storing the data in such a class in a database. For this illustration, however, we will simply define the class, and l...
	2. Next, we define a series of useful class constants and properties. You will notice that we defined most of the properties public in order to economize on the number of getters and setters needed. The intervals are defined as sprintf() format strings;
	%d will be substituted for a value:
	Chapter 8

	3. Next we turn our attention to the constructor. We need to collect and set all information pertinent to an event. The variable names are self-explanatory.
	4. We then initialize variables. Note that the ID is pseudo-randomly generated, but might ultimately end up being the primary key in a database events table. Here we use md5() not for security purposes, but rather to quickly generate a hash so that ID...
	5. As mentioned previously, the interval parameter is a sprintf() pattern used to construct a proper DateInterval instance:
	Working with Date/Time and International Aspects

	7. The stringOrDate() method consists of a few lines of code that check the data type of the date variable, and return a DateTime instance or NULL:
	advantage of the DatePeriod class, which provides an iteration based on a start date, DateInterval, and number of occurrences:
	Chapter 8

	9. Next we throw in a toString() magic method, which simple echoes the title of the event:
	10. The last method we need to define for our Event class is getNextDate(), which is used when generating a calendar:
	11. Next we turn our attention to the Application\I18n\Calendar class described in the previous recipe. With a bit of minor surgery, we are ready to tie our newly defined Event class into the calendar. First we add a new property, $events, and a metho...
	12. Next we add a method, processEvents(), which adds an Event instance to a Day object when building the year calendar. First we check to see whether there are any events, and whether or not the Day object is NULL. As you may recall, it's likely that...
	Working with Date/Time and International Aspects

	method so that it looks like this:
	14. Finally, we need to modify getWeekDaysRow(), adding the necessary code to output event information inside the box along with the date:
	Chapter 8

	How it works... (6)
	Now we can start defining and adding events to the calendar. The first example adds an event that lasts 3 days and starts on 8 January 2016:
	Working with Date/Time and International Aspects

	Here is another example, an event that occurs on the first of every month until September 2017:
	You can then add sample weekly, bi-weekly, monthly, and so on events as desired. You can
	then close the try…catch block, and produce suitable display logic:
	Chapter 8

	Here is the output showing the first few months of the year:

	See also (5)
	Translation is an important part of making your website accessible to an international customer base. One way this is accomplished it to use the PHP gettext functions, which are based on the GNU gettext operating system tools installed on the local se...
	is well documented and well supported, but uses a legacy approach and has distinct disadvantages. Accordingly, in this recipe, we present an alternative approach to translation where you can build your own adapter.
	Working with Date/Time and International Aspects

	Something important to recognize is that the programmatic translation tools available to PHP are primarily designed to provide limited translation of a word or phrase, referred to as the msgid (message ID). The translated equivalent is referred to as ...

	How to do it... (7)
	1. We will once again use the Adapter software design pattern, in this case to provide alternatives to the translation source. In this recipe, we will demonstrate adapters for
	2. To begin, we will define an interface that will later be used to identify a translation adapter. The requirements for a translation adapter are quite simple, we only need to return a message string for a given message ID:
	3. Next we define a trait that matches the interface. The trait will contain the actual code required. Note that if we fail to find the message string, we simply return the message ID:
	Chapter 8

	4. Now we're ready to define our first adapter. In this recipe, we'll start with an adapter that uses an .ini file as the source of translations. The first thing you'll notice is that we use the trait defined previously. The constructor method will va...
	5. The next adapter, Application\I18n\Translate\Adapter\Csv, is identical, except that we open the translation file and loop through using fgetcsv() to retrieve the message ID / message string key pairs. Here we show only the difference in the constru...
	Working with Date/Time and International Aspects

	6. We now present the third adapter, which performs a database lookup and avoids the problems of the other two adapters. We use a PDO prepared statement which is sent to the database in the beginning, and only one time. We then execute as many times a...
	Chapter 8

	7. We are now ready to define the core Translation class, which is tied to one (or more) adapters. We assign a class constant to represent the default locale, and properties for the locale, adapter, and text file pattern (explained later):
	8. In the constructor, we determine the locale, and set the initial adapter to this locale.
	In this manner, we are able to host multiple adapters:
	9. Next we define a series of setters, which gives us more flexibility:
	Working with Date/Time and International Aspects

	10. We then define the PHP magic method invoke(), which lets us make a direct call
	to the translator instance, returning the message string given the message ID:
	11. Finally, we also add a method that can return translated blocks of text from text files. Bear in mind that this could be modified to use a database instead. We did not include this functionality in the adapter, as its purpose is completely differe...

	How it works... (7)
	First you will need to define a directory structure to house the translation files. For the purposes of this illustration, you can make a directory ,/path/to/project/files/data/ languages. Under this directory structure, create sub-directories that re...
	Next you will need to create the different translation files. As an example, here is a
	Chapter 8

	Finally, create a database table, translation, and populate it with the same data. The main difference is that the database table will have three fields: msgid, msgstr, and locale_code:
	Next, define the classes mentioned previously, using the code shown in this recipe:
	Working with Date/Time and International Aspects

	Next, create a translation adapter instance and use that to create a Translation instance:
	Finally, create display logic that uses the $translate instance:
	Chapter 8

	You can then perform additional similar tests, substituting a new locale to get a different language, or using another adapter to test a different data source. Here is an example of output using a locale of fr_FR and the database translation adapter:

	See also (6)
	In this chapter, we will cover the following topics:
	f Authenticating with middleware
	f Using middleware to implement access control
	f Improving performance using the cache
	f Implementing routing
	f Making inter-framework system calls
	f Using middleware to cross languages
	As often happens in the IT industry, terms get invented, and then used and abused. The term middleware is no exception. Arguably the first use of the term came out of the Internet Engineering Task Force (IETF) in the year 2000. Originally, the term wa...
	Developing Middleware

	One very important usage of middleware is to provide authentication. Most web-based applications need the ability to verify a visitor via username and password. By incorporating PSR-7 standards into an authentication class, you will make it genericall...

	How to do it…
	Authenticate class more generically useful by allowing a variety of adapters, each of which can draw authentication from a different source (for example, from a file, using OAuth2, and so on). Note the use of the PHP 7 ability to define the return val...
	2. Next, we define the adapter that implements the login() method required by the interface. We make sure to use the appropriate classes, and define fitting
	Chapter 9

	3. The core login() method extracts the username and password from the request object. We then do a straightforward database lookup. If there is a match, we store user information in the response body, JSON-encoded:
	Developing Middleware

	4. The Authenticate class is a wrapper for an adapter class that implements AuthenticationInterface. Accordingly, the constructor takes an adapter class as an argument, as well as a string that serves as the key, in which authentication information is...
	Chapter 9

	6. Finally, the login() method in this class checks whether the token is valid. If not, a
	400 response is returned. Otherwise, the login() method of the adapter is called:
	Developing Middleware

	How it works…
	First of all, be sure to follow the recipes defined in Appendix, Defining PSR-7 Classes. Next, go ahead and define the classes presented in this recipe, summarized in the following table:
	You are now in a position to set up the authentication adapter and core class:
	Be sure to initialize the incoming request, and set up the request to be made to the authentication class:
	Check the incoming class method to see if it is POST. If so, pass a request to the
	authentication class:
	Chapter 9

	The display logic looks like this:
	Here is the output from an invalid authentication attempt. Notice the 401 status code on the
	right. In this illustration, you could add a var_dump() of the response object:
	Developing Middleware

	Here is a successful authentication:

	See also (7)
	As the name implies, middleware sits in the middle of a sequence of function or method calls. Accordingly, middleware is well suited for the task of "gate keeper". You can easily implement an Access Control List (ACL) mechanism with a middleware class...

	How to do it… (1)
	Chapter 9
	1. Probably the most difficult part of the process is determining which factors to include in the ACL. For the purposes of illustration, let's say that our users are all assigned a level and a status. In this illustration, the level is defined as foll...
	2. The status could indicate how far they are in the membership signup process.
	For example, a status of 0 could indicate they've initiated the membership signup process, but have not yet been confirmed. A status of 1 could indicate their e-mail address is confirmed, but they have not paid the monthly fee, and so on.
	3. Next, we need to define the resources we plan to control. In this case, we will assume there is a need to control access to a series of web pages on the site. Accordingly, we need to define an array of such resources. In the ACL, we can then refer ...
	4. Finally, the most important piece of configuration is to make assignments to pages according to level and status. The generic template used in the configuration array might look like this:
	5. Now we are in a position to define the Acl class. As before, we use a few classes, and define constants and properties appropriate for access control:
	Developing Middleware

	6. In the construct() method, we break up the assignments array into $pages, the resources to be controlled, $levels, and $allowed, which are the actual assignments. If the array does not include one of these three sub-components, an exception is thrown:
	7. You may have noticed that we allow inheritance. In $allowed, the inherits key can be set to another key within the array. If so, we need to merge its values with the values currently under examination. We iterate through $allowed in reverse, mergin...
	Chapter 9

	8. When processing authorization, we initialize a few variables, and then extract the page requested from the original request URI. If the page parameter doesn't exist, we set a 400 code:
	9. Otherwise, we decode the request body contents, and acquire the status and level. We are then in a position to call mergeInherited(), which returns an array of pages accessible to this status and level:
	10. If the requested page is in the $allowed array, we set the status code to a happy 200, and return an authorized setting along with the web page that corresponds to the page code requested:
	11. We then return the response, JSON-encoded, and we are done:
	Developing Middleware

	How it works… (1)
	You can also define a menu.php page, which could be included in the output:
	The auth.php page will display a login screen (as described in the previous recipe):
	You can then create a configuration file that allows access to web pages depending on level and status. For the sake of illustration, call it chap_09_middleware_acl_config.php and return an array that might look like this:
	Chapter 9

	Finally, in the public folder, define index.php, which sets up autoloading, and ultimately calls up both the Authenticate and Acl classes. As with other recipes, define configuration files, set up autoloading, and use certain classes. Also, don't forg...
	the session:
	Developing Middleware

	You can now pull in the ACL configuration, and create instances for Authenticate as well as Acl:
	Next, define incoming and outbound request instances:
	If the incoming request method was post, process the authentication calling the login()
	method:
	If the session key defined for authentication is populated, that means the user has been successfully authenticated. If not, we program an anonymous function, called later, which includes the authentication login page:
	Otherwise, you can proceed with the ACL check. You first need to find, from the original query,
	which web page the user wants to visit, however:
	Chapter 9

	You can then reprogram the $outbound request to include this information:
	Next, you'll be in a position to check authorization, supplying the outbound request as
	an argument:
	You can then examine the return response for the authorized parameter, and program an anonymous function to include the return page parameter if OK, and the sorry page otherwise:
	Now all you need to do is to set the form action and wrap the anonymous function in HTML:
	Developing Middleware

	To test it, you can use the built-in PHP web server, but you will need to use the -t flag to
	indicate that the document root is public:
	If you try to access any page, you will simply be redirected back to the login page. As per the configuration, a user with status = 1, and level = BEG can only access page 1 and log out. If, when logged in as this user, you try to access page 2, here ...

	See also (8)
	Chapter 9
	The cache software design pattern is where you store a result that takes a long time to generate. This could take the form of a lengthy view script or a complex database query. The storage destination needs to be highly performant, of course, if you w...

	How to do it… (2)
	2. Seeing as we are following the adapter design pattern, we define an interface next:
	3. Now we are ready to define our first cache adapter, in this illustration, by using a MySQL database. We need to define properties that will hold column names as well as prepared statements:
	Developing Middleware

	5. The next few methods prepare statements, and are called when we access the database. We do not show all the methods, but present enough to give you the idea:
	Chapter 9

	6. Now we define a method that determines whether data for a given key exists:
	7. The core methods are ones that read from and write to the cache. Here is the method that retrieves from the cache. All we need to do is to execute the prepared statement, which performs a SELECT, with a WHERE clause, which incorporates the key and ...
	Developing Middleware

	8. When writing to the cache, we first determine whether an entry for this cache key exists. If so, we perform an UPDATE; otherwise, we perform an INSERT:
	9. We then define two methods that remove the cache either by key or by group. Removal by group provides a convenient mechanism if there are a large number of items that need to be deleted:
	Chapter 9

	10. Lastly, we define getters and setters for each of the properties. Not all are shown here
	to conserve space:
	11. The filesystem cache adapter defines the same methods as defined earlier. Note the use of md5(), not for security, but as a way of quickly generating a text string from the key:
	Developing Middleware
	Chapter 9
	Developing Middleware (1)

	12. Now we are ready to present the core cache mechanism. In the constructor, we
	13. Next are a series of wrapper methods that call methods of the same name from
	14. To retrieve information from the cache, we need to pull the key and group parameters from the request object, and then call the same method from the adapter. If no results are obtained, we set a 204 code, which indicates the request was a success,...
	Chapter 9

	15. Strangely, writing to the cache is almost identical, except that the results are expected
	to be either a number (that is, the number of rows affected), or a Boolean result:
	16. The remove methods are, as expected, quite similar to each other:
	Developing Middleware

	How it works… (2)
	In order to demonstrate the use of the Acl class, you will need to define the classes
	described in this recipe, summarized here:
	Next, define a test program, which you could call chap_09_middleware_cache_db.php. In this program, as usual, define constants for necessary files, set up autoloading, use the appropriate classes, oh... and write a function that produces prime numbers...
	Chapter 9

	Well, a function that takes a long time to run is needed, so prime number generator, here we go! The numbers 1, 2, and 3 are given as primes. We use the PHP 7 yield from syntax to produce these first three. then, we skip right to 5, and proceed up to...
	You can then set up a database cache adapter instance, which serves as an argument for the core:
	Alternatively, if you wish to use the file cache adapter instead, here is the appropriate code:
	If you wanted to clear the cache, here is how it might be done:
	Developing Middleware

	You can use time() and microtime() to see how long this script runs with and without the cache:
	Next, generate a cache request. A status code of 200 indicates you were able to obtain a list
	of primes from the cache:
	Otherwise, you can assume nothing was obtained from the cache, which means you need to
	generate prime numbers, and save the results to the cache:
	You can then check the stop time, calculate the difference, and have a look at your new list
	of primes:
	Here is the expected output before values were stored in the cache:
	Chapter 9

	You can now run the same program again, this time retrieving from the cache:
	Developing Middleware

	Allowing for the fact that our little prime number generator is not the world's most efficient, and also that the demonstration was run on a laptop, the time went from over 30 seconds down to milliseconds.

	There's more…
	See also (9)
	You might consider making slight changes to the cache adapter classes described previously following PSR-6, which is a standards recommendation directed towards the cache. There is not the same level of acceptance of this standard as with PSR-7, howev...
	Routing refers to the process of accepting user-friendly URLs, dissecting the URL into its component parts, and then making a determination as to which class and method should be dispatched. The advantage of such an implementation is that not only can...
	URLs Search Engine Optimization (SEO)-friendly, but you can also create rules, incorporating regular expression patterns, which can extract values of parameters.

	How to do it… (3)
	1. Probably the most popular approach is to take advantage of a web server that supports URL rewriting. An example of this is an Apache web server configured to use mod_rewrite. You then define rewriting rules that allow graphic file requests and requ...
	2. Another potential approach is to simply have your web server virtual host definition point to a specific routing script, which then invokes the routing class, make routing decisions, and redirect appropriately.
	Chapter 9

	3. The first code to consider is how to define routing configuration. The obvious answer is to construct an array, where each key would point to a regular expression against which the URI path would match, and some form of action. An example of such c...
	4. Next, we define our Router class. We first define constants and properties that will be of use during the process of examining and matching a route:
	Developing Middleware

	5. The constructor accepts a ServerRequestInterface compliant class, the path to the document root, and the configuration file mentioned earlier. Note that we throw an exception if the default configuration is not supplied:
	6. Next, we have a series of getters that allow us to retrieve the original request,
	document root, and final route match:
	7. The isFileOrDir() method is used to determine whether we are trying to match against a CSS, JavaScript, or graphic request (among other possibilities):
	Chapter 9

	8. Finally we define match(), which iterates through the configuration array and runs
	callback is returned. If there is no match, the default callback is returned:

	How it works… (3)
	Next, add the configuration array discussed in step 3 of this recipe. Note that you could add (/)? at the end of the pattern to account for an optional trailing slash. Also, for the home route, you could offer two options: either / or /home:
	Developing Middleware

	You can then define a router instance, supplying an initialized ServerRequest instance as
	the first argument:
	You then need to check to see whether the request is a file or directory, and also whether the
	route match is /:
	Next, define main.php, something like this:
	Chapter 9

	And finally, a revised menu that uses user-friendly routing is required:
	To test the configuration using Apache, define a virtual host definition that points to
	like this:
	Developing Middleware

	See also (10)
	One of the primary reasons for the development of PSR-7 (and middleware) was a growing need to make calls between frameworks. It is of interest to note that the main documentation for PSR-7 is hosted by PHP Framework Interop Group (PHP-FIG).

	How to do it… (4)
	2. For the purposes of this illustration, we define a middleware session validator. The constants and properties reflect the session thumbprint, which is a term we use to incorporate factors such as the website visitor's IP address, browser, and langu...
	Chapter 9

	3. The constructor takes a ServerRequestInterface instance and the session as arguments. If the session is an array (such as $_SESSION), we wrap it in a class. The reason why we do this is in case we are passed a session object, such as JSession used ...
	Developing Middleware

	4. It's not required to define invoke(), but this magic method is quite
	convenient for standalone middleware classes. As is the convention, we accept
	In this method, we simply check to see whether the current thumbprint matches the one stored. The first time, of course, they will match. But on subsequent requests, the chances are an attacker intent on session hijacking will be caught out. In additi...
	5. We can now put our new middleware class to use. The main problems with inter- framework calls, at least at this point, are summarized here. Accordingly, how we implement middleware depends heavily on the last point:
	 Not all PHP frameworks are PSR-7-compliant
	 Existing PSR-7 implementations are not complete
	 All frameworks want to be the "boss"
	Chapter 9

	a standard Expressive application. The dependencies key is used to identify the
	middleware wrapper classes that will be activated in the pipeline:
	Developing Middleware

	8. Another technique is to modify the source code of an existing framework module, and make a request to a PSR-7-compliant middleware application. Here is an example modifying a Joomla! installation to include a middleware session validator.
	9. Next, add this code the end of the index.php file in the /path/to/joomla folder. Since Joomla! uses Composer, we can leverage the Composer autoloader:
	10. We can then create an instance of our middleware session validator, and make a

	How it works… (4)
	Chapter 9
	Developing Middleware
	Chapter 9 (1)
	Initially, you should see something like this:
	Developing Middleware

	After 10 seconds, refresh the browser. You should now see this:
	Except in cases where you are trying to communicate between different versions of PHP, PSR- 7 middleware will be of minimal use. Recall what the acronym stands for: PHP Standards Recommendations. Accordingly, if you need to make a request to an applic...

	How to do it… (5)
	1. In the case of PHP 4, you actually have a chance in that there is limited support for object-oriented programming. Accordingly, the best approach would be to
	downgrade the basic PSR-7 classes described in the first three recipes. There is not enough space to cover all the changes, but we present a potential PHP 4 version of Application\MiddleWare\ServerRequest. The first thing to note is that there are no ...
	Chapter 9

	2. All properties are identified in PHP 4 using the key word var:
	we need to split this out into a separate variable:
	4. All of the $_XXX super-globals were present in later versions of PHP 4:
	5. The null coalesce operator was only introduced in PHP 7. We need to use
	Developing Middleware

	7. The withXXX() methods work pretty much the same in PHP 4:
	Chapter 9

	9. For websites using other languages, we could use the PSR-7 classes to formulate requests and responses, but would then need to use an HTTP client to communicate with the other website. As an example, recall the demonstration of a Request discussed ...
	In this chapter, we will cover:
	f Using getters and setters f Implementing a linked list f Building a bubble sort
	f Implementing a stack
	f Building a binary search class
	f Implementing a search engine
	f Displaying a multi-dimensional array and accumulating totals
	In this chapter, we cover recipes that implement various advanced algorithms such as linked list, bubble sort, stacks, and binary search. In addition, we cover getters and setters, as well as implementing a search engine and displaying values from a m...
	Looking at Advanced Algorithms

	At first glance, it would seemingly make sense to define classes with public properties, which can then be directly read or written. It is considered a best practice, however, to make properties protected, and to then define a getter and setter for ea...

	How to do it… (6)
	1. Getters and setters provide additional flexibility when getting or setting values. You are able to add an additional layer of logic if needed, something which would not be possible if you were to directly read or write a public property. All you ne...
	2. In this example, we define a class with a protected property, $date. Notice that the get and set methods allow for treatment as either a DateTime object or as a string. The value is actually stored in any event as a DateTime instance:
	Chapter 10

	3. Getters and setters allow you to filter or sanitize the data coming in or going out. In the following example, there are two properties, $intVal and $arrVal, which are set to a default initial value of NULL. Notice that not only are the return valu...
	4. If you have a class with lots and lots of properties, it might become tedious to define a distinct getter and setter for each property. In this case, you can define a kind
	of fallback using the magic method call(). The following class defines nine different properties. Instead of having to define nine getters and nine setters, we define a single method, call(), which makes a determination whether or not the usage is get...
	Looking at Advanced Algorithms

	How it works… (5)
	Chapter 10
	Looking at Advanced Algorithms
	As you can see from the following output, setting a proper integer value works as expected. A non-numeric value defaults to 0. Interestingly, if you supply a Boolean TRUE as an argument to setIntVal(), it is interpolated to 1.
	If you call getArrVal() without setting a value, the default is an empty array. Setting an array value works as expected. However, if you supply a non-array value as an argument, the type hint of the array causes a TypeError to be thrown, which can be...
	Chapter 10

	What will happen, of course, is that the magic method call() is invoked. After running preg_match(), the remainder of the non-existent property, after the letters set, will become a key in the internal array $values:
	You can then define HTML that displays the values using the corresponding get methods. These will in turn return keys from the internal array:
	Looking at Advanced Algorithms

	Here is the final output:
	A linked list is where one list contains keys that point to keys in another list. An analogy, in database terms, would be where you have a table that contains data, and a separate index that points to the data. One index might produce a list of items ...
	For example, in the diagram shown next, the primary list contains ID numbers and the names of fruits. If you were to directly output the primary list, the fruit names would display in this order: Apple, Grape, Banana, Orange, Cherry. If you were to us...

	How to do it… (7)
	Chapter 10
	1. One of the primary uses of a linked list is to produce a display of items in a different order. One approach would be to create an iteration of key value pairs, where the key represents the new order, and the value contains the value of the key in ...
	2. We use an anonymous function to generate the new key in order to provide extra flexibility. You will also notice that we do a sort by key (ksort()) so that the linked list iterates in key order.
	3. All we need to do to use the linked list is to iterate through it, but produce results from the primary list, $customer in this example:
	4. Note that in no way do we touch the primary list. This allows us to generate multiple linked lists, each representing a different order, while retaining our original set of data.
	5. Another important use of a linked list is for the purposes of filtering. The technique is similar to that shown previously. The only difference is that we expand the buildLinkedList() function, adding a filter column and filter value:
	Looking at Advanced Algorithms

	6. We only include items in the linked list where the value represented by $filterCol in the primary list matches $filterVal. The iteration logic is the same as that shown in step 2.
	7. Finally, another form of linked list is the doubly linked list. In this case, the list is constructed in such a manner that the iteration can occur in either a forward or reverse direction. In the case of PHP, we are fortunate to have an SPL class,
	SplDoublyLinkedList, which neatly does the trick. Here is a function that builds a doubly linked list:

	How it works… (6)
	Copy the code shown in the first bullet into a file, chap_10_linked_list_include. php. In order to demonstrate the use of a linked list, you will need a source of data. For this illustration, you can make use of the customer.csv file that was mentione...
	Chapter 10

	You can add the following functions to the include file mentioned previously to generate a primary list of customers, and to display information about them. Note that we use the first column, id as the primary key:
	Looking at Advanced Algorithms

	includes the file defined previously, and reads customer.csv:
	You can then define an anonymous function that will produce a key in the linked list. In this illustration, define a function that breaks down column 1 (name) into first and last names:
	You can then call the function to build the linked list, and use printCustomer() to display
	the results:
	Here is how the output might appear:
	Chapter 10

	To produce a filtered result, modify buildLinkedList() as discussed in step 4. You can then add logic that checks to see whether the value of the filter column matches the value in the filter:

	There's more… (1)
	PHP 7.1 introduced the use of [] as an alternative to list(). If you look at the anonymous function mentioned previously, you could rewrite this in PHP 7.1 as follows:
	Looking at Advanced Algorithms

	The classic bubble sort is an exercise often assigned to university students. Nonetheless, it's important to master this algorithm as there are many occasions where built-in PHP sorting functions do not apply. An example would be sorting a multi-dimen...
	The way the bubble sort works is to recursively iterate through the list and swap the current value with the next value. If you want items to be in ascending order, the swap occurs if the next item is less than the current item. For descending order, ...
	In the following diagram, after the first pass, Grape and Banana are swapped, as are Orange and Cherry. After the 2nd pass, Grape and Cherry are swapped. No more swaps occur on the last pass, and the bubble sort ends:

	How to do it… (8)
	1. We do not want to actually move the values around in the array; that would be horribly expensive in terms of resource usage. Instead, we will use a linked list, discussed in the previous recipe.
	previous recipe.
	3. We then define a new function, bubbleSort(), which accepts the linked list by reference, the primary list, a sort field, and a parameter that represents sort order (ascending or descending):
	4. The variables needed include one that represents the number of iterations, the
	number of swaps, and an iterator based upon the linked list:
	Chapter 10

	5. In the while() loop, we only proceed if the iteration is still valid, which is to say still in progress. We then obtain the current key and value, and the next key and value. Note the extra if() statement to ensure the iteration is still valid (tha...
	6. Next we check to see whether the sort is to be ascending or descending. Depending on the direction, we check to see whether the next value is greater than, or less than, the current value. The result of the comparison is stored in $expr:
	7. If the value of $expr is TRUE, and we have valid current and next keys, the values are swapped in the linked list. We also increment $swaps:
	8. Finally, if any swaps have occurred, we need to run through the iteration again, until there are no more swaps. Accordingly, we make a recursive call to the same method:
	9. The real return value is the re-organized linked list. We also return the number of
	iterations just for reference:
	Looking at Advanced Algorithms

	How it works… (7)
	Add the bubbleSort() function discussed previously to the include file created in the previous recipe. You can use the same logic discussed in the previous recipe to read the customer.csv file, producing a primary list:
	You can then produce a linked list using the first column as a sort key:
	Finally, call the bubbleSort() function, providing the linked list and customer list as arguments. You can also provide a sort column, in this illustration column 2, that represents the account balance, using the letter 'A' to indicate ascending order...
	Here is an example of the output:
	Chapter 10

	A stack is a simple algorithm normally implemented as Last In First Out (LIFO). Think of a stack of books sitting on a library table. When the librarian goes to restore the books to their place, the topmost book is processed first, and so on in order,...
	In programming terms, a stack is used to temporarily store information. The retrieval order facilitates retrieving the most recent item first.

	How to do it… (9)
	2. Next we define a property to represent the stack, and set up an SplStack instance:
	3. After that we define methods to add and remove from the stack, the classic push()
	Looking at Advanced Algorithms

	4. We also throw in an implementation of invoke() that returns an instance of the
	stack property. This allows us to use the object in a direct function call:

	How it works… (8)
	One possible use for a stack is to store messages. In the case of messages, it is usually desirable to retrieve the latest first, thus it is a perfect use case for a stack. Define the Application\Generic\Stack class as discussed in this recipe. Next, ...
	To do something with the stack, store a series of messages. As you would most likely store messages at different points in your application, you can use sleep() to simulate other code running:
	Finally, simply iterate through the stack to retrieve messages. Note that you can call the stack
	object as if it were a function, which returns the SplStack instance:
	Chapter 10

	Here is the expected output:
	Conventional searches often proceed through the list of items in a sequential manner. This means that the maximum possible number of items to be searched could be the same as the length of the list! This is not very efficient. If you need to expedite ...
	The technique is quite simple: you find the midpoint in the list, and determine whether the search item is less than, equal to, or greater than the midpoint item. If less, you set the upper limit to the midpoint, and search only the first half of the ...

	How to do it… (10)
	accepts the primary list as an argument. As a control, we also define a property,
	Looking at Advanced Algorithms

	2. Next we define a method, binarySearch(), which sets up the search infrastructure. The first order of business is to build a separate array, $search, where the key is a composite of the columns included in the search. We then sort by key:
	3. We then pull out the keys into another array, $binary, so that we can perform the binary sort based on numeric keys. We then call doBinarySearch(), which results in a key from our intermediary array $search, or a Boolean, FALSE:
	and $lower represent the slice of the list to be examined:
	Chapter 10

	5. We then implement a while() loop and set the midpoint:
	6. We now get to use the new PHP 7 spaceship operator, which gives us, in a single comparison, less than, equal to, or greater than. If less, we set the upper limit to the midpoint. If greater, the lower limit is adjusted to the midpoint. If equal, we...
	7. Now for a bit of loop control. We increment the number of iterations and make sure it does not exceed the size of the list. If so, something is definitely wrong and we need to bail out. Otherwise, we check to see whether the upper and lower limits ...
	Looking at Advanced Algorithms

	How it works… (9)
	in this recipe. Next, define a calling program, chap_10_binary_search.php, which sets up autoloading and reads the customer.csv file as a search target (as discussed in the previous recipe):
	You can then create a new Search instance, and specify an item somewhere in the middle of the list. In this illustration, the search is based on column 1, customer name, and the item is Todd Lindsey:
	The output is shown here. Notice how the upper, middle, and lower limits adjust until the item
	is found:
	Chapter 10

	See also (11)
	In order to implement a search engine, we need to make provision for multiple columns to be included in the search. In addition, it's important to recognize that the search item might be found in the middle of the field, and that very rarely will user...

	How to do it… (11)
	1. First, we define a basic class to hold search criteria. The object contains three properties: the key, which ultimately represents a database column; the operator (LIKE, <, >, and so on); and optionally an item. The reason why an item is optional i...
	Looking at Advanced Algorithms

	and provide the necessary class constants and properties. The difference between
	$columns and $mapping is that $columns holds information that will ultimately appear in an HTML SELECT field (or the equivalent). For security reasons, we do not want to expose the actual names of the database columns, thus the need for another array ...
	3. Next, we define a set of operators we are willing to support. The key represents actual SQL. The value is what will appear in the form:
	Chapter 10

	$columns, but where the value represents actual database column names:
	5. After the constructor, we provide a series of useful getters and setters:
	6. Probably the most critical method is the one that builds the SQL statement to be prepared. After the initial SELECT setup, we add a WHERE clause, using $mapping to add the actual database column name. We then add the operator and implement switch()...
	Looking at Advanced Algorithms

	7. Now that the core SELECT has been defined, we remove any trailing OR keywords, and add a clause that causes the result to be sorted according to the search column. The statement is then sent to the database to be prepared:
	8. We are now ready to move on to the main show, the search() method. We accept an Application\Database\Search\Criteria object as an argument. This ensures that we have an item key and operator at a minimum. To be on the safe side, we add an if() stat...
	10. Next we build an array of parameters that will be supplied to execute().
	The key represents the database column name that was used as a placeholder in the prepared statement. Note that instead of using =, we use the LIKE
	Chapter 10

	11. The statement is executed, and the results returned using the yield keywords, which effectively turns this method into a generator:

	How it works… (10)
	You can now define which database columns will appear in the form, and a matching
	mapping file:
	Looking at Advanced Algorithms

	You can now set up the database connection and create the search engine instance:
	In order to display the appropriate drop-down SELECT elements, we define wrappers and
	Chapter 10

	We then get input parameters (if defined), set form element options, create search criteria,
	and run the search:
	The display logic mainly orients towards rendering the form. A more thorough presentation is
	Looking at Advanced Algorithms

	Here is sample output from a browser:
	How to properly display data from a multi-dimensional array has been a classic problem for any web developer. For illustration, assume you wish to display a list of customers and their purchases. For each customer, you wish to show their name, phone n...

	How to do it… (12)
	query. We leave two parameters open, min and max, in order to support pagination. Unfortunately, we cannot use a simple LIMIT and OFFSET in this case, as the number of rows will vary depending on the number of purchases for any given customer. Accordi...
	on the customer ID that presumably (hopefully) is incremental. To make this work properly, we also need to set the primary ORDER to customer ID:
	Chapter 10

	2. Next we can implement a form of pagination, based on restrictions on the customer ID, using simple $_GET parameters. Note that we add an extra check to make sure the value of $prev does not go below zero. You might consider adding another control t...
	3. We then calculate the values for $min and $max, and prepare and execute the SQL
	statement:
	4. A while() loop can be used to fetch results. We use a simple fetch mode of PDO::FETCH_ASSOC for the purpose of this example. Using the customer ID as a key, we store basic customer information as array parameters. We then store an array of purchase...
	Looking at Advanced Algorithms

	5. Next we implement the view logic. First, we start with a block that displays primary
	customer information:
	Chapter 10

	6. Next comes the logic to display a list of purchases for this customer:
	7. For the purposes of pagination, we then add buttons to represent previous and next:
	8. The result so far, unfortunately, is nowhere near neat and tidy! Accordingly we add a simple JavaScript function to toggle the visibility of a <div> tag based on its id attribute:
	Looking at Advanced Algorithms

	9. Next we wrap the purchases table inside an initially invisible <div> tag. Then, we can place a limit of how many sub-rows are initially visible, and add a link that reveals the remaining purchase data:
	10. We then add a button that, when clicked, reveals the hidden <div> tag:

	How it works… (11)
	Just inside the while() loop, add the following:
	Chapter 10

	Just after the while() loop, add an exit command. Here is the output:
	You will notice that the basic customer information, such as the ID and name, repeats for each result row, but purchase information, such as transaction and product title, varies. Go ahead and remove the printf() statement.
	Replace the exit command with the following:
	Here is how the newly composed 3D array looks:
	Looking at Advanced Algorithms

	You can now add the display logic shown in steps 5 to 7. As mentioned, although you are now showing all data, the visual display is not helpful. Now go ahead and add the refinements mentioned in the remaining steps. Here is how the initial output migh...
	When the Purchases button is clicked, initial purchase info appears. If the link to More is
	clicked, the remaining purchase information shows:
	In this chapter, we will cover the following topics:
	f Creating an array to object hydrator f Building an object to array hydrator f Implementing a strategy pattern
	f Defining a mapper
	f Implementing object-relational mapping
	f Implementing the Pub/Sub design pattern
	Implementing Software Design Patterns

	Examples of many of these patterns have already been presented in this book. Here is a brief summary:
	In this chapter, we will examine a number of additional design patterns, focusing primarily on Concurrency and Architectural patterns.
	The Hydrator pattern is a variation of the Data Transfer Object design pattern. Its design principle is quite simple: moving data from one place to another. In this illustration, we will define classes to move data from an array to an object.

	How to do it… (13)
	1. First, we define a Hydrator class that is able to use getters and setters. For this
	2. Next, we define a hydrate() method, which takes both an array and an object as arguments. It then calls the setXXX() methods on the object to populate it with values from the array. We use get_class() to determine the object's class, and then get_c...
	Chapter 11

	How it works… (12)
	To demonstrate how the array to hydrator object is used, first define the Application\ Generic\Hydrator\GetSet class as described in the How to do it… section. Next, define an entity class that can be used to test the concept. For the purposes of this...
	Implementing Software Design Patterns

	Next, you can define a test array with values that will be added to a new Person instance:
	The results are shown in the following screenshot:
	Chapter 11

	This recipe is the converse of the Creating an array to object hydrator recipe. In this case, we need to pull values from object properties and return an associative array where the key will be the column name.

	How to do it… (14)
	2. After the hydrate() method defined in the previous recipe, we define an extract() method, which takes an object as an argument. The logic is similar to that used with hydrate(), except this time we're searching for getXXX() methods. Again, preg_mat...
	Implementing Software Design Patterns

	How it works… (13)
	Next, define an instance of Person, setting values for its properties:
	Finally, call the new extract() method in a static manner:
	The output is shown in the following screenshot:
	Chapter 11

	It is often the case that runtime conditions force the developer to define several ways of doing the same thing. Traditionally, this involved a massive if/elseif/else block of commands.
	You would then either have to define large blocks of logic inside the if statement, or create
	a series of functions or methods to enable the different approaches. The strategy pattern attempts to formalize this process by having the primary class encapsulate a series of sub- classes that represent different approaches to solve the same problem.

	How to do it… (15)
	2. We first define class constants that reflect the built-in strategies that are available:
	3. We then define a constructor that adds all built-in strategies to the $strategies
	property:
	Implementing Software Design Patterns

	4. We also add an addStrategy() method that allows us to overwrite or add new strategies without having to recode the class:
	6. The tricky bit is figuring out which hydration strategy to choose. For this purpose we define chooseStrategy(), which takes an object as an argument. We first perform some detective work by way of getting a list of class methods. We then scan throu...
	Chapter 11

	8. If all else fails, we fall back to the Extending hydrator, which returns a new class that simply extends the object class, thus making any public or protected properties available:
	9. Now we turn our attention to the strategies themselves. First, we define a new
	11. The GetSet hydrator is exactly as defined in the previous two recipes, with the only
	addition being that it will implement the new interface:
	Implementing Software Design Patterns

	12. The next hydrator simply reads and writes public properties:
	13. Finally, Extending, the Swiss Army knife of hydrators, extends the object class, thus providing direct access to properties. We further define magic getters and setters to provide access to properties.
	14. The hydrate() method is the most difficult as we are assuming no getters or setters are defined, nor are the properties defined with a visibility level of public. Accordingly, we need to define a class that extends the class of the object to be hy...
	Chapter 11

	15. Continuing in the hydrate() method, we define a $values property, and a constructor that assigns the array to be hydrated into the object as an argument.
	We loop through the array of values, assigning values to properties. We also define a useful getArrayCopy() method, which returns these values if needed, as well as a magic get() method to simulate direct property access:
	16. For convenience we define a magic get() method, which simulates direct variable
	access as if they were public:
	17. Still in the template for the new class, we define also a magic call() method, which simulates getters and setters:
	Implementing Software Design Patterns

	18. Finally, still in the template for the new class, we add a function, in the global
	namespace, that builds and returns the class instance:
	19. Still in the hydrate() method, we execute the completed template using eval(). We then run the build() method defined just at the end of the template. Note that as we are unsure of the namespace of the class to be populated, we define and call bui...
	20. The extract() method is much easier to define as our choices are extremely limited. Extending a class and populating it from an array using magic methods is easily accomplished. The reverse is not the case. If we were to extend the class, we would...
	Chapter 11

	How it works… (14)
	You can begin by defining three test classes with identical properties: firstName, lastName, and so on. The first, Person, should have protected properties along with getters and setters. The second, PublicPerson, will have public properties. The thir...
	Implementing Software Design Patterns
	Chapter 11

	Next, create an instance of Person and run the setters to define values for properties:
	Observe, in the following output, that the GetSet strategy was chosen:
	Next, you can define an array with the same values. Call hydrate() on the Any instance,
	Implementing Software Design Patterns

	Here is the result. Note that the PublicProps strategy was chosen in this case:
	Here is the last output, showing that the Extending strategy was chosen. You'll also note that the instance is a new ProtectedPerson_TEMP class, and that the protected properties are fully populated:
	Chapter 11

	A mapper or data mapper works in much the same manner as a hydrator: converting data from one model, be it array or object, into another. A critical difference is that the hydrator is generic and does not need to have object property names pre-program...
	this recipe we will demonstrate the use of a mapper to convert data from one database table
	into another.

	How to do it… (16)
	Implementing Software Design Patterns
	2. Key properties are defined along with the appropriate class constants. $key is used to identify the object. $source represents the column from the source database table. $destTable and $destCol represent the target database table and column.
	$default, if defined, contains a default value or a callback that produces the
	appropriate value:
	3. We now turn our attention to the constructor, which assigns default values, builds the key, and checks to see that either or both $source or $destTable and $destCol are defined:
	Chapter 11

	4. In the case of defaults, we need to check to see if the value is a callback. If so, we run the callback; otherwise, we return the direct value. Note that the callbacks should be defined so that they accept a database table row as an argument:
	5. Finally, to wrap up this class, we define getters and setters for each of the five
	properties:
	6. Next, we define a Application\Database\Mapper\Mapping mapping class, which accepts the name of the source and destination tables as well as an array of FieldConfig objects as an argument. You will see later that we allow the destination table prope...
	Implementing Software Design Patterns

	7. We then define getters and setters for these properties:
	8. For field configuration, we also need to provide the ability to add an individual field. There is no need to supply the key as a separate argument as this can be obtained from the FieldConfig instance:
	9. It is extremely important to obtain an array of source column names. The problem is that the source column name is a property buried in a FieldConfig object.
	Accordingly, when this method is called, we loop through the array of FieldConfig
	objects and invoke getSource() on each one to obtain the source column name:
	Chapter 11

	10. We use a similar approach for getDestColumns(). The big difference compared to getting a list of source columns is that we only want the columns for one specific destination table, which is critical if there's more than one such table is defined. ...
	11. Finally, we define a method that accepts as a first argument an array representing one row of data from the source table. The second argument is the name of the destination table. The method produces an array of data ready to be inserted into the ...
	12. We had to make a decision as to which would take precedence: the default value (which could be provided by a callback), or data from the source table. We decided to test for a default value first. If the default comes back NULL, data from the sour...
	Implementing Software Design Patterns

	13. We are now ready to define two methods that will generate SQL. The first such method will generate an SQL statement to read from the source table. The statement will include placeholders to be prepared (for example, using PDO::prepare()):
	14. The other SQL generation method produces a statement to be prepared for a specific destination table. Notice that the placeholders are the same as the column names preceded by ":":

	How it works… (15)
	Chapter 11
	Before defining a calling program that performs mapping, it's important to consider the source and destination database tables. The definition for the source table, prospects_11, is as follows:
	In this example, you can use two destination tables, customer_11 and profile_11, between which there is a 1:1 relationship:
	Implementing Software Design Patterns

	For demonstration purposes, after having made sure the two destination tables exist, you can truncate both tables so that any data that appears is clean:
	You are now ready to build the Mapping instance and populate it with FieldConfig objects. Each FieldConfig object represents a mapping between source and destination. In the constructor, supply the name of the source table and the two destination tabl...
	Chapter 11

	The name field is tricky, as in the prospects_11 table it's represented by two columns, but only one column in the customer_11 table. Accordingly, you can add a callback as default for first_name to combine the two fields into one. You will also need ...
	set or not:
	The customer_11::level field is not represented in the source table, thus you can make a NULL entry for the source field, but make sure the destination table and column are set. Likewise, customer_11::password is not present in the source table. In th...
	You can also set mappings from prospects_11 to profile_11 as follows. Note that as the source photo and date of birth columns are not present in prospects_11, you can set any appropriate default:
	Implementing Software Design Patterns

	You can now call the appropriate methods to generate three SQL statements, one to read
	from the source table, and two to insert into the two destination tables:
	These three statements can immediately be prepared for later execution:
	We then execute the SELECT statement, which produces rows from the source table. In a loop we then generate INSERT data for each destination table, and execute the appropriate prepared statements:
	Here are the three SQL statements produced:
	Chapter 11

	We can then view the data directly from the database using SQL JOIN to ensure the relationship has been maintained:
	Implementing Software Design Patterns

	There are two primary techniques to achieve a relational mapping between objects. The first technique involves pre-loading the related child objects into the parent object. The advantage to this approach is that it is easy to implement, and all parent...
	The second technique is to embed a secondary lookup into the parent object. In this latter approach, when you need to access the child objects, you would run a getter that would perform the secondary lookup. The advantage of this approach is that perf...

	How to do it… (17)
	Let's have a look at two techniques to implement object-relational mapping.
	Technique #1 – pre-loading all child information
	First, we will discuss how to implement object relational mapping by pre-loading all child information into the parent class. For this illustration, we will use three related database tables, customer, purchases, and products:
	Chapter 11

	might look. Note that not all getters and setters are shown:
	Implementing Software Design Patterns

	might look:
	Chapter 11

	5. Next, we need to implement a way to embed related objects. We will start with the Application\Entity\Customer parent class. For this section, we will assume the following relationships, illustrated in the following diagram:
	 One customer, many purchases
	 One purchase, one product
	6. Accordingly, we define a getter and setter that process purchases in the form of an array of objects:
	7. Now we turn our attention to Application\Entity\Purchase. In this case, there is a 1:1 relationship between a purchase and a product, so there's no need to process an array:
	Implementing Software Design Patterns

	9. We then add a method to the new service class that performs a lookup and embeds the results, in the form of Product and Purchase entities, into the core customer entity. This method performs a lookup in the form of a JOIN. This is possible because ...
	Chapter 11

	Technique #2 – embedding secondary lookups
	Now we will cover embedding secondary lookups into the related entity classes. We will continue to use the same illustration as above, using the entity classes defined that correspond to three related database tables, customer, purchases, and products:
	1. The mechanics of this approach are quite similar to those described in the preceding section. The main difference is that instead of doing the database lookup, and producing entity classes right away, we will embed a series of anonymous functions t...
	Implementing Software Design Patterns

	4. We then define a fetchPurchaseById() method, which looks up a single purchase based on its ID and produces a Purchase entity. Because we will ultimately be making a series of repetitive requests for single purchases in this approach, we can regain ...
	5. After that, we need a fetchProductById() method that looks up a single product based on its ID and produces a Product entity. Given that a customer may have purchased the same product several times, we can introduce an additional level of efficienc...
	Chapter 11

	6. We can now rework the fetchPurchasesForCustomer() method to have it embed an anonymous function that makes calls to both fetchPurchaseById() and fetchProductById(), and then assigns the resulting product entity to the newly found purchase entity. I...

	How it works… (16)
	Define the following classes based on the steps from this recipe as follows:
	Implementing Software Design Patterns

	The second approach to this would be as follows:
	In order to implement approach #1, where entities are embedded, define a calling program called chap_11_orm_embedded.php, which sets up autoloading and uses the appropriate classes:
	Next, create an instance of the service, and look up a customer using a random ID:
	In the view logic, you will have acquired a fully populated Customer entity by way of the fetchByIdAndEmbedPurchases() method. Now all you need to do is to call the right getters to display information:
	Chapter 11

	Turning your attention to the second approach, which uses secondary lookups, define a calling program called chap_11_orm_secondary_lookups.php, which sets up autoloading and uses the appropriate classes:
	Next, create an instance of the service, and look up a customer using a random ID: (1)
	The view logic for displaying core customer information remains the same as described
	previously. The logic needed to display purchase information would then look something like the following HTML code snippet. Notice that Customer::getPurchases() returns an array of anonymous functions. Each function call returns one specific purchase...
	Implementing Software Design Patterns

	Here is an example of the output:

	See also (12)
	Probably the best example of a library that implements object-relational mapping is Doctrine. Doctrine uses an embedded approach that its documentation refers to as a proxy. For more information, please refer to http://www.doctrine-project.org/project...
	Chapter 11

	The Publish/Subscribe (Pub/Sub) design pattern often forms the basis of software event- driven programming. This methodology allows asynchronous communications between different software applications, or different software modules within a single appl...
	Example of such actions are when the database is modified, or when a user has logged in. Another common use for this design pattern is when an application delivers news feeds. If an urgent news item has been posted, the application would publish this ...

	How to do it… (18)
	2. Next, we add properties to represent the publisher name, data to be passed to subscribers, and an array of subscribers (also referred to as listeners). You will also note that we will use a linked list (described in Chapter 10, Looking at Advanced ...
	Implementing Software Design Patterns

	3. The constructor initializes these properties. We also throw in toString() in case
	we need quick access to the name of this publisher:
	4. In order to associate a subscriber with this publisher, we define attach(), which is specified in the SplSubject interface. We accept an SplObserver instance as an argument. Note that we need to add entries to both the $subscribers and
	$linked properties. $linked is then sorted by value, represented by the priority,
	using arsort(), which sorts in reverse and maintains the key:
	5. The interface also requires us to define detach(), which removes the subscriber from the list:
	6. Also required by the interface, we define notify(), which calls update() on all the subscribers. Note that we loop through the linked list to ensure the subscribers are called in order of priority:
	Chapter 11

	7. Next, we define the appropriate getters and setters. We don't show them all here to
	conserve space:
	8. Finally, we need to provide a means of setting data items by key, which will then be
	available to subscribers when notify() is invoked:
	10. Each subscriber needs a unique identifier. In this case, we create the key using md5() and date/time information, combined with a random number. The constructor initializes the properties as follows. The actual logical functionality performed by t...
	Implementing Software Design Patterns

	11. The update() function is called when notifiy() on the publisher is invoked. We pass a publisher instance as an argument, and call the callback defined for this subscriber:
	12. We also need to define getters and setters for convenience. Not all are shown here:

	How it works… (17)
	Next, create a publisher instance and assign data:
	Now you can create test subscribers that read data from the publisher and echo the results. The first parameter is the name, the second the callback, and the last is the priority:
	Chapter 11

	For test purposes, attach the subscribers out of order, and call notify() twice:
	Next, define and attach another subscriber that looks at the data for subscriber 1 and exits if it's not empty:
	Implementing Software Design Patterns

	Here is the output. Note that the output is in order of priority (where higher priority goes first), and that the second block of output is interrupted:

	There's more… (2)
	A closely related software design pattern is Observer. The mechanism is similar but the generally agreed difference is that Observer operates in a synchronous manner, where all observer methods are called when a signal (often also referred to as messa...
	message queue. Another difference is that in the Pub/Sub pattern, publishers do not need to be aware of subscribers.

	See also (13)
	In this chapter, we will cover the following topics:
	f Safeguarding the PHP session
	f Securing forms with a token
	f Building a secure password generator
	f Safeguarding forms with a CAPTCHA
	In this chapter, we will show you how to set up a simple yet effective mechanism for filtering and validating a block of post data. Then, we will cover how to protect your PHP sessions from potential session hijacking and other forms of attack. The ne...
	The recipe on password generation shows you how to incorporate PHP 7 true randomization to generate secure passwords. We then show you two forms of CAPTCHA: one that is text based, the other using a distorted image. Finally, there is a recipe that cov...
	Improving Web Security

	The process of filtering data can encompass any or all of the following:
	f Removing unwanted characters (that is, removing <script> tags)
	f Performing transformations on the data (that is, converting a quote to ")
	f Encrypting or decrypting the data
	Encryption is covered in the last recipe of this chapter. Otherwise, we will present a basic mechanism that can be used to filter $_POST data arriving following form submission.

	How to do it… (19)
	1. First of all, you need to have an awareness of the data that will be present in $_POST. Also, perhaps more importantly, you will need to be aware of the restrictions imposed by the database table in which the form data will presumably be stored. As...
	2. Once you have completed an analysis of the data to be posted and stored, you can determine what type of filtering is to occur, and which PHP functions will serve this purpose.
	3. As an example, if you need to get rid of leading and trailing white space, which is completely possible from user supplied form data, you can use the PHP trim() function. All of the character data has length limits according to the database structu...
	Chapter 12

	4. We can now group the set of desired PHP functions into a single array of callbacks. Here is an example based on the filtering needs for the form data that will eventually be stored in the prospects table:
	5. Next, we define an array that matches the field names expected in $_POST. In this array, we specify the key in the $filter array, along with any parameters. Note the first key, *. We will use that as a wildcard to be applied to all fields:
	6. We then loop through the data set (that is, coming from $_POST) and apply the callbacks in turn. We first run all callbacks assigned to the wildcard (*) key.
	Improving Web Security

	7. Next, we run through all callbacks assigned to a particular data field. When we're
	done, all values in $data will be filtered:

	How it works… (18)
	Place the code shown in steps 4 through 6 into a file called chap_12_post_data_ filtering_basic.php. You will also need to define an array to simulate data that would be present in $_POST. In this case, you could define two arrays, one with good data,...
	Chapter 12

	Finally, you will need to loop through the filter assignments, presenting the good and bad data:
	Here's how the output might appear for this example:
	Note that the names were truncated and tags were removed. You will also note that although the e-mail address was filtered, it is still not a valid address. It's important to note that for proper treatment of data, it might be necessary to validate as...
	Improving Web Security

	See also (14)
	The primary difference between filtering and validation is that the latter does not alter the original data. Another difference is in intent. The purpose of validation is to confirm that the data matches certain criteria established according to the n...

	How to do it… (20)
	1. The basic validation mechanism we will present here is identical to that shown in the preceding recipe. As with filtering, it is vital to have an idea of the nature of the data to be validated, how it fits your customer's requirements, and also whe...
	maximum width of the column is 128, the validation callback could use strlen() to confirm that the length of the data submitted is less than or equal to 128 characters. Likewise, you could use ctype_alnum() to confirm that the data only contains lette...
	2. Another consideration for validation is to present an appropriate validation failure message. The validation process, in a certain sense, is also a confirmation process, where somebody presumably will review the validation to confirm success or fai...
	3. For this illustration, we will again focus on the prospects table. We can now group the set of desired PHP functions into a single array of callbacks. Here is an example based on the validation needs for the form data, which will eventually be stor...
	Chapter 12

	4. Next, we define an array of assignments that matches the field names expected in
	parameters:
	Improving Web Security

	5. We then use nested foreach() loops to iterate through the block of data one field at a time. For each field, we loop through the callbacks assigned to that field:

	How it works… (19)
	Place the code shown in steps 3 through 5 into a file called chap_12_post_data_ validation_basic.php. You will also need to define an array of data that simulates data that would be present in $_POST. In this case, you use the two arrays mentioned in ...

	See also (15)
	Chapter 12
	The PHP session mechanism is quite simple. Once the session is started using session_ start() or the php.ini session.autostart setting, the PHP engine generates a unique token that is, by default, conveyed to the user by way of a cookie. On subsequent...

	How to do it… (21)
	1. First of all, it's important to recognize how using the session as the sole means of authentication can be dangerous. Imagine for a moment that when a valid user logs in to your website, that you set a loggedIn flag in $_SESSION:
	Improving Web Security

	3. If an attacker were to obtain the session identifier, for example, by means of a successfully executed Cross-site scripting (XSS) attack, all he/she would need to do would be to set the value of the PHPSESSID cookie to the illegally obtained one, a...
	4. One quick and easy way to narrow the window of time during which the PHPSESSID is valid is to use session_regenerate_id(). This very simple command generates a new session identifier, invalidates the old one, maintains session data intact, and has ...
	5. Another often overlooked technique is to ensure that web visitors have a logout option. It is important, however, to not only destroy the session using session_ destroy(), but also to unset $_SESSION data and to expire the session cookie:
	6. Another easy technique that can be used to prevent session hijacking is to develop a finger-print or thumb-print of the website visitor. One way to implement this technique is to collect information unique to the website visitor over and above the ...

	How it works… (20)
	Chapter 12
	You can then add code that displays a simple login form. To test for session vulnerability,
	1. Change to the directory containing the file.
	6. Refresh the page: each time, you should see a new session identifier.
	8. Open another browser to the same web page.
	9. Modify the cookie sent by the browser by copying the value of PHPSESSID.
	Improving Web Security

	For illustration, we are also showing the value of $_COOKIE and $_SESSION, shown in the following screenshot using the Vivaldi browser:
	We then copy the value of PHPSESSID, open a Firefox browser, and use a tool called Tamper Data to modify the value of the cookie:
	Chapter 12

	You can see in the next screenshot that we are now an authenticated user without entering
	the username or password:
	You can now implement the changes discussed in the preceding steps. Copy the file created previously to chap_12_session_protected.php. Now go ahead and regenerate the session ID:
	Next, initialize variables and determine the logged in status (as before):
	You can add a session thumb-print using the remote address, user agent, and language settings:
	Improving Web Security

	If the login is successful, we store thumb-print info and login status in the session:
	You can also check for the logout option and implement a proper logout procedure: unset
	$_SESSION variables, invalidate the session, and expire the cookie. You can also remove the thumb-print file and implement a redirect:
	Otherwise, if the operation is not login or logout, you can check to see whether the user is considered logged in, and if the thumb-print doesn't match, the session is considered invalid, and the appropriate action is taken:
	You can now run the same procedure as mentioned previously using the new chap_12_ session_protected.php file. The first thing you will notice is that the session is now considered invalid. The output will look something like this:
	Chapter 12

	The reason for this is that the thumb-print does not match as you are now using a different browser. Likewise, if you refresh the page of the first browser, the session identifier is regenerated, making any previously copied identifier obsolete. Final...

	See also (16)
	This recipe presents another very simple technique that will safeguard your forms against Cross Site Request Forgery (CSRF) attacks. Simply put, a CSRF attack is possible when, possibly using other techniques, an attacker is able to infect a web page ...
	It's extremely difficult for your application to detect such activity. One measure that can easily be taken is to generate a random token that is included in every form to be submitted. Since the infected page will not have access to the token, nor ha...
	Improving Web Security

	How to do it… (22)
	1. First, to demonstrate the problem, we create a web page that simulates an infected page that generates a request to post an entry to the database. For this illustration, we will call the file chap_12_form_csrf_test_unprotected.html:
	3. We then check to see the process button has been pressed, and even implement a filtering mechanism, as covered in the Filtering $_POST data recipe in this chapter. This is to prove that a CSRF attack is easily able to bypass filters:
	Chapter 12

	4. Finally, we insert the filtered data into the database using a prepared statement. We then redirect to another script, called chap_12_form_view_results.php, which simply dumps the contents of the visitors table:
	5. The result, of course, is that the attack is allowed, despite filtering and the use of prepared statements.
	Improving Web Security

	6. Implementing the form protection token is actually quite easy! First of all, you need to generate the token and store it in the session. We take advantage of the new random_bytes() PHP 7 function to generate a truly random token, one which will be ...
	7. When we render the form, we then present the token as a hidden field:

	How it works… (21)
	To test how an infected web page might launch a CSRF attack, create the following files, as
	shown earlier in the recipe:
	Chapter 12

	output might appear:
	Improving Web Security

	As you can see, the attack was successful despite filtering and the use of prepared
	statements!
	which looks for a token that does not exist. Here is the expected output:
	token and displays it as a hidden element:
	Chapter 12

	When we display and submit data from the form, the token is validated and the data insertion
	is allowed to continue, as shown here:

	See also (17)
	A common misconception is that the only way attackers crack hashed passwords is by using brute force attacks and rainbow tables. Although this is often the first pass in an attack sequence, attackers will use much more sophisticated attacks on a secon...
	Improving Web Security

	The good news is that by simply increasing the length of the password beyond the magic length of six characters exponentially increases the time to crack the hashed password. Other factors, such as interspersing uppercase with lowercase letters random...

	How to do it… (23)
	1. First, we define a Application\Security\PassGen class that will hold the methods needed for password generation. We also define certain class constants and properties that will be used as part of the process:
	2. We then define low-level methods that will be used for password generation. As the names suggest, digits() produces random digits, and special() produces a single character from the SPECIAL_CHARS class constant:
	Chapter 12

	3. Now comes the tricky part: generating a hard-to-guess word. This is where the
	$wordSource constructor parameter comes into play. It is an array of websites from which our word base will be derived. Accordingly, we need a method that will pull a unique list of words from the sources indicated, and store the results in a file. We...
	The newly produced filename is then stored in $sourceList:
	4. If the file doesn't exist, or is zero-byte, we process the contents. If the source is HTML, we only accept content inside the <body> tag. We then use str_word_count() to pull a list of words out of the string, also employing strip_tags() to remove ...
	5. We then remove any words that are too short, and use array_unique() to get rid
	of duplicates. The final result is stored in a file:
	Improving Web Security

	6. Next, we define a method that flips random letters in the word to uppercase:
	7. Finally, we are ready to define a method that chooses a word from our source. We choose a word source at random, and use the file() function to read from the appropriate cached file:
	8. So that we do not always produce passwords of the same pattern, we define a method that allows us to place the various components of a password in different positions in the final password string. The algorithms are defined as an array of method ca...
	Chapter 12

	9. The constructor accepts the word source array, minimum word length, and location of
	the cache directory. It then processes the source files and initializes the algorithms:
	10. Finally, we are able to define the method that actually generates the password. All it needs to do is to select an algorithm at random, and then loop through, calling the appropriate methods:

	How it works… (22)
	Improving Web Security
	Next, you will need to define an array of websites that will be used as a source for the word- base to be used in password generation. In this illustration, we will choose from the Project Gutenberg texts Ulysses (J. Joyce), War and Peace (L. Tolstoy)...
	(J. Austen):
	Here are a few example passwords produced by PassGen:

	See also (18)
	Chapter 12
	from a form token: it is designed to confirm that the web visitor is a human being, and not an
	automated system.

	How to do it… (24)
	1. There are several approaches to CAPTCHA: presenting a question based on knowledge only a human would possess, text tricks, and a graphics image that needs to be interpreted.
	2. The image approach presents web visitors with an image with heavily distorted letters and/or numbers. This approach can be complicated, however, in that it relies on the GD extension, which may not be available on all servers. The GD extension can ...
	3. The text approach is to present a series of letters and/or numbers, and give the web visitor a simple instruction such as please type this backwards. Another variation is to use ASCII "art" to form characters that a human web visitor is able to int...
	Generating a text CAPTCHA
	1. For this illustration, we will start with the text approach, and follow with the image approach. In either case, we first need to define a class that generates the phrase to be presented (and decoded by the web visitor). For this purpose, we define...
	Improving Web Security

	2. The constructor, as you would expect, accepts values for the various properties, with defaults assigned so that an instance can be created without having to specify any parameters. The $include* flags are used to signal which character sets
	will be present in the base string from which the phrase will be generated. For
	$suppressChars represents an array of characters that will be removed from the base string. The default removes uppercase O and lowercase l:
	Chapter 12

	3. We then define a series of getters and setters, one for each property. Please note that we only show the first two in order to conserve space.
	4. We next need to define a method that initializes the base string. This consists of a series of simple if statements that check the various $include* flags and append to the base string as appropriate. At the end, we use str_replace() to remove the ...
	Improving Web Security

	5. We are now ready to define the core method that generates the random phrase that the CAPTCHA presents to website visitors. We set up a simple for() loop, and use the new PHP 7 random_int() function to jump around in the base string:
	6. Now we turn our attention away from the phrase and onto the class that will produce a text CAPTCHA. For this purpose, we first define an interface so that, in the future, we can create additional CAPTCHA classes that all make use of Application\ Ca...
	7. For a text CAPTCHA, we define a Application\Captcha\Reverse class. The reason for this name is that this class produces not just text, but text in reverse. The
	returns the phrase in reverse:
	Chapter 12

	Generating an image CAPTCHA
	1. The image approach, as you can well imagine, is much more complicated. The phrase generation process is the same. The main difference is that not only do we need to imprint the phrase on a graphic, but we also need to distort each letter differentl...
	Improving Web Security

	2. We define a Application\Captcha\Image class that implements CaptchaInterface. The class constants and properties include not only those needed for phrase generation, but what is needed for image generation as well:
	3. The constructor needs to accept all the arguments required for phrase generation, as described in the previous steps. In addition, we need to accept arguments required for image generation. The two mandatory parameters are $imageDir and
	$imageUrl. The first is where the graphic will be written. The second is the base
	URL, after which we will append the generated filename. $imageFont is provided in case we want to provide TrueType fonts, which will produce a more secure CAPTCHA. Otherwise, we're limited to the default fonts which, to quote a line in a famous movie,...
	Chapter 12

	4. Next, still in the constructor, we check to see whether the imagecreatetruecolor function exists. If this comes back as FALSE, we know the GD extension is not available. Otherwise, we assign parameters to properties, generate the phrase, remove old...
	Improving Web Security

	5. The process of removing old images is extremely important; otherwise we will end up with a directory filled with expired CAPTCHA images! We use the
	DirectoryIterator class to scan the designated directory and check the access time. We calculate an old image file as one that is the current time minus the value specified by IMAGE_EXP_TIME:
	6. We are now ready to move on to the main show. First, we split the $imageRGB array into $red, $green, and $blue. We use the core imagecreatetruecolor() function to generate the base graphic with the width and height specified. We use the RGB values ...
	7. Next, we define x and y margins based on image width and height. We then initialize variables to be used to write the phrase onto the graphic. We then loop a number of times that matches the length of the phrase:
	Chapter 12

	8. If $imageFont is specified, we are able to write each character with a different size and angle. We also need to adjust the x axis (that is, horizontal) value according to the size:
	9. Otherwise, we're stuck with the default fonts. We use the largest size of 5, as smaller sizes are unreadable. We provide a low level of distortion by alternating between imagechar(), which writes the image normally, and imagecharup(), which writes ...
	10. Next we need to add noise in the form of random dots. This is necessary in order to make the image harder for automated systems to detect. It is also recommended that you add code to draw a few lines as well:
	11. We then create a random image filename using our old friend md5() with the date and a random number from 0 to 9999 as arguments. Note that we can safely use md5() as we are not trying to hide any secret information; we're merely interested in gene...
	Improving Web Security

	12. The entire construct is in a try/catch block. If an error or exception is thrown, we log the message and take the appropriate action:
	13. Finally, we define the methods required by the interface. Note that getImage()
	returns an HTML tag, which can then be immediately displayed:

	How it works… (23)
	Be sure to define the classes discussed in this recipe, summarized in the following table:
	Chapter 12

	Next, define a calling program called chap_12_captcha_text.php that implements a text CAPTCHA. You first need to set up autoloading and use the appropriate classes:
	After that, be sure to start the session. You would use appropriate measures to protect the session as well. To conserve space, we only show one simple measure, session_ regenerate_id():
	Next, you can define a function that creates the CAPTCHA; retrieves the phrase, label, and image (in this case, reverse text); and stores the value in the session:
	Now is a good time to initialize variables and determine the loggedIn status:
	You can then check to see whether the login button has been pressed. If so, check to see whether the CAPTCHA phrase has been entered. If not, initialize a message informing the user they need to enter the CAPTCHA phrase:
	Improving Web Security

	If the CAPTCHA phrase is present, check to see whether it matches what is stored in the session. If it doesn't match, proceed as if the form is invalid. Otherwise, process the login as you would have otherwise. For the purposes of this illustration, y...
	Lastly, don't forget the view logic, which, in this example, presents a basic login form. Inside the form tag, you'll need to add view logic to display the CAPTCHA and label:
	Chapter 12

	Here is the resulting output:
	To demonstrate how to use the image CAPTCHA, copy the code from chap_12_captcha_ text.php to cha_12_captcha_image.php. We define constants that represent the location of the directory in which we will write the CAPTCHA images. (Be sure to create this ...
	Improving Web Security

	Variable initialization is the same as the previous script, and login processing is identical to the previous script:
	Even the view logic remains the same, as we are using getImage(), which, in the case of the
	image CAPTCHA, returns directly usable HTML. Here is the output using a TrueType font:

	There's more… (3)
	If you are not inclined to use the preceding code to generate your own in-house CAPTCHA, there are plenty of libraries available. Most popular frameworks have this ability. Zend Framework, for example, has its Zend\Captcha component class. There is al...
	Chapter 12

	See also (19)
	For more information on the protection of fonts as intellectual property, refer to the
	It is a little-known fact among members of the general PHP community that the mcrypt extension, the core of most PHP-based encryption considered secure, is anything but secure. One of the biggest issues, from a security perspective, is that the mcrypt...
	Not good odds. Furthermore, developer support for libmcrypt, the core library upon which the mcrypt extension is based, was abandoned in 2007, which means the code base is out-of- date, bug-ridden, and has no mechanism to apply patches. Accordingly, i...

	How to do it… (25)
	1. The solution to the problem posed previously, in case you're wondering, is to use openssl. This extension is well maintained, and has modern and very strong encryption/decryption capabilities.
	Improving Web Security

	3. Next, you will need to figure out which method is most appropriate for your needs. Here is a table that gives a quick summary of the various methods:
	Common choices are summarized in this table:
	Chapter 12

	5. Before choosing a cipher method and mode, you will also need to determine whether the encrypted contents needs to be unencrypted outside of your PHP application. For example, if you are storing database credentials encrypted into a standalone text ...
	6. The number of bytes supplied for the IV varies according to the cipher method chosen. For best results, use random_bytes() (new in PHP 7), which returns a true CSPRNG sequence of bytes. The length of the IV varies considerably. Try a size of 16 to ...
	Improving Web Security

	should be passed:
	8. As an example, suppose you wanted to choose the AES cipher method, a key size of 256, and XTS mode. Here is the code used to encrypt:

	How it works… (24)
	Chapter 12
	The output should look something like this:
	Next, you can add values for the plain text to be encrypted, the method, key, and IV. As an example, try AES, with a key size of 256, using the XTS operating mode:
	To encrypt, you can use openssl_encrypt(), specifying the parameters configured previously:
	You might also want to base 64-encode the result to make it more usable:
	To decrypt, use the same $key and $iv values. Don't forget to un-encode the base 64 value first:
	Improving Web Security

	Here is the output showing the base 64-encoded cipher text, followed by the decrypted plain text:
	If you supply an incorrect number of bytes for the IV, for the cipher method chosen, a warning
	message will be shown:

	There's more… (4)
	See also (20)
	Chapter 12
	In this chapter, we will cover the following topics:
	f Using Traits and Interfaces f Universal exception handler f Universal error handler
	f Writing a simple test
	f Writing a test suite
	f Generating fake test data
	In this chapter, we will show you how traits and interfaces work together. Then, we turn our attention to the design of a fallback mechanism that will catch errors and exceptions in situations where you were not able (or forgot) to define specific try...
	Best Practices, Testing, and Debugging

	It is considered a best practice to make use of interfaces as a means of establishing the classification of a set of classes, and to guarantee the existence of certain methods. Traits and Interfaces often work together, and are an important aspect of ...

	How to do it… (26)
	Chapter 13
	4. We can then insert the code from ListTrait into a new class,
	5. Next, we observe that many classes need to set a connection instance. Again, this calls for a trait. This time, however, we place the trait in the Application\ Database namespace. Here is the new trait:
	Best Practices, Testing, and Debugging

	6. Traits are often used to avoid duplication of code. It is often the case that you also need to identify the class that uses the trait. A good way to do this is to develop an interface that matches the trait. In this example, we will define Applicat...
	7. And here is the revised CountryListUsingTrait class. Note that as the new trait is affected by its location in the namespace, we needed to add a use statement at the top of the class. You will also note that we implement
	ConnectionAwareInterface to identify the fact that this class requires the method defined in the trait. Notice that we are taking advantage of the new PHP 7 group use syntax:

	How it works… (25)
	Chapter 13
	You will also notice further duplication of code between the two list classes, in this case the
	Best Practices, Testing, and Debugging
	Chapter 13

	The next image displays the customer list portion of the output:
	Exceptions are especially useful when used in conjunction with code in a try/catch block. Using this construct, however, can be awkward in some situations, making code virtually unreadable. Another consideration is that many classes end up throwing ex...

	How to do it… (27)
	2. We define properties that represents a log file. If the name is not supplied, it is named after the year, month, and day. In the constructor, we use set_exception_ handler() to assign the exceptionHandler() method (in this class) as the fallback ha...
	Best Practices, Testing, and Debugging

	3. Next, we define the exceptionHandler() method, which takes an Exception object as an argument. We record the date and time, the class name of the exception, and its message in the log file:
	4. If we specifically put a try/catch block in our code, this will override our universal exception handler. If, on the other hand, we do not use try/catch and an exception is thrown, the universal exception handler will come into play.

	How it works… (26)
	Chapter 13
	At this point, if you create a ThrowsException instance without implementing the universal handler, a Fatal Error is generated as an exception has been thrown but not caught:
	Best Practices, Testing, and Debugging

	If, on the other hand, you use a try/catch block, the exception will be caught and your
	application is allowed to continue, if it is stable enough:
	You will observe the following output:
	To demonstrate use of the exception handler, define a Handler instance, passing a parameter that represents the directory to contain log files, before the try/catch block. After try/catch, outside the block, create another instance of ThrowsException....
	Chapter 13

	Here is the output from the completed example program, along with the contents of the log file:

	See also (21)
	The process of developing a universal error handler is quite similar to the preceding recipe. There are certain differences, however. First of all, in PHP 7, some errors are thrown and can be caught, whereas others simply stop your application dead in...

	How to do it… (28)
	In the constructor, set a new errorHandler() method as the default error handler:
	Best Practices, Testing, and Debugging

	2. We then define the new method, using the documented parameters. As with our exception handler, we log information to a log file:

	How it works… (27)
	First, make the changes to Application\Error\Handler as defined previously. Next, create a class that throws an error that, for this illustration, could be defined as
	Chapter 13

	If you then call the two methods, without a try/catch block and without defining the universal error handler, the first method generates a Warning, whereas the second throws a ParseError:
	continues:
	Best Practices, Testing, and Debugging

	From the following output, you will also note that the program exits with code 0, which tells
	us all is OK:
	Finally, after the try/catch blocks, run the errors again, moving the echo statement to the end. You will see in the output that the errors were caught, but in the log file, notice that DivisionByZeroError is caught by the exception handler, whereas t...

	See also (22)
	Chapter 13
	The primary means of testing PHP code is to use PHPUnit, which is based on a methodology called Unit Testing. The philosophy behind unit testing is quite simple: you break down your code into the smallest possible logical units. You then test each uni...
	If all assertions return TRUE, then the unit has passed the test.

	How to do it… (29)
	1. The first order of business is to either install PHPUnit directly onto your development
	server, or download the source code, which is available in the form of a single phar (PHP archive) file. A quick visit to the official website for PHPUnit (https:// phpunit.de/) lets us download right from the main page.
	2. It is a best practice, however, to use a package manager to both install and maintain PHPUnit. For this purpose, we will use a package management program called Composer. To install Composer, visit the main website, https://getcomposer. org/, and f...
	Best Practices, Testing, and Debugging

	3. Next, we use Composer to install PHPUnit. This is accomplished by creating a composer.json file that contains a series of directives outlining project parameters and dependencies. A full description of these directives is beyond the scope of this b...
	4. To perform the installation from the command line, we run the following command.
	The output is shown just after:
	5. PHPUnit and its dependencies are placed in a vendor folder that Composer will create if it does not already exist. The primary command to invoke PHPUnit is then symbolically linked into the vendor/bin folder. If you place this folder in your PATH, ...
	Running simple tests
	Chapter 13
	2. Tests are then written as classes that extend PHPUnit\Framework\TestCase. If you are testing a library of functions, at the beginning of the test class, include the file that contains function definitions. You would then write methods that start wi...
	3. Assertions form the heart of any set of tests. The See also section gives you the documentation reference for the complete list of assertions. An assertion is a PHPUnit method that compares a known value against a value produced by that which you w...
	4. You can also test to see whether something is not true. This example asserts that 1 +
	1 does not equal 3:
	5. An assertion that is extremely useful when used to test a string is assertRegExp(). Assume, for this illustration, that we are testing a function that produces an HTML table out of a multidimensional array:
	Best Practices, Testing, and Debugging

	6. We can construct a simple test that confirms that the output contains <table>, one or more characters, followed by </table>. Further, we wish to confirm that a <td>B</td> element exists. When writing the test, we build a test array that
	consists of three sub-arrays containing the letters A–C, D—F, and G—I. We then pass the test array to the function, and run assertions against the result:
	7. To test a class, instead of including a library of functions, simply include the file that defines the class to be tested. For the sake of illustration, let's take the library of functions shown previously and move them into a Demo class:
	Chapter 13

	8. In our SimpleClassTest test class, instead of including the library file, we include the file that represents the Demo class. We need an instance of Demo in order to run tests. For this purpose, we use a specially designed setup() method, which is ...
	Best Practices, Testing, and Debugging

	Testing database Model classes
	1. When testing a class, such as a Model class, that has database access, other considerations come into play. The main consideration is that you should run tests against a test database, not the real database used in production. A final point is that...
	2. As an example of a class that uses the database, we will define a class VisitorOps. The new class will include methods to add, remove, and find visitors. Note that we've also added a method to return the latest SQL statement executed:
	Chapter 13

	3. For tests that involve a database, it is recommended that you use a test database instead of the live production database. Accordingly, you will need an extra set
	of database connection parameters that can be used to establish a database connection in the setup() method.
	4. It's possible that you wish to establish a consistent block of sample data. This could
	be inserted into the test database in the setup() method.
	5. Finally, you may wish to reset the test database after each test, which is
	Best Practices, Testing, and Debugging

	Using mock classes
	1. In some cases, the test will access complex components that require external resources. An example is a service class that needs access to a database. It is a best practice to minimize database access in a test suite. Another consideration is that ...
	2. In this case, for illustration, define a service class, VisitorService, which makes
	3. For test purposes, we add a getter and setter for the $visitorOps property. This allows us to insert a mock class in place of the real VisitorOps class:
	Chapter 13

	4. Next, we define a VisitorOpsMock mock class that mimics the functionality of its parent class. Class constants and properties are inherited. We then add mock test data, and a getter in case we need access to the test data later:
	5. Next, we override findAll() to return test data using yield, just as in the parent
	class. Note that we still build the SQL string, as this is what the parent class does:
	Best Practices, Testing, and Debugging

	For removeById(), we unset the array key supplied as a parameter from
	7. Adding data is slightly more complicated in that we need to emulate the fact that the id parameter might not be supplied, as the database would normally auto-generate this for us. To get around this, we check for the id parameter. If not set, we fi...

	Using anonymous classes as mock objects
	Chapter 13
	1. A nice variation on mock objects involves the use of the new PHP 7 anonymous class in place of creating a formal class that defines mock functionality. The advantage
	of using an anonymous class is that you can extend an existing class, which makes the object appear legitimate. This approach is especially useful if you only need to override one or two methods.
	3. You will notice that in setup(), we define an anonymous class that extends
	Best Practices, Testing, and Debugging

	service, which in turn calls the overridden findAll():

	Using Mock Builder
	1. Another technique is to use getMockBuilder(). Although this approach does not allow a great deal of finite control over the mock object produced, it's extremely useful in situations where you only need to confirm that an object of a certain class
	is returned, and when a specified method is run, this method returns some expected value.
	Chapter 13

	How it works… (28)
	First, you need to install PHPUnit, as discussed in steps 1 to 5. Be sure to include vendor/ bin in your PATH so that you can run PHPUnit from the command line.
	Best Practices, Testing, and Debugging

	Running simple tests
	Assuming phpunit is in your PATH, from a terminal window, change to the directory
	containing the code developed for this recipe, and run the following command:
	You should see the following output:
	Here is the revised output:
	Chapter 13

	Testing database model classes
	First, create an example class to be tested, VisitorOps, shown in step 2 in this subsection.
	You can now define a class we will call SimpleDatabaseTest to test VisitorOps. First of all, use require_once to load the class to test. (We will discuss how to incorporate autoloading in the next recipe!) Then define key properties, including test da...
	Next, define setup(), which inserts the test data, and confirms that the last SQL statement
	was INSERT. You should also check to see whether the return value was positive:
	Best Practices, Testing, and Debugging

	After that, define teardown(), which removes the test data and confirms that the query for
	The first test is for findAll(). First, confirm the data type of the result. You could take the topmost element using current(). We confirm there are five elements, that one of them is name, and that the value is the same as that in the test data:
	You do not need to bother with a test for removeById() as this is already done in teardown(). Likewise, there is no need to test runSql() as this is done as part of the other tests.

	Using mock classes
	First, define a VisitorService service class as described in steps 2 and 3 in this
	subsection. Next, define a VisitorOpsMock mock class, which is discussed in steps 4 to 7.
	Chapter 13

	You are now in a position to develop a test, VisitorServiceTest, for the service class. Note that you need provide your own database configuration as it is a best practice to use a test database instead of the production version:
	In our test, which produces an HTML table from the list of visitors, you can then look for certain elements, knowing what to expect in advance as you have control over the test data:
	Best Practices, Testing, and Debugging

	You might then wish to experiment with the variations suggested in the last two subsections,
	Using Anonymous Classes as Mock Objects, and Using Mock Builder.

	There's more… (5)
	Other assertions test operations on numbers, strings, arrays, objects, files, JSON, and XML,
	as summarized in the following table:

	See also…
	Chapter 13
	You may have noticed after having read through the previous recipe that it can quickly become tedious to have to manually run phpunit and specify test classes and PHP filenames. This
	is especially true when dealing with applications that employ dozens or even hundreds of
	classes and files. The PHPUnit project has a built-in capability to handle running multiple tests with a single command. Such a set of tests is referred to as a test suite.

	How to do it… (30)
	1. At its simplest, all you need to do is to move all the tests into a single folder:
	2. You'll need to adjust commands that include or require external files to account for the new location. The example shown (SimpleTest) was developed in the preceding recipe:
	3. You can then simply run phpunit with the directory path as an argument. PHPUnit will then automatically run all tests in that folder. In this example, we assume there is a tests subdirectory:
	Best Practices, Testing, and Debugging

	4. You can use the --bootstrap option to specify a file that is executed prior to running the tests. A typical use for this option is to initiate autoloading:
	6. Another possibility is to define one or more sets of tests using an XML configuration file. Here is an example that runs only the Simple* tests:
	7. Here is another example that runs a test based on a directory and also specifies a bootstrap file:

	How it works… (29)
	Make sure all the tests discussed in the previous recipe, Writing a simple test, have been defined. You can then create a tests folder and move or copy all the *Test.php files into this folder. You'll then need to adjust the path in the require_once s...
	In order to demonstrate how PHPUnit can run all tests in a folder, from the directory containing the source code you defined for this chapter, run the following command:
	Chapter 13

	You should see the following output:
	To demonstrate the use of a autoloading via a bootstrap file, create a new tests_with_ autoload directory. In this folder, define a bootstrap.php file with the code shown in step
	From the directory containing the source code for this chapter, copy the file (discussed in step 12 of the previous recipe) into tests_with_autoload/Demo/Demo.php. After the opening
	together:
	Best Practices, Testing, and Debugging

	Finally, change to the directory that contains the code for this chapter. You can now run a unit test that incorporates a bootstrap file, along with autoloading and namespaces, as follows:
	The output should appear as follows:

	See also… (1)
	Part of the testing and debugging process involves incorporating realistic test data. In some cases, especially when testing database access and producing benchmarks, large amounts of test data are needed. One way in which this can be accomplished is ...

	How to do it… (31)
	1. The first step is to determine what data is needed in order to test your application. Another consideration is dose the website address an international audience, or will the market be primarily from a single country?
	2. In order to produce a consistent fake data tool, it's extremely important to move the data from its source into a usable digital format. The first choice is a series of database tables. Another, not as attractive, alternative is a CSV file.
	Chapter 13

	3. You may end up converting the data in stages. For example, you could pull data from a web page that lists country codes and country names into a text file.
	4. Since this list is short, it's easy to literally cut and paste this into a text file.
	5. We can then do a search for " " and replace with "\n", which gives us this:
	6. This can then be imported into a spreadsheet, which then lets you export to a CSV file. From there, it's a simple matter to import it into a database. phpMyAdmin, for example, has such a facility.
	7. For the sake of this illustration, we will assume that we are generating data that will
	end up in the prospects table. Here is the SQL statement used to create this table:
	Best Practices, Testing, and Debugging

	8. Now it's time to create a class that is capable of generating fake data. We will then create methods to generate data for each of the fields shown above, except for id, which is auto-generated:
	9. Next, we define constants and properties that will be used as part of the process:
	Chapter 13

	10. We then define properties that will be used to generate random letters, street names, and e-mail addresses. You can think of these arrays as seeds that can be modified and/or expanded to suite your needs. As an example, you might substitute street...
	11. In the constructor, we accept a Connection object, used for database access, an
	array of mappings to the fake data:
	12. To generate street names, rather than attempt to create a database table, it might be more efficient to use a set of seed arrays to generate random combinations. Here is an example of how this might work:
	Best Practices, Testing, and Debugging

	13. Depending on the level of realism desired, you could also build a database table that matches postal codes to cities. Postal codes could also be randomly generated. Here is an example that generates postal codes for the UK:
	14. Fake e-mail generation can likewise use a set of seed arrays to produce random results. We could also program it to receive an existing $entry array, with parameters, and use those parameters to create the name portion of the address:
	15. For date generation, one approach would be to accept as arguments an existing
	$entry array, with parameters. The parameters would be an array where the first value is a start date. The second parameter would be the maximum number of days to subtract from the start date. This effectively lets you return a random date from a rang...
	Chapter 13

	16. As mentioned at the beginning of this recipe, the data sources we will use for fake data generation will vary. In some cases, as shown in the previous few steps, we use seed arrays, and build the fake data. In other cases, we might want to use a t...
	17. You will note that we first need to pull the file data into an array, which forms the return value. Here is the method that does that for us. We throw an Exception if the specified file is not found. The file type is identified as one of our class...
	18. Probably the most complicated aspect of this process is drawing random data from a database table. We accept as arguments the table name, the name of the column that comprises the primary key, an array that maps between the database column name in...
	Best Practices, Testing, and Debugging

	19. We are now in a position to set up the prepared statement and initialize a number of
	critical variables:
	20. The actual lookup we place inside a do…while loop. The reason for this is that we need to run the query at least once to achieve results. Only if we do not arrive at a result do we continue with the loop. We generate a random number between the lo...
	Chapter 13

	21. We then use the mapping array to retrieve values from the source table using keys expected in the destination table:
	22. The heart of this class is a getRandomEntry() method, which generates a single array of fake data. We loop through $mapping one entry at a time and examine the various parameters:
	23. The source parameter is used to implement what effectively serves as a Strategy Pattern. We support four different possibilities for source, all defined as class constants. The first one is SOURCE_FILE. In this case, we use the getEntryFromFile() ...
	24. The callback option returns a value according to the callback supplied in the
	Best Practices, Testing, and Debugging

	26. The SOURCE_METHOD option, which is also the default, uses a method already included with this class. We check to see whether parameters are included, and, if so, add those to the method call. Note the use of {} to influence interpolation. If we ma...
	27. We define a method that loops through getRandomEntry() to produce multiple lines of fake data. We also add an option to insert to a destination table. If this option is enabled, we set up a prepared statement to insert, and also check to see wheth...
	Chapter 13

	28. Next, we loop through the number of lines of data requested, and run
	getRandomEntry(). If a database insert is requested, we execute the prepared statement in a try/catch block. In any event, we turn this method into a generator using the yield keyword:

	How it works… (30)
	The first thing to do is to ensure you have the data ready for random data generation. In this recipe, we will presume that the destination table is prospects, which has the following SQL database definition shown in step 7.
	As a data source for names, you could create text files for first names and surnames. In this illustration, we will reference the data/files directory, and the files first_names.txt and surnames.txt. For city, state or province, postal code, and count...
	Next, be sure to define Application\Test\FakeData, adding the content discussed in steps 8 to 29. After you have finished, create a calling program called chap_13_fake_data. php, which sets up autoloading and uses the appropriate classes. You should a...
	Best Practices, Testing, and Debugging

	Next, define a mapping array that uses the column names in the destination table (prospects) as a key. You need to then define sub-keys for source, name, and any other parameters that are required. For starters, 'first_name' and 'last_name' will both ...
	Chapter 13

	And finally, 'city' draws its data from a lookup table, which also gives you data for the fields listed in the 'mapping' parameter. You can then leave those keys undefined. Notice that you should also specify the column representing the primary key fo...
	instance. A foreach() loop will suffice to display a given number of entries:
	The output, for 10 rows, would look something like this:
	Best Practices, Testing, and Debugging

	There's more… (6)
	Here is a summary of websites with various lists of data that could be of use when generating test data:
	Chapter 13

	Up until PHP 7, in order to override php.ini settings for secure session management, you had to use a series of ini_set() commands. This approach is extremely annoying in that you also needed to know which settings were available, and being able to re...

	How to do it… (32)
	1. We start by developing an Application\Security\SessOptions class, which will hold session parameters and also have the ability to start the session. We also define a class constant in case invalid session options are passed:
	Best Practices, Testing, and Debugging

	3. We then define these as class constants, which will make this class more usable for development purposes. Most decent code editors will be able to scan the class and give you a list of constants, making it easy to manage session settings. Please no...
	Chapter 13

	4. We are then in a position to define the constructor, which accepts an array of php. ini session settings as an argument. We use ReflectionClass to get a list of class constants, and run the $options argument through a loop to confirm the setting is...
	5. We then close with two more methods; one gives us outside access to the allowed
	parameters, while the other starts the session:
	Best Practices, Testing, and Debugging

	How it works… (31)
	Next, define an array that uses the class constants as keys, with values as desired to manage the session. Note that in the example shown here, session information is stored in a subdirectory, session, which you need to create:
	could use phpinfo() here to show some information on the session:
	If you look for information on cookies using your browser's developer tools, you will note the
	name is set to UNLIKELYSOURCE and the expiration time is 5 minutes from now:
	Chapter 13

	If you do a scan of the session directory, you will see that the session information has been stored there:

	See also… (2)
	f For more information on session-related php.ini directives, see this summary:
	In this appendix, we will cover the following topics:
	f Implementing PSR-7 value object classes
	f Developing a PSR-7 Request class
	f Defining a PSR-7 Response class
	PHP Standard Recommendation number 7 (PSR-7) defines a number of interfaces, but does not provide actual implementations. Accordingly, we need to define concrete code implementations in order to start creating custom middleware.
	In order to work with PSR-7 requests and responses, we first need to define a series of value objects. These are classes that represent logical objects used in web-based activities such as URIs, file uploads, and streaming request or response bodies.

	Getting ready
	The source code for the PSR-7 interfaces is available as a Composer package. It is considered a best practice to use Composer to manage external software, including PSR-7 interfaces.
	Defining PSR-7 Classes

	How to do it... (8)
	1. First of all, go to the following URL to obtain the latest versions of the PSR-7 interface definitions: https://github.com/php-fig/http-message. The source code is also available. At the time of writing, the following definitions are available:
	2. Unfortunately, we will need to create concrete classes that implement these interfaces in order to utilize PSR-7. Fortunately, the interface classes are extensively documented internally through a series of comments. We will start with a separate c...
	Appendix
	Defining PSR-7 Classes

	3. Next, we will tackle classes that represent value objects used by other PSR-7 classes. For a start, here is the class that represents a URI. In the constructor, we accept a URI string as an argument, and break it down into its component parts using...
	4. Following the constructor, we define methods to access the component parts of the URI. The scheme represents a PHP wrapper (that is, HTTP, FTP, and so on):
	5. The authority represents the username (if present), the host, and optionally the port
	number:
	Appendix

	7. Host is the DNS address included in the URI:
	8. Port is the HTTP port, if present. You will note if a port is listed in our STANDARD_ PORTS constant, the return value is NULL, according to the requirements of PSR-7:
	Defining PSR-7 Classes

	9. Path is the part of the URI that follows the DNS address. According to PSR-7, this must be encoded. We use the rawurlencode() PHP function as it is compliant with RFC 3986. We cannot just encode the entire path, however, as the path separator (that...
	10. Next, we define a method to retrieve the query string (that is, from $_GET). These too must be URL-encoded. First, we define getQueryParams(), which breaks the query string into an associative array. You will note the reset option in case we wish ...
	Appendix

	11. After that, we provide a method to return the fragment (that is, a # in the URI), and any part following it:
	12. Next, we define a series of withXXX() methods, which match the getXXX() methods described above. These methods are designed to add, replace, or remove properties associated with the request class (scheme, authority, user info, and so on). In addit...
	Defining PSR-7 Classes

	13. We then apply similar logic to methods that overwrite, add, or replace the user
	15. If the authority URI part is present, we add it. authority includes the user information, host, and port. Otherwise, we just append host and port:
	Appendix

	16. Before adding path, we first check whether the first character is /. If not, we need to add this separator. We then add query and fragment, if present:
	17. Next, we turn our attention to a class that represents the body of the message. As it is not known how large the body might be, PSR-7 recommends that the body should be treated as a stream. A stream is a resource that allows access to input and ou...
	Defining PSR-7 Classes

	19. We include two convenience methods that provide access to the resource, as well as
	20. Next, we define low-level core streaming methods:
	Appendix
	Defining PSR-7 Classes

	21. We also need to define informational methods that tell us about the stream:
	Appendix

	23. An important variation of the Stream class shown previously is TextStream that is designed for situations where the body is a string (that is, an array encoded as JSON) rather than a file. As we need to make absolutely certain that the incoming $i...
	24. Most of the methods are quite simple and self-explanatory. The $stream property is
	the input string:
	Defining PSR-7 Classes
	Appendix

	27. The last of the value objects to be presented is Application\MiddleWare\ UploadedFile. As with the other classes, we first define properties that represent aspects of a file upload:
	Defining PSR-7 Classes

	28. In the constructor, we allow the definition of the name attribute of the file upload form field, as well as the corresponding array in $_FILES. We add the last parameter to signal whether or not we want the class to generate a new random filename ...
	29. Next, we create a Stream class instance for the temporary or moved file:
	30. The moveTo() method performs the actual file movement. Note the extensive series of safety checks to help prevent an injection attack. If randomize is not enabled, we use the original user-supplied filename:
	Appendix

	31. We then provide access to the other parameters returned in $_FILES from the
	Defining PSR-7 Classes

	How it works... (8)
	Then, go ahead and define the classes discussed previously, summarized in this table:
	You can then create a Uri instance and use the with methods to add parameters. You can
	Appendix

	Here is the expected result:
	Defining PSR-7 Classes

	In the view logic, display a simple file upload form. You could also use phpinfo() to display
	information about what was uploaded:
	Next, if there were any uploaded files, you can display information on each one. You can also use getStream() followed by getContents() to display each file (assuming you're using short text files):
	Appendix

	Here is how the output might appear:

	See also (23)
	One of the key characteristics of PSR-7 middleware is the use of Request and Response classes. When applied, this enables different blocks of software to perform together without sharing any specific knowledge between them. In this context, a request ...
	Defining PSR-7 Classes

	How to do it... (9)
	value objects, as described in the previous recipe.
	Appendix

	4. PSR-7 recommends that headers should be viewed as case-insensitive. Accordingly, we define a findHeader() method (not directly defined by MessageInterface) that locates a header using stripos():
	5. The next method, not defined by PSR-7, is designed to populate the $httpHeaders property. This property is assumed to be an associative array where the key is the header, and the value is the string representing the header value. If there is more t...
	Defining PSR-7 Classes

	7. Implementing getHeaders() (required in PSR-7) is now a trivial loop through the
	8. Again, we provide a series of with methods designed to overwrite or replace headers. Since there can be many headers, we also have a method that adds to the existing set of headers. The withoutHeader() method is used to remove a header instance. No...
	Appendix

	9. We then provide a series of useful header-related methods to confirm a header exists, retrieve a single header line, and retrieve a header in array form, as per PSR-7:
	Defining PSR-7 Classes

	10. Finally, to round off header handling, we present getHeadersAsString that produces a single header string with the headers separated by \r\n for direct use with PHP stream contexts:
	11. Still within the Message class, we now turn our attention to version handling. According to PSR-7, the return value for the protocol version (that is, HTTP/1.1) should only be the numerical part. For this reason, we also provide onlyVersion() that...
	Appendix

	12. Finally, almost as an anticlimax, we are ready to define our Request class. It must be noted here, however, that we need to consider both out-bound as well as in-bound requests. That is to say, we need a class to represent an outgoing request a cl...
	a server), and Application\MiddleWare\ServerRequest (requests received from a client by a server). The good news is that most of our work has already been done: notice that our Request class extends Message. We also provide properties to represent the...
	13. All properties in the constructor default to NULL, but we leave open the
	possibility of defining the appropriate arguments right away. We use the inherited onlyVersion() method to sanitize the version. We also define checkMethod() to make sure any method supplied is on our list of supported HTTP methods, defined as a const...
	Defining PSR-7 Classes

	14. We are going to interpret the request target as the originally requested URI in the form of a string. Bear in mind that our Uri class has methods that will parse this into its component parts, hence our provision of the $uriObj property. In the ca...
	15. Our get and with methods, which represent the HTTP method, reveal no surprises. We use checkMethod(), used in the constructor as well, to ensure the method matches those we plan to support:
	Appendix

	16. Finally, we have a get and with method for the URI. As mentioned in step 14, we retain the original request string in the $uri property and the newly parsed Uri instance in $uriObj. Note the extra flag to preserve any existing Host header:
	17. The ServerRequest class extends Request and provides additional functionality to retrieve information of interest to a server handling an incoming request. We start by defining properties that will represent incoming data read from the various PHP...
	Defining PSR-7 Classes

	18. We then define a series of getters to pull super-global information. We do not show everything, to conserve space:
	19. As uploaded files are supposed to be represented as independent UploadedFile
	objects (presented in the previous recipe), we also define a method that takes
	Appendix

	20. As with the other classes defined previously, we provide with methods that add or overwrite properties and return the new instance:
	21. One important aspect of PSR-7 messages is that the body should also be available in a parsed manner, that is to say, a sort of structured representation rather than just a raw stream. Accordingly, we define getParsedBody() and its accompanying wit...
	Defining PSR-7 Classes

	22. We also allow for attributes that are not precisely defined in PSR-7. Rather, we leave this open so that the developer can provide whatever is appropriate for the application. Notice the use of withoutAttributes() that allows you to remove attribu...
	Appendix

	23. Finally, in order to load the different properties from an in-bound request, we define
	initialize(), which is not in PSR-7, but is extremely convenient:

	How it works... (9)
	First, be sure to complete the preceding recipe, as the Message and Request classes consume Uri, Stream, and UploadedFile value objects. After that, go ahead and define the classes summarized in the following table:
	Defining PSR-7 Classes

	After that, you can define a server program, chap_09_middleware_server.php, which sets up autoloading and uses the appropriate classes. This script will pull the incoming request into a ServerRequest instance, initialize it, and then use var_dump() to...
	As for the client, first create a calling program, chap_09_middleware_request.php, that sets up autoloading, uses the appropriate classes, and defines the target server and a local text file:
	Next, you can create a Stream instance using the text as a source. This will become the body of a new Request, which, in this case, mirrors what might be expected for a form posting:
	You can then directly build a Request instance, supplying parameters as appropriate:
	Appendix

	Alternatively, you can use the fluent interface syntax to produce exactly the same results:
	You can then set up a cURL resource to simulate a form posting, where the data parameter is the contents of the text file. You can follow that with curl_init(), curl_exec(), and so on, echoing the results:
	Here is how the direct output might appear:
	Defining PSR-7 Classes

	See also (24)
	The Response class represents outbound information returned to whatever entity made the original request. HTTP headers play an important role in this context as we need to know that format is requested by the client, usually in the incoming Accept hea...

	How to do it... (10)
	2. The constructor is not defined by PSR-7, but we provide it for convenience, allowing a developer to create a Response instance with all parts intact. We use methods from Message and constants from the Constants class to verify the arguments:
	Appendix

	3. We provide a nice way to set the HTTP status code, irrespective of any headers, using http_response_code(), available from PHP 5.4 onwards. As this work is on PHP 7, we are safe in the knowledge that this method exists:
	4. Otherwise, it is of interest to obtain the status code using the following method:
	5. As with the other PSR-7-based classes discussed in earlier recipes, we also define a with method that sets the status code and returns the current instance. Note the use of STATUS_CODES to confirm its existence:
	6. Finally, we define a method that returns the reason for the HTTP status, which is a short text phrase, in this example, based on RFC 7231. Note the use of the PHP 7 null coalesce operator ?? that returns the first non-null item out of three possibl...
	Defining PSR-7 Classes

	How it works… (32)
	First of all, be sure to define the classes discussed in the previous two recipes. After that, you can create another simple server program, chap_09_middleware_server_with_ response.php, which sets up autoloading and uses the appropriate classes:
	You can then define an array with key/value pairs, where the value points to a text file in the current directory to be used as content:
	Next, inside a try…catch block, you can initialize some variables, initialize the server request, and set up a temporary filename:
	After that, check to see whether the method is GET or POST. If it's GET, check to see whether an id parameter was passed. If so, return the body of the matching text file. Otherwise, return a list of text files:
	Appendix

	Otherwise, return a response indicating a success code 204 and the size of the request body
	received:
	You can then catch any exceptions and report them with a status code of 500:
	The response needs to be wrapped in a stream, so you can write the body out to the temp file and create it as Stream. You can also set the Content-Type header to application/ json and run getHeaders(), which outputs the current set of headers. After t...
	To wrap things up, catch any errors or exceptions using Throwable, and don't forget to delete
	the temp file:
	Defining PSR-7 Classes

	From a browser, you can then call this program, adding an id parameter. You might consider opening the developer tools to monitor the response header. Here is an example of the expected output. Note the content type of application/json:

	See also (25)
	f The following table summarizes the state of PSR-7 compliance at the time of writing. The frameworks not included in this table either do not have PSR-7 support at all, or lack documentation for PSR-7.
	Appendix

	f There are a number of PSR-7 middleware classes already available. The following
	table summarizes some of the more popular ones:
	Learning PHP 7 High Performance
	Improve the performance of your PHP application to ensure the application users aren’t left waiting
	PHP 7 has finally been released. For a long time, the PHP community was talking about it and has still not stopped. The main improvement in PHP 7 is its performance. For a long time, the PHP community faced performance issues in large-scale applicatio...
	PHPNG stands for PHP next generation. It is a completely separate branch and is mainly targeted for performance. Some people thought that PHPNG is JIT (Just In Time) compilation, but in reality, PHPNG is based on a refactored Zend Engine, which was hi...
	Before starting to build an application, the development environment should be finalized and configured. In this chapter, we will discuss setting up the development environment on different systems, such as Windows and different flavors of Linux.
	We will cover the following topics:
	• Setting up Windows
	• Setting up Ubuntu or Debian
	• Setting up CentOS
	• Setting up Vagrant
	All other environments can be skipped, and we can set up the environment that we will use.
	There are many tools available that have Apache, PHP, and MySQL bundled for Windows, provide easy installation, and are very easy to use. Most of these tools already provide support for PHP 7 with Apache, such as through XAMPP, WAMPP, and EasyPHP. Eas...
	Any of the three tools can be used, but we require more control over every element of our web server tools, so we will also install NGINX, PHP 7, and MySQL individually and then connect them together.
	Perform the following steps:
	1. Download NGINX and PHP Windows binaries mentioned in the information box. Copy NGINX to a suitable directory. For example, we have a completely separate D drive for development purposes. Copy NGINX to this development drive or any other directory. ...
	3. Hold the Shift key and right click in the PHP directory to open the command-line window. The command-line window will be opened in the same location path. Issue the following command to start PHP:
	The –b option starts PHP and binds to the path for external FastCGI servers. The preceding command binds PHP to loop back the 127.0.0.1 IP on port 9000. Now, PHP is accessible on this path.
	The first thing to do is to add root and index to the server block, as follows:
	5. Now, we need to configure NGINX to use PHP as FastCGI on the path mentioned before on which it is started. In the nginx.conf file, uncomment the following location block for PHP:
	6. Now, restart NGINX by issuing the following command in the root of the NGINX folder:
	7. After NGINX is restarted, open your browser and enter the IP or hostname of your Windows server or machine, and we will see the NGINX welcome message.
	8. Now, to verify the PHP installation and its working with NGINX, create an
	info.php file in webroot and enter the following code in it:
	9. Now, in the browser, access your_ip/info.php, and we will be presented with a page full of PHP and server information. Congratulations! We configured NGINX and PHP to work perfectly together.
	Ubuntu is derived from Debian, so the process is the same for both Ubuntu and Debian. We will use Debian 8 Jessie and Ubuntu 14.04 Server LTS. The same process can be applied to desktop versions for both.
	First, add the repositories for both Debian and Ubuntu.
	As of the time we're writing this book, Debian does not provide an official repository for PHP 7. So, for Debian, we will use dotdeb repositories to install NGINX and PHP 7. Perform the following steps:
	2. Now, execute the following commands in the terminal:
	The first two commands will add dotdeb repo to Debian and the last command will refresh the cache for sources.
	As of the time of writing this book, Ubuntu also does not provide PHP 7 in their official repos, so we will use a third-party repo for the PHP 7 installation. Perform the following steps:
	2. Now, the repositories are added. Let's install NGINX and PHP 7.
	3. To install NGINX, run the following command in the terminal (Debian and Ubuntu):
	4. After the installation is successful, it can be verified by entering the hostname and IP of the Debian or Ubuntu server. If we see something similar to the following screenshot, then our installation is successful:
	The following is a list of three useful NGINX commands:
	5. Now, it's time to install PHP 7 by issuing the following command:
	This will install PHP 7 along with the other modules mentioned. Also, we installed PHP Cli for the command-line purpose. To verify whether PHP 7 is properly installed, issue the following command in the terminal:
	6. If it displays the PHP version along with some other details, as shown in the following screenshot, then PHP is properly installed:
	First, we copied the default configuration file, created another virtual host configuration file, www.packt.com.conf, and then created a symbolic link file to this virtual host file in the sites-enabled folder.
	and add or edit the highlighted code, as shown here:
	The preceding configuration is not a complete configuration file. We copied only those configuration options that are important and that we may want to change.
	In the preceding code, our webroot path is /var/www/html, where our PHP files and other application files will be placed. In the index config option, add index.php so that if no file is provided in the URL, NGINX can look for and parse index.php.
	We added a location block for PHP that includes a fastcgi_pass option, which has a path to the PHP7 FPM socket. Here, our PHP runs on a Unix socket, which is faster than that of TCP/IP.
	9. After making these changes, restart NGINX. Now, to test whether PHP and NGINX are properly configured, create an info.php file at the root of the webroot folder and place the following code in it:
	10. Now, in the browser, type server_ip/info.php, and if you see a PHP configuration page, then congratulations! PHP and NGINX are both properly configured.
	1. First, let's add the Percona Server repository to our system by running the following command in the terminal:
	2. Now, install Percona Server by executing the following command in the terminal:
	3. Now, issue the following command to install Percona Server:
	The installation process will start. It will take a while to download it.
	During the installation, the password for the root user will be asked, as shown in the following screenshot:
	It is optional but recommended to enter the password. After entering the password, re-enter the password on the next screen. The installation process will continue.
	4. After the installation is complete, the Percona Server installation can be
	verified by using the following command:
	It will display the version of Percona Server. As mentioned before, Percona Server is a fork of MySQL, so all the same MySQL commands, queries, and settings can be used.
	Let's start by configuring CentOS for our development environment. Perform the
	following steps:
	1. First, we need to add NGINX RPM to our CentOS installation because CentOS does not provide any default repository for NGINX. Issue the following command in your terminal:
	This will add the NGINX repo to CentOS.
	2. Now, issue the following command to see which versions of NGINX are available to install:
	This will show you the latest stable releases. In our case, it displays NGINX
	1.8.0 and NGINX 1.8.1.
	3. Now, let's install NGINX using the following command:
	This will install NGINX.
	4. On CentOS, NGINX won't start automatically after installation or restarting. So, first, we will enable NGINX to autostart after a system restarts using the following command:
	5. Now, let's start NGINX by issuing the following command:
	6. Then, open your browser and enter the IP of the CentOS server or host name. If you see the same welcome screen as we saw in the figure earlier in the chapter for Debian, then NGINX is installed successfully.
	To check which version of NGINX is installed, issue the following command in the terminal:
	On our server, the NGINX version installed is 1.8.1. Now, our web server is ready.
	1. The next step is to install PHP 7 FPM and configure both NGINX and
	PHP 7 to work together. As of the time of writing this book, PHP 7 is not packaged in official CentOS repositories. So, we have two choices to install PHP 7: either we build it from source, or we use third-party repositories. Building from source is a...
	2. Now, let's add a webtatic repository to our CentOS repo by issuing the following command:
	3. After the repos are added successfully, issue the following command to see which version is available for installation:
	In our case, PHP 7.0.3 is available to install.
	4. Now, issue the following command to install PHP 7 along with some modules that may be required:
	5. This will install core PHP 7 and some modules available for PHP 7. If any other module is required, it can be installed easily; however, first, search to check whether it is available or not. Issue the following command in the terminal to see all t...
	We will see a long list of all the available modules for PHP 7.
	6. Now, let's say that we want to install the PHP 7 gd module; issue the following command:
	This will install the gd module. Multiple modules can be installed using the same command and separating each module by a space, as we did in the initial installation of PHP.
	Now, to check which version of PHP is installed, issue the following command:
	In our case, PHP 7.0.3 is installed.
	7. To start, stop, and restart PHP, issue the following commands in the terminal:
	8. Now, let's configure NGINX to use PHP FPM. Open the default NGINX virtual host file located at /etc/Nginx/conf.d/default.conf using either vi, nano, or any other editor of your choice. Now, make sure that two options are set in the server block, as...
	The root option indicates the web document root where our website source code files will be placed. Index indicates the default files that will be loaded along with extensions. If any of these files are found, they will be executed by default, regardl...
	9. The next configuration in NGINX is a location block for PHP. The following is the configuration for PHP:
	The preceding block is the most important configuration as it enables NGINX to communicate with PHP. The line fastcgi_pass 127.0.0.1:9000 tells NGINX that PHP FPM can be accessed on the 127.0.0.1 loopback IP on port 9000. The rest of the details are t...
	10. Now, to test our installation, we will create a file named info.php with the following contents:
	1. Now, we will install Percona Server on CentOS. The installation process is the same, except that it has a separate repository. To add the Percona Server repo to CentOS, execute the following command in the terminal:
	After the repo installation is completed, a message will be displayed stating the completion of the installation.
	2. Now, to test the repo, issue the following command, and it will list all the available Percona packages:
	3. To install Percona Server 5.5, issue the following command in the terminal:
	The installation process will start. The rest of the process is the same as for Debian/Ubuntu.
	4. After the installation is completed, we will see a completion message.
	Vagrant is a tool used by developers for development environments. Vagrant provides an easy command-line interface to set up virtual machines with all the tools required. Vagrant uses boxes called Vagrant Boxes that can have a Linux operating system a...
	Vagrant has several boxes for PHP 7, including Laravel Homestead and Rasmus PHP7dev. So, let's get started by configuring the Rasmus PHP7dev box on Windows and Mac OS X.
	Perform the following steps: (1)
	1. Make a directory in one of the drives. For example, we made a php7 directory in our D drive. Then, open the command line in this specific folder directly
	2. Now, issue the following command in the command window:
	It will start downloading the Vagrant box, as shown in the following screenshot:
	3. Now, when the download is completed, we need to initialize it so that the box is configured and added to VirtualBox for us. Issue the following command in the command window:
	This will start adding the box to VirtualBox and configuring it. When the
	process is completed, it will display a message, as in the following screenshot:
	4. Now, issue the following command, which will completely set up the Vagrant box and start it up and running:
	This process will take a little bit of time. When it is completed, your box is ready and running and can be used.
	5. Now, the first thing to do after it is up is to update everything. This box uses Ubuntu, so open the command window in the same php7dev directory and issue the following command:
	It will connect us with the virtual machines through SSH.
	6. When we are logged in to the box OS, issue the following commands to update the system:
	This will update the core system, NGINX, MySQL, PHP 7, and other installed tools if new versions are available.
	7. The box is now ready to use for development purposes. The box can be accessed in the browser by typing its IP address in the browser window. To find the IP address of the box, issue the following command in the SSH-connected command window:
	This will display some details. Find out the IPv4 details there and take the IP of the box.
	In this chapter, we configured different environments for the purpose of development. We installed NGINX and PHP 7 on the windows machine. We also configured Debian/Ubuntu and installed NGINX, PHP, and Percona Server 5.5. Then, we configured CentOS an...
	In the next chapter, we will study new features in PHP 7, such as type hints, namespace groupings and declarations, the Spaceship operator, and other features.
	PHP 7 has introduced new features that can help programmers write high-performing and effective code. Also, some old-fashioned features are completely removed, and PHP 7 will throw an error if used. Most of the fatal errors are now exceptions, so
	PHP won't show an ugly fatal error message any more; instead, it will go through an exception with the available details.
	In this chapter, we will cover the following topics:
	• Type hints
	• Namespaces and group use declarations
	• The anonymous classes
	• Old-style constructor deprecation
	• The Spaceship operator
	• The null coalesce operator
	• Uniform variable syntax
	• Miscellaneous changes
	PHP 7 introduced a few new OOP features that will enable developers to write clean and effective code. In this section, we will discuss these features.
	Prior to PHP 7, there was no need to declare the data type of the arguments passed to a function or class method. Also, there was no need to mention the return data type. Any data type can be passed to and returned from a function or method. This is o...
	Type hints is a feature in both OOP and procedural PHP because it can be used for both procedural functions and object methods.
	PHP 7 made it possible to use scalar type hints for integers, floats, strings, and Booleans
	for both functions and methods. Let's have a look at the following example:
	In the preceding code, we created a Person class. We have three methods, and each method receives different arguments whose data types are defined with them, as is highlighted in the preceding code. If you run the preceding code, it will work fine as ...
	Age can be a float, such as 30.5 years; so, if we pass a float number to the age
	method, it will still work, as follows:
	that we can pass float numbers to a method that expects an integer number.
	To make it more restrictive, the following single-line code can be placed at the top of
	the file:
	Now, if we pass a float number to the age function, we will get an Uncaught Type Error, which is a fatal error that tells us that Person::age must be of the int type given the float. Similar errors will be generated if we pass a string to a method tha...
	The preceding code will generate the fatal error as the string is passed to it.
	Another important feature of PHP 7 is the ability to define the return data type for a function or method. It behaves the same way scalar type hints behave. Let's modify our Person class a little to understand return type hints, as follows:
	The changes in the class are highlighted. The return type is defined using the:
	data-type syntax. It does not matter if the return type is the same as the scalar type. These can be different as long as they match their respective data types.
	Now, let's try an example with the object return type. Consider the previous Person class and add a getAddress method to it. Also, we will add a new class, Address, to the same file, as shown in the following code:
	The additional code added to the Person class and the new Address class is highlighted. Now, if we call the getAddress method of the Person class, it will work perfectly and won't throw an error. However, let's suppose that we change the return statem...
	In this case, the preceding method will throw an uncaught exception similar to the following:
	This is because we return an array instead of an Address object. Now, the question is: why use type hints? The big advantage of using type hints is that it will always avoid accidentally passing or returning wrong and unexpected data to methods
	or functions.
	As can be seen in the preceding examples, this makes the code clear, and by looking at the declarations of the methods, one can exactly know which data types should be passed to each of the methods and what kind of data is returned by looking into the...
	In a very large codebase, classes are divided into namespaces, which makes them easy to manage and work with. However, if there are too many classes in a namespace and we need to use 10 of them, then we have to type the complete use statement for all ...
	Now, the code for the Ebook class is as follows:
	The code for the Video class is as follows:
	All the four classes have the same methods, which return the classes' names using the PHP built-in get_class() function.
	Now, there are three ways to use the classes, functions, and constants. Let's consider each one.
	Take a look at the following code:
	In the preceding code, we used namespace names directly while creating objects or using functions and constants. The code looks fine, but it is cluttered. Namespace is everywhere, and if we have lots of namespaces, it will look very ugly, and the read...
	Now, let's rewrite the preceding code to make it more readable, as follows:
	In the preceding code, at the top, we used PHP statements for specific classes, functions, and constants in a namespace. However, we still wrote duplicate lines of code for each class, function, and/or constant. This may lead to us have lots of use st...
	To fix this problem, PHP 7 introduced group use declaration. There are three types
	of group use declarations:
	• Non mixed use declarations
	• Mixed use declarations
	• Compound use declarations
	Consider that we have different types of features in a namespace, as we have classes, functions, and contacts in a namespace. In non mixed group use declarations, we declare them separately using a use statement. To better understand it, take a look a...
	We have three types of features in a namespace: class, functions, and constants.
	So, we have used separate group use declaration statements to use them. The code is now looking more cleaner, organized, and readable and doesn't require too much duplicate typing.
	In this declaration, we combine all types into a single use statement. Take a look at the following code:
	To understand the compound namespace declaration, we will consider the following criteria.
	In the compound namespace declaration, we can use the preceding namespaces as follows:
	It is more elegant and clear, and it doesn't require extra typing if the namespace names are long.
	An anonymous class is a class that is declared and instantiated at the same time. It does not have a name and can have the full features of a normal class. These classes are useful when a single one-time small task is required to be performed and ther...
	The syntax of this class is the same as that of the named classes, but only the name of the class is missing, as shown in the following syntax:
	Let's look at a basic and very simple example of an anonymous class, as follows:
	The preceding code will just display the output as Altaf Hussain.
	This will give us the same output as the first example.
	Anonymous classes can extend other classes and have the same parent-child classes functioning as normal named classes. Let's have another example; take a look at
	the following:
	The preceding code will display I am parent constructor and 5. As can be seen, we extended the Packt class the way we extend named classes. Also, we can access the public and protected properties and methods within the anonymous class and public prope...
	Anonymous classes can implement interfaces too, the same as named classes.
	Let's create an interface first. Run the following:
	Now, let's modify our Packt class as follows. We added the highlighted code:
	The rest of the code is same as the first Packt class. Now, let's create our anonymous class, which will implement the Publishers interface created in the previous code and extend the new Packt class, as follows:
	The preceding code is self-explanatory and will output Altaf Hussain along with the address.
	It is possible to use anonymous classes within another class, as shown here:
	The preceding code will return 60. How does this happen? The Math class has a multiply_sum method that returns the object of an anonymous class. This anonymous class is extended from the Math class and has a multiply method. So, our echo statement can...
	In the preceding case, the Math class can be called the outer class, and the anonymous class can be called the inner class. However, remember that it is not required for the inner class to extend the outer class. In the preceding example, we extended ...
	Back in PHP 4, the constructor of a class has the same name method as that of the class. It is still used and is valid until PHP's 5.6 version. However, now, in PHP 7, it is deprecated. Let's have an example, as shown here:
	However, the old style constructor is still called. Now, let's add the PHP
	In the preceding code, when we instantiated the object of the class, the normal construct constructor was called. The packt()method isn't considered a normal class method.
	PHP 7 introduced a base interface that can be base for every object that can use the throw statement. In PHP, exceptions and errors can occur. Previously, exceptions could be handled, but it was not possible to handle errors, and thus, any fatal error...
	We all know exceptions, so in this topic, we will only discuss errors, which can handle the ugly, fatal errors.
	Almost all fatal errors can now throw an error instance, and similarly to exceptions, error instances can be caught using the try/catch block. Let's have a simple example:
	If the preceding code is executed, a fatal error will be displayed, the application will be halted, and the echo statement won't be executed in the end.
	Now, let's place the function call in the try/catch block, as follows:
	Now, if the preceding code is executed, the catch body will be executed, and after this, the rest of the application will continue running. In the preceding case, the echo statement will be executed.
	In most cases, the error instance will be thrown for the most fatal errors, but for some errors, a subinstance of error will be thrown, such as TypeError, DivisionByZeroError, ParseError, and so on.
	Before PHP 7, the preceding code would have issued a warning about the division by zero. However, now in PHP 7, it will throw a DivisionByZeroError, which can be handled.
	PHP 7 introduced two interested operators. These operators can help write less and cleaner code, so the final code will be more readable as compared to the traditional operators in use. Let's have a look at them.
	The Spaceship or Combined Comparison operator is useful to compare values (strings, integers, floats, and so on), arrays, and objects. This operator is just a wrapper and performs the same tasks as the three comparison operators ==, <, and >. This ope...
	• It returns 0 if both the operands on left- and right-hand sides are equal
	• It returns -1 if the right operand is greater than the left operand
	• It returns 1 if the left operand is greater than the right one
	Let's take a look at a few examples by comparing integers, strings, objects, and arrays and note the result:
	Run the preceding code, and you will have an output similar to the following:
	In the first comparison, in which we compare $int1 and $int3, both are equal, so it will return 0. In the second comparison, in which $int1 and $int2 are compared, it will return -1 because the right operand ($int2) in greater than the left operand ($...
	The preceding is a simple example in which we compared integers. We can check strings, objects, and arrays in the same way, and they are compared the same standard PHP way.
	This operator can be more useful in sorting arrays. Take a look at the following code:
	In the preceding code, we used two functions to sort the two different arrays with the same values. The $normalArray array is sorted by the normal_sort function, in which the normal_sort function uses if statements to compare the values. The second ar...
	We all know ternary operators, and we use them most of the time. Ternary operators are just a single-line replacement for if-else statements. For example, consider the following code:
	Mostly, it will seem fine, but it becomes very nasty when we have to check for values
	in multiple places, especially when using PHP as a templating language.
	In PHP 7, the coalescence operator is introduced, which is simple and returns the value of its first operand (left operand) if it exists and is not null. Otherwise, it returns its second operand (right operand). Consider the following example:
	This example is exactly similar to the preceding code. The coalesce operator checks whether $_POST['title'] exists. If it does, the operator returns it; otherwise, it returns NULL.
	Another great feature of this operator is that it can be chained. Here's an example:
	According to the definition, it will first check whether the first operand exists and return it; if it does not exist, it will return the second operand. Now, if there is another coalesce operator used on the second operand, the same rule will be appl...
	So, the preceding code is the same as the following:
	As can be noted in the preceding examples, the coalesce operator can help write clean, concise, and less code.
	Most of the time, we may face a situation in which the method, variable, or classes names are stored in other variables. Take a look at the following example:
	In the preceding code, first, $objects['class'] will be interpreted, and after this, the property name will be interpreted. As shown in the preceding example, variables are normally evaluated from left to right.
	Now, consider the following scenario:
	In PHP 5.x, this code would be executed, and the output would be Howdy. However, this is not inconsistent with the left-to-right expression evaluation. This is because
	$$first should be evaluated first and then the index name, but in the preceding case, it is evaluated as ${$first['name']}. It is clear that the variable syntax is not consistent and may create confusion. To avoid this inconsistency, PHP 7 introduced ...
	Now, let's have another example, as follows:
	If the preceding code is executed in PHP 5.x, it will work fine and output our desired result. However, if we execute this code in PHP 7, it will give a fatal error. The error will be at the last line of the code, which is highlighted. PHP 7 will firs...
	To make it work in PHP 7, the curly brackets should be added, as in the following code:
	After making the changes mentioned before, we will get our desired output.
	PHP 7 also introduced some other new features with small changes, such as new syntax for array constants, multiple default cases in switch statement, options array in session_start, and so on. Let's have a look at these too.
	Starting with PHP 5.6, constant arrays can be initialized using the const keyword, as follows:
	Now, starting with PHP 7, constant arrays can be initialized using the define
	function, as follows:
	Prior to PHP 7, multiple default cases in a switch statement were allowed. Check out the following example:
	Before PHP 7, the preceding code was allowed, but in PHP 7, this will result in a fatal error similar to the following:
	Before PHP 7, whenever we needed to start a session, we just used the session_ start() function. This function did not take any arguments, and all the settings defined in php.ini were used. Now, starting with PHP 7, an optional array for options can b...
	A simple example is as follows:
	As can be seen in the preceding example, it is possible to override the php.ini
	settings for a session easily.
	It is common practice to serialize and unserialize objects. However, the PHP unserialize() function was not secure because it did not have any filtering options and could unserialize objects of any type. PHP 7 introduced filtering in this function. Th...
	In this chapter, we discussed new OOP features, such as type hints, anonymous classes, the throwable interface, group use declaration for namespaces, and two important new operators, the Spaceship or Combined Comparison operator and the null Coalesce ...
	In the next chapter, we will discuss how to improve the application's performance. We will discuss Apache and NGINX and different settings for them to improve performance.
	We will discuss different settings for PHP to improve its performance. The Google page speed module, CSS/JavaScript combining and compression, CDN, and so on will also be discussed.
	PHP 7 has been completely rewritten from the ground up based on the PHP Next Generation (phpng or PHPNG) targeting performance. However, there are always more ways to improve the performance of the application, including writing high performance code,...
	• NGINX and Apache
	• HTTP server optimization
	• Content Delivery Network (CDN)
	• JavaScript/CSS optimization
	• Full page caching
	• Varnish
	• The infrastructure
	There are too many HTTP server software available, and each one has its pros and cons. The two most popular HTTP servers used are NGINX and Apache. Let's have a look at both of them and note which one is better for our needs.
	Apache is the most widely used HTTP server and is loved by most administrators. It is selected by administrators because of its flexibility, widespread support, power, and modules for most of the interpreted languages, such as PHP. As Apache can proce...
	it provides much more flexibility.
	As discussed earlier, each request will be processed by a single thread or process,
	so Apache consumes too many resources. When it comes to high-traffic applications, Apache may slow down the application as it does not provide good support for concurrent processing.
	NGINX was built to solve the concurrency problems with high-traffic applications. NGINX provides asynchronous, event-driven, and nonblocking request handling. As requests are processed asynchronously, NGINX does not wait for a request to be completed ...
	NGINX creates worker processes, and each individual worker process can handle
	thousands of connections. So, a few processes can handle high traffic at once.
	NGINX does not provide any built-in support for any interpreted languages.
	It relies on external resources for this. This is also good because the processing is made outside NGINX, and NGINX only processes the connections and requests. Mostly, NGINX is considered faster than Apache. In some situations, such as with static co...
	As mentioned before, we will use NGINX for this book.
	Each HTTP server provides certain features that can be used to optimize request handling and serving content. In this section, we will share some techniques for both Apache and NGINX that can be used to optimize the web server and provide the best per...
	Mostly, static files, such as images, .css, .js, and fonts don't change frequently. So, it is best practice to cache these static files on the end user machine. For this purpose, the web server adds special headers to the response, which tells the use...
	Let's have a look at the Apache configuration to cache the following static content:
	In the preceding code that has to be placed in a .htaccess file, we used the Apache FilesMatch directive to match the extensions of files. If a desired extension file is requested, Apache sets the headers to cache control for seven days. The browser t...
	In the preceding code, we used the NGINX Location block with a case-insensitive modifier (~*) to set Expires for seven days. This code will set the cache-control header for seven days for all the defined file types.
	After making these settings, the response headers for a request will be as follows:
	In the preceding figure, it can be clearly seen that the .js file is loaded from cache. Its cache-control header is set to seven days or 604,800 seconds. The expiry date can also be noted clearly in the expires headers. After the expiry date, the brow...
	defined in the cache-control headers.
	In HTTP persistent connection, or HTTP keep-alive, a single TCP/IP connection is used for multiple requests or responses. It has a huge performance improvement over the normal connection as it uses only a single connection instead of opening and closi...
	• The load on the CPU and memory is reduced because fewer TCP connections are opened at a time, and no new connections are opened for subsequent requests and responses as these TCP connections are used for them.
	• Reduces latency in subsequent requests after the TCP connection is established. When a TCP connection is to be established, a three-way handshake communication is made between a user and the HTTP server. After successfully handshaking, a TCP connect...
	• Network congestion is reduced because only a few TCP connections are opened to the server at a time.
	Besides these benefits, there are some side effects of keep-alive. Every server has a concurrency limit, and when this concurrency limit is reached or consumed, there can be a huge degradation in the application's performance. To overcome this issue, ...
	In Apache, keep-alive can be enabled in two ways. You can enable it either in the
	To enable it in the .htaccess file, place the following configuration in the
	In the preceding configuration, we set the Connection header to keep-alive in the
	.htaccess file. As the .htaccess configuration overrides the configuration in the config files, this will override whatever configuration is made for keep-alive in the Apache config file.
	To enable the keep-alive connection in the Apache config file, we have to modify three configuration options. Search for the following configuration and set the values to the ones in the example:
	In the preceding configuration, we turned on the keep-alive configuration by
	keep-alive connections to the web server at the time. A value of 100 is the default in Apache, and it can be changed according to the requirements. For high performance, this value should be kept high. If set to 0, it will allow unlimited keep-alive c...
	The last configuration is KeepAliveTimeout, which is set to 100 seconds. This defines the number of seconds to wait for the next request from the same client on the same TCP connection. If no request is made, then the connection is closed.
	HTTP keep-alive is part of the http_core module and is enabled by default. In the NGINX configuration file, we can edit a few options, such as timeout. Open the nginx config file, edit the following configuration options, and set its values to
	the following: (1)
	client can make on a single HTTP keep-alive connection.
	wait for the next request until it closes the keep-alive connection.
	Content compression provides a way to reduce the contents' size delivered by the HTTP server. Both Apache and NGINX provide support for GZIP compression, and similarly, most modern browsers support GZIP. When the GZIP compression is enabled, the HTTP ...
	A web server only compresses content via GZIP when the browser sends information about itself that it supports GZIP compression. Usually, a browser sends such information in Request headers.
	The following are codes for both Apache and NGINX to enable GZIP compression.
	The following code can be placed in the .htaccess file:
	In the preceding code, we used the Apache deflate module to enable compression.
	We used filter by type to compress only certain types of files, such as .html, plain text,
	.xml, .css, and .js. Also, before ending the module, we set a case to not compress the images because compressing images can cause image quality degradation.
	As mentioned previously, you have to place the following code in your virtual host
	conf file for NGINX:
	In the preceding code, GZIP compression is activated by the gzip on; line. The gzip_vary on; line is used to enable varying headers. The gzip_types line is used to define the types of files to be compressed. Any file types can be added depending on th...
	Now, let's check whether the compression really works. In the following screenshot, the request is sent to a server that does not have GZIP compression enabled. The size of the final HTML page downloaded or transferred is 59 KB:
	After enabling GZIP compression on the web server, the size of the transferred
	HTML page is reduced up to 9.95 KB, as shown in the following screenshot:
	Also, it can be noted that the time to load the contents is also reduced. So, the smaller
	the size of your contents, the faster the page will load.
	Apache uses the mod_php module for PHP. This way, the PHP interpreter is integrated to Apache, and all processing is done by this Apache module, which eats up more server hardware resources. It is possible to use PHP-FPM with Apache, which uses the F...
	NGINX, on the other hand, does not provide any built-in support or any support by module for PHP processing. So, with NGINX, PHP is always used in a separate service.
	Now, let's take a look at what happens when PHP runs as a separate service: the web server does not know how to process the dynamic content request and forwards the request to another external service, which reduces the processing load on the web server.
	Both Apache and NGINX come with lots of modules built into them. In most cases, you won't need some of these modules. It is good practice to disable these modules.
	It is good practice to make a list of the modules that are enabled, disable those modules one by one, and restart the server. After this, check whether your application is working or not. If it works, go ahead; otherwise, enable the module(s) after wh...
	This is because you may see that a certain module may not be required, but some other useful module depends on this module. So, it's best practice it to make a list and enable or disable the modules, as stated before.
	To list all the modules that are loaded for Apache, issue the following command in the terminal:
	This command will list all the loaded modules, as can be seen in the following screenshot:
	Now, analyze all the loaded modules, check whether they are needed for the
	application, and disable them, as follows.
	Open up the Apache config file and find the section where all the modules are
	loaded. A sample is included here:
	The modules that have a # sign in front of them are not loaded. So, to disable a module in the complete list, just place a # sign. The # sign will comment out the line, and the module won't be loaded anymore.
	To check which modules NGINX is compiled with, issue the following command in the terminal:
	This will list complete information about the NGINX installation, including the version and modules with which NGINX is compiled. Have a look at the following screenshot:
	Normally, NGINX enables only those modules that are required for NGINX to work. To enable any other module that is compiled with NGINX installed, we can place a little configuration for it in the nginx.conf file, but there is no single way to disable ...
	Each web server comes with its own optimum settings for general use. However, these settings may be not optimum for your current server hardware. The biggest problem on the web server hardware is the RAM. The more RAM the server has, the more the web ...
	Now, how many worker_processes resources should we use? This depends on the server. Usually, it is one worker processes per processor core. So, if your server processor has four cores, this value can be set to 4.
	The value of worker_connections shows the number of connections per worker_ processes setting per second. Simply speaking, worker_connections tells NGINX how many simultaneous requests can be handled by NGINX. The value of worker_ connections depends ...
	This command will show you a number that should be used for worker_connections. Now, let's say that our processor has four cores, and each core's limitation is 512.
	Then, we can set the values for these two variables in the NGINX main configuration file. On Debian/Ubuntu, it is located at /etc/nginx/nginx.conf.
	Now, find out these two variables and set them as follows:
	The preceding values can be high, specially worker_connections, because server processor cores have high limitations.
	Content Delivery Network is used to host static media files, such as images, .css and .js files, and audio and video files. These files are stored on a geographical network whose servers are located in different locations. Then, these files are served...
	CDN provides the following features:
	• As the contents are static, which don't change frequently, CDN caches them in memory. When a request comes for a certain file, CDN sends the file directly from cache, which is faster than loading the file from disk and sending it to the browser.
	• CDN servers are located in different locations. All the files are stored in each location, depending on your settings in CDN. When a browser request arrives to CDN, CDN sends the requested contents from the nearest location available to the requeste...
	• Each browser has limitations for sending simultaneous requests to a domain. Mostly, it's three requests. When a response arrives for a request, the browser sends more requests to the same domain, which causes a delay in complete page loading. CDN pr...
	• Generally, there is a small amount of requests for dynamic content and more requests for static content. If your application's static content is hosted on a separate CDN server, this will reduce the load on your server tremendously.
	So, how do you use CDN in your application? In best practice, if your application has high traffic, creating different subdomains at your CDN for each content type is the best. For example, a separate domain for CSS and JavaScript files, a subdomain f...
	Now, most open source applications provide settings at their admin control panel to set up CDN URLs, but in case you happened to use an open source framework or a custom-build application, you can define your own setting for CDN by placing the previou...
	For our example, we will place the preceding URLs in a config file and create three
	constants for them, as follows:
	If we need to load a CSS file, it can be loaded as follows:
	For a JavaScript file, it can be loaded as follows:
	If we load images, we can use the previous way in the src attribute of the img tag, as follows:
	In the preceding examples, if we don't need to use CDN or want to change the CDN URLs, it will be easy to change in just one place.
	Most famous JavaScript libraries and templating engines host their static resources on their own personal CDN. Google hosts query libraries, fonts, and other JavaScript libraries on its own CDN, which can be used directly in applications.
	Sometimes, we may not want to use CDN or be able to afford them. For this, we can use a technique called domain sharing. Using domain sharding, we can
	create subdomains or point out other domains to our resources' directories on the same server and application. The technique is the same as discussed earlier; the only difference is that we direct other domains or subdomains to our media, CSS, JavaScr...
	This may seem be fine, but it won't provide us with CDN's best performance. This is because CDN decides the geographical availability of content depending on the customer's location, extensive caching, and files optimization on the fly.
	Every web application has CSS and JavaScript files. Nowadays, it is common that most applications have lots of CSS and JavaScript files to make the application attractive and interactive. Each CSS and JavaScript file needs a browser to send a request ...
	Each file has a content size, and it takes time for the browser to download it. For example, if we have 10 CSS files of 10 KB each and 10 JavaScript files of 50 KB each, the total content size of the CSS files is 100 KB, and for JavaScript it is 500 K...
	In this section, we will discuss two ways to optimize our CSS and JS, which are
	as follows:
	• Merging
	• Minifying
	In the merging process, we can merge all the CSS files into a single file, and the same process is carried out with JavaScript files, thus creating a single file for CSS and JavaScript. If we have 10 files for CSS, the browser sends 10 requests for al...
	In the minifying process, all the empty lines, comments, and extra spaces are removed from the CSS and JavaScript files. This way, the size of the file is reduced, and the file loads fast.
	For example, let's say you have the following CSS code in a file:
	After minifying the file, we will have CSS code similar to the following:
	Similarly for JavaScript, let's consider that we have the following code in a
	JavaScript file:
	Now, if the preceding file is minified, we will have the following code:
	It can be noted in the preceding examples that all the unnecessary white spaces and new lines are removed. Also, it places the complete file code in one single line. All code comments are removed. This way, the file size is reduced, which helps the fi...
	Most open source applications, such as Magento, Drupal, and WordPress, provide either built-in support or support the application by third-party plugins/modules. Here, we won't cover how to merge CSS or JavaScript files in these applications, but we w...
	Minify is a set of libraries completely written in PHP. Minify supports both merging and minifying for both CSS and JavaScript files. Its code is completely object-oriented and namespaced, so it can be embedded into any current or proprietary framework.
	Now, let's create a small project that we will use to minify and merge CSS and JavaScript files. The folder structure of the project will be as in the following screenshot:
	In the preceding screenshot, the complete project structure is shown. The project name is minify. The css folder has all of our CSS files, including the minified or merged ones. Similarly, the js folder has all our JavaScript files, including the mini...
	So, let's start by minifying our CSS and JavaScript files using the following code
	The preceding code is simple. First, we included all our required libraries. Then, in the Minify CSS block, we created two path variables: $cssSourcePath, which has the path to the CSS file that we need to minify, and $cssOutputPath, which has path to...
	After this, we instantiated an object of the CSS.php class and passed the CSS file that we need to minify. Finally, we called the minify method of the CSS class and passed the output path along with the filename, which will generate the required file ...
	The same explanation goes for the JS minifying process.
	If we run the preceding PHP code, all the files are in place, and everything goes fine, then two new filenames will be created: styles.min.css and app.min.js. These are the new minified versions of their original files.
	Now, let's use Minify to merge multiple CSS and JavaScript files. First, add some CSS and JavaScript files to the respective folders in the project. After this, we just need to add a little code to the current code. In the following code, I will skip ...
	Now, take a look at the highlighted code. In the CSS part, we saved the minified and merged file as style.min.merged.css, but naming is not important; it is all up to our own choice.
	Now, we will simply use the add method of the $cssMinifier and $jsMinifier objects to add new files and then call minify. This causes all the additional files to be merged in the initial file and then minified, thus generating a single merged and mini...
	According to its official website, Grunt is a JavaScript task runner. It automates certain repetitive tasks so that you don't have to work repeatedly. It is an awesome tool and is widely used among web programmers.
	Installing Grunt is very easy. Here, we will install it on MAC OS X, and the same method is used for most Linux systems, such as Debian and Ubuntu.
	If Node.js and npm are installed on your machine, just fire up the following command
	in your terminal:
	This will install Grunt CLI. If everything goes fine, then the following command will
	show you the version the of Grunt CLI:
	The output of the preceding command is grunt-cli v0.1.13; as of writing this book, this version is available.
	Grunt provides you with a command-line, which enables you to run a Grunt command. A Grunt project requires two files in your project file tree. One is package.json, which is used by npm and lists Grunt and the Grunt plugins that the project needs as D...
	Now, we will use the same preceding project, but our folder structure will be as follows:
	Now, open the terminal in your project root and issue the following command:
	This will generate the package.json file by asking a few questions. Now, open the package.json file and modify it so that the contents of the final package.json files look similar to the following:
	I added comments to different parts of the package.json file so that it is easy to understand. Note that for the final file, we will remove the comments from this file.
	It can be seen that in the DevDependencies section, we added three Grunt plugins used for different tasks.
	The preceding code is simple and self-explanatory, and the comments are added whenever needed. At the top, we loaded our package.json file, and after this, we defined different tasks along with their src and destination files. Remember that every task...
	Now, let's run our tasks.
	First, let's combine CSS and JavaScript files and store them in their respective destinations defined in our tasks list in GruntFile via the following command:
	After running the preceding command in your terminal, if you see a message such as Done, without errors, then the task is completed successfully.
	In the same way, let's minify our css file using the following command:
	Then, we will minify our JavaScript file using the following command:
	Now, it may seem like a lot of work to use Grunt, but it provides some other features that can make a developer's life easy. For example, what if you need to change your JavaScript and CSS files? Should you run all the preceding commands again? No, Gr...
	tasks automatically.
	For a more detailed learning, take a look at Grunt's official website at
	In full page caching, the complete page of the website is stored in a cache, and for the next requests, this cached page is served. Full page cache is more effective if your website content does not change too often; for example, on a blog with simple...
	What if you have a website that has pages with dynamic parts, such as an e-commerce website? In this case, a complete page caching will create problems because the page is always different for each request; as a user is logged in, he/she may add prod...
	Most popular platforms provide either built-in support for full page cache or through plugins and modules. In this case, the plugin or module takes care of the dynamic blocks of the page for each request.
	Varnish, as mentioned on its official website, makes your website fly; and this is true! Varnish is an open source web application accelerator that runs in front of your web server software. It has to be configured on port 80 so that each request come...
	Now, the Varnish configuration file (called VCL files with the .vcl extenstion) has a definition for backends. A backend is the web server (Apache or NGINX) configured on another port (let's say 8080). Multiple backends can be defined, and Varnish wil...
	When a request comes to Varnish, it checks whether the data for this request in available at its cache or not. If it finds the data in its cache, this cached data is returned to the request, and no request is sent to the web server or backend.
	If Varnish does not find any data in its cache, it sends a request to the web server and requests the data. When it receives data from the web server, it first caches this data and then sends it back to the request.
	As it is clear in the preceding discussion, if Varnish finds the data in the cache, there is no need for a request to the web server and, therefore, for processing in there, and the response is sent back very fast.
	Varnish also provides features such as load balancing and health checks. Also, Varnish has no support for SSL and cookies. If Varnish receives cookies from the web server or backend, this page is not cached. There are different ways to overcome these ...
	We've done enough theory; now, let's install Varnish on a Debian/Ubuntu server via the following steps:
	1. First, add the Varnish repositories to the sources.list file. Place the following line in the file:
	2. After this, issue the following command to update the repositories:
	3. Now, issue the following command:
	4. This will download and install Varnish. Now, the first thing to do is configure Varnish to listen at port 80 and make your web server listen at another port, such as 8080. We will configure it here with NGINX.
	and change it so that it looks similar to the following code:
	6. Save the file and restart Varnish by issuing the following command in
	the terminal:
	7. Now our Varnish runs on port 80. Let's make NGINX run on port 8080. Edit the NGINX vhost file for the application and change the listen port from 80 to 8080, as follows:
	8. Now, restart NGINX by issuing the following command in the terminal:
	9. The next step is to configure the Varnish VCL file and add a backend that will communicate with our backend on port 8080. Edit the Varnish VCL file located at /etc/varnish/default.vcl, as follows:
	In the preceding configuration, our backend host is located at the same server on which Varnish runs, so we entered the local IP. We can also enter a localhost in this case. However, if our backend runs on a remote host or another server, the IP of th...
	Now, we are done with Varnish and web server configuration. Restart both Varnish and NGINX. Open your browser and enter the IP or hostname of the server. The first response may seem slow, which is because Varnish is fetching data from the backend and ...
	fast, as Varnish cached them and is now sending back the cached data without communicating with the backend.
	Varnish provides a tool in which we can easily monitor the Varnish cache status. It is a real-time tool and updates its contents in real time. It is called varnishstat. To start varnishstat, just issue the following command in the terminal:
	The preceding command will display a session similar to the following screenshot:
	As can be seen in the preceding screenshot, it displays very useful information, such as the running time and the number of requests made at the beginning, cache hits, cache misses, all backends, backend reusages, and so on. We can use this informatio...
	We discussed too many topics on increasing the performance of our application. Now, let's discuss the scalability and availability of our application. With time, the traffic on our application can increase to thousands of users at a time. If our appli...
	To make our application more scalable and better in availability, we can use an infrastructure setup in which we can host our application on multiple servers. Also, we can host different parts of the application on different servers. To better underst...
	This is a very basic design for the infrastructure. Let's talk about its different parts and what operations will be performed by each part and server.
	In the preceding diagram, we have two web servers. There can be as many web servers as needed, and they can be easily connected to LB. The web servers will host our actual application, and the application will run on NGINX or Apache and PHP 7. All the...
	at port 80. It is good that our web server should listen at another port to avoid any public access using browsers.
	The database server is mainly used for the database where the MySQL or Percona Server can be installed. However, one of the problems in the infrastructure setup is to store session data in a single place. For this purpose, we can also install the Redi...
	The preceding infrastructure design is not a final or perfect design. It is just to give the idea of a multiserver application hosting. It has room for a lot of improvement, such as adding another local balancer, more web servers, and servers for the ...
	The first part is the load balancer (LB). The purpose of the load balancer is to divide
	the traffic among the web servers according to the load on each web server.
	For the load balancer, we can use HAProxy, which is widely used for this purpose. Also, HAProxy checks the health of each web server, and if a web server is down, it automatically redirects the traffic of this down web server to other available web se...
	We don't want to place a load on our available web servers (in our case, two web servers) of encrypting and decrypting the SSL communication, so we will use the HAProxy server to terminate SSL there. When our LB receives a request with SSL, it will te...
	In the preceding infrastructure, we placed a load balancer in front of our web servers, which balance load on each server, check the health of each server, and terminate SSL. We will install HAProxy and configure it to achieve all the configurations m...
	We will install HAProxy on Debian/Ubuntu. As of writing this book, HAProxy 1.6 is the latest stable version available. Perform the following steps to install HAProxy:
	1. First, update the system cache by issuing the following command in the terminal:
	2. Next, install HAProxy by entering the following command in the terminal:
	This will install HAProxy on the system.
	3. Now, confirm the HAProxy installation by issuing the following command
	in the terminal:
	If the output is as in the preceding screenshot, then congratulations! HAProxy is installed successfully.
	Now, it's time to use HAProxy. For this purpose, we have the following three servers:
	• The first is a load balancer server on which HAProxy is installed. We will call it LB. For this book's purpose, the IP of the LB server is 10.211.55.1. This server will listen at port 80, and all HTTP requests will come to this server. This server a...
	• The second is a web server, which we will call Web1. NGINX, PHP 7, MySQL, or Percona Server are installed on it. The IP of this server is 10.211.55.2. This server will either listen at port 80 or any other port. We will keep it to listen at port 8080.
	• The third is a second web server, which we will call Web2, with the IP 10.211.55.3. This has the same setup as of the Web1 server and will listen at port 8080.
	The Web1 and Web2 servers are also called backend servers. First, let's configure the
	LB or frontend server to listen at port 80.
	the end of the file:
	In the preceding code, we set HAProxy to listen at the HTTP port 80 on any IP address, either the local loopback IP 127.0.0.1 or the public IP. Then, we set the default backend.
	Now, we will add two backend servers. In the same file, at the end, place the
	following code:
	In the preceding configuration, we added two servers into the web backend.
	The reference name for the backend is web-backend, which is used in the frontend configuration too. As we know, both our web servers listen at port 8080, so we mentioned that it is the definition of each web server. Also, we used check at the end of t...
	Now, restart HAProxy by issuing the following command in the terminal:
	Now, enter the IP or hostname of the LB server in the browser, and our web application page will be displayed either from Web1 or Web2.
	Now, disable any of the web servers and then reload the page again. The application will still work fine, because HAProxy automatically detected that one of web servers is down and redirected the traffic to the second web server.
	HAProxy also provides a stats page, which is browser-based. It provides complete monitoring information about the LB and all the backends. To enable stats, open haprox.cfg, and place the following code at the end of the file:
	The stats are enabled at port 1434, which can be set to any port. The URL of the page is stats uri. It can be set to any URL. The auth section is for basic HTTP authentication. Save the file and restart HAProxy. Now, open the browser and enter the URL...
	In the preceding screenshot, each backend web server can be seen, including frontend information.
	Also, if a web server is down, HAProxy stats will highlight the row for this web server, as can be seen in the following screenshot:
	For our test, we stopped NGINX at our Web2 server and refreshed the stats page, and the Web2 server row in the backend section was highlighted.
	To terminate SSL using HAProxy, it is pretty simple. To terminate SSL using HAProxy, we will just add the SSL port 443 binding along with the SSL certificate file location. Open the haproxy.cfg file, edit the frontend block, and add the highlighted co...
	Now, HAProxy also listens at 443, and when an SSL request is sent to it, it processes it there and terminates it so that no HTTPS requests are sent to backend servers.
	This way, the load of SSL encryption/decryption is removed from the web servers and is managed by the HAProxy server only. As SSL is terminated at the HAProxy server, there is no need for web servers to listen at port 443, as regular requests from HAP...
	In this chapter, we discussed several topics starting from NGINX and Apache to Varnish. We discussed how we can optimize our web server's software settings for the best performance. Also, we discussed CDNs and how to use them in our customer applicati...
	In next chapter, we will look into the ways of increasing the performance of our database. We will discuss several topics, including the Percona Server, different storage engines for the database, query caching, Redis, and Memcached.
	Databases play a key role in dynamic websites. All incoming and outgoing data is stored in a database. So, if the database for a PHP application is not well designed and optimized, it will effect the application's performance tremendously. In this cha...
	• MySQL
	• Query caching
	• The MyISAM and InnoDB storage engines
	• The Percona DB and Percona XtraDB storage engines
	• MySQL performance monitoring tools
	• Redis
	• Memcached
	MySQL is the most commonly used Relational Database Management System (RDMS) for the Web. It is open source and has a free community version. It provides all those features that can be provided by an enterprise-level database.
	The default settings provided with the MySQL installation may not be so good for performance, and there are always ways to fine-tune these settings to get an improved performance. Also, remember that your database design plays a big role in performanc...
	In this section, we will discuss how to improve the MySQL database's performance.
	Query caching is an important performance feature of MySQL. It caches SELECT queries along with the resulting dataset. When an identical SELECT query occurs, MySQL fetches the data from memory so that the query is executed faster and thus reduces the ...
	To check whether query cache is enabled on a MySQL server or not, issue the following command in your MySQL command line:
	The preceding command will display the following output:
	The previous result set shows that query cache is enabled. If query cache is disabled, the value will be NO.
	To enable query caching, open up the my.cnf file and add the following lines. If
	these lines are there and are commented, just uncomment them:
	Save the my.cnf file and restart the MySQL server. Let's discuss what the preceding three configurations mean:
	If query_cache_size is greater than 0, then memory is allocated, but nothing is cached—that is, cache is disabled.
	• query_cache_size: query_cache_size: This indicates how much memory will be allocated. Some think that the more memory is used, the better it will be, but this is just a misunderstanding. It all depends on the database size, query types and ratios be...
	• query_cache_limit: This defines the maximum size of a query dataset to be cached. If a query dataset's size is larger than this value, it isn't cached. The value of this configuration can be guessed by finding out the largest SELECT query and the si...
	Storage engines (or table types) are a part of core MySQL and are responsible for handling operations on tables. MySQL provides several storage engines, and the two most widely used are MyISAM and InnoDB. Both these storage engines have their own pros...
	A storage engine can be set at database level, which is then used as the default storage engine for each newly created table. Note that the storage engine is the table's base, and different tables can have different storage engines in a single databas...
	This will change the storage engine value of the table to INNODB.
	Now, let's discuss the difference between the two most widely used storage engines: MyISAM and InnoDB.
	A brief list of features that are or are not supported by MyISAM is as follows:
	• MyISAM is designed for speed, which plays best with the SELECT statement.
	• If a table is more static—that is, the data in this table is less frequently updated/deleted and mostly only fetched—then MyISAM is the best option for this table.
	• MyISAM supports table-level locking. If a specific operation needs to be performed on the data in a table, then the complete table can be locked. During this lock, no operations can be performed on this table. This can cause performance degradation ...
	if the data is frequently changed in this table.
	• MyISAM does not have support for foreign keys.
	• MyISAM supports full-text search.
	• MyISAM does not support transactions. So, there is no support for COMMIT and ROLLBACK. If a query on a table is executed, it is executed, and there is no coming back.
	• Data compression, replication, query caching, and data encryption is supported.
	• The cluster database is not supported.
	A brief list of features that are or are not supported by InnoDB is as follows:
	• InnoDB is designed for high reliability and high performance when processing a high volume of data.
	• InnoDB supports row-level locking. It is a good feature and is great for performance. Instead of locking the complete table as with MyISAM, it locks only the specific row for the SELECT, DELETE, or UPDATE operations, and during these operations, oth...
	• InnoDB supports foreign keys and forcing foreign keys constraints.
	• Transactions are supported. COMMIT and ROLLBACK are possible, so data can be recovered from a specific transaction.
	• Data compression, replication, query caching, and data encryption is supported. (1)
	• InnoDB can be used in a cluster environment, but it does not have full support. However, InnoDB tables can be converted to the NDB storage engine, which is used in the MySQL cluster by changing the table engine to NDB.
	In the following sections, we will discuss some more performance features that are
	related to InnoDB. Values for the following configuration are set in the my.cnf file.
	This setting defines how much memory should be used for InnoDB data and the indices loaded into memory. For a dedicated MySQL server, the recommended value is 50-80% of the installed memory on the server. If this value is set too high, there will be n...
	50-80 %) of our RAM.
	This feature is not that widely used. It enables multiple buffer pool instances to work together to reduce the chances of memory contentions on a 64-bit system and with a large value for innodb_buffer_pool_size.
	The innodb_log_file_size is the the size of the log file that stores every query information executed. For a dedicated server, a value up to 4 GB is safe, but the time taken for crash recovery may increase if the log file's size is too large. So, in b...
	According to the Percona website, Percona is a free, fully compatible, enhanced, open source, and drop-in replacement for MySQL that provides superior performance, scalability, and instrumentation.
	Percona is a fork of MySQL with enhanced features for performance. All the features available in MySQL are available in Percona. Percona uses an enhanced storage engine called XtraDB. According to the Percona website, it is an enhanced version
	of the InnoDB storage engine for MySQL that has more features, faster performance, and better scalability on modern hardware. Percona XtraDB uses memory more efficiently in high-load environments.
	As mentioned earlier, XtraDB is a fork of InnoDB, so all the features available in InnoDB are available in XtraDB.
	Percona is only available for Linux systems. It is not available for Windows as of now. In this book, we will install Percona Server on Debian 8. The process is same for both Ubuntu and Debian.
	Now, let's install the Percona Server through the following steps:
	1. Open your sources list file using the following command in your terminal:
	If prompted for a password, enter your Debian password. The file will be opened.
	2. Now, place the following repository information at the end of the
	3. Save the file by pressing CTRL + O and close the file by pressing CTRL + X.
	4. Update your system using the following command in the terminal:
	5. Start the installation by issuing the following command in the terminal:
	6. The installation will be started. The process is the same as the MySQL server installation. During the installation, the root password for the Percona Server will be asked; you just need to enter it. When the installation is complete, you will be r...
	7. Configure the Percona Server and optimize it as discussed in the
	earlier sections.
	There is always a need to monitor the performance of database servers. For this purpose, there are many tools available that make it easy to monitor MySQL servers and performance. Most of them are open source and free, and some provide a GUI. The comm...
	This is the most famous, web-based, open source, and free tool available to manage MySQL databases. Despite managing a MySQL server, it also provides some good tools to monitor a MySQL server. If we log in to phpMyAdmin and then click on the Status ta...
	The Server tab shows us basic data about the MySQL server, such as when it started, how much traffic is handled from the last start, information about connections, and so on.
	The next is Query Statistics. This section provides full stats about all of the queries executed. It also provides a pie chart, which visualizes the percentage of each query type, as shown in the following screenshot.
	If we carefully look at the chart, we can see that we have 54% of the SELECT queries running. If we use some kind of cache, such as Memcached or Redis, these SELECT queries should not be this high. So, this graph and statistics information provides us...
	The next option is All Status Variables, which lists all of the MySQL variables and their current values. In this list, one can easily find out how MySQL is configured. In the following screenshot, our query cache variables and their values are shown:
	The next option that phpMyAdmin provides is Monitor. This is a very powerful tool that displays the server resources and their usages in real time in a graphical way.
	The last important section is Advisor. This gives us advice regarding the settings for performance. It gives you as many details as possible so that the MySQL server can be tuned for performance. A small section from the advisor section is shown in th...
	If all these advices are applied, some performance can be gained.
	This is a desktop application from MySQL and is fully equipped with tools
	to manage and monitor the MySQL server. It provides us with a dashboard for performance in which all the data related to the server can be seen in a beautiful and graphical way, as shown in the screenshot that follows:
	All the tools mentioned before are good and provide some visual information about our database server. However, they are not good enough to show us some more useful information or provide more features that can make our lives easy. For this purpose, a...
	Percona Toolkit is a set of more than 30 command-line tools, which includes those
	used to do an analysis of slow queries, archive, optimize indices and many more.
	Now, let's discuss a few tools in the subsections to follow.
	This tool analyzes queries from slow, general, and binary log files. It generates a sophisticated report about the queries. Let's run this tool for slow queries using the following command:
	After entering the preceding command in the terminal, we will see a long report. Here, we will discuss a short part of the report, as shown in the following screenshot:
	In the preceding screenshot, slow queries are listed with the slowest at the top. The first query, which is a SELECT query, takes the most time, which is about 12% of the total time. The second query, which is also a SELECT query, takes 11.5% of the t...
	Also, pt-query-digest displays information for each query, as shown in the following screenshot. In the screenshot, data about the first query is mentioned, including the total timing; percentage (pct) of time; min, max, and average time; bytes sent; ...
	This tool finds duplicate indices and duplicate foreign keys either in a set of specified tables or in a complete database. Let's execute this tool again in a large database using the following command in the terminal:
	When executed, the following output is printed:
	At the end of the report, a summary of the indices is displayed, which is
	self-explanatory. Also, this tool prints out an ALTER query for each duplicate
	index that can be executed as a MySQL query to fix the index, as follows:
	This tool displays MySQL config information and advice for each query. This is a good tool that can help us set up MySQL configurations properly. We can execute this tool by running the following command:
	After execution, the following output will be displayed:
	It provides complete details for each tool, including its description and risks, how to execute it, and other options if there are any. This documentation is worth reading if you wish to understand any tool in Percona Toolkit.
	Percona XtraDB Cluster provides a high-performance cluster environment that can help easily configure and manage a database on multiple servers. It enables databases to communicate with each other using the binary logs. The cluster environment helps d...
	To set up the cluster, we need the following servers:
	• One server with IP 10.211.55.1, which we will call Node1
	• A second server with IP 10.211.55.2, which we will call Node2
	• And a third server with IP 10.211.55.3, which we will call Node3
	As we already have the Percona repository in our sources, let's start by installing and
	configuring Percona XtraDB Cluster, also called PXC. Perform the following steps:
	1. First, install Percona XtraDB Cluster on Node1 by issuing the following command in the terminal:
	The installation will start similarly to a normal Percona Server installation. During the installation, the password for a root user will be also asked.
	2. When the installation is complete, we need to create a new user that has replication privileges. Issue the following commands in the MySQL terminal after logging in to it:
	The first query creates a user with the username sstpackt and password sstuserpassword. The username and password can be anything, but a good and strong password is recommended. The second query sets proper
	privileges to our new user, including locking tables and replication. The third query refreshes the privileges.
	Save the file after adding the preceding configuration.
	4. Now, start the first node by issuing the following command:
	This will bootstrap the first node. Bootstrapping means getting the initial cluster up and running and defining which node has the correct information and which one all the other nodes should sync to. As Node1 is our initial cluster node and we create...
	5. Log in to the MySQL terminal on the first node and issue the
	following command:
	A very long list will be displayed. A few of them are shown in the following screenshot:
	6. Now, repeat Step 1 and Step 3 for all nodes. The only configuration that needs to be changed for each node is wsrep_node_address, which should be the IP address of the node. Edit the my.cnf configuration file for all the nodes and place the node ad...
	7. Start the two new nodes by issuing the following command in the terminal:
	Now each node can be verified by repeating step 7.
	To verify whether the cluster is working fine, create a database in one node and
	add some tables and data into the tables. After this, check other nodes for the newly created database, tables, and the data entered in each table. We will have all this data synced to each node.
	Redis is an open source, in-memory key-value data store that is widely used for database caching. According to the Redis website (www.Redis.io), Redis supports data structures such as strings, hashes, lists, sets, and sorted lists. Also, Redis support...
	To check whether Redis is working fine on your server or not, start the Redis server
	instance by running the following command in the terminal:
	Then issue the following command in a different terminal window:
	If the output of the preceding command is as follows, the Redis server is ready to be run:
	Redis provides a command line, which provides some useful commands. There are two ways to execute commands on the Redis server. You can either use the previous method or just type redis-cli and hit Enter; we will be presented with the Redis command li...
	By default, Redis uses the IP 127.0.0.1 and port 6379. Remote connections are not allowed, though remote connections can be enabled. Redis stores data that is already created in the database. Database names are integer numbers, such as 0, 1, 2, and so...
	We won't go in much detail about Redis here, but we will discuss a few commands that are worth noting. Note that all these commands can be either executed in the previous way, or we can just enter the redis-cli command window and type
	the commands without typing redis-cli. Also, the following commands can be executed directly in PHP, which makes it possible to clear out the cache directly from our PHP application:
	• SELECT: This command changes the current database. By default, redis-cli will be opened at database 0. So, if we want to go to database 1, we will run the following command:
	• FLUSHDB: This command flushes the current database. All keys or data from the current database will be deleted.
	• FLUSHALL: This command flushes all the databases, no matter which database it is executed in.
	• KEYS: This command lists all the keys in the current database matching a pattern. The following command lists all the keys in the current database.
	Now, it's time for some action in PHP with Redis.
	As mentioned before, by default, the Redis server runs on the IP 127.0.0.1 and port 6379. So, to make a connection, we will use these details. Take a look at the following code:
	In the first line, we instantiated a Redis object by the name of redisObject, which is then used in the second line to connect to the Redis server. The host is the local IP address 127.0.0.1, and the port is 6379. The connect() method returns TRUE if ...
	Now, we are connected to our Redis server. Let's save some data in the Redis database. For our example, we want to store some string data in the Redis database. The code is as follows:
	The set method stores data into the current Redis database and takes two arguments: a key and a value. A key can be any unique name, and a value is what we need to store. So, our key is packt_title, and the value is Packt Publishing. The default datab...
	Now, the get method is used to fetch data from the current database. It takes the key as the argument. So, the output of the preceding code will be our saved string data Packt Publishing.
	Now, what about arrays or a set of data coming from the database? We can store
	them in several ways in Redis. Let's first try the normal strings way, as shown here:
	The output of the preceding code will be the same array. For testing purposes, we can comment out the set method and check whether the get method fetches
	the data or not. Remember that in the preceding code, we stored the array as a json string, then fetched it as a json string, and decoded it to the array. This is because we used the methods that are available for the string datatype, and it is not po...
	Also, we used the select method to select another database and use it instead of 0. This data will be stored in database 1 and can't be fetched if we are at database 0.
	Redis management tools provide an easy way to manage Redis databases. These tools provide features so that every key can be checked and a cache can be cleared easily. One default tool comes with Redis, called Redis-cli, and we discussed it earlier. No...
	RDM provides the following features:
	• It connects to remote multiple Redis servers
	• It displays data in a specific key in different formats
	• It adds new keys to a selected database
	• It adds more data to a selected key
	• It edits/deletes keys and their names
	• It supports SSH and SSL and is cloud ready
	There are some other tools that can be used, but RDM and Redis-cli are the best and easiest to use.
	According to the Memcached official website, it's a free, open source, high performance, and distributed memory object caching system. Memcached is an in-memory key-value store that can store datasets from a database or API calls.
	Similarly to Redis, Memcached also helps a lot in speeding up a website. It stores the data (strings or objects) in the memory. This allows us to reduce the communication with outside resources, such as databases and or APIs.
	Now, let's play a little with Memcachd in PHP. Take a look at the following code:
	The preceding code is a very simple example of using Memcached. The comments are written with each line of code and are self-explanatory. After instantiating a Memcached object, we have to add a Memcached server. By default, the Memcached server serve...
	(in this case, we displayed it. It can be returned, or whatever processing is required can be carried out.). If the data is not available, we can just add it. Please note that the data can come from a remote server API or from the database.
	In this chapter, we covered MySQL and the Percona Server. Also, we discussed in detail query caching and other MySQL configuration options for performance in detail. We mentioned different storage engines, such as MyISAM, InnoDB, and Percona XtraDB. W...
	discussed different monitoring tools, such as PhpMyAdmin monitoring tools, MySQL workbench performance monitoring, and Percona Toolkit. We also discussed Redis and Memcached caching for PHP and MySQL.
	In the next chapter, we will discuss benchmarking and different tools. We will use XDebug, Apache JMeter, ApacheBench, and Siege to benchmark different open source systems, such as WordPress, Magento, Drupal, and different versions of PHP, and compare...
	During development, every developer faces problems, and it becomes unclear what is really going on here and why the problem is generated. Most the time, these issues can be logical or with the data. It is always hard to find such issues. Debugging is ...
	In this chapter, we will cover the following topics: (1)
	• Xdebug
	• Debugging with Sublime Text 3
	• Debugging with Eclipse
	• Profiling with Xdebug
	• PHP DebugBar
	Xdebug is an extension for PHP that provides both debugging and profiling information for PHP scripts. Xdebug displays a full-stake trace information for errors, including function names, line numbers, and filenames. Also, it provides the ability to d...
	To check whether Xdebug is installed and enabled on our PHP installation, we need to check the phpinfo() details. On the phpinfo details page, search for Xdebug, and you should see details similar to the following screenshot:
	This means that our PHP installation has Xdebug installed. Now, we need to configure Xdebug. Either the Xdebug configuration will be in the php.ini file, or it will have its separate .ini file. At our installation, we will have a separate 20-xdebug.in...
	Now, open the 20-xdebug.ini file and place the following configuration in it:
	The preceding are the minimum configurations we should use that enable remote debugging and set an IDE key. Now, restart PHP by issuing the following command in the terminal:
	Now we are ready to debug some code.
	The Sublime Text editor has a plugin that can be used to debug PHP code with Xdebug. First, let's install the xdebug package for Sublime Text.
	Type in xdebug, and the Xdebug Client package will be displayed. Click on it and wait for a while until it is installed.
	Now, create a project in Sublime Text and save it. Open the Sublime Text project file
	and insert the following code in it:
	The highlighted code is important, and it has to be entered for Xdebug. Path mapping is the most important part. It should have a full path to the root of the application on the remote host and a full path to the root of the application on the localhost.
	Now, let's start debugging. Create a file at the project's root, name it index.php, and place the following code in it:
	Now, right-click on a line in the editor and select Xdebug. Then, click on Add/Remove Breakpoint. Let's add a few breakpoints as shown in the following screenshot:
	When a breakpoint is added to a line, a filled circle will be displayed on the left-hand
	side near the line number, as can be seen in the preceding screenshot.
	Now we are ready to debug our PHP code. Navigate to Tools | Xdebug | Start Debugging (Launch in Browser). A browser window will open the application along with a Sublime Text debug session parameter. The browser windows will be in the loading state be...
	Some new small windows will also open in the Sublime Text editor that will display debugging information along with all the variables available, as in the following screenshot:
	In the preceding screenshot, our $a, $b, and $c arrays are uninitialized because the execution cursor is at Line 22, and it has stopped there. Also, all server variables, cookies, environment variables, request data, and POST and GET data can be seen ...
	Now, let's move the execution cursor ahead. Right-click in the editor code section and go to Xdebug | Step Into. The cursor will move ahead, and the variables data may change according to the next line. This can be noted in the following screenshot:
	Eclipse is the most free and powerful IDE widely used. It supports almost all major programming languages, including PHP. We will discuss how to configure Eclipse to use Xdebug to debug.
	First, open the project in Eclipse. Then, click on the down arrow to the right of the small bug icon in the tool bar, as shown in the following screenshot:
	Select PHP Web Application on left panel and then click on the Add New icon in the top-left corner. This will add a new configuration, as shown in the preceding screenshot. Give the configuration a name. Now, we need to add a PHP server to our configu...
	We will enter the server name as PHP Server. The server name can be anything as long as it is user-friendly and can be recognized for later use. In the Base URL field, enter the complete URL of the application. Document Root should be the local path o...
	Select XDebug in the Debugger drop-down list and leave rest of the fields as they are. Click on the Next button, and we will have the path mapping window. It is very important to map the correct local path to the correct remote path. Click on the Add ...
	Enter the full path to the document root of the application on the remote server. Then, select Path in File System and enter the local path of the application's document root. Click on OK and then click on the Finish button in the path mapping window....
	Now, our configuration is ready. First, we will add some breakpoints to our PHP file by clicking on the line number bar and a small blue dot will appear there, as shown in the following screenshot. Now, click on the small bug icon on the tool bar, sel...
	When we click on the small (X)= icon in the right-hand side bar, we will see all the variables there. Also, it is possible to edit any variable data, even the element values of any array, object properties, and cookie data. The modified data will be r...
	To step into the next line, we will just press F5, and the execution cursor will be moved to the next line. To step out to the next breakpoint, we will press F6.
	Profiling gives us information about the cost of each script or task executed in an application. It helps to provide information about how much time a task takes, and hence we can optimize our code to consume less time.
	Xdebug has a profiler that is disabled by default. To enable the profiler, open the configuration file and place the following two lines in it:
	The first line enables the profiler. The second line, where we defined the output directory for the profiler file, is important. In this directory, Xdebug will store the output file when the profiler is executed. The output file is stored with a name,...
	Now, we are set to profile a simple installation of the Laravel application home page. The installation is a fresh and clean one. Now, let's open the application in a browser and append ?XDEBUG_PROFILE=on at the end, as shown here:
	After this page is loaded, a cachegrind file will be generated at the specified location.
	Now, when we open the file in a text editor, we will just see some text data.
	After opening the file in PHP Storm, we will get a window similar to the
	following screenshot:
	As shown in the preceding screenshot, we have execution statistics in the upper pane that shows the time (in ms) taken by each called script individually along with the number of times it is called. In the lower pane, we have the callees that called t...
	We can analyze which script takes more time, and we can optimize this script to reduce its execution time. Also, we can find out whether, at a certain point, we need to call a specific script or not. If not, then we can remove this call.
	PHP DebugBar is another awesome tool that displays a nice and full information bar at the bottom of the page. It can display custom messages added for the purposes of debugging and full request information including $_COOKIE, $_SERVER, $_POST, and
	$_GET arrays along with the data if any of them have. Besides that, PHP DebugBar displays details about exceptions if there are any, database queries executed, and their details. Also it displays the memory taken by the script and the time the page is...
	According to the PHP Debug website, DebugBar integrates easily in any application
	project and displays debugging and profiling data from any part of the application.
	Its installation is easy. You can either download the complete source code, place it somewhere in your application, and set up the autoloader to load all the classes, or use composer to install it. We will use composer as it is the easy and clean way ...
	In your project's composer.json file, place the following code in the required section:
	Save the file and then issue the following command:
	The Composer will start updating the dependencies and install composer. Also, it will
	generate the autoloader file and/or the other dependencies required for DebugBar.
	After it is installed, the project tree for the DebugBar can be as follows:
	The directories' structure may be a little bit different, but normally, it will be as
	we previously noted. The src directory has the complete source code for DebugBar. The vendor directory has some third-party modules or PHP tools that may or may not be required. Also, note that the vendor folder has the autoloader to autoload all the ...
	Let's check our installation now to see whether it is working or not. Create a new file
	in your project root and name it index.php. After this, place the following code in it:
	In the preceding code, we first included our autoloader, which is generated by composer for us to autoload all the classes. Then, we used the DebugBar\ StandardDebugbar namespace. After this, we instantiated two objects:
	We used the $debugbar object to add messages to the message collector. Collectors are responsible for collecting data from different sources, such as databases, HTTP requests, messages, and others.
	In the head section of the HTML code, we used the renderHead method of
	$debugbarRenderer to place the required JavaScript and CSS code. After this, just before the end of the <body> block, we used the render method of the same object to display the debug bar.
	Now, load the application in the browser, and if you notice a bar at the bottom of the browser as in the following screenshot, then congrats! DebugBar is properly installed and is working fine.
	On the right-hand side, we have the memory consumed by our application and the time it is loaded in.
	If we click on the Messages tab, we will see the messages we added, as shown in the following screenshot:
	DebugBar provides data collectors, which are used to collect data from different sources. These are called base collectors, and some of the data collectors are as follows:
	• The message collector collects log messages, as shown in the preceding example
	• The TimeData collector collects the total execution time as well as the execution time for a specific operation
	• The exceptions collector displays all the exceptions that have occurred
	• The PDO collector logs SQL queries
	• The RequestData collector collects data of PHP global variables, such as $_SERVER, $_POST, $_GET, and others
	• The config collector is used to display any key-value pairs of arrays
	Also, there are some collectors that provide the ability to collect data from third- party frameworks such as Twig, Swift Mailer, Doctrine, and others. These collectors are called bridge collectors. PHP DebugBar can be easily integrated into famous PH...
	In this chapter, we discussed different tools to debug a PHP application. We used Xdebug, Sublime Text 3, and Eclipse to debug our applications. Then, we used the Xdebug profiler to profile an application to find out the execution statistics. Finally,...
	In the next chapter, we will discuss load testing tools, which we can use to place load or virtual visitors on our application in order to load test it, and find out how much load our application can bear, and how it affects the performance.
	After an application is developed, tested, debugged and then profiled, it is time to bring it to production. However, before going to production, it is best practice to stress/load test the application. This test will give us an approximate result of ...
	more requests.
	In this chapter, we will load test different open source tools on both PHP 5.6 and PHP 7 and compare these applications' performance for both versions of PHP.
	We will cover the following topics: (1)
	• Apache JMeter
	• ApacheBench (ab)
	• Seige
	• Load testing Magento 2 on PHP 5.6 and PHP 7
	• Load testing WordPress on PHP 5.6 and PHP 7
	• Load testing Drupal 8 on PHP 5.6 and PHP 7
	Apache JMeter is a graphical and open source tool used to load test a server's performance. JMeter is completely written in Java, so it is compatible with all operating systems that have Java installed. JMeter has a complete set of extensive tools for...
	Its installation is simple. We need to download it from the JMeter website and then just run the application. As mentioned before, it will require Java to be installed on the machine.
	When we run the application at first, we will see the following window:
	To run any kind of test, you need to first create a test plan. A test plan has all the components required to execute this test. By default, JMeter has a test plan called Test Plan. Let's name it to our own plan, Packt Publisher Test Plan, as shown in...
	Now, save the test plan, and JMeter we will create a .jmx file. Save it in an
	appropriate place.
	The thread group has the following important properties:
	• The Ramp-Up period: This tells JMeter how long it should take to ramp up to the full capacity of the number of threads. For example, in the preceding screenshot, we have 40 threads and 80 seconds of ramp-up time; here, J Meter will take 80 seconds t...
	• Loop Count: This tells JMeter how much time it should take to run this thread group.
	• Scheduler: This is used to schedule the execution of the thread group for a later time.
	In the preceding window, we have to just enter the URL of the application or the IP address. If the web server uses cookies, we can add HTTP Cookie Manager too, in which we can add user-defined cookies with all the data, such as the name, value, domai...
	The important field here is Path. We want to run the test only against the home page, so for this HTTP request, we will just add a slash (/) in the Path field. If we want to test another path, such as "Contact us", we will need to add another HTTP req...
	The HTTP Request sampler can be used to test forms too, where POST requests can be sent to the URL by selecting the POST method in the Method field. Also, file upload can be simulated.
	in Table, Response Time Graph, and Graph Results. Each listener view displays a different kind of data. Add all the preceding listeners by right-clicking on Packt Thread Group and then navigating to Add | Listeners. We will have a complete list of all...
	Now, we are ready to run our test plan by clicking on the Start button in the upper tool bar, as shown in the following screenshot:
	As soon as we click on the Start button (the green arrow pointing to the right-hand side), JMeter will start our test plan. Now, if we click on the View Results in Table listener on the left panel, we will see data for each request in a table, as show...
	The preceding screenshot shows some interesting data, such as sample time, status, bytes, and latency.
	Sample time is the number of milliseconds in which the server served the complete request. Status is the status of the request. It can be either a success, warning, or error. Bytes is the number of bytes received for the request. Latency is the number...
	Now, if we click on Response Time Graph, we will see a visual graph for the response time, which is similar to the one that follows:
	Now, if we click on Graph Results, we will see the response time data along with graphs for average, median, deviation, and throughput graphs, as shown in the following graph:
	Apache JMeter provides very powerful tools to load test our web servers by simulating users. It can provide us with data regarding the amount of load that makes our web server's response slow, and using this data, we can optimize our web server and ap...
	ApacheBench (ab) is also provided by Apache and is a command-line tool. It is a lovely tool for command line lovers. This tool is normally installed on most Linux flavors by default. Also, it is installed with Apache, so if you have Apache installed, ...
	The basic syntax for an ab command is as follows:
	Let's discuss what each part of the preceding command means:
	• n: This is the number of requests for test.
	• c: This is concurrency, which is the number of simultaneous requests at a time.
	• Address: This is either the application URL or IP address of the web server.
	• Port: This is the port number at which the application is running.
	• Path: This is the web path of the application that we can use to test. A slash (/) is used for the home page.
	Now, let's conduct a test using the ab tool by issuing the following command:
	As the default port for the web server is 80, it is not required to mention it. Note the slash at the end; this is required to place it there because it is the path's part.
	After executing the preceding command, we will have an output that looks similar to the following:
	We can see some useful information here, including the number of requests per second, which is 490.3; the total time taken for the test, which is 1.020 seconds; the shortest request, which is 20 ms; and the longest request, which is 52 ms.
	The server load limit can be found by increasing the number of requests and concurrency level and checking the web server's performance.
	Siege is another command-line open source tool to test load and performance. Siege is an HTTP/FTP load tester and benchmarking utility. It is designed for developers and administrators to measure the performance of their applications under load.
	It can send a configurable number of simultaneous requests to a server and those
	requests that place the server under a siege.
	Its installation is simple and easy. For Linux and Mac OS X, first download Siege by
	issuing the following command in the terminal:
	It will download the Siege TAR compressed file. Now, uncompress it by issuing the
	following command: (1)
	Now, all the files will be in the siege-3.1.4 folder. Build and install it by issuing the following commands one by one in the terminal:
	Now, Siege is installed. To confirm this, issue the following command to check the
	Siege version:
	If it displays the version with some other information, then Siege is installed successfully.
	Now, let's have a load test. A basic load test can be executed by running the following command:
	Siege will then start the test. We have to enter the application URL or server IP that we want to load test. To stop the test, press Ctrl + C, and we will have an output similar to the following:
	By default, Siege creates 15 concurrent users. This can be changed by using the –c
	option, which is done by making the following alteration in the command:
	However, Siege has a limitation for the concurrent users, which may be different for each OS. This can be set in the Siege configuration file. To find out the config file location and concurrent user limit, issue the following command in terminal:
	A list of the configuration options will be displayed. Also the resource file or config file location will be displayed. Open that file and find the config concurrent and set its value to an appropriate required value.
	Another important feature of Siege is that a file that has all the URLs that need to be tested can be used. The file should have a single URL in each line. The –f flag is used with Siege as follows:
	Siege will load the file and start load testing each URL.
	Another interesting feature of Siege is the internet mode, which can be entered using the –i flag in the following command:
	In the internet mode, each URL is hit randomly and mimics a real-life situation, in which it can't be predicted which URL will be hit.
	We studied three tools in this chapter to load test. Now, it is time to load test some real-world applications. In this section, we will test Magento 2, Drupal 8, and WordPress 4. All these open source tools will have their default data.
	We have three VPS configured with NGINX as the web server. One VPS has PHP 5.5-FPM, the second has PHP 5.6-FPM, and the third has PHP 7-FPM installed. The hardware specs for all the three VPS are same, and all applications we will test will have the s...
	This way, we will benchmark these applications with PHP 5.5, PHP 5.6, and PHP 7 and take a look at how fast these applications can run on different versions of PHP.
	Magento 2 is installed on all VPS, and all the caches are enabled for Magento. PHP OPcache is also enabled. After running the tests, we got an average result for all the three Magento 2 installations, as shown in the following graphs:
	In the preceding chart, the vertical line, or Y-axis, shows the transactions per second. As can be seen in the charts, Magento 2 on PHP 7 has 29 transactions per second, while the same Magento 2 installation on the same hardware with PHP 5.6 has 12 tr...
	WordPress is installed on all of the three VPS. Unfortunately, there is no default cache embedded into WordPress, and we will not install any third-party modules, so no cache is used. The results are still good, as can be seen in the following graphs....
	As can be seen in the preceding graph, WordPress runs 135% faster in PHP 7 than in PHP 5.6 and 182% faster than in PHP 5.5.
	We used the same VPS for PHP 5.5, PHP 5.6, and PHP 7. The default Drupal 8 cache is enabled. After load testing the default home of Drupal 8, we got the following results:
	The preceding graph shows that Drupal 8 runs 178% faster in PHP 7 than in PHP 5.6 and 205% faster than in PHP 5.5.
	A combined graph is shown here, which displays the performance improvements for different applications in PHP 7 over PHP 5.5 and PHP 5.6:
	In this chapter, we discussed a few load testing and benchmarking tools, such as JMeter, ApacheBench (ab), and Siege. We used each tool to load test, and discussed the output and what it means. Finally, we load tested three famous open source applicat...
	In the next chapter, we will discuss best practices for PHP development. These practices are not limited only to PHP and can be used for any programming language.
	So far, we discussed performance-related topics. Now, in this chapter, we will study best practices in PHP applications' development and deployment. This is a vast topic, but we will cover it briefly. PHP provides all levels of programmers with the ab...
	to a more complex nature, we forget to follow the best practices. To produce a high performance PHP application, it is necessary to keep in mind the performance at every line of the code.
	We will cover the following topics: (2)
	• Coding styles
	• Design patterns
	• Service-oriented architecture (SOA)
	• Test-driven development (TDD) and PHPUnit testing
	• PHP frameworks
	• Version control systems and Git
	• Deployment
	There are too many coding styles out there, such as PSR-0, PSR-1, PSR-2, PSR-3, and so on. Programmers can use different standards as they want, but it is necessary
	to follow a standard that is already used in the libraries or a framework in use to make the code more readable. For example, Laravel uses the PSR-1 and PSR-4
	coding standards, so if we are developing in Laravel, we should follow these coding standards. Some PHP frameworks, such as Yii 2 and Zend Framework 2, follow
	the PSR-2 coding standards. However, none of these frameworks stick to a single standard; most of them follow a mixed standard according to their requirements.
	The important point is to follow the standard that is used in the libraries used in the application. An organization can also use its own coding standards for internal purposes. It is not a requirement for coding; it is a requirement for readability a...
	Instead of discussing a specific coding standard, let's discuss best practices in coding
	styles for PHP:
	• The first letter of each word in the class name must be capital. The opening brace should be on the line after the class declaration, and the closing brace should be on the line after the class end line. Here's an example:
	• Class methods and function names should follow the camel case naming convention. The starting braces should be on the next line of the class declaration, and the end brace should be on the line at the end of the function definition. There should be ...
	• If there is a namespace declaration, there must be a single empty line after its declaration. If there are use declarations, all of them must go after that namespace's declarations. There must be one use declaration per line, and there must be a sp...
	keywords must be on the same line as the class declaration. Here's an example:
	• Visibility must be declared for all properties, and the properties must be in camel case. Also, properties must not be prepended with an underscore for private or protected visibilities. Take a look at the following example:
	• If there is an abstract keyword, it must come before the class keyword for classes, and the final keyword must come before the method's visibility in the case of methods. On the other hand, the static keyword must come after the method visibility. T...
	• All PHP keywords must be used in lowercase, including the true and false
	keywords. Constants must be declared and used in capital case.
	• For all control structures, there must be a space after the control structure keyword. If there is an expression for this control structure, there must be no space between the parenthesis holding this expression and the block of code that follows. T...
	• In the case of loops, the spaces must be as in the following examples:
	For the purpose of this book, I did not follow the rule of the opening brace being on the same line as the control structure declaration and always used it on the next line of the declaration. I did not find it clearer; it is a personal choice, and an...
	Standards are good to follow as they make the code more readable and professional. However, never try to invent your own new standards; always follow those that are already invented and followed by the community.
	Test-driven development is the process of testing every aspect of the application during development. Either the tests are defined before development and then development is made to pass these tests, or the classes and libraries are built and then tes...
	PHP does not provide any built-in features to test, but there are other test frameworks that can be used for this purpose. One of most widely used frameworks or libraries is PHPUnit. It is a very powerful tool and provides lots of features. Now, let's...
	The installation of PHPUnit is easy. Just download it and place it in your project root so that it can be accessed from the command line.
	Let's have a simple example. We have a Book class, as follows:
	This is an example of a simple class that initializes the title property when the class is instantiated. When the getBook method is called, it returns the title of the book.
	Now, we want to make a test in which we will check whether the getBook method returns PHP 7 as a title. So, perform the following steps to create the test:
	our test class whatever we want. However, the name should be easily recognizable so that we know this is written for the class that needs to be tested.
	4. Then, we added a method named testBookClass. We are also free to select whatever name we want to give to this method, but it should start with the word test. If not, PHPUnit will not execute the method and will issue a warning—in our case, for the ...
	In the testBookClass method, we created an object of the Book class and passed PHP 7 as our title. Then, we fetched the title using the getBook method of the Book class. The important part is the last line of the testBookClass method, which performs t...
	5. Now, we are ready to run our first test. Open the command line or terminal
	in the root of the project and issue the following command:
	When the command is executed, we will have an output similar to the following screenshot:
	Our test is executed successfully as it met the criteria defined in our test.
	6. Now, let's change our class a little bit and pass PHP to the Book class, as shown in the following code:
	7. Now, we are looking for PHP 7, and our Book class returns PHP, so it does not pass our test. After executing this test, we will have a failure, as shown in the following screenshot:
	As seen in the preceding screenshot, we expected PHP 7, and we got an actual result of PHP 7. The – sign shows the expected value, and the + sign shows the actual value.
	A design pattern solves a specific problem. It is not a tool; it is just a description or template that describes how to solve a specific problem. Design patterns are important, and they play a good role in writing clean and clear code.
	One of the most widely used design patterns in the PHP community is the Model View Controller (MVC) pattern. Most PHP frameworks are built upon this pattern. MVC advises you to keep the business logic and data operations (that is, the model) separate ...
	middleman between models and views and make the communication between them possible. There is no direct communication between models and views. If a view needs any kind of data, it sends a request to the controller. The controller knows how to operate...
	the controller sends a response to the view.
	In best practices, fat models and skinny controllers are used. This means that controllers are only used to take a specific action on a request and nothing else. Even in some modern frameworks, the validation is moved out of the controllers and is per...
	Another widely used design pattern is the factory design pattern. This pattern simply creates objects that are needed to be used. Another good pattern is the observer pattern, in which an object calls different observers on a specific event or task on...
	In service-oriented architecture, the application's components provide services to each other on a defined protocol. Each component is loosely coupled with each other, and the only way of communication between them is through the services they provide.
	In PHP, Symfony provides the best way to have SOA as it is mainly an HTTP-centric framework. Symfony is the most mature, well-tested collection of libraries that
	are widely used by other PHP frameworks, such as Zend Framework, Yii, Laravel, and others.
	Let's consider a scenario where we have a backend and a frontend for a website and a mobile application. Normally, in most applications, the backend and frontend run on the same code base and on a single access point, and an API or web service is buil...
	Web services are the central communication point between the frontend and backend and between the backend and mobile applications. The backend is the main hub of data and any other business logic. It can be standalone and built using any programming l...
	This may seem difficult for a small, single-page application in which only a few things are happening, but this is not the case. The classes are easy to handle, and the code is always clear. Also, the classes separate the application logic from the vi...
	it got more difficult to handle.
	Always try to create loosely coupled classes to make them more reusable in other applications. Also, always perform a single task in each method of the class.
	We all know about frameworks, and they are not essential to a programmer's life. There are lots of frameworks, and each framework has its own superiority over other frameworks in some features. All frameworks are good, but what make a framework not su...
	Let's say that we want to build an enterprise-level CRM application, which framework will suit us best? This is the most important, confusing, and time-wasting question. First, we need to know the complete requirements for the CRM application, usage c...
	Version controller system provides the flexibility to properly maintain code, changes, and versions of the application. Using VCS, a complete team can work together on an application, and they can pull other team members' changes and their own changes...
	Oh wait! Are we talking about VCS? Did we mention Git? Nope! So, let's start with Git.
	Git is a powerful tool. It monitors changes in each file in a branch, and when pushed to a remote branch, only the changed files are uploaded. Git keeps a history of the file changes and provides you with the ability to compare the changed files.
	FTP is obsolete. It is not feasible for today, it makes things slow, and a normal FTP connection is insecure. It is hard for a team to deploy their changes using FTP because it creates huge conflicts in their code and this may cause problems, while up...
	Using a Git versioning system, such as GitHub, GitLab, and Bitbucket, we can make our deployment automatic. Different developers use different setups for automatic deployments, and it all depends on their own choice and ease. The general rules of usin...
	The following is a general flowchart for a deployment setup:
	As shown in the preceding flowchart, we have two servers: the staging or testing the server and production server. On the staging server, we have an exact copy of the website to test new features and others, and the production server has our live webs...
	Now, we have a repository that has two main branches: the master branch and the production branch. The master branch is used for development and testing purposes, and the production branch is used for final production features. Note that the productio...
	so that the production environment is completely safe.
	Now, let's say that we want to add a customer registration feature to our application. We will perform the following steps:
	1. The first and most important thing to do is to create a new branch from the
	2. Now, add all the new features to this customer-registration branch and while verifying on the local development server, merge this branch to the local master branch.
	3. After merging the new branch to the local master branch, push the master branch to remote master branch. A successful push will cause the new features to be moved to the staging server.
	4. Now, test all the new features on the staging server.
	5. When everything works fine, merge the remote master branch with the remote production branch. This will cause all the changes to be moved to the production branch, and this merge will cause all the new changes to be moved to the production server.
	6. An ideal setup similar to the preceding one makes deployment very easy, and a complete team can work on the application regardless of the geographical location. In case any issue occurs during the deployment, one can be easily fall back to the old ...
	Continuous Integration (CI) is a technique in which all the members of a team have to integrate their code into a shared repository, and then each check by the team member is verified by automatic builds to catch errors and problems in the early stages.
	There are several tools that are used for CI for PHP; some of these are PHPCI, Jenkins, Travis CI, and others.
	In this chapter, we discussed a few best practices, including coding standards and styles, PHP frameworks, design patterns, Git, and deployment. Also, we discussed the PHPUnit framework to test classes and libraries against tests. Also, we discussed S...
	In this book, we studied setting up development environments, including Linux servers, specifically Debian and Ubuntu, and we also discussed Vagrant. The new features of PHP are also listed with sample codes. You read in detail about the tools that we...
	We mostly summarized the tools and techniques with simple examples to introduce the reader to these tools and techniques. There is a good chance that each tool and technique has its own book written for a more advanced usage. We recommend you follow u...
	We covered many things in this book, starting with new features in PHP 7
	and ending with the best techniques in programming. In each chapter, we used and talked about some tools, but due to the finite length of chapters and the book, we did not go too much in detail for these tools. In this appendix, we will discuss three ...
	• Composer
	• Git
	• Grunt watch So, let's start.
	Composer is a dependency management tool for PHP that enables us to define dependencies for a PHP application, and Composer installs/updates them. Composer is completely written in PHP and is an application in the PHP Archive (PHAR) format.
	Composer is a command line tool and can be installed globally in the operating system, or the composer.phar file can be placed in the root of the application and then executed from the command line. For Windows, an executable setup file is provided, w...
	1. Issue the following command to download the Composer installer. The file name is installer and can only be executed with PHP once installed via the following code:
	2. Issue the following command to install it globally on Debian or Ubuntu:
	This command will download Composer and will install it in the /usr/ local/bin directory with the file name composer. Now, we will be able to run Composer globally.
	3. Verify the Composer installation by issuing the following command in the terminal:
	If the Composer version is displayed, then Composer is successfully installed globally.
	Now, Composer is installed successfully and is working; it's time to use it.
	To use Composer in our project, we will need a composer.json file. This file contains all the dependencies required for the project and some other metadata. Composer uses this file to install and update different libraries.
	Let's assume that our application needs to log different information in different ways. For this, we can use the monolog library. First, we will create a composer.json file in the root of our application and add the following code to it:
	After saving the file, execute the following command to install the dependencies of
	the application:
	This command will download the dependencies and place them in the vendor
	directory, as can be seen in the following screenshot:
	As can be seen in the preceding screenshot, monolog version 1.0.2 is downloaded, and a vendor directory is created. The monolog library is placed in this directory. Also, if a package has to autoload information, then Composer places the library in th...
	Also a new file can be seen, which is composer.lock. When Composer downloads and installs any dependencies, the exact version and other information is written to this file to lock the application to this specific version of dependencies. This ensures ...
	Nowadays, Composer is widely used for package management. Big open source projects such as Magento, Zend Framework, Laravel, Yii, and many others are easily available for installation through Composer. We will install some of these in the next appendi...
	Git is the most widely used version control system. According to the Git official website, it is a distributed version control system capable of handling everything from small- to large-sized projects with speed and efficiency.
	Git is available for all major operating systems. For Windows, an executable setup file is provided that can be used to install Git and use it in the command line. On OS X, Git comes already installed, but if it is not found, it can be downloaded from...
	After installation, issue the following command to check whether it is properly installed:
	Then, we will see the current installed version of Git.
	For a better understanding of Git, we will start with a test project. Our test project name is packt-git. For this project, we also created a GitHub repository named packt-git, where will push our project files.
	First, we will initialize Git in our project by issuing the following command:
	The preceding command will initialize an empty Git repository in our project root directory, and the head will be kept on the master branch, which is the default branch for every Git repository. It will create a hidden .git directory that will contain...
	Now, issue the following command to add the GitHub repository to our empty repository:
	Now, create a README.md file at your project root and add some content to it. The README.md file is used to display the repository information and other details about the repository at Git. This file is also used to display instructions regarding how ...
	Now, issue the following command to see the status of our Git repository:
	This command will display the status of the repository, as can be seen in the following screenshot:
	As can be seen in the preceding screenshot, we have an untracked file in our repository that is not committed yet. First, we will add the files to be tracked by issuing the following command in the terminal:
	The git add command updates the index using the current contents found in the working tree. This command adds all the changes made to the path. There are some options that can be used to add some specific changes. The previous command we used will onl...
	This will start tracking all the files in the current working directory or at the root of the current branch. Now, if we want to track some specific files, such as all files with the .php extension, then we can use it as follows:
	This will add all the files with the .php extension to track.
	Next, we will commit changes or additions to our repository using the following command:
	The git commit command commits all the changes to the local repository. The -m flag specifies any log message to commit. Remember that the changes are only committed to the local repository.
	Now, we will push the changes to our remote repository using the following command:
	The preceding command will push all the changes from the local repository to the remote repository or origin. The -u flag is used to set the upstream, and it links our local repo to our remote central repo. As we pushed our changes for the first time,...
	This will push all the changes to the main repository of the current branch at which we are.
	New branches are always required during development. If any kind of changes are required, it is good to create a new branch for these changes. Then, make all the
	changes on this branch and finally commit, merge, and push them to the remote origin.
	To better understand this, let's suppose we want to fix an issue in the login page. The issue is about validation errors. We will name our new branch login_validation_ errors_fix. It is good practice to give a more understandable name to branches.
	Also, we would like to create this new branch from the master branch head. This means that we want the new branch to inherit all the data from the master branch. So, if we are not at the master branch, we have to use the following command to switch to...
	The preceding command will switch us to the master branch no matter which branch we are at. To create the branch, issue the following command in the terminal:
	Now, our new branch is created from the master branch head, so all the changes should be made to this new branch. After all the changes and fixes are done, we have to commit the changes to the local and remote repositories. Note that we did not create...
	Note that we did not use git add to add the changes or new additions. To automatically commit our changes, we used the -a option in commit, which will add all the files automatically. If git add is used, then there is no need to use the -a option in c...
	The preceding command will create a new branch at the remote repository, set the tracking of the same local branch to the remote branch, and push all the changes to it.
	Now, we want to merge the changes with our master branch. First, we need to switch to our master branch using the following command:
	It is important to switch to the branch to which we want to merge our new branch. After this, we need to use the git merge branch_to_merge syntax to merge this branch with the current branch. Finally, we can just push to the remote origin. Now, if we ...
	Sometimes, we need to work on a project that is hosted on a repository. For this, we will first clone this repository, which will download the complete repository to our local system, and then create a local repository for this remote repository. The ...
	should first know the remote repository web address. Let's say that we want to clone
	the PHPUnit repository. If we go to the GitHub repository for PHPUnit, we will see the web address of the repository at the upper right-hand side, as shown in the screenshot that follows:
	The URL just after the HTTPS button is the web address for this repository. Copy this URL and use the following command to clone this repository:
	This will start downloading the repository. After it is completed, we will have a PHPUnit folder that will have the repository and all its files. Now, all the operations mentioned in the preceding topics can be performed.
	One of the most powerful features of Git is webhooks. Webhooks are events that are fired when a specific action occurs on the repository. If an event or hook for the Push request is made, then this hook will be fired every time a push is made to this ...
	To add a webhook to a repository, click on the Settings link for the repository in the upper right-hand side. In the new page, on the left-hand side, we will have
	As can be seen in the preceding screenshot, we have to enter a payload URL, which will be called every time our selected event is fired. In Content type, we will select the data format in which the payload will be sent to our URL. In the events sectio...
	it will be fired every time the selected event occurs.
	Webhooks are mostly used for deployment. When the changes are pushed and if there is a webhook for the push event, the specific URL is called. Then, this URL executes some command to download the changes and processes them on the local server and plac...
	There are several tools that can be used to manage Git repositories. GitHub provides its own tool called GitHub Desktop that can be used to manage GitHub repositories. This can be used to create new repositories, see the history, and push, pull, and c...
	The screenshot that follows shows our test packt-git repository:
	Another powerful tool is SourceTree. SourceTree can be used with GitHub, GitLab, and Bitbucket easily. It provides complete features to manage repositories, pull, push, commit, merge, and other actions. SourceTree provides a very powerful and beautifu...
	Besides the previous two nice tools, every development IDE provides version control systems with full support and also provides features such as different colors for modified and newly added files.
	We studied Grunt in Chapter 3, Improving PHP 7 Application Performance. We only used it to merge CSS and JavaScript files and minify them. However, Grunt is not used only for this purpose. It is a JavaScript task runner, which can run tasks either by ...
	Grunt watch is useful and saves a lot of time because it runs the specific tasks
	automatically instead of running the tasks manually every time we change something.
	Let's recall our examples from Chapter 3, Improving PHP 7 Application Performance. We used Grunt to combine and compress CSS and JavaScript files. For this purpose, we created four tasks. One task was combining all CSS files, the second task was combi...
	First, check whether the grunt watch module is installed or not. Check the node_modules directory and see whether there is another directory with the name grunt-contrib-watch. If this directory is there, then watch is already installed.
	If the directory is not there, then just issue the following command in the terminal at the project root directory where GruntFile.js is located:
	directory will be available with the watch module.
	Now, we will modify this GruntFile.js file to add the watch module, which will monitor all the files in our defined directories, and if any changes occur, it will run these tasks automatically. This will save a lot of time in manually executing these ...
	In preceding highlighted code, we added a watch block. The mywatch title can be any name. The files block is required, and it takes an array of the source paths. The Grunt watch watches for changes in these destinations and executes the tasks that are...
	Now, open the terminal at the root of the project where GruntFile.js is located and run the following command:
	Grunt will start watching the source files for changes. Now, modify any file in the paths defined in the files block in GruntFile.js and save the file. As soon as the file is saved, the tasks will be executed and the output for the tasks will be displ...
	It is possible to watch as many tasks as required in the watch block, but these tasks should be present in GruntFile.js.
	In this appendix, we discussed Composer and how to use it to install and update packages. Also, we discussed Git in detail, including pushing, pulling, committing, creating branches, and merging different branches. Also, we discussed Git hooks. Lastly...
	We covered the names of some of the frameworks in different chapters, but we did not discuss them. In today's world, we don't invent the wheel again; we build upon the tools that are already built, tested, and widely used. So, as best practice, if the...
	We will cover the following topics: (3)
	• The MVC design pattern
	• Laravel
	• Lumen
	• Apigility
	Model View Controller (MVC) is a design pattern widely used in different programming languages. Most PHP frameworks use this design pattern. This pattern divides the application into three layers: Model, View, and Controller. Each one of these has sep...
	Now, let's discuss each part of the MVC design pattern.
	The model layer is the backbone of the application and handles the data logic. Mostly, it is considered that model is responsible for CRUD operations on a database, which may or may not be true. As we mentioned previously, model is responsible for the...
	In today's complex framework structures, the overall MVC structure is changed, and not only do models handle data operations, but also, every other application logic is handled by models. The method followed is fat models and slim controllers, which m...
	as possible.
	Views are what is visible to end users. All data related to this user and public is displayed in the views, so views can be called the visual representation of the models. Views need data to display. It asks for some specific data or action from the c...
	Controllers respond to actions performed by a user in the views and respond to the view. For example, a user fills a form and submits it. Here, the controller comes in the middle and starts taking action on the submission of the form. Now, the control...
	The MVC design pattern's sole job is to separate the responsibilities of different parts in an application. So, models are used to manage the application data. Controllers are used to take actions on user inputs, and views are responsible for the visu...
	to perform operations on data, as it is the model's responsibility, and controllers should not be used to view any kind of data by the end user as this is the view's responsibility.
	Laravel is one of the most popular PHP frameworks, and according to the
	Laravel official website, it is a framework for Web Artisans. Laravel is beautiful, powerful, and has tons of features that can enable developers to write efficient and quality code. The Laravel official documentation is well written and very easy to ...
	Installation is very easy and simple. Let's use Composer to install Laravel. We discussed Composer in Appendix A. Issue the following command in the terminal to install and create a project in Laravel:
	If Composer is not installed globally on the system, place composer.phar in a directory where Laravel should be installed and issue the following command in the terminal at the root of this directory:
	Now, Laravel will be downloaded, and a new project with the name packt will be created. Also, Composer will download and install all the dependencies for the project.
	Open the browser and head to the project's URL, and we will be welcomed with a nice simple page saying Laravel 5.
	Laravel provides tons of features, and we will only discuss a few here.
	Laravel provides powerful routing. Routes can be grouped, and prefixes, namespaces, and middleware can be defined for route groups. Also, Laravel supports all HTTP methods, including POST, GET, DELETE, PUT, OPTIONS, and PATCH. All the routes are defin...
	In the preceding snippet, we created a new routes group. This will be only used when the URL has a prefixed customer. For example, if a URL is similar to domain. com/customer, this group will be used. We also used a customer namespace.
	Namespacing allows us to use standard PHP namespaces and divide our files in subfolders. In the preceding example, all customer controllers can be placed in the Customer subfolder in the Controllers directory, and the controller will be created as fol...
	So, namespacing a route group enables us to place our controller files in subfolders, which are easy to manage. Also, we used the web middleware. Middleware provides a way to filter the request before entering the application, which enables us to use ...
	If a route is defined as GET, no POST request can be sent to this route. It is very convenient, which enables us to not worry about the request method filtering. However, HTML forms do not support the HTTP methods like DELETE, PATCH, and PUT. For this...
	with name _method and the value of the HTTP method is used to make this request possible. For example, in our routes group, to make the request possible to delete a route, we need a form similar to the following:
	When the preceding form is submitted, it will work, and the delete route will be
	used. Also, we created a CSRF hidden field, which is used for CSRF protection.
	Eloquent ORM provides active records to interact with the database. To use Eloquent ORM, we have to just extend our models from the Eloquent model. Let's have a look at a simple user model, as follows:
	That's it; we have a model that can handle all the CRUD operations now. Note that we commented the $table property and did the same for $primaryKey. This is because Laravel uses a plural name of the class to look for the table unless the table is defi...
	Similarly, Laravel thinks that a table will have a primary key with the column name id. However, if another column is needed, we can override the default primary key, as follows:
	Eloquent models also make it easy for timestamps. By default, if the table has the created_at and updated_at fields, then these two dates will be generated automatically and saved. If no timestamps are required, these can be disabled, as follows:
	Saving data to the table is easy. The table columns are used as properties of the models, so if our customer table has columns such as name, email, phone, and so on, we can set them as follows in our customer controller, mentioned in the routing section:
	In the preceding example, we added the save action to our controller. Now, if a POST or GET request is made along the form data, Laravel assigns all the form-submitted data to a Request object as properties with the same names as that of the form fiel...
	Fetching data from the Eloquent model is also easy. Let's try an example. Add a new action to the customer controller, as follows:
	We used the all() static method in the model, which is basically defined in the Eloquent model, which, in turn, fetches all the data in our customers table. Now, if we want to get a single customer by the primary key, we can use the find($id) method, ...
	This will fetch the customer with the ID 3.
	Updating is simple, and the same save() method is used, as shown here:
	This will update the customer with the ID 3. First, we loaded the customer, then we assigned new data to its properties, and then we called the same save() method.
	Deleting the model is simple and easy and can be done as follows:
	We first loaded the customer with the ID 3, and then we called the delete method, which will delete the customer with the ID 3.
	Artisan is the command-line interface provided with Laravel, and it has some nice commands that can be used for quicker operations. It has lots of commands, and a full list can be seen using the following command:
	This will list all the options and commands available.
	Some of the basic commands are as follows:
	If a namespaced controller is required, as it happened before with the
	Customer namespace, it can be done as follows:
	For the namespaced models, it can be used as follows:
	• make:listener: This command creates a new listener for an event. This can be used as follows:
	The preceding command will create a new listener for our MyEvent event. We have to always mention the event for which we need to create a listener using the --event option.
	• make:migration: This command creates a new migration in the database/ migrations folder.
	performance.
	• php artisan up: This command brings the application back live from the maintenance mode.
	Migrations is another powerful feature in Laravel. In migrations, we define the database schemas—whether it creates tables, removes tables, or adds/updates columns in the tables. Migrations are very convenient in deployment and act as version control ...
	The class will have two public methods: up() and down(). The up() method should have all the new schemas for the table(s). The down() method is responsible for reversing the executed migration. Now, lets add the customers table schema to
	the up() method, as follows:
	In the up() method, we defined the schema and table name. Columns for the table are individually defined, including the column size. The increments() method defines the autoincrement column, which, in our case, is the id column. Next,
	The preceding command will not only run our migration but will also run all those migrations that are not executed yet. When a migration is executed, Laravel stores the migration name in a table called migrations, from where Laravel decides which migr...
	Now, if we need to roll back the latest executed migration, we can use the following command:
	This will roll back to the last batch of migrations. To roll back all the migrations of the application, we can use the reset command, as follows:
	This will roll back the complete application migrations.
	Migrations make it easy for deployment because we won't need to upload the database schemas every time we create some new changes in the tables or database. We will just create the migrations and upload all the files, and after this, we will just exec...
	Laravel comes with its own template language called Blade. Also, Blade template files support plain PHP code. Blade template files are compiled to plain PHP files and are cached until they are changed. Blade also supports layouts. For example, the fol...
	In the preceding example, we had a section for the sidebar that defines a content section. Also, we had @yield, which displays the contents of a section. Now, if we want to use this layout, we will need to extend it in the child template files. Let's ...
	As can be seen in the preceding code, we extended the master layout and then placed contents in every section of the master layout. Also, it is possible to include different templates in another template. For example, let's have two files, sidebar. bl...
	We used @include to include a template. The dot (.) indicates a folder separation. We can easily send data to Blade templates or views from our controllers or routers. We have to just pass the data as an array to a view, as follows:
	Now, count is available in our customers view file and can be accessed as follows:
	Yes, Blade uses double curly braces to echo a variable. For control structures and loops, let's have another example. Let's send data to the customers view, as follows:
	Now, our customers view file will be similar to the following if we want to display
	All the preceding syntax looks familiar as it is almost the same as plain PHP. However, to display a variable, we have to use double curly braces {{}}.
	We only discussed a few basic features in the previous section. Laravel has tons of other features, such as Authentication and Authorization, which provide an easy way to authenticate and authorize users. Also, Laravel provides a powerful caching syst...
	turn arrives.
	Lumen is a micro-framework provided by Laravel. Lumen is mainly intended to create stateless APIs and has a minimal set of features of Laravel. Also, Lumen is compatible with Laravel, which means that if we just copy our Lumen application to Laravel, ...
	The preceding command will download Lumen and then create our API application.
	After this, rename .env.example as .env. Also, create a 32-characters-long app key and place it in the .env file. Now, the basic application is ready to use and create APIs.
	Apigility is built and developed by Zend in Zend Framework 2. Apigility provides an easy to use GUI to create and manage APIs. It is very easy to use and is capable of creating complex APIs. Let's start by installing Apigility using Composer. Issue th...
	The preceding command will download Apigility and its dependencies, including Zend Framework 2, and will set up our project named packt. Now, issue the following command to enable the development mode so that we can have access to the GUI:
	Now, let's create our first API. We will call this API "books", which will return a list of books. Click on the New API button, as shown in the preceding picture, and a popup will be displayed. In the text box, enter books as the API name and click on...
	Apigility provides easy ways to set other properties for the API, such as versioning and authentication. Now, let's create an RPC service by clicking on the New Service button in the left sidebar. Also, we can click on the Create a new one link in the...
	As shown in the preceding screenshot, we created an RPC service named get in the books API. The route URI entered is /books/get, which will be used to call this RPC service. When we click on the Create service button, the API creation successful messa...
	As can be seen in the preceding screenshot, the allowed HTTP method for this service is only GET. Let's keep this as it is, but we can select all or any of them. Also, we want to keep Content Negotiation Selector as Json, and our service will accept/ ...
	Next, we should add some fields to our service that will be used. Click on the Fields tab, and we will see the Fields screen. Click on the New Field button, and we will be presented with the following popup:
	As can be seen in the preceding screenshot, we can set all the properties for a field, such as the Name, Description, whether it is required or not, and some other settings, including an error message if the validation fails. After we created two fiel...
	As can be seen in the preceding screen, we can add validators and filters to each individual field too.
	The next topic is documentation. When we click on the Documentation tab, we will see the following screen:
	Here, we will document our service, add some description, and also can generate the response body for documentation purposes. This is very important as it will enable others to better understand our APIs and services.
	Now, we need to get the all the books from somewhere. It can be either from the database or from another service or any other source. However, for now, we will just use an array of books for test purposes. If we click on the Source tab, we will find t...
	In the preceding code, we used ContentNegotiation\ViewModel, which is responsible for responding with the data in the format that we selected in the service setup, which is JSON in our case. Then, we created a simple $books array with
	the fieldnames we created for the service and assigned our values to them. Then, we returned them using the ViewModel object, which handles the response data conversion to JSON.
	Now, let's test our API. As our service can accept GET requests, we will just type our URL in the browser with the books/get URI, and we will see the JSON response. It is best to check the API with tools such as RestClient or Postman for Google Chrome...
	Apigility is very powerful and provides tons of features, such as RESTFul APIs, HTTP authentication, database connected services with easy-to-create DB connectors, and a selection of tables for a service. While using Apigility, we need not worry about...
	In this Appendix, we discussed the basics of the MVC design pattern. We also discussed the Laravel framework and some of its good features. We introduced you to the Laravel-based micro-framework, Lumen. At the end, we had a small introduction to Apigi...
	In IT, things get obsolete in a very short time span. It is always required to study upgraded tools and find new ways and techniques for the best approaches in programming. Therefore, one should not stop after completing this book and start studying n...
	you good luck and success in PHP-ing!

	Modular Programming with PHP 7
	Utilize the power of modular programming to improve code readability, maintainability, and testability
	It has been more than two decades now since the birth of PHP. Originally created by Rasmus Lerdorf in 1994, the PHP acronym initially stood for Personal Home Page. Back then, PHP was merely a few Common Gateway Interface (CGI) programs in C, used to p...
	Though PHP was not intended to be a new programming language, the idea caught on. During the late nineties Zeev Suraski and Andi Gutmans, co-founders of Zend Technologies, continued the work on PHP by rewriting its entire parser, giving birth to PHP 3...
	PHP positions itself among the top ten programming languages in the world. According to TIOBE, the software quality company, it currently holds sixth place. For the last decade, especially since the release of PHP 5 in July 2004, PHP has been recogniz...
	Though PHP still presents itself as a scripting language, it's safe to say that as of PHP 5 it is far more than that. Some of the world web's most popular platforms like WordPress, Drupal, Magento, and PrestaShop are built in PHP. It is projects like ...
	Even though PHP 5 had decent OOP support, lots of things were still left to be dreamed of. Work on PHP 6 was planned to give more support for the PHP Unicode strings. Sadly, its development came to a halt and PHP 6 was canceled in 2010.
	That same year, Facebook announced its HipHop compiler. Their compiler was converting PHP code into C++ code. The C++ code was further compiled into native machine code via a C++ compiler. This concept brought major performance improvements for PHP. H...
	Shortly after, Dmitry Stogov, Zend Technologies Chief Performance Engineer, announced a project called PHPNG, which became the basis for the next PHP version, PHP 7.
	In Dec 2015, PHP 7 was released, bringing numerous improvements and new features:
	• New version of the Zend Engine
	• Improved performance (twice as fast as PHP 5.6)
	• Significantly reduced memory usage
	• Abstract Syntax Tree
	• Consistent 64-bit support
	• Improved exception hierarchy
	• Many fatal errors converted to exceptions
	• Secure random number generator
	• Removed old and unsupported SAPIs and extensions
	• The null coalescing operator
	• Return and Scalar type declarations
	• Anonymous classes
	• Zero cost asserts
	In this chapter, we will look at the following topics:
	• Getting ready for PHP 7
	• Frameworks
	PHP 7 comes with quite a big list of changes. These changes affect both the PHP interpreter and the various extensions and libraries. Though most of the PHP 5 code will continue to operate normally on the PHP 7 interpreter, it is worth getting up to s...
	Moving forward, we will look into some of these features and the benefits they
	provide.
	Scalar type hints are not an entirely new feature in PHP. With the introduction of PHP 5.0 we were given the ability to type hint classes and interfaces. PHP 5.1
	extended this by introducing array type hinting. Later on, with PHP 5.4, we were additionally given the ability to type hint callable. Finally, PHP 7 introduced scalar type hints. Extending the type hints to scalars makes this probably one of the most...
	The following scalar type hints are now available:
	• int: Integer numbers (for example, 1, 2, and 3)
	By default, PHP 7 works in weak type-checking mode, and will attempt to convert to the specified type without complaint. We can control this mode using the strict_typesdeclare() directive.
	The declare(strict_types=1); directive must be the first statement in a file, or else it will generate a compiler error. It only affects the specific file it is used in, and does not affect other included files. The directive is entirely compile-time ...
	Let's assume the following simple function that accepts hinted scalar types.
	The weak type-checking rules for the new scalar type declarations are mostly the same as those of extensions and built-in PHP functions. Because of this automated conversion we might unknowingly lose data when passing it into a function. One simple ex...
	Assuming the weak type-checking is on, as by default, the following can be observed:
	We can see that the first function call passes on parameters as they are hinted. The second function call does not pass the exact types of parameters but still the function manages to execute as parameters go through conversion.
	directive, the following can be observed:
	The function call broke on the first argument resulting in the \TypeError exception. The strict_types=1 directive does not allow any type juggling. The parameter has to be of the same type, as hinted by the function definition.
	In addition to type hinting, we can also type hint the return values. All of the type hints that can be applied to function parameters can be applied to function return values. This also implies to the weak type-checking rules.
	To add a return type hint, simply follow the parameter list with a colon and the return type, as shown in the following example:
	The preceding function definition says that the divide function expects two parameters of the int type, and is supposed to return a parameter of the int type.
	Though the actual result of divide(10, 3)should be a float, the return type hint
	triggers conversion into an integer.
	directive, the following can be observed: (1)
	With the addition of anonymous classes, PHP objects gained closure-like capabilities.
	We can now instantiate objects through nameless classes, which brings us closer to object literal syntax found in other languages. Let's take a look at the following simple example:
	The preceding example shows an $object variable storing a reference to an instance of an anonymous class. The more likely usage would be to directly pass the new class to a function parameter, without storing it as a variable, as shown here:
	Similar to any normal class, anonymous classes can pass arguments through to their constructors, extend other classes, implement interfaces, and use traits:
	The above example would output:
	The internal name of an anonymous class is generated with a unique reference based on its address.
	There is no definitive answer as to when to use anonymous classes. It depends almost entirely on the application we are building, and the objects, depending on their perspective and usage.
	Some of the benefits of using anonymous classes are as follows:
	• Mocking application tests becomes trivial. We can create on-the-fly implementations for interfaces, avoiding using complex mocking APIs.
	• Avoid invoking the autoloader every so often for simpler implementations.
	• Makes it clear to anyone reading the code that this class is used here and nowhere else.
	Anonymous classes, or rather objects instantiated from anonymous classes, cannot be
	serialized. Trying to serialize them results in a fatal error as follows:
	Nesting an anonymous class does not give it access to private or protected methods and properties of the outer class. In order to use the outer class protected methods and properties, the anonymous class can extend the outer class. Ignoring methods, p...
	Though we labeled them as anonymous classes, they are not really anonymous in terms of the internal name the PHP engine assigns to objects instantiated from
	these classes. The internal name of an anonymous class is generated with a unique reference based on its address.
	The statement get_class(new class{}); would result in something like class@anonymous/php7.php0x7f33c22381c8, where 0x7f33c22381c8 is the internal address. If we were to define the exact same anonymous class elsewhere in the code, its class name would ...
	PHP introduced the Closure class in the 5.3 version. Closure class is used to represent anonymous functions. Anonymous functions, implemented in PHP 5.3, yield objects of this type. As of PHP 5.4, the Closure class got several methods (bind, bindTo) t...
	The call function signature looks like the following:
	$newThis is the object to bind the closure for the duration of the call. The parameters, which will be given as $parameters to the closure are optional, meaning zero or more.
	Let's take a look at the following example of a simple Customer class and a
	Within the actual $greeting closure, there is no $this, it does not exist until the actual binding occurs. We could easily confirm this by directly calling a closure like $greeting('Hello');. However, we assume $this will come in to existence when we ...
	Generators provide a simple way to implement iterators without the overhead of implementing a class that implements the Iterator interface. They allow us to write code which uses foreach to iterate over a set of data without needing to build an array ...
	However, PHP 7 brings several new improvements to generators, one of which is generator delegation.
	Generator delegation allows a generator to yield other generators, arrays, or objects that implement the Traversable interface. In another words, we might say that generator delegation is yielding subgenerators.
	Let's take a look at the following example with three generator type functions:
	Prior to PHP 7, generator functions were not able to return expressions. The inability of generator functions to specify return values limited their usefulness for multitasking in co-routine contexts.
	PHP 7 made it possible for generators to return expressions. We can now call
	>getReturn() when the generator has not yet returned, or has thrown an uncaught exception, will throw an exception.
	If the generator has no return expression defined and has completed yielding, null is
	returned.
	Let's take a look at the following example:
	Looking at the gen() function definition and its return expression, one might expect the value of the $generator variable to be equal to the gen-return string. However, this is not the case, as the $generator variable becomes the instance of the
	\Generator class. Calling the getReturn() method on the generator while it is still open (not iterated over) will result in a fatal error.
	If the code is structured in such a way that it is not obvious if the generator has been closed, we can use the valid method to check, before fetching the return value:
	In PHP 5 we had the ternary operator which tests a value and then returns the second element if that value is true, or third element if that value is false,
	as shown in the following code block:
	While processing user-provided data in web-centered languages such as PHP, it is common to check for variable existence. If a variable doesn't exist, then set it to some default value. A ternary operator makes this easy for us, as shown here:
	However, easy is not always quick or elegant. With that in mind, PHP 7 set out to resolve one of the most common usage patterns, by introducing the null coalesce operator(??).
	The null coalesce operator enables us to write even shorter expressions, as in the following code block:
	The coalesce operator(??) is added right after the $_GET['role'] variable, which returns the result of its first operand if it exists and is not NULL, or else its second operand. This means the $_GET['role'] ?? 'guest' is completely safe and will not ...
	We can also nest the coalesce operator:
	Reading from left to right, the first value which exists and is not null is the value that will be returned. The benefit of this construct is that it enables a clean and effective way to achieve safe fallback to the desired value.
	The three-way comparison operator, also known as the Spaceship operator, was introduced in PHP 7. Its syntax goes as follows:
	The operator returns 0 if both operands are equal, 1 if the left is greater, and -1 if the right is greater.
	It uses the same comparison rules as other existing comparison operators: <, <=, ==,
	The following are some examples of Spaceship operator behavior:
	One practical use case for this operator is for writing callbacks used in sorting functions like usort, uasort, and uksort:
	Though PHP 5 introduced the exception model, overall errors and error handling remained somewhat unpolished. Basically PHP had two error handling systems. Traditional errors still popped out and were not handled by try…catch blocks.
	The try…catch block has no effect here, as the error is not interpreted as an exception, rather a catchable fatal error:
	A possible workaround involves setting a user-defined error handler by using the
	The error handler, as written above, would now transform every error into an exception, therefore making it catchable with try…catch blocks.
	PHP 7 made fatal and catchable fatal errors part of engine exceptions, therefore catchable with try…catch blocks. This excludes warnings and notices which still do not pass through the exception system, which makes sense for backward compatibility rea...
	It also introduced a new exception hierarchy via the \Throwable interface.
	Standard PHP fatal and catchable fatal are now thrown as \Error exceptions, though they will continue to trigger traditional fatal error if they are uncaught.
	Throughout our application we must use \Exception and \Error, as we cannot implement the \Throwable interface directly. We could, however, use the following block to catch all errors, regardless of whether it is the \Exception or \Error type:
	The following is an example of a broken PHP file, because of a missing "," inbetween between array items:
	The following is an example of a file including config.php:
	We can now safely catch possible parse errors.
	The dirname function has been with us since PHP 4. It's probably one of the most often used functions in PHP. Up until PHP 7, this function only accepted the path parameter. With PHP 7, the new levels parameter was added.
	Let's take a look at the following example: (1)
	By assigning the levels value, we indicate how many levels to go up from the assigned path value. Though small, the addition of the levels parameter will certainly make it easier to write some of the code that deals with paths.
	The intdiv is a new integer division function introduced in PHP 7. The function accepts dividend and divisor as parameters and returns the integer quotient of their division, as shown here by the function description:
	Let's take a look at the following few examples:
	Prior to PHP 7, constants defined with define() could only contain scalar expressions, but not arrays. As of PHP 5.6, it is possible to define an array constant by using const keywords, and as of PHP 7, array constants can also be defined using define():
	Constants may not be redefined or undefined once they have been set.
	To make PHP's parser more complete for various variable dereferences, PHP 7 introduced a uniform variable syntax. With uniform variable syntax all variables are evaluated from left to right.
	Unlike various functions, keywords, or settings being removed, changes in semantics like this one can be quite impacting for the existing code base. The following code demonstrates the syntax, its old meaning and new:
	Aside from previously rewritten examples of old-to-new syntax, there are now a few newly supported syntax combinations.
	PHP 7 now supports nested double colons,::, and following is an example of it:
	We can also nest methods and function calls—or any callables—by doubling up on parentheses as shown in the following code examples:
	Furthermore, we can now dereference any valid expression enclosed with parentheses:
	PHP 7 introduced two new CSPRNG functions. CSPRNG is an acronym for

	cryptographically secure pseudo-random number generator.
	The first, random_bytes, generates an arbitrary length string of cryptographic random bytes that are suitable for cryptographic use, such as when generating salts, keys, or initialization vectors. The function accepts only one (length) parameter, repr...
	It returns a string containing the requested number of cryptographically secure random bytes, or, optionally, it throws an exception if an appropriate source of randomness cannot be found.
	The second, random_int, generates cryptographic random integers that are suitable for use where unbiased results are critical, such as when shuffling a deck of cards for a poker game. The function accepts two (min, max) parameters, representing
	the lowest value to be returned (must be PHP_INT_MIN or higher) and the highest value to be returned (must be less than or equal to PHP_INT_MAX). It returns a cryptographically secure random integer in the range min to max (inclusive).
	Serialized data can include objects. These objects can further include functions like destructors, toString, and call. In order to increase security when
	unserializing objects on unstructured data, PHP 7 introduced the optional options
	The options parameter is of type array that currently only accepts the
	• true: This is a default value and allows all objects just as before
	• false: Here no objects allowed
	• array of allowed class names, lists the allowed classes for unserialized objects
	We can see that the object of that class which is not accepted is instantiated as
	Sometimes these reserved words end up clashing with user defined API declarations.
	To resolve the issue, PHP 7.0 introduced the context sensitive lexer. With the context sensitive lexer, we may now use keywords for property, function, and constant names within our code.
	The following are a few practical examples related to the impact of context sensitive lexer:
	The group use declarations are introduced in PHP 7 as a way to cut verbosities when importing multiple classes from a common namespace. They enable shorthand syntax as follows:
	Let's take a look at the following examples where class names within the same namespace are group used:
	We can further use group use for importing functions and constants as shown in the following lines of code:
	Unicode, and UTF-8 in particular, have grown increasingly popular in PHP applications.
	It produces the UTF-8 encoding of a Unicode code point, specified with hexadecimal digits. It is worth noting that the length of the code-point within curly braces is arbitrary. This means that we can use \u{FF} or the more traditional \u{00FF}.
	The following is a simple listing of the four most traded currencies, their symbols, and their UTF-8 code points:
	Some of these symbols usually exist directly on a keyboard, so it's easy to write them down as shown here:
	However, the majority of other symbols are not as easily accessible via the keyboard as single keystrokes, and therefore need to be written in the form of code-points, shown as follows:
	In older versions of PHP, the resulting output of preceding statements would be the following:
	This obviously did not parse code-points, as it was outputting them literally.
	PHP 7 introduced Unicode code-point escape sequence syntax to string literals, making previous statements result in the following output:
	Assertions is a debug feature, used to check the given assertion and take appropriate action if its result is false. They have been part of PHP for years, ever since PHP 4.
	Assertions differ from error handling in a way that assertions cover for impossible cases, whereas errors are possible and need to be handled.
	Using assertions as a general-purpose error handling mechanism should be avoided. Assertions do not allow for recovery from errors. Assertion failure will normally halt the execution of a program.
	With modern debugging tools like Xdebug, not many developers use assertions for debugging.
	To use assertions, we pass in either an expression or a string as shown in the following function signature:
	These two signatures differ in the second parameter. PHP 7 can accept either string
	If the expression result or the result of evaluating the string evaluates to false, then a warning is raised. If the second parameter is passed as $exception, then an exception will be thrown instead of failure.
	With zero-cost settings, assertions have zero impact on performance and execution
	as they are not compiled.
	In PHP 5, list() assigns the values starting with the right-most parameter. In PHP 7, list() starts with the left-most parameter. Basically, values are now assigned to variables in the order they are defined.
	However, this only affects the case where list() is being used in conjunction with the array [] operator, as discussed in the following code block:
	Output of the preceding code in PHP 5 would result in the following:
	Output of the preceding code in PHP 7 would result in the following:
	The order of assignment might change again in the future, so we should not rely heavily on it.
	Prior to PHP 7, the session_start() function did not directly accept any configuration options. Any configuration options we wanted to set on the session, needed to come from php.ini:
	Driven by the goal of performance optimization, a new lazy_write runtime configuration was added in PHP 7. When lazy_write is set to 1, the session data is only rewritten if it changes. This is the default behavior:
	While changes listed here might not look impressive at first, being able to override session options directly via the session_start function gives certain flexibility to our code.
	Globally accepted, major versions of software have the luxury of breaking backward compatibility. Ideally, not much, but in order to keep the software moving forward, some old ideas need to be left behind. These changes don't come overnight. Certain f...
	Throughout PHP 5.x, a number of features have been marked as deprecated, and in PHP 7.0, they have all been removed.
	The POSIX-compatible regular expressions have been deprecated in PHP 5.3, and now completely removed in PHP 7.
	The following functions are no longer available for use:
	The mysql extension, which had been deprecated in PHP 5.5, has now been removed. None of the mysql_* functions are available anymore. We should instead use the mysqli extension. The good thing is that moving from mysql to mysqli functions is mostly si...
	The PHP script and ASP tags are no longer available:
	Application frameworks are a collection of functions, classes, configurations, and conventions all designed to support the development of web applications, services, and APIs. Some applications are embracing an API first approach, whereas server- side...
	When building a web application, we usually have three obvious choices:
	• We can build everything ourselves, from scratch. This way, our development process might be slow, but we can achieve architecture built entirely per our standards. Needless to say, this is a highly unproductive approach.
	• We can use one of the existing frameworks. This way, our development process is fast, but we need to be happy that our application is built on top of other things.
	• We can use one of the existing frameworks but also try to abstract it to the level where our application looks independent of it. This is a painful and slow approach, to say the least. It involves writing numerous adapters, wrappers, interfaces, and...
	In a nutshell, frameworks are here to make it easier and quicker for us to build our software. A great deal of programming languages out there have popular frameworks. PHP is no exception to this.
	Given the popularity of PHP as a go-to web programming language, it is no surprise that dozens of frameworks have sprouted over the years. Choosing the "right" framework is a daunting task, even so more for fresh starters. What is right for
	one project or a team might not be right for another.
	However, there are some general, high level segments each modern framework should encompass. These account for:
	• Modular: It supports modular application development, allowing us to neatly separate our code into functional building blocks, whereas it is built in a modular manner.
	• Secure: It provides various cryptographic and other security tooling expected of a modern web application. Provides seamless support for things like authentication, authorization, and data encryption.
	• Extensible: Manages to easily adopt our application needs, allowing us to extend it according to our application needs.
	• Community: It is actively developed and supported by a vibrant and active community.
	• High performing: Built with performance in mind. Many frameworks brag about performance, but there are many variables to it. We need to be specific as to what we are evaluating here. Measuring cached performance against raw performance is often the ...
	• Enterprise ready: Depending on the type of project at hand, most likely we would want to target a framework which flags itself as enterprise ready. Making us confident enough of running critical and high-usage business applications on top of it.
	While it's perfectly alright to code an entire web application in pure PHP without using any framework, the majority of today's projects do use frameworks.
	The benefits of using frameworks outweigh the purity of doing it all from scratch. Frameworks are usually well supported and documented, which makes it easier for teams to catch up with libraries, project structure, conventions, and other things.
	When it comes to PHP frameworks, it is worth pointing out a few popular ones:
	This is by no means a complete or even a popularity sorted list.
	Laravel is released under an MIT license, and can be downloaded from
	Aside from the usual routing, controllers, requests, responses, views, and (blade) templates, out of the box Laravel provides a large amount of additional services such as authentication, cache, events, localization, and many others.
	Another neat feature of Laravel, is Artisan, the command line tool, that provides a number of useful commands that we can use during development. Artisan can further be extended by writing our own console commands.
	Laravel has a pretty active and vibrant community. Its documentation is simple and clear, which makes it easy for newcomers to get started. Furthermore, there is also https://laracasts.com, which extends out beyond Laravel in terms of documentation an...
	All of these features make Laravel a choice worth evaluating when it comes to the selection of a framework.
	Symfony is released under an MIT license, and can be downloaded from
	Over time, Symfony introduced the concept of Long-term Support(LTS) releases. This release process has been adopted as of Symfony 2.2, and strictly followed as of Symfony 2.4. The standard version of Symfony is maintained for eight months. Long-term S...
	One other interesting thing about new releases is the time-based release model. All of the new versions of Symfony releases come out every six months: one in May and one in November.
	Symfony has great community support via mailing lists, IRC, and StackOverflow. Furthermore, SensioLabs professional support provides a full range of solutions from consulting, training, coaching, to certification.
	Lots of Symfony components are used in other web applications and frameworks, such as Laravel, Silex, Drupal 8, Sylius, and others.
	What made Symfony such a popular framework is its interoperability. The idea of "Don't lock yourself up within Symfony!" made it popular with developers as it allowed for building applications that precisely meet our needs.
	By embracing the "don't reinvent the wheel" philosophy, Symfony itself makes heavy use of existing PHP open-source projects as part of the framework, including:
	• Doctrine (or Propel): Object-relational mapping layer
	• PDO database abstraction layer (Doctrine or Propel)
	• PHPUnit: A unit testing framework
	• Twig: A templating engine
	• Swift Mailer: An e-mail library
	Depending on our project needs, we can choose to use a full-stack Symfony framework, the Silex micro-framework, or simply some of the components individually.
	Out of the box, Symfony provides a lot of structural ground for new web applications. It does so via its bundle system. Bundles are sort of like micro- applications inside our main application. Within them, the entire app is nicely structured into mod...
	a clean separation of concerns and autonomously develop every single feature of our domain.
	Symfony is one of the PHP pioneers when it comes to embracing the dependency injection across the framework, allowing it to achieve decoupled components and to keep high flexibility of code.
	Documented, modular, highly flexible, performant, supported, those are the
	attributes that make Symfony a choice worth evaluating.
	Zend Framework is released under a new BSD license, and can be downloaded from
	• Fully object-oriented PHP components
	• Loosely coupled components
	• Extensible MVC supporting layouts and templates
	• Support for multiple database systems MySQL, Oracle, MS SQL, and so on
	• E-mail handling via mbox, Maildir, POP3, and IMAP4
	• Flexible caching system
	Aside from a free Zend Framework, Zend Technologies Ltd provides its own commercial version of a PHP stack called Zend Server, and Zend Studio IDE that includes features specifically to integrate with Zend Framework. While Zend Framework is perfectly ...
	By its architectural design, Zend Framework is merely a collection of classes. There is no strictly imposed structure our application needs to follow. This is one of the features that makes it so appealing to a certain range of developers. We could ei...
	The so called full-stack frameworks impose structure, ORM implementations,
	code-generation, and other fixed things onto your projects. Zend Framework, on the other hand, with its decoupled nature, classifies for a glue type of framework. We can easily glue it to an existing application, or use it to build a new one.
	The latest versions of Zend Framework follow the SOLID object oriented design principle. The so called "use-at-will" design allows developers to use whichever components they want.
	Though the main driving force behind Zend Framework is Zend Technologies, many
	other companies have contributed significant features to the framework.
	Furthermore, Zend Technologies provides excellent Zend Certified PHP Engineer certifications. Quality community, official company support, education, hosting, and development tools make the Zend Framework choice worth evaluating.
	CodeIgniter is released under an MIT license, and can be downloaded from
	CodeIgniter prides itself in being lightweight. The core system requires only a handful of small libraries, which is not always the case with other frameworks.
	The framework uses the simple Model-View-Control approach, allowing for clean separation between logic and presentation. The View layer does not impose any special template language, so it uses native PHP out of the box.
	Here are some of the outstanding features of CodeIgniter:
	• Model-View-Control-based system
	• Extremely light weight
	• Full featured database classes with support for several platforms
	• Query builder database support
	• Form and data validation
	• Security and XSS filtering
	• Localization
	• Data encryption
	• Full page caching
	• Unit testing class
	• Search-engine friendly URLs
	• Flexible URI routing
	• Support for hooks and class extensions
	• Large library of helper functions
	Small footprint, flexibility, exceptional performance, near-zero configuration, and
	thorough documentation are what makes this framework choice worth evaluating.
	CakePHP is released under an MIT license, and can be downloaded from
	The CakePHP framework was greatly inspired by Ruby on Rails, using many of its
	concepts. It values conventions over configuration.
	It comes with "batteries included". Most of the things we need for modern web applications are already built-in. Translations, database access, caching, validation, authentication, and much more are all built-in.
	Security is another big part of the CakePHP philosophy. CakePHP comes with
	built-in tools for input validation, CSRF protection, form tampering protection, SQL injection prevention, and XSS prevention, helping us to secure our application.
	CakePHP supports a variety of database storage engines, such as MySQL, PostgreSQL, Microsoft SQL Server, and SQLite. The built-in CRUD feature is very handy for database interaction.
	It counts on a big community behind it. It also has a big list of plugins, available at
	CakePHP provides a certification exam, whereby developers are tested in their knowledge of the CakePHP framework, MVC principles, and standards used within CakePHP. Certification is geared towards real world scenarios and intimate CakePHP specifics.
	Commercial support, consultation, code review, performance analysis, security audits, and even development services are provided by the Cake Development Corporation http://www.cakedc.com. The Cake Development Corporation is the commercial entity behin...
	While frameworks with the "batteries included" mindset provide robust libraries,
	directory structures, and configurations, micro frameworks get us started with
	a few lines of code.
	Micro frameworks usually lack even the basic framework features such as:
	• Authentication and authorization
	• ORM database abstraction
	• Input validation and sanitation
	• Template engine
	This limits their use, but also makes them a great tool for rapid prototyping.
	Slim supports any PSR-7 HTTP message implementation. An HTTP message is either a request from a client to a server or a response from a server to a client. Slim functions like a dispatcher that receives an HTTP request, invokes an appropriate callback...
	The good thing about Slim is that it plays nicely with middleware. The middleware is basically a callable that accepts three arguments:
	Middlewares are free to manipulate request and response objects, as long as they return an instance of \Psr\Http\Message\ResponseInterface. Furthermore, each middleware needs to invoke the next middleware and pass it to request and response objects as...
	This simple concept gives Slim the power of extensibility, through various possible third party middlewares.
	Even though Slim provides good documentation, a vibrant community, and the project is being actively developed to date, its usage is limited. Micro frameworks are hardly a choice for robust enterprise applications. Still, they have their place in deve...
	Yii's focus on performance optimization makes it a perfect choice for almost any type
	of project, including the enterprise type of applications. Some of the outstanding Yii features include:
	• The MVC design pattern
	• Automatic generation of complex service WSDL
	• Translation, localization, locale-sensitive formatting of dates, time, and
	numbers
	• Data caching, fragment caching, page caching, and HTTP caching
	• Error handler that displays errors based on the nature of the errors and the mode the application runs in
	One of the neat features of Yii is a tool called Gii. It's an extension that provides a web-based code generator. We can use Gii's graphical interface to quickly set up generate models, forms, modules, CRUD, and so on. There is also a command line ver...
	Yii's architecture allows it to play nicely with third-party code, like PEAR libraries, Zend Framework, and the like. It adopts the MVC architecture, allowing for clean separation of concerns.
	Yii provides an impressive library of extensions available at http://www. yiiframework.com/extensions. The majority of extensions are distributed as composer packages. They empower us with accelerated development. We can easily package our code as ext...
	Official documentation is quite comprehensive. There are also several
	books available.
	Rich documentation, a vibrant community, active releases, performance optimization, security emphasis, feature richness, and flexibility make Yii a choice worth evaluating.
	Phalcon is released under a BSD License, and can be downloaded from
	Phalcon was originally released in 2012, by Andres Gutierrez and collaborators. The goal of the project was to find a new approach to traditional web application frameworks written in PHP. This new approach came in the form of C language extensions. T...
	The benefits of C-based frameworks lies in the fact that an entire PHP extension is loaded during runtime. This greatly reduces I/O operations massively since there is no need to load .php files any more. Furthermore, compiled C language code executes...
	Low-level architecture and optimizations make Phalcon one of the lowest overheads
	for MVC-based applications.
	Phalcon is a full-stack, loosely coupled framework. While it does provide full MVC structure to our application, it also allows us to use its objects as glue components based on the needs of our application. We can choose if we want to create a full b...
	All of the frameworks we mentioned so far enable some form of extensions, where we can add new libraries or entire packages to a framework. Since Phalcon is a
	C-code framework, contributions to the framework doesn't come in the form of PHP code. On the other hand, writing and compiling C language code can be somewhat challenging for an average PHP developer.
	Zephir project http://zephir-lang.com addresses these challenges by introducing high-level Zephir language. Zephir is designed to ease the creation and maintainability of C extensions for PHP with a focus on type and memory safety.
	When communicating with databases, Phalcon uses Phalcon Query Language, PhalconQL, or simply PHQL for short. PHQL is a high-level, object-oriented SQL dialect that allows us to write queries using SQL-like language that works with objects instead of t...
	View templates are handled by Volt, Phalcon's own templating engine. It is highly integrated with other components, and can be used independently in our applications.
	Phalcon is pretty easy to pick up. Its documentation covers both the MVC and micro applications style of using a framework, with practical examples. The framework itself is rich enough to support the structure and libraries we need for most of today's...
	Though there is no official company behind it, no certifications, no commercial support, and similar enterprise looking things, Phalcon does a great job of positioning itself as a choice worth evaluating even with a robust enterprise application devel...
	Looking back on the release of PHP 5 and its support to OOP programming, we can see the enormous positive impact it had on the PHP ecosystem. A large number of frameworks and libraries have sprawled out, offering enterprise level solutions to web appl...
	The release of PHP 7 is likely to be another leap forward for the PHP ecosystem. Though none of the new features are revolutionary as such, as they can be found in other programming languages from years ago, they impact PHP greatly. We are yet to see ...
	The introduction of more advanced errors to exceptions handling, scalar type hints, and function return type hints will surely bring much awaited stability to applications and frameworks using them. The speed improvements compared to
	PHP 5.6 are significant enough to cut down the hosting costs for higher load sites. Thankfully, the PHP development team minimized backward incomparability changes, so they should not stand in the way of swift PHP 7 adoption.
	Choosing the right framework is all but an easy task. What classifies a framework as an enterprise class framework is more than just collection of classes. It has an entire ecosystem around it.
	One should never be driven by hype when evaluating a framework for a project. Questions like the following should be taken into consideration:
	• Is it company or community driven?
	• Does it provide quality documentation?
	• Does it have a stable and frequent release cycle?
	• Does it provide some official form of certification?
	• Does it provide free and commercial support?
	• Does it have occasional seminars we can attend?
	• Is it open towards community involvement, so we can submit functionalities and patches?
	• Is it a full-stack or glue type of framework?
	• Is it convention or configuration driven?
	• Does it provide enough libraries to get you started (security, validation, templating, database abstractions, ORMs, routing, internationalization, and so on)?
	• Can the core framework be extended and overridden enough to make it more future proof with possible changes?
	There are a number of established PHP frameworks and libraries out there, so the choice is all but easy. Most of these frameworks and libraries are still to fully catch up with the latest features added in PHP 7.
	Moving forward, in the next chapter, we will look into common design patterns and how to integrate them in PHP.
	There are a handful of things that make a great software developer. Knowledge and usage of design patterns is one of them. Design patterns empower developers to communicate using well-known names for various software interactions. Whether someone is a...
	The concept of design patterns emerged in 1994 as part of the Elements of Reusable Object-Oriented Software book. Detailing 23 different design patterns, the book was written by four authors Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides...
	There are three types of design patterns which we will cover in this chapter:
	• Creational
	• Structural
	• Behavioral
	Throughout this chapter we will not go deep into the theory of each of them, as that alone is an entire book's worth of material. Moving forward, we will focus more on simple PHP implementation examples for each of the patterns, just so we get a more ...
	Creational patterns, as the name suggests, create objects for us, so we do not have to instantiate them directly. Implementing creation patterns gives our application a
	level of flexibility, where the application itself can decide what objects to instantiate at a given time. The following is a list of patterns we categorize as creational patterns:
	• Abstract factory pattern
	• Builder pattern
	• Factory method pattern
	• Prototype pattern
	• Singleton pattern
	Building portable applications requires a great level of dependencies encapsulation. The abstract factory facilitates this by abstracting the creation of families of related or dependent objects. Clients never create these platform objects directly, t...
	The following is an example of possible abstract factory pattern implementation:
	The builder pattern separates the construction of a complex object from its representation, making it possible for the same construction process to create different representations. While some creational patterns construct a product in one call, build...
	The following is an example of builder pattern implementation:
	The factory method pattern deals with the problem of creating objects without having to specify the exact class of the object that will be created.
	The following is an example of factory method pattern implementation:
	The prototype pattern replicates other objects by use of cloning. What this means is that we are not using the new keyword to instantiate new objects. PHP provides a clone keyword which makes a shallow copy of an object, thus providing pretty much str...
	clone method on our class in order to implement more robust clone behavior. The following is an example of prototype pattern implementation:
	The purpose of singleton pattern is to restrict instantiation of class to a single object. It is implemented by creating a method within the class that creates a new instance of that class if one does not exist. If an object instance already exists, t...
	The following is an example of singleton pattern implementation:
	We started off by creating a Logger class with a static $instance member, and the getInstance method that always returns a single instance of the class. Then we added a few sample methods to demonstrate the client executing various methods on a single...
	Structural patterns deal with class and object composition. Using interfaces or abstract classes and methods, they define ways to compose objects, which in turn obtain new functionality. The following is a list of patterns we categorize as structural ...
	• Adapter
	• Bridge
	• Composite
	• Decorator
	• Facade
	• Flyweight
	• Proxy
	The adapter pattern allows the interface of an existing class to be used from another interface, basically, helping two incompatible interfaces to work together by converting the interface of one class into an interface expected by another class.
	The following is an example of adapter pattern implementation:
	The bridge pattern is used when we want to decouple a class or abstraction from its implementation, allowing them both to change independently. This is useful when the class and its implementation vary often.
	The following is an example of bridge pattern implementation:
	The composite pattern is about treating the hierarchy of objects as a single object, through a common interface. Where the objects are composed into three structures and the client is oblivious to changes in the underlying structure because it only co...
	The following is an example of composite pattern implementation:
	The decorator pattern allows behavior to be added to an individual object instance, without affecting the behavior of other instances of the same class. We can define multiple decorators, where each adds new functionality.
	The following is an example of decorator pattern implementation:
	The facade pattern is used when we want to simplify the complexities of large systems through a simpler interface. It does so by providing convenient methods for most common tasks, through a single wrapper class used by a client.
	The following is an example of facade pattern implementation:
	The flyweight pattern is about performance and resource reduction, sharing as much data as possible between similar objects. What this means is that instances of a class which are identical are shared in an implementation. This works best when a large...
	The following is an example of flyweight pattern implementation:
	The proxy design pattern functions as an interface to an original object behind the scenes. It can act as a simple forwarding wrapper or even provide additional functionality around the object it wraps. Examples of extra added functionality might be l...
	The following is an example of proxy pattern implementation:
	instantiates both Image and ProxyImage, showing the execution time difference between the two.
	Behavioral patterns tackle the challenge of communication between various objects. They describe how different objects and classes send messages to each other to make things happen. The following is a list of patterns we categorize as behavioral patte...
	• Chain of responsibility
	• Command
	• Interpreter
	• Iterator
	• Mediator
	• Memento
	• Observer
	• State
	• Strategy
	• Template method
	• Visitor
	The chain of responsibility pattern decouples the sender of a request from its receiver, by enabling more than one object to handle requests, in a chain manner. Various types of handling objects can be added dynamically to the chain. Using a recursive...
	The following is an example of chain of responsibility pattern implementation:
	The command pattern decouples the object that executes certain operations from objects that know how to use it. It does so by encapsulating all of the relevant information needed for later execution of a certain action. This implies information about ...
	The following is an example of command pattern implementation:
	The interpreter pattern specifies how to evaluate language grammar or expressions.
	We define a representation for language grammar along with an interpreter. Representation of language grammar uses composite class hierarchy, where rules are mapped to classes. The interpreter then uses the representation to interpret expressions in t...
	The following is an example of interpreter pattern implementation:
	The iterator pattern is used to traverse a container and access its elements. In other words, one class becomes able to traverse the elements of another class. The PHP has a native support for the iterator as part of built in \Iterator and
	The following is an example of iterator pattern implementation:
	The more classes we have in our software, the more complex their communication becomes. The mediator pattern addresses this complexity by encapsulating it into a mediator object. Objects no longer communicate directly, but rather through a mediator ob...
	The following is an example of mediator pattern implementation:
	The memento pattern provides the object restore functionality. Implementation is done through three different objects; originator, caretaker, and a memento, where the originator is the one preserving the internal state required for a later restore.
	The following is an example of memento pattern implementation:
	We started off by creating a Memento class, which will provide the a current state of the object through the getState method. We then defined the Originator class that pushed the state to Memento. Finally, the client takes the role of caretaker by ins...
	The observer pattern implements a one-too-many dependency between objects. The object that holds the list of dependencies is called subject, while the dependents are called observers. When the subject object changes state, all of the dependents are no...
	The following is an example of observer pattern implementation:
	We started off by creating a Customer class which implements the standard PHP
	The state pattern encapsulates the varying behavior for the same object based on its internal state, making an object appear as if it has changed its class.
	The following is an example of state pattern implementation:
	The strategy pattern defines a family of algorithms, each of which is encapsulated and made interchangeable with other members within that family.
	The following is an example of strategy pattern implementation:
	The template design pattern defines the program skeleton of an algorithm in a method. It lets us, via use of class overriding, redefine certain steps of an algorithm without really changing the algorithm's structure.
	The following is an example of template pattern implementation:
	We started off by creating an abstract Game class that provides all of the actual abstract methods encapsulating the game-play. We then defined the Monopoly and Chess classes, both of which extend from the Game class, implementing game specific method...
	The visitor design pattern is a way of separating an algorithm from an object structure on which it operates. As a result, we are able to add new operations to existing object structures without actually modifying those structures.
	The following is an example of visitor pattern implementation:
	Design patterns are a common, high-level language for developers. They enable a short-hand way of communicating application design among team members.
	Understanding how to recognize and implement design patterns shifts our focus to business requirement solving, rather than tinkering with how to glue our solution together on a code level.
	Coding, like most hand-crafted disciplines, is one of those where you get what you pay for. While implementing a number of design patterns takes a certain amount of time, lack of doing so on a larger project will likely catch up with us in the future,...
	Moving forward, in the next chapter, we will look into the SOLID design principles and the role they play in software development processes.
	Building modular software requires strong knowledge of the class design. There are numerous guidelines out there, addressing the way we name our classes, number of variables they should have, what the size of methods should be, and so on. The PHP ecos...
	and maintainable.
	Aside from programming guidelines, there are more specific design principles that we can apply during the class design. Ones that address the notions of low coupling, high cohesion, and strong encapsulation. We call them SOLID design principles,
	a term coined by Robert Cecil Martin in the early 2000s.
	SOLID is an acronym for the following five principles:
	• S: Single responsibility principle (SRP)
	• O: Open/closed principle (OCP)
	• L: Liskov substitution principle (LSP)
	• I: Interface Segregation Principle (ISP)
	• D: Dependency inversion principle (DIP)
	Over a decade old, the idea of SOLID principles is far from obsolete, as they are at the heart of good class design. Throughout this chapter, we will look into each of these principles, getting to understand them by observing some of the obvious viola...
	In this chapter, we will be covering the following topics:
	• Single responsibility principle
	• Open/closed principle
	• Liskov substitution principle
	• Interface Segregation Principle
	• Dependency inversion principle
	The responsibility in this context refers to reason to change. As per the Robert C. Martin definition:
	"A class should have only one reason to change."

	The following is an example of a class that violates the SRP:
	The Ticket class deals with validation and saving of the ticket entity to the database. These two responsibilities are its two reasons to change. Whenever the requirements change regarding the ticket validation, or regarding the saving of the ticket, ...
	The following is an example of refactored implementation, which complies with SRP:
	Here we introduced a simple KeyValuePersistentMembers interface with a single toArray method, which is then used with both EntityManager and Validator classes, both of which take on a single responsibility now. The Ticket class became a simple data ho...
	Designing with the single responsibilities principle in mind yields smaller classes with greater readability and easier to test code.
	for modification, as per the definition found on Wikipedia:
	"software entities (classes, modules, functions, etc.) should be open for extension, but closed for modification"

	The open for extension part means that we should design our classes so that new functionality can be added if needed. The closed for modification part means that this new functionality should fit in without modifying the original class. The class shou...
	The following is an example of a class that violates the open/closed principle:
	The following is an example of refactored implementation, which complies with OCP:
	The client itself has taken a more robust role now, by first instantiating the ExporterFactory and adding two exporters to it, which it then passed onto GenericExporter. Adding a new export format to GenericExporter now, no longer requires modifying i...
	The Liskov substitution principle talks about inheritance. It specifies how we should design our classes so that client dependencies can be replaced by subclasses without the client seeing the difference, as per the definition found on Wikipedia:
	"objects in a program should be replaceable with instances of their subtypes without altering the correctness of that program"

	While there might be some specific functionality added to the subclass, it has to conform to the same behavior as its base class. Otherwise the Liskov principle is violated.
	When it comes to PHP and sub-classing, we have to look beyond simple concrete classes and differentiate: concrete class, abstract class, and interface. Each of the three can be put in the context of a base class, while everything extending or implemen...
	The following is an example of LSP violation, where the derived class does not have an implementation for all methods:
	Here we see an employee class which does not implement the getName method enforced by the interface. We could have easily used an abstract class instead of the interface and abstract method type for the getName method, the effect would have been the s...
	The following is an example of Liskov principle violation, where different derived classes return things of different types:
	Here we see a simple example of an edge case. Calling getUsers on both derived classes will return a result we can loop through. However, PHP developers tend to use the count method often on array structures, and using it on Employees instances the ge...
	We can further spot LSP violations in cases where the derived class behaves less permissively with regard to method arguments. These can usually be spotted by use of the instance of type operator, as shown in the following example:
	Here, the derived class Processor puts restrictions on method arguments, while it should accept everything conforming to the LoggerInterface. By being less permissive, it alters the behavior implied by the base class, in this case LoggerInterface.
	The outlined examples are merely a fragment of what constitutes a violation
	of LSP. To satisfy the principle, we need to make sure that derived classes do not, in any way, alter the behavior imposed by the base class.
	The Interface Segregation Principle states that clients should only implement interfaces they actually use. They should not be forced to implement interfaces they do not use. As per the definition found on Wikipedia:
	"many client-specific interfaces are better than one general-purpose interface"

	What this means is that we should split large and fat interfaces into several small and lighter ones, segregating it so that smaller interfaces are based on groups of methods, each serving one specific functionality.
	Let's take a look at the following leaky abstraction that violates the ISP:
	Here we have an interface setting requirements for several appliance related methods. Then we have several classes implementing that interface. The problem is quite obvious; not all appliances can be squeezed into the same interface. It makes no sense...
	The dependency inversion principle states that entities should depend on abstractions and not on concretions. That is, a high level module should not depend on a low level module, rather the abstraction. As per the definition found on Wikipedia:
	"One should depend upon abstractions. Do not depend upon concretions."

	This principle is important as it plays a major role in decoupling our software. The following is an example of a class that violates the DIP:
	Here we can see a notify method within the NotifySubscriber class coding in a dependency towards the Mailer class. This makes for tightly coupled code, which is what we are trying to avoid. To rectify the problem, we can pass the dependency through th...
	as shown in the rectified example shown here:
	Here we see a dependency being injected through the constructor. The injection is abstracted by a type hinting interface, and the actual concrete class. This makes our code loosely coupled. The DIP can be used anytime a class needs to call a method of...
	When it comes to modular development, extensibility is something to constantly think about. Writing a code that locks itself in will likely result in a future failure to integrate it with other projects or libraries. While SOLID design principles mig...
	Embracing the SOLID principles for class design prepares our code for future changes. It does so by localizing and minimizing these changes within our classes, so any integration using it does not feel the significant impact of the change.
	Moving forward, in the next chapter, we will look into defining our application specification which we will build across all other chapters.
	Building a software application from the ground up requires diverse skills, as it involves more than just writing down a code. Writing down functional requirements and sketching out a wireframe are often among the first steps in the process, especiall...
	unproductive approach. Laying down functional requirements and a few wireframes is a skill worth knowing and following, even if one is just a developer.
	Later in this chapter, we will go over a high-level application requirement, alongside a rough wireframe.
	In this chapter, we will be covering the following topics: (1)
	• Defining application requirements
	• Wireframing
	• Defining technology stack:
	 Symfony framework
	 Foundation framework
	We need to build a simple, but responsive web shop application. In order to do so, we need to lay out some basic requirements. The types of requirements we are interested in at the moment are those that touch upon interactions between a user and a sys...
	regards to user usage are use case and user story. The user stories are a less formal yet descriptive enough way to outline these requirements. Using user stories, we encapsulate the customer and store manager actions as mentioned here.
	A customer should be able to do the following:
	• Browse through static info pages (about us, customer service)
	• Reach out to the store owner via a contact form
	• Browse the shop categories
	• See product details (price, description)
	• See the product image with a large view (zoom)
	• See items on sale
	• See best sellers
	• Add the product to the shopping cart
	• Create a customer account
	• Update customer account info
	• Retrieve a lost password
	• Check out
	• See the total order cost
	• Choose among several payment methods
	• Choose among several shipment methods
	• Get an email notification after an order has been placed
	• Check order status
	• Cancel an order
	• See order history
	A store manager should be able to do the following:
	• Upload a picture of the product
	• Update and delete a product
	• Upload a picture to a category
	• Update and delete a category
	• Be notified if a new sales order has been created
	• Be notified if a new sales order has been canceled
	• See existing sales orders by their statuses
	• Update the status of the order
	• Disable a customer account
	• Delete a customer account
	User stories are a convenient high-level way of writing down application requirements. Especially useful as an agile mode of development.
	With user stories laid out, let's shift our focus to actual wireframing. For reasons we will get into later on, our wireframing efforts will be focused around the customer perspective.
	There are numerous wireframing tools out there, both free and commercial. Some commercial tools like https://ninjamock.com, which we will use for our examples, still provide a free plan. This can be very handy for personal projects, as it saves us
	a lot of time.
	The starting point of every web application is its home page. The following wireframe illustrates our web shop app's homepage:
	Here we can see a few sections determining the page structure. The header is comprised of a logo, category menu, and user menu. The requirements don't say anything about category structure, and we are building a simple web shop app, so we are going to...
	The following wireframe illustrates our web shop app's category page:
	The header and footer areas remain conceptually the same across the entire site. The content area has now changed to list products within any given category. Individual product areas are rendered in the same manner as it is on the home page. Category ...
	The following wireframe illustrates our web shop app's product page:
	The content area here now changes to list individual product information. We can see a large image placeholder, title, sku, stock status, price, quantity field, Add to Cart button, and product description being rendered. The IN STOCK message is to be...
	The following wireframe illustrates our web shop app's register page:
	The content area here now changes to render a registration form. There are many ways that we can implement the registration system. More often than not, the minimal amount of information is asked on a registration screen, as we want to get the user in...
	The following wireframe illustrates our web shop app's login page:
	The content area here now changes to render a customer login and forgotten password form. We provide the user with Email and Password fields in case of login, or just an Email field in case of a password reset action.
	The following wireframe illustrates our web shop app's customer account page:
	The content area here now changes to render the customer account area, visible only to logged in customers. Here we see a screen with two main pieces of information. The customer information being one, and order history being the other. The customer c...
	Though not specified by the user stories, the order cancelation should work only on
	pending orders. This is something that we will touch upon in more detail later on.
	This is also the first screen that shows the state of the user menu when the user is logged in. We can see a dropdown showing the user's full name, My Account, and Sign Out links. Right next to it, we have the Cart (%s) link, which is to list exact qu...
	The following wireframe illustrates our web shop app's checkout cart page:
	The content area here now changes to render the cart in its current state. If the customer has added any products to the cart, they are to be listed here. Each item should list the product title, individual price, quantity added, and subtotal. The cus...
	The following wireframe illustrates our web shop app's checkout cart shipping page:
	The content area here now changes to render the first step of a checkout process, the shipping information collection. This screen should not be accessible for non- logged in customers. The customer can provide us with their address details here, alon...
	shown, listing current items in the cart. Below it, we have the cart subtotal value and a big clear Next button. The Next button should trigger only when all of the required information is provided, in which case it should take us to payment informati...
	The following wireframe illustrates our web shop app's checkout cart payment page:
	The content area here now changes to render the second step of a checkout process, the payment information collection. This screen should not be accessible for non- logged in customers. The customer is presented with a list of available payment method...
	The following wireframe illustrates our web shop app's checkout success page:
	With this, we conclude our customer facing wireframes.
	In regards to store manager user story requirements, we will simply define a landing
	administration interface for now, as shown in the following screenshot:
	Using the framework later on, we will get a complete auto-generated CRUD interface for the multiple Add New and List & Manage links. The access to this interface and its links will be controlled by the framework's security component, since this user w...
	Furthermore, throughout the following chapters, we will split our application into several modules. In such a setup, each module will take ownership of individual functionalities, taking care of customer, catalog, checkout, and other requirements.
	Once the requirements and wireframes are set, we can focus our attention to the selection of a technology stack. In Chapter 1, Ecosystem Overview we glossed over several of the most popular PHP frameworks, pointing out their strengths.
	Choosing the right one in this case, is more of a matter of preference, as application requirements for the most part can be easily met by be met any one of those frameworks. Our choice, however, falls to Symfony. Aside from PHP frameworks, we still n...
	The Symfony framework makes a nice choice for our application. It is an enterprise level framework that has been around for years, and is extremely well documented and supported. It can be downloaded from the official http://symfony.com page as shown ...
	The benefits of using Symfony as part of our technology stack are numerous. The framework provides robust and well documented:
	• Controllers
	• Routing
	• ORM (via Doctrine)
	• Forms
	• Validation
	• Security
	These are essential features required by our application. The ORM in particular, plays a major role in rapid application development. Having to worry less about coding, every aspect of CRUD can boost the speed of development by a factor or two. The gr...
	By doing so, Symfony generates entity models and necessary controllers that empower us to perform the following operations:
	• List all records
	• Show one given record identified by its primary key
	• Create a new record
	• Edit an existing record
	• Delete an existing record
	Basically, we get a minimal store manager interface for free. This alone covers most of the CRUD related requirements set for the store manager role. We can then easily modify the generated templates to further integrate the remaining functionality.
	On top of that, security components provide authentication and authorization that we can use to satisfy the customer and store manager logins. So a store manager will be a fixed, pre-created user attached to Symfony's firewall, the only one having acc...
	Backed by the company Zurb, the Foundation framework makes a great choice for a modern responsive web application. We might say it is an enterprise level
	framework, providing a collection of HTML, CSS, and JavaScript that we can build upon. It can be downloaded from the official http://foundation.zurb.com page as shown here:
	Foundation comes in three flavors:
	• Foundation for sites
	• Foundation for e-mail
	• Foundation for apps
	We are interested in the sites version. Aside from general styling, Foundation for sites provides a great deal of controls, navigational elements, containers, media elements, and plugins. These will be particularly useful in our application, for thing...
	Foundation is built as a mobile-first framework, where we code for small screens first and larger screens then inherit those styles. Its default 12-column grid system enables us to create powerful multi-device layouts quickly and easily.
	We will use Foundation simply to provide structure, some basic styling, and responsiveness to our application, without writing a single line of CSS on our own. This alone should make our application visually pleasing enough to work with both on mobile...
	Aside from providing robust functionality, the company behind Foundation also provides premium technical support. Though we will not need it as part of this book, these sorts of things establish confidence when choosing application frameworks.
	Creating web applications can be a tedious and time consuming task, web shops probably being one of the most robust and intensive type of application out there, as they encompass a great deal of features. There are many components involved in deliveri...
	facing interface, while the store manager interface is to be provided out of the box by the framework.
	We further glossed over two of the most popular frameworks that support modular application design. We turned our attention to Symfony as server side technology and Foundation as a client side responsive framework.
	Moving forward, in the next chapter, we will take a more in-depth look into Symfony. As well as being a set of reusable components, Symfony is also one of the most robust and popular full-stack PHP frameworks. Therefore, it is an interesting choice fo...
	Full-stack frameworks like Symfony help ease the process of building modular applications by providing all of the necessary components, from user interface to data store. This enables a much rapid cycle of delivering individual bits and pieces of appl...
	Moving forward we will install Symfony, create a blank project, and start looking into individual framework features essential for building modular application:
	• Controller
	• Routing (1)
	• Templates
	• Forms (1)
	• The bundle system
	• Databases and Doctrine
	• Testing
	• Validation (1)
	Installing Symfony is pretty straightforward. We can use the following command to install Symfony on Linux or Mac OS X:
	We can use the following command to install Symfony on Windows:
	Once the command is executed, we can simply move the newly created symfony file to our project directory and execute it further as symfony, or php symfony in Windows.
	This should trigger an output shown as follows:
	Preceding response indicates we have successfully setup Symfony and are now ready to start creating new projects.
	Now that we have a Symfony installer all setup, let's go ahead and create a new blank project. We do so by simply executing a symfony new test-app command, as shown in the following command line instance:
	Here we are creating a new project, called test-app. We can see that the Symfony installer is downloading the latest Symfony framework from the internet, alongside outputting a brief instruction on how to run the built in PHP server via Symfony consol...
	The structure of newly created test-app directory occurs similar to the following one:
	There are numerous files and directories created here for us. Our interest, however, is focused on app and src directories. The app directory is where the site wide application configuration resides. Here we can find configuration for database, routin...
	The src directory on the other hand contains already modularized code in form
	of the base AppBundle module, as in the following screenshot:
	We are going to speak about the role of these files in more details later as we progress. For now, its worth nothing that pointing our browser to this project would make DefaultController.php the one to actually render the output.
	Symfony framework comes with a built-in console tool that we can trigger by simply executing the following command within our project root directory:
	By doing so, an extensive list of available commands is shown on screen, sectioned into the following groups:
	Before we go ahead and test these commands, we need to make sure we have our database configuration parameters in place so that Symfony can see and talk to our database. To do so, we need to set appropriate values in app/config/parameters. yml file.
	For the purpose of this section, let's go ahead and create a simple Customer entity within the default AppBundle bundle, with entire CRUD around it, assuming the following properties on Customer entity: firstname, lastname, and e-mail. We start by run...
	Here we first provided AppBundle:Customer as entity name and confirmed the use of annotations as configuration format.
	Finally, we are asked to start adding the fields to our entity. Typing in the first name and hitting enter moves us through a series of short questions about our field type, length, nullable, and unique states, as shown in the following screenshot:
	We should now have two classes generated for our Customer entity. Via the help of Symfony and Doctrine, these classes are put in context of Object Relational Mapper (ORM), as they link the Customer entity with the proper database table. However, we ha...
	This should produce the output as shown in the following screenshot:
	If we now take a look at the database, we should see a customer table with all the proper columns created with SQL create dsyntax as follows:
	At this point, we still do not have an actual CRUD functionality in place. We simply have an ORM empowered Customer entity class and appropriate database table behind it. The following command will generate the actual CRUD controllers and templates fo...
	This should produce the following interactive output:
	By providing the fully classified entity name AppBundle:Customer, generator proceeds with a series of additional inputs, from generating write actions, type of configuration to read, to prefix of route, as shown in the following screenshot:
	Once done, we should be able to access our Customer CRUD actions by simply opening a URL like http://test.app/customer/ (assuming test.app is the host we set for our example) as shown:
	Here we can enter the actual values for our Customer entity and click Create button in order to persist it into the database customer table. After adding a few entities, the initial /customer/ URL is now able to list them all, as shown in the followin...
	Here we see links to show and edit actions. The show action is what we might consider the customer facing action, whereas the edit action is the administrator facing action. Clicking on the edit action, takes us to the URL of the form
	Here we can change the property values and click Edit to persist them back into the database, or we can click on the Delete button to remove the entity from the database.
	If we were to create a new entity with an already existing e-mail, which is flagged as a unique field, the system would throw a generic error as such the following one:
	This is merely default system behavior, and as we progress further we will look into making this more user friendly. By now, we have seen how powerful Symfony's console is. With a few simple commands, we were able to create our entity and its entire C...
	Controllers play a major role in web applications by being at the forefront of any application output. They are the endpoints, the code that executes behind each URL. In a more technical manner, we can say the controller is any callable (a function, m...
	If we ignore the actual data retrieval part (//…), there are three important things to note in this little example:
	• @Route: this is the Symfony's annotation way of specifying HTTP endpoint, the URL we will use to access this. The first "/new" parameter states the actual endpoint, the second name="customer_new" parameter sets the name for this route that we can th...
	• @Method: This takes the name of one or more HTTP methods. This means that the newAction method will trigger only if the HTTP requests match the previously defined @Route and are of one or more HTTP method types defined in @Method.
	Now let's take a look at the editAction method within our controller, as partially shown in the following code block:
	Here we see a route that accepts a singe ID, marked as {id} within the first @Route annotation parameter. The body of the method (excluded here), does not contain any direct reference to fetching the id parameter. We can see that the editAction functi...
	But how does the method know to accept the Customer object? This is where Symfony's @ParamConverter annotation comes into play. It calls converters to convert the request parameters to objects.
	The great thing about @ParamConverter annotation is that we can use it explicitly or implicitly. That is, if we do not add @ParamConverter annotation but add type hinting to the method parameter, Symfony is going to try and load the object for us. Thi...
	Terminology wise, controllers are often exchanged for routing. However, they are not the same thing.
	In the shortest terms, routing is about linking the controllers with URLs entered in browser. Todays modern web applications need nice URLs. This means moving away from URLs like /index.php?product_id=23 to something like /catalog/ product/t-shirt. Th...
	Symfony has a powerful routing mechanism that enables us to do the following:
	• Create complex routes which map to controllers
	• Generate URLs inside templates
	• Generate URLs inside controllers
	• Load routing resources from various locations
	The way routing works in Symfony is that all of the requests come through app. php. Then, the Symfony core asks the router to inspect the request. The router then matches the incoming URL to a specific route and returns information about the route. Th...
	be executed. Finally, the Symfony kernel executes the controller, which returns a response object.
	All of the application routes are loaded from a single routing configuration file,
	The app is simply one of many possible entries. Its resource value points to AppBundle controller directory, and type is set to annotation which means that the class annotations will be read to specify exact routes.
	We can define a route with several variations. One of them is shown in the
	following block:
	The preceding examples show several ways we can define our route. The interesting one is the case with required and optional parameter. If we think about it, removing ID from the latest example will match the example before it with sku. The Symfony ro...
	There is more to be said about controllers and routing, as we will see once we start building our application.
	Previously we said that controllers accept request and return response. The response, however, can often be any content type. The production of actual content is something controllers delegate to the templating engine. The templating engine then has t...
	In the old days, programmers mixed PHP with HTML into the so called PHP templates (.php and .phtml). Though still used with some platforms, this kind of approach is considered insecure and lacking in many aspects. One of which was cramming business lo...
	To address these shortcomings, Symfony packs its own templating language called Twig. Unlike PHP, Twig is meant to strictly express presentation and not to thinker about program logic. We cannot execute any of the PHP code within the Twig. And the Twi...
	Twig defines three types of special syntax:
	• {{ ... }}: This outputs variable or the result of an expression to the template.
	• {% ... %}: This tag controls the logic of the template (if and for loops, and others).
	• {# ... #}: It is the equivalent of the PHP /* comment */ syntax. The Comments content isn't included in the rendered page.
	Filters are another nice feature of Twig. They act like chained method calls upon a variable value, modifying the content before it is outputted, as follows:
	It also supports functions listed as follows:
	The preceding random function call would return one random value from within the array. With all the built-in list of filters and functions, Twig also allows for writing our own if needed.
	Here we see several block tags: title, stylesheets, body, and javascripts. We can declare as many blocks as we want here and name them any way we like. This makes the extend tag a key to template inheritance. It tells the Twig to first evaluate the ba...
	Templates live in two locations:
	Each template filename has two extensions that first specify the format and then
	We will get into more details regarding these templates once we move onto building our app.
	Sign up, sign in, add to cart, checkout, all of these and more are actions that make use of HTML forms in web shop applications and beyond. Building forms is one of the most common tasks for developers. One that often takes time to do it right.
	Symfony has a form component through which we can build HTML forms in an OO way. The component itself is also a standalone library that can be used independently of Symfony.
	Customer entity class that was auto-generated for us when we defined it via console:
	Here we have a plain PHP class, which does not extend anything nor is in any other way linked to Symfony. It represents a single customer entity, for which it sets and gets the data. With the entity class in place, we would like to render a form that ...
	We can see the simplicity behind the form component comes down to the following:
	configuration which points to our Customer entity.
	The form builder object is the one doing the heavy lifting here. It does not take much for it to create a form. With the form class in place, let's take a look at the controller action in charge of feeding the template with the form. In this case, we ...
	The preceding code first instantiates the Customer entity class. The $this-
	Here we see extends and block tags, alongside some form of related functions. Symfony adds several form rendering function to Twig as follows:
	Most of our application forms will be auto-generated like this one, so we are able to get a fully functional CRUD without going too deep into the rest of form functionality.
	In order to keep up with modern demands, today's frameworks and applications require a flexible configuration system. Symfony fulfils this role nicely through its robust configuration files and environments concept.
	directory, with (partial) content sectioned as follows:
	Optionally, the configuration file can be of XML or PHP format (config.xml or config.php). While YAML is simple and readable, XML is more powerful, whereas PHP is powerful but less readable.
	We can use the console tool to dump the entire configuration as shown here:
	The preceding example lists the config file for core FrameworkBundle. We can use the same command to show possible configurations for any bundle that implements container extension, something we will look into later on.
	Symfony has a nice implementation of environment concept. Looking into the app/config directory, we can see that default Symfony project actually starts with three different environments:
	Each application can run in various environments. Each environment shares the same code, but different configuration. Whereas dev environment might make use of extensive logging, a prod environment might make use of extensive caching.
	The way these environments get triggered is via the front controller file, as in the
	following partial examples:
	The test environment is missing here, as it is used only when running automated tests and cannot be accessed directly via a browser.
	it is YAML, XML, or PHP as shown in the following code fragment:
	The environments follow the same concept, whereas each environment imports the base configuration file and then modifies its values to suit the needs of the specific environment.
	Most of the popular frameworks and platforms support some form of modules, plugins, extensions or bundles. For most of the time, the difference really lies just in the naming, while the concept of extensibility and modularity is the same. With Symfony...
	Bundles are a first-class citizen in Symfony, as they support all of the operations available to other components. Everything in Symfony is a bundle, even the core framework. Bundles enable us to build modularized applications, whereas the entire code...
	A single bundle holds all its PHP files, templates, style sheets, JavaScript files, tests,
	and anything else in one root directory.
	When we first setup our test app, it created an AppBundle for us, under the src directory. As we moved forward with the auto-generated CRUD, we saw our bundle getting all sorts of directories and files.
	Creating a new bundle is as simple as creating a single PHP file. Let's go ahead and
	Once the file is in place, all we need to do is to register it via the registerBundles
	An even easier way to create a bundle would be to just run a console command as follows:
	This would trigger a series of questions about bundle that in the end results in bundle creation that looks like the following screenshot:
	Once the process is complete, a new bundle with several directories and files is
	created as shown in the following screenshot:
	Bundle generator was kind enough to create controller, dependency injection extension extension, routing, prepare services configuration, templates, and even tests. Since we chose to share our bundle, Symfony opted for XML as default configuration for...
	Databases are the backbone of almost every web application. Every time we need to store or retrieve data, we do so with the help of databases. The challenge in the modern OOP world is to abstract the database so that our PHP code is database agnostic....
	Doctrine is completely decoupled from Symfony, so using it is completely optional.
	The great thing about it, however, is that the Symfony console provides great auto-generated CRUD based on Doctrine ORM, as we saw in previous examples when creating Customer entity.
	As soon as we created the project, Symfony provided us with an auto-generated app/config/parameters.yml file. This is the file in which we, among other things, provide database access information as shown in the following example:
	Once we configure proper parameters, we can use console generation features.
	The Symfony console tool allows us to drop and create a database based on this config,
	which comes in handy during development, as shown in the following code block:
	We saw previously how the console tool enables us to create entities and their mapping into database tables. This will suffice for our needs throughout this book. Once we have them created, we need to be able to perform CRUD operations on them. If we ...
	There is a lot more to be said about Doctrine, which is far out of the scope of this book. More information can be found at the official page (http://www.doctrine- project.org).
	Nowadays testing has become an integral part of every modern web application. Usually the term testing implies unit and functional testing. Unit testing is about testing our PHP classes. Every single PHP class is considered to be a unit, thus the name...
	The PHP ecosystem has a great unit testing framework called PHPUnit, available for download at https://phpunit.de. It enables us to write primarily unit, but also functional type tests. The great thing about Symfony is that it comes with built in supp...
	Before we can start running Symfony's tests, we need to make sure we have PHPUnit installed and available as console command. When executed, PHPUnit automatically tries to pick up and read testing configuration from phpunit.xml or phpunit.xml. dist wi...
	The testsuites element defines the directory tests, in which all of our tests are located. The filter element with its children is used to configure the whitelist for the code coverage reporting. The php element with its children is used to configure ...
	Running a phpunit command against a default project like ours would result in output like the following:
	Depending on how we build our application, we might want to add all of our bundles to the testsuite list, even if we plan on distributing bundles independently.
	There is plenty more to be said about testing. We will do so bit by bit as we progress through further chapters and cover the needs of individual bundles. For the moment, it is suffice to know how to trigger tests and how to add new locations to testi...
	Validation plays an essential role in modern applications. When talking about web applications, we can say we differentiate between two main types of validation; form data and persisted data validation. Taking input from a user via a web form should b...
	We can access the validation service from any controller class by simply calling it via the $this->get('validator') expression, as shown in the following example:
	The problem with the example above is that validation would never return any errors. The reason for this is that we do not have any assertions set on our class. The console auto-generated CRUD did not really define any constraints on our Customer clas...
	The great thing about assertions constraints is that they accept parameters just as functions. We can therefore fine-tune individual constraints to our specific needs. If we now try to skip or add a faulty e-mail address, we would get a message like E...
	There are numerous constraints available, for the full list we can consult the
	Constraints can be applied to a class property or a public getter method. While the property constraints are most common and easy to use, the getter method constraints allow us to specify more complex validation rules.
	Here we see an instance of a CustomerType form being bind to the Customer instance. The actual GET or POST request data is passed to an instance of a form via the handleRequest method. The form is now able to understand entity validation constraints a...
	We will continue to expand on validation features as we progress through individual bundles.
	Throughout this chapter we touched on some important functionality, which makes Symfony so great. Controllers, templates, Doctrine, ORM, forms, and validation make for a complete solution from data presentation and persistence. We have seen the flexib...
	Moving forward, in the next chapter, we will utilize the insights and knowledge gained throughout the previous chapters to finally start building our modular application according to the requirements.
	Up until now we have familiarized ourselves with the latest changes in PHP 7, design patterns, design principles, and popular PHP frameworks. We also took a more detailed look into Symfony as our framework of choice moving forward.
	We have now finally reached a point where we can start building our modular application. Building modular applications with Symfony is done via the bundles mechanism. Terminology-wise, from this point on, we will consider bundle and module to be the s...
	In this chapter we will be covering the following topics with respect to the core module:
	• Requirements
	• Dependencies
	• Implementation
	• Unit testing
	• Functional testing
	• Include Foundation CSS for sites to the project
	• Build a home page
	• Build other static pages
	• Build a Contact Us page
	• Setup a basic firewall, where admin users can manage all the auto-generated CRUD from other modules later on
	The core module on its own does not have any specific dependencies on other modules that we are going to write as part of this book, or any other third-party module outside of standard Symfony installation.
	We start by creating an entirely new Symfony project, running the following console command:
	This creates a new shop directory with all of the required files needed to run our application in the browser. Among these files and directories is the src/AppBundle directory, which is actually our core module. Before we can run our application in th...
	Though we have no need for the database just yet, other modules we will develop later on will assume database connection, so it's worth setting it up right from the start. We do so by configuring app/config/parameters.yml with proper database connecti...
	Here we are setting the entire head and before body end areas, with all the necessary CSS and JavaScript loading. The Twigs asset tag helps us with building URL paths, where we simply pass on the URL path itself and it builds a complete URL for us. In...
	What we can do for category, customer, and checkout menus is to define global Twig variables for each of those menu items that will then be used to render the menu. These variables will be filed via proper services. Since the core bundle is not aware ...
	This approach might not fit ideally with the notion of modular application, but it will suffice for our needs, as we are not hard-coding any dependencies as such.
	The @ character in the Twig global variable config is used to denote a beginning of the service name. This is the service that will provide a value object for our Twig
	as follows:
	content as shown here:
	Once this is done, we will go on and add the following content to the
	the following content:
	We have now defined five global Twig variables that will be used to build our application menus. Even though variables are now hooked to a dummy service that returns nothing more than a dummy array, we have effectively decoupled menu items into other ...
	Here we are merely wrapping header and content into the div elements with the row class, just to give it some structure. The result should be pages similar to those shown here:
	Here we started off by building a form via form builder. The add methods accept both field definitions and field constraints upon which validation can be based. We then added a check for the HTTP POST method, in case of which we feed the form with req...
	Based on these few tags, Twig handles the form rendering for us. The resulting browser output is a page as shown in the following:
	We are almost there with getting all of our pages ready. One thing is missing, though, the body area of our home page. Unlike other pages with static content, this one is actually dynamic, as it lists bestsellers and products on sale. This data is exp...
	At this point we should be seeing the home page as shown here:
	What we are trying to achieve as part of our applicationwide security is to set some basic protection against future customers or any other user being able to access and use future auto-generated CRUD controllers. We do so by modifying the app/ confi...
	we need to address: Firewalls, access control, providers, and encoders. If we observe the auto-generated CRUD from the previous test app, it becomes clear that we need to protect the following from customer access:
	In another words, everything that has /new and /edit in the URL, and everything that is of DELETE method, needs to be protected from the customer. With that in mind, we will use Symfony security features to create an in-memory user of role ROLE_ADMIN....
	Using an in-memory provider means hard-coding users in our security.yml file. For purposes of our application, we will do so for the admin type of users. The actual password, however, does not need to be hard-coded. Assuming we will use 1L6lllW9zXg0 f...
	This will produce an output as follows.
	We can now edit security.yml by adding an in-memory provider and copy-paste the generated encoded password into it, as shown here:
	password.
	Once we have the providers in place, we can go ahead and add encoders to our security.yml file. Otherwise Symfony would not know what to make of the current password assigned to john user:
	Then we add the firewall as follows:
	Once these firewalls kick in, they will show an HTTP basic authentication form, and
	only allow access if the user is logged in. Then we add the access control list as follows:
	With these entries in place, an one who tries to access any URL with any of the patterns defined under access_control will be presented with the browser login as shown here:
	The only user that can login is john with the password 1L6lllW9zXg0. Once authenticated, the user can access all the CRUD links. This should be enough for our simple application.
	Our current module has no specific classes other than the controller class and the
	dummy service class. Therefore, we won't bother ourselves with unit tests here.
	Before we start writing our functional tests, we need to edit the phpunit.xml.dist
	The next step is to test each and every one of our controller actions. At the very least we should test if the page content is being outputted properly.
	The first thing we want to test is our home page. We do so by adding the following to the body of the DefaultControllerTest class.
	Here we are checking several things at once. We are checking with the page loads OK, with HTTP 200 status. Then we are grabbing the left and right menu and counting their the items to see if they have any. If all of the individual checks pass, the tes...
	We further test all of the static pages by adding the following to the
	Here we are running the same assertEquals and assertContains functions for all of our pages. We are merely trying to confirm that each page is loaded with HTTP 200, and that the proper value is returned for the page title, that is to say, the h1 element.
	Finally, we address the form submission test which we perform by adding the following into the DefaultControllerTest class:
	Here we are grabbing the form element through its Reach Out! submit button. Once the form is fetched, we trigger the submit method on the client passing it the instance from element. It is worth noting that the actual form validation is not being test...
	These tests are conclusive. We can write them to be much more robust if we wanted to, as there are numerous elements we can test against.
	In this chapter we have built our first module, or bundle in Symfony terminology. The module itself is not really loosely coupled, as it relies on some of the things within the app directory, such as the app/Resources/views/base.html.twig layout templ...
	Moving forward, in the next chapter, we will build a catalog module. This will be the basis of our web shop application.
	The catalog module is an essential part of every web shop application. At the very basic level, it is responsible for the management and display of categories and products. It is a foundation for later modules, such as checkout, that add the actual sa...
	The more robust catalog features might include mass product imports, product exports, multi-warehouse inventory management, private members categories, and so on. These however, are out of the scope of this chapter.
	In this chapter, we will be covering following topics:
	• Requirements (1)
	• Dependencies (1)
	• Implementation (1)
	• Unit testing (1)
	• Functional testing (1)
	Following is a list of required module entities:
	• Category
	• Product
	The Category entity includes the following properties and their data types:
	• id: integer, auto-increment
	The Product entity includes the following properties:
	• id: integer, auto-increment (1)
	• category_id: integer, foreign key that references the category table ID column
	• sku: string, unique
	Aside from just adding these entities and their CRUD pages, we also need to override the core module services responsible for building the category menu and on sale items.
	The module has no firm dependencies on any other module. The Symfony framework service layer enables us to code modules in such a way that, most of the time, there is no need for a dependency between them. While the module does override a service defi...
	We start off by creating a new module called Foggyline\CatalogBundle. We do so with the help of the console, by running the command as follows:
	The command triggers an interactive process that asks us several questions along the way, as shown in the following screenshot:
	Once done, the following structure is generated for us:
	to it:
	Let's go ahead and create a Category entity. We do so by using the console, as shown here:
	This results in a screen that looks similar to the following screenshot:
	With entity in place, we are ready to generate its CRUD. We do so by using the following command:
	This results with interactive output as shown here:
	Next, we go ahead and create the Product entity by using the interactive generator as discussed earlier:
	The reason we are doing so is that, later on, our Product-editing form would know what labels to list under the Category selection, otherwise the system would throw the following error:
	With the above changes in place, we can now run the schema update, as follows:
	If we now take a look at our database, the CREATE command syntax for our product
	table looks like the following:
	We can see two unique keys and one foreign key restraint defined, as per the entries provided to our interactive entity generator. Now we are ready to generate the CRUD for our Product entity. To do so, we run the generate:doctrine:crud command and fo...
	As soon as we do so, the input fields turn into the file upload fields, as shown here:
	Next, we will go ahead and implement the upload functionality into the forms.
	parameter the we will soon define.
	file with content as follows:
	This is the parameter our service expects to find. It can easily be overridden with the
	At this point, our Symfony module is able to read its parameters.yml, thus making it possible for the defined service to pickup the proper value for its argument. All that is left is to adjust the code for our new and edit forms, attaching the upload ...
	Both the new and edit forms should now be able to handle file uploads.
	Now let's go ahead and address the category menu and the on-sale items. Back when we were building the core module, we defined the global variables under the twig:global section of the app/config/config.yml file. These variables were
	pointing to services defined in the app/config/services.yml file. In order for us to change the content of the category menu and the on sale items, we need to override those services.
	Both of the services accept the Doctrine ORM entity manager and router service arguments, as we will need to use those internally.
	Now our Category and OnSale services should override the ones defined in the core module, thus providing the right values for the header Category menu and On Sale section of the homepage.
	The auto-generated CRUD made a Category page for us with the layout as follows:
	The body is now sectioned into three areas. First, we are addressing the category title and description output. We are then fetching and looping through the list of products assigned to category, rendering each individual product. Finally, we are
	The auto-generated CRUD made a Product page for us with the layout as follows:
	The body is now sectioned into two main areas. First, we are addressing the product image, title, stock status, and add to cart output. The add to cart form uses the add_to_cart_url service to provide the right link. This service is defined under the ...
	We now have several class files that are not related to the controllers, meaning we can run unit tests against them. Still, we won't be going after a full code coverage as part of this book, rather focus on some of the little-big things, like using co...
	We start of by adding the following line under the testsuites element of our
	The preceding example shows the usage of the setUp and tearDown method calls, which are analogous in behavior to the PHP's construct and destruct methods. We use the setUp method to set the entity manager and router service that we can use through ...
	We can even target this class specifically by executing a phpunit command with the full class path, as shown here:
	Similarly to what we did for CategoryTest, we can go ahead and create
	OnSaleTest; the only difference between the two being the class name.
	We started off by setting PHP_AUTH_USER and PHP_AUTH_PW as parameters for the createClient method. This is because our /new and /edit routes are protected by the core module security. These settings allow us to pass the basic HTTP authentication along...
	All that remains is to repeat the approach we just used for
	class file to match the product routes and expected results.
	Running the phpunit command now should successfully execute our tests.
	Throughout this chapter we have built a miniature, but functional, catalog module. It allowed us to create, edit, and delete categories and products. By adding a few custom lines of code on top of the auto-generated CRUD, we were able to achieve image...
	to override the core module service, by simply removing the existing service definition and providing a new one. In regard to tests, we saw how we can pass the authentication along our requests to test for protected routes.
	Moving forward, in the next chapter, we will build a customer module.
	The customer module provides a basis for further sales functionality of our web shop. At the very basic level, it is responsible for register, login, management and display of relevant customer information. It is a requirement for the later sales modu...
	In this chapter we will be covering following topics:
	• Requirements (2)
	• Dependencies (2)
	• Implementation (2)
	• Unit testing (2)
	• Functional testing (2)
	The Customer entity includes the following properties:
	• id: integer, auto-increment (2)
	• username: string, unique, needed for login system
	Throughout this chapter, aside from just adding the Customer entity and its CRUD pages, we also need to address the creation of login, register, forgot your password pages, as well as override a core module service responsible for building a customer ...
	The module has no firm dependencies on any other module. While it does override a service defined in core module, the module itself is not dependent on it. Furthermore, some security config will need to be provided as part of the core application, as ...
	We start of by creating a new module called Foggyline\CustomerBundle. We do so with the help of console, by running the command as follows:
	The command triggers an interactive process asking us several questions along the way, as shown in the following screenshot:
	Once done, the following structure is generated for us: (1)
	added to it:
	Let's go ahead and create a Customer entity. We do so by using the console, as shown here:
	This results in a screen as shown in the following screenshot:
	With entity in place, we are ready to generate its CRUD. We do so by using the following command: (1)
	This results in an interactive output as shown here:
	Before we proceed further with the actual changes within our module, let's imagine our module requirements mandate a certain security configuration in order to make it work. These requirements state that we need to apply several changes to the app
	This effectively defines our Customer class as a security provider, whereas the
	username element is the property storing user identity.
	We then define the encoder type under the encoders element, as follows:
	This tells Symfony to use the bcrypt algorithm with a value of 12 for algorithmic cost while encrypting our password. This way our passwords won't end up in clear text when saved in the database.
	We then go ahead and define a new firewall entry under the firewalls element,
	as follows: (1)
	There is quite a lot going on here. Our firewall uses the anonymous: ~ definition to denote that it does not really need a user to be logged in to see certain pages. By default, all Symfony users are authenticated as anonymous, as shown in the followi...
	controller logic and view templates in order to handle the login form. Once logged in, the default_target_path determines where the user will be redirected to.
	Finally, we reuse the Symfony anonymous user feature in order to exclude certain pages from being forbidden. We want our non-authenticated customer to be able to access login, register, and forgotten password pages. To make that possible, we add the f...
	It is worth noting that this approach to handling security between module and base application is by far the ideal one. This is merely one possible example of how we can achieve what is needed for this module to make it functional.
	Even though all of the passwords need to be hashed with salt, the getSalt function in this case is irrelevant since bcrypt does this internally. The getRoles function is the important bit. We can return one or more roles that individual customers will...
	our customers. But this can easily be made much more robust, so that the roles are stored in the database as well. The eraseCredentials function is merely a cleanup method, which we left blank.
	Since the user object is first unserialized, serialized, and saved to a session per each request, we implement the \Serializable interface. The actual implementation of serialize and unserialize can include only a fraction of customer properties, as w...
	Before we go ahead and start implementing the register, login, forgot your password,
	and other bits, let's go ahead and define the needed services we are going to use
	later on.
	The getOrders method simply returns some dummy data here. We can easily make it return an empty array. Ideally, we would want this to return a collection of certain types of element that conform to some specific interface.
	Here we are injecting the token_storage and router objects into our service, as we will need them to construct the menu based on the login state of a customer.
	Here we see a menu being constructed based on user login state. This way a customer gets to see the Logout link when logged in, or Login when not logged in.
	Once these two files are in place, our register functionality should be working.
	as follows: (2)
	With this we address the actual customer information section of the My Account page. In its current state, this page should render an Edit form as shown in the following screenshot, enabling us to edit all of our customer information:
	Note, the logoutAction method is actually empty. There is no implementation as such. Implementation is not needed, as Symfony intercepts the request and processes the logout for us. We did, however, need to define this route as we referenced it from o...
	Here we merely check if the HTTP request is GET or POST, then either send an e-mail or load the template. For the sake of simplicity, we haven't really
	Aside from the auto-generated Customer entity and its CRUD controller, there are only two custom service classes that we created as part of this module. Since we are not going after full code coverage, we will merely cover CustomerOrders and CustomerM...
	We start off by adding the following line under the testsuites element of our
	Here we have two tests in total, one instantiating the class through the service and the other directly. We are using the setUp method merely to set the container property which we then reuse in the testGetItemsViaService method.
	Next, we create the CustomerMenu test within the directory as follows:
	Now, if we run the phpunit command, we should see our test being picked up and executed alongside other tests. We can even target these two tests specifically by executing a phpunit command with full class path, as shown here:
	is not the same login as our customers will be using. We are no longer using a basic HTTP authentication, rather a full blown login form.
	Here we first created the logIn method, whose purpose is to simulate the login, by setting up the proper token value into the session, and passing on that session ID to the client via a cookie. We then created the testMyAccountAccess method, which fir...
	Now, let's go ahead and address the customer registration form, by adding the following to the CustomerControllerTest:
	We have already seen a test similar to this one in the previous chapter. Here we are merely opening a customer/register page, then finding a button with Register! label, so we can fetch the entire form through it. We then set all of the required form ...
	Running the phpunit command now should successfully execute our tests. (1)
	Throughout this chapter we built a miniature but functional customer module. The module assumed a certain level of setup done on our security.yml file, which can be covered as part of module documentation if we were to redistribute it.
	These changes included defining our own custom firewall, with a custom security provider. The security provider pointed to our customer class, which in turn was built in a way that complies to the Symfony UserInterface. We then built a register, login...
	Furthermore, we applied some forward thinking, by using the specially defined service to set up the My Orders section under the My Account page. This is by far the ideal way of doing it, and it serves a purpose, as we will later override this service ...
	Moving forward, in the next chapter, we will build a payment module.
	The payment module provides a basis for further sales functionality in our web shop. It will enable us to actually choose a payment method when we reach the checkout process of the upcoming sales module. The payment methods can generally be of various...
	In this chapter, we will be looking into the following topics:
	• Requirements (3)
	• Dependencies (3)
	• Implementation (3)
	• Unit testing (3)
	• Functional testing (3)
	Our application requirements, defined under Chapter 4, Requirement Specification for Modular Web Shop App, do not really say anything about the type of payment method we need to implement. Thus, for the purpose of this chapter, we will develop two pay...
	Ideally, we want this done by an interface, similar to the following:
	This would then impose the requirement of having the SalesBundle module, which we still haven't developed. We will therefore proceed with our payment methods using a simple Symfony controller class that provides its own way to address the following fe...
	The authorize method is used for cases where we merely want to authorize the transaction, without actually executing it. The result is a transaction ID that our future SalesBundle module can store and reuse for further capture and cancel actions. The ...
	We will expose our payment methods through tagged Symfony services. The tagging of a service is a nice feature which enables us to view the container and all of the services tagged with the same tag, which is something we can use to fetch all of the p...
	Later on, the SalesBundle module will fetch and use all of the services tagged with payment_method and then use them internally to generate a list of available payment methods that you can work with.
	The module has no firm dependencies on any other module. However, it might have been more convenient to build the SalesBundle module first and then expose a few interfaces that the payment module might use.
	We start off by creating a new module called Foggyline\PaymentBundle. We do so with the help of the console by running the following command:
	The command triggers an interactive process which asks us several questions along the way, shown as follows:
	In order to avoid colliding with the core application code, we need to change the
	Even though we won't be storing any credit cards in our database as part of this chapter, we want to reuse the Symfony auto-generate CRUD feature in order for it to provide us with a credit card model and form. Let's go ahead and create a Card entity....
	The command triggers the interactive generator, providing it with FoggylinePaymentBundle:Card for an entity shortcut, where we also need to provide entity properties. We want to model our Card entity with the following fields:
	With the entity in place, we are ready to generate its CRUD. We will do so by using the following command:
	Again, the view files were created under the app/Resources/views/card/ directory. Since we won't actually be doing any CRUD related actions around cards as such, we can go ahead and delete all of the generated view files, as well as the entire body of...
	The card payment service is going to provide the relevant information our future sales module will need for its checkout process. Its role is to provide the payment method label, code, and processing URLs of an order, such as authorize, capture, and c...
	We will start by defining the following service under the services element of the
	The getInfo method is what's going to provide the necessary information to our future SalesBundle module in order for it to construct the payment step of the checkout process. We are passing on three different types of URLs here: authorize, capture, a...
	file by adding the following route definitions to it:
	We will then edit the body of the CardController class by adding the following to it:
	We should now be able to access URLs like /app_dev.php/payment/card/ authorize and see the output of authorizeAction. Implementations given here are dummy ones. For the purpose of this chapter ,we are not going to connect to a real payment processing ...
	the ['payment']['form'] key of the getInfo method of a payment_method tagged service. Meaning, the checkout process should show a credit card form under card payment. The behavior of checking out will be coded such that if payment with
	a form is selected and the Place Order button is clicked, that payment form will prevent the checkout process from proceeding until the payment form is submitted to either authorize or capture the URL defined in the payment itself. We will touch upon ...
	Aside from the credit card payment method, let's go ahead and define one more
	We will start by defining the following service under the services element of the (1)
	Unlike a card payment, the check money payment has no form key defined under the getInfo method. This is because there are no credit card entries for it to define. It is just going to be a static payment method. However, we still need to define the au...
	Similar to a card payment, here we added a simple dummy implementation of the authorize, capture, and cancel methods. The method responses will feed into the SalesBundle module later on. We can easily implement more robust functionality from within th...
	Our FoggylinePaymentBundle module is really simple. It provides only two payment methods: card and check money. It does so via two simple service classes. Since we are not going after full code coverage tests, we will only cover the CardPayment and Ch...
	We will start off by adding the following line under the testsuites element of our
	Here, we are running two simple tests to see if we can instantiate a service, either via a container or directly, and simply call its getInfo method. The method is expected to return a response that contains the ['payment']['form'] key.
	Similarly, here we also have two simple tests: one fetching the payment method via a container, and the other directly via a class. The difference being that we are not checking for the presence of a form key under the getInfo method response.
	Both tests are nearly identical. They contain a test for each of the authorize, capture, and cancel methods. Since our methods are implemented with a fixed success JSON response, there are no surprises here. However, we can easily play around with it ...
	Throughout this chapter we have built a payment module with two payment methods. The card payment method is made so that it is simulating payment with the credit cards involved. For that reason, it includes a form as part of its getInfo method. The ch...
	The idea was to create a minimal structure that showcases how one can develop
	a simple payment module for further customization. We did so by exposing each payment method via a tagged service. Using the payment_method tag was a matter of consensus, since we are the ones building the full application so we get to choose how we w...
	Moving forward, in the next chapter we will build a shipment module.
	The shipment module, alongside the payment module, provides a basis for further sales functionality in our web shop. It will enable us to choose the shipment method when we reach the checkout process of the upcoming sales module. Similar to payment, s...
	a fixed pricing value, or even a calculated one by some simple conditions, dynamic
	usually implies a connection to external API services.
	Throughout this chapter, we will touch base with both types and see how we can set up a basic structure for implementing the shipment module.
	In this chapter, we will be covering the following topics of the shipment module:
	• Requirements (4)
	• Dependencies (4)
	• Implementation (4)
	• Unit testing (4)
	• Functional testing (4)
	Application requirements, defined under Chapter 4, Requirement Specification for Modular Web Shop App, do not give us any specifics as to what type of shipment we need to implement. Thus, for the purpose of this chapter, we will develop two shipment m...
	Ideally, we want this done by an interface similar to the following:
	The getInfo method can then be used to fetch the available delivery options for the given order information, while the process method would then process the selected delivery option. For example, we might have an API return "same day delivery ($9.99)"...
	Having such a shipment interface would then impose the requirement of having the SalesBundle module, which we still haven't developed. We will therefore proceed with our shipment methods, using a Symfony controller for handling the process method and ...
	Similarly, as we did with the payment method in the previous chapter, we will expose our getInfo method through tagged Symfony services. The tag we will be using for shipment methods is shipment_method. Later on, during the checkout process, the Sales...
	We are building the module the other way round. That is, we are building it before we know anything about the SalesBundle module, which is the only module that will be using it. With that in mind, the shipment module has no firm dependencies on any ot...
	We will start off by creating a new module called Foggyline\ShipmentBundle. We will do so with the help of the console by running the following command:
	The command triggers an interactive process, which asks us several questions along the way, shown as follows:
	The routing.yml file has been updated with the following entry:
	In order to avoid colliding with the core application code, we need to change
	The flat rate shipment service is going to provide the fixed shipment method that our sales module is going to use for its checkout process. Its role is to provide the shipment method labels, code, delivery options, and processing URLs.
	We will start by defining the following service under the services element of the (2)
	$postcode, $amount, and $qty. We can consider these to be part of some unified shipment interface. delivery_options in this case returns a single, fixed value. url_process is the URL to which we will be inserting our selected shipment method. Our futu...
	file by adding the following route definitions to it: (1)
	We should now be able to access a URL, like /app_dev.php/shipment/flat_rate/ process, and see the output of processAction. Implementations given here are dummy ones. What is important for us to know is that the sales module will, during its checkout p...
	Aside from the flat rate shipment method, let's go ahead and define one more
	dynamic shipment, called Dynamic Rate.
	We will start by defining the following service under the services element of the (3)
	property is the same as with the flat rate shipment service.
	Unlike the flat rate shipment, here the delivery_options key of the getInfo method is constructed with the response of the getDeliveryOptions method. The method is internal to the service and is not imagined as exposed or to be looked at as part of an...
	Similar to the flat rate shipment, here we have added a simple dummy implementation of the process and method. The incoming $request should contain the same info
	as the service getInfo method, meaning, it should have the following arguments available: $street, $city, $country, $postcode, $amount, and $qty. The method responses will feed into the SalesBundle module later on. We can easily implement more robust ...
	The FoggylineShipmentBundle module is quite simple. By providing only two simple services and two simple controllers, it's easy to test.
	We will start off by adding the following line under the testsuites element of our (1)
	Two simple tests are being run here. One checks if we can instantiate a service via a container, and the other checks if we can do so directly. Once instantiated, we simply call the getInfo method of a service, passing it a dummy address and
	order information. Although we are not actually using this data within the getInfo method, we need to pass something along otherwise the test will fail. The method is expected to return a response that contains several keys under the shipment key, mos...
	This test is nearly identical to that of the FlatRateShipment service. Here, we also have two simple tests: one fetching the payment method via a container, and the other directly via a class. The difference being that we are no longer asserting the p...
	Our entire module has only two controller classes that we want to test for responses. We want to make sure that the process method of the FlatRateController and DynamicRateController classes are accessible and working.
	Both tests are nearly identical. They contain a test for a single process action method. As it is coded now, the controller process action simply returns a fixed success JSON response. We can easily extend it to return more than just a fixed response ...
	Throughout this chapter we have built a shipment module with two shipment methods. Each shipment method provided the available delivery options. The flat rate shipment method has only one fixed value under its delivery options, whereas the dynamic rat...
	Obviously, we lack the official interfaces here, as we did with payment methods. However, this is something we can always come back to and refactor in our application as we finalize the final module.
	Similar to the payment methods, the idea here was to create a minimal structure that showcases how one can develop a simple shipment module for further customization. Using the shipment_methodservice tag, we effectively exposed the shipment methods fo...
	Moving forward, in the next chapter, we will build a sales module, which will
	The Sales module is the final one in the series of modules we will build in order to deliver a simple yet functional web shop application. We will do so by adding the cart and the checkout features on top of the catalog. The checkout itself will final...
	In this chapter, we will be covering the following topics of the Sales module:
	• Requirements (5)
	• Dependencies (5)
	• Implementation (5)
	• Unit testing (5)
	• Functional testing (5)
	The following is a list of required module entities:
	• Cart
	• Cart Item
	• Order
	• Order Item
	The Cart entity includes the following properties and their data types:
	• id: integer, auto-increment (3)
	The Cart Item entity includes the following properties:
	• id: integer, auto-increment (4)
	The Order entity includes the following properties:
	• id: integer, auto-increment (5)
	column
	The Order Item entity includes the following properties:
	• id: integer, auto-increment (6)
	Aside from just adding these entities and their CRUD pages, we also need to override a core module service responsible for building the category menu and on-sale items.
	The Sales module will have several dependencies across the code.
	These dependencies are directed toward customer and catalog modules.
	We start by creating a new module called Foggyline\SalesBundle. We do so with the help of the console, by running the command as follows:
	The command triggers an interactive process, asking us several questions along the way, as shown here:
	The routing.yml file has been updated with the following entry: (1)
	In order to avoid collision with the core application code, we need to change
	Let's go ahead and create a Cart entity. We do so by using the console, as shown here:
	This triggers the interactive generator as shown in the following sreenshot:
	With the Cart entity in place, we can go ahead and generate the CartItem entity.
	Let's go ahead and create a CartItem entity. We do so by using the now well-known
	This triggers the interactive generator as shown in the following screenshot:
	following to it:
	We then need to update the database, so it pulls in the CartItem entity, by running the following command:
	With the CartItem entity in place, we can go ahead and generate the Order entity.
	Let's go ahead and create an Order entity. We do so by using the console, as shown here:
	If we tried to provide FoggylineSalesBundle:Order as an entity shortcut name, the generated output would throw an error as shown in the following screenshot:
	This is followed by the rest of the customer-information-related fields. To get a better
	idea, look at the following screenshot:
	This is followed by the rest of the order-address-related fields as shown here:
	It is worth noting that normally we would like to extract the address information in its own table, that is make it its own entity. However, to keep things simple, we will proceed by keeping it as part of the SalesOrder entity.
	With the SalesOrder entity in place, we can go ahead and generate the
	Let's go ahead and create a SalesOrderItem entity. We start the code generator by using the following console command:
	Here, we have defined two types of relations. The first one, relating to $salesOrder, is the bidirectional one-to-many association, which we saw in the Cart and CartItem entities. The second one, relating to $product, is the unidirectional one- to-one...
	We then need to update the database, so it pulls in the SalesOrderItem entity, by running the following command:
	With the SalesOrderItem entity in place, we can go ahead and start building the cart and checkout pages.
	The add_to_cart_url service was originally declared in FoggylineCustomerBundle with dummy data. This is because we needed a way to build Add to Cart URLs on products before sales functionality was available. While certainly not ideal, it is one possib...
	Now we are going to override that service with the one declared in our Sales module in order to provide correct Add to Cart URLs. We start off by defining the service within src/Foggyline/SalesBundle/Resources/config/services.xml, by adding the follow...
	There is quite a bit of logic going on here in the addAction method. We are first checking whether the current user already has a cart entry in the database; if not, we create a new one. We then add or update the existing cart item.
	The override should now be in effect, and our Sales module should now be providing valid Add to Cart links.
	The checkout menu service defined in the Customer module has a simple purpose
	which is to provide a link to the cart and the first step of the checkout process. Since the Sales module was unknown at the time, the Customer module provided a dummy link, which we will now override.
	We start by adding the following service entry under the services element of the
	with content as follows:
	The newly added routes expect the cart and checkout controller. The cart controller is already in place, so we just need to add the indexAction to it. At this point, let's just add an empty one as follows:
	Later on, we will revert back to these two indexAction methods and add proper method body implementations.
	Our newly defined service should now override the one defined in the Customer module, thus providing the right checkout and cart (with items in the cart count) URL.
	The foggyline_customer.customer_orders service was to provide a collection of previously created orders for currently logged-in customers. The Customer module defined a dummy service for this purpose, just so we can move forward with building up the M...
	We start by adding the following service element under the services of the
	with content as follows: (1)
	The routes definition, in turn, expects SalesOrderController to be defined. Since our application will require an admin user to be able to list and edit the orders, we will use the following Symfony command to auto-generate the CRUD for our Sales Orde...
	When asked for the entity shortcut name, we simply provide FoggylineSalesBundle:SalesOrder and proceed, allowing for creation of write actions. At this point, several files have been created for us, as well as a few entries outside of the Sales bundle...
	The cancelAction method merely checks whether the order in question belongs to the currently logged-in customer; if so, a change of order status is allowed. The
	printAction method merely loads the order if it belongs to the currently logged-in customer, and passes it on to a print.html.twig template.
	Obviously, this is just a simplified output, which we can further customize to our needs. The important bit is that we have passed along the order object to our template, and can now extract any piece of information needed from it.
	This will make the service override kick in, and pull in all of the changes we just made.
	The bestsellers service defined in the Customer module was supposed to provide dummy data for the bestsellers feature shown on the homepage. The idea is to showcase five of the bestselling products in the store. The Sales module now needs to override ...
	We start off by adding the following definition under the service element of the
	with content as follows: (2)
	By overriding the bestsellers service, we are exposing the actual sales-based list of bestselling products for other modules to fetch.
	The cart page is where the customer gets to see a list of products added to the cart via Add to Cart buttons, from either the homepage, a category page, or a product page. We previously created CartController and an empty indexAction function. Now let...
	To remove a product from the cart, we simply insert 0 as the quantity value and click the Update Cart button. This completes our simple cart page.
	In order to move from cart to checkout, we need to sort out payment and shipment services. The previous Payment and Shipment modules exposed some of their Payment and Shipment services, which we now need to aggregate into a single Payment and Shipment...
	file by adding the following under the service element:
	file by adding the following under the service element: (1)
	The checkout page will be constructed out of two checkout steps, the first one being shipment information gathering, and the second one being payment information gathering.
	Here, we are fetching the currently logged-in customer cart and passing it onto a checkout/index.html.twig template, alongside several other variables needed for the shipment step. The getAddressForm method simply builds an address form for us. There ...
	The template lists all of the address-related form fields, alongside available shipment methods. The JavaScript part handles the Next button click, which basically submits the form to the foggyline_sales_checkout_payment route.
	which we define as follows:
	The preceding code fetches the submission made from the shipment step of the checkout process, stores the relevant values into the session, fetches the variables required for the payment step and renders back the checkout/payment.html.twig template.
	we define as follows:
	Once the POST submission hits the controller, a new order with all of the related items gets created. At the same time, the cart and cart items are cleared. Finally, the customer is redirected to the order success page.
	The order success page has an important role in full-blown web shop applications. This is where we get to thank the customer for their purchase and possibly present some more related or cross-related shopping options, alongside some optional discounts.
	Though our application is simple, it's worth building a simple order success page.
	We start by adding the following route definition under the routes element of the
	we define as follows: (1)
	With this, we finalize the entire checkout process for our web shop. Though it is an
	absolutely simplistic one, it sets the foundation for more robust implementations.
	Now that we have finalized the checkout Sales module, let's revert quickly to our core module, AppBundle. As per our application requirements, let's go ahead and create a simple store manager dashboard.
	The template merely renders the category, product, customer, and order management links. The actual access to these links is controlled by the firewall, as explained in previous chapters.
	The Sales module is far more robust than any of the previous modules. There are several things we can unit test. However, we won't be covering full unit testing as part of this chapter. We will simply turn our attention to a single unit test, the one ...
	We start off by adding the following line under the testsuites element of our (1)
	Here, we are using the UsernamePasswordToken function in order to simulate a customer login. The password token is then passed on to the CustomerOrders service. The CustomerOrders service then internally checks whether token storage has a token assign...
	Similar to unit testing, we will only focus on a single functional test, as doing anything more robust would be out of the scope of this chapter. We will write a simple code that adds a product to the cart and accesses the checkout page. In order to a...
	Once run, the test will simulate the customer login, add an item to the cart, and try to access the checkout page. Depending on the actual customers we have in our database, we might need to change the customer e-mail provided in the preceding test.
	Running the phpunit command now should successfully execute our tests. (2)
	In this chapter, we built a simple yet functional Sales module. With just four simple entities (Cart, CartItem, SalesOrder, and SalesOrderItem), we managed to implement simple cart and checkout features. By doing so, we empowered customers to actually...
	Furthermore, in this chapter, we addressed the admin dashboard, by making a simple interface that merely aggregates a few of the existing CRUD interfaces. Access to the dashboard and the management links is protected by entries in app/config/ security...
	Together, the modules written so far make up a simplified application. Writing robust web shop applications would normally include tens of other features found in modern e-commerce platforms such as Magento. These include multiple language, currency, ...
	Moving forward, in the final chapter, we will look into distributing our modules.
	Throughout a few of the previous chapters, we built a simple web shop application in a modular manner. Each of the modules play a special role in handling individual bits and pieces, which add to the overall application. The application itself, though...
	This way, we will be able to keep the different module developments as completely different projects while still being able to use them together. As we move forward, we will see how we can achieve this via GIT and Composer in two different manners.
	In this chapter, we will cover the following tools and services:
	• Understanding Git
	• Understanding GitHub
	• Understanding Composer
	• Understanding Packagist
	Originally started by Linus Torvalds, Git version control is currently one of the most popular version control systems. Overall speed and efficiency with large projects, alongside a great branching system, has made it popular among developers.
	Learning about Git version control itself is out of the scope of this book, for which recommended reading is the Pro Git book.
	One neat feature of Git, which we are interested in as part of this chapter, is its submodules. They enable us to slice larger modular projects, such as our web shop app, into a series of smaller submodules, whereas each submodule is a Git repository ...
	Within three years of Git's appearance, GitHub emerged. GitHub is basically a web service built on top of the Git version control system. It enables developers to easily post their code online, where others can simply clone their repository and
	use their code. Creating an account on GitHub is free and can be done by following
	instructions on their official homepage (https://github.com). Currently, our application is structured as per the following image:
	What we want to do is to split it into six different Git repositories, as follows:
	The core repository is to contain everything except the content of the
	Assuming we created an empty core repository on GitHub, and our local all-in-one app is currently held in the shop directory, we initialize the following commands on our computer:
	At this point, we merely pushed the core application part of our all-in-one web shop app into the core repository on GitHub. The src/Foggyline/ directory does not contain any modules in it.
	Now, let's go back to GitHub and create an appropriate empty repository for each
	Once all of the five modules are pushed to a repository, we can finally treat them as
	submodules, as shown here:
	If we were to run the ls-al command within the core repository directory now, we should be able to see a .gitmodules file in there with the following content:
	The .gitmodules file, basically, contains the list of all of the submodules added to our core project, that is, core application. We should commit and push this file to the core repository now. Assuming that the .gitmodules file is pushed to the core ...
	and updates each submodule in the repository based on the .gitmodules file.
	Composer is a dependency management tool for PHP. By default, it does not install anything global but rather on a per-project basis. We can use it to redistribute
	our project in order to define which libraries and packages it needs for it to be successfully executed. Using Composer is quite simple. All it creating is to create a composer.json file in the root directory of our project with similar content, as fo...
	If we were to create the preceding composer.json file in some empty directory and execute the composer install command within that directory, Composer will pickup the composer.json file and install the defined dependencies for our project. The actual ...
	We can also simply execute the command twig/twig:~1.0 that a Composer requires, which does the same thing but with a different approach. It does not require us to write a composer.json file, and if one exists, it will update it.
	Learning about Composer itself is out of the scope of this book, for which the recommended official documentation is available at https://getcomposer.org/ doc.
	Composer allows packaging and formal dependency management, making it a great choice to slice our all-in-one modular application into a series of Composer packages. These packages need a repository.
	The main repository, when it comes to Composer packages, is Packagist (https:// packagist.org). It is a web service that we can access through our browser, open an account on for free, and start submitting our packages to the repository. We can also u...
	Packagist is generally used for free open source packages, though we can attach privateGitHub and BitBucket repositories to it in the same manner, the only difference being that the private repositories require SSH keys in order to work.
	private packages, higher bandwidth for faster package installations, and commercial support.
	Up to this point, we sliced our applications into six different Git repositories, one for core application and the remaining five for each module (catalog, customer, payment, sales, and shipment) individually. Now, let's take the final step and see ho...
	Assuming we created an account on https://packagist.org and successfully logged in, we will start by clicking on the Submit button, which should land us on a screen similar to the following screenshot:
	need to make sure that our repository has a composer.json file defined in its root,
	otherwise an error similar to the one shown in the following screenshot will be thrown.
	There are quite a lot of attributes here, all of which are fully documented over on the
	Once we add the preceding composer.json file to our Git repository, we can go back to Packagist and proceed with clicking the Check button, which should result in a screen similar to the following screenshot:
	Finally, when we click the Submit button, a screen similar to the following screenshot should appear:
	Our package is now added to Packagist, and running the following command on console will install it to into the project:
	Similarly, we can just add the proper entry to the existing project's composer.json
	file, as shown in the following code block:
	Now that we know how to slice out the application across several Git repositories and Composer packages, we need to do the same for the remaining modules within the src/Foggyline/ directory, as only those modules will be registered as the Composer pac...
	During the sales module development, we noticed that it depends on several other modules, such as catalog and customer. We can use the require attribute of the composer.json file to outline this dependency.
	The difference between using submodules and packages might not be that obvious at this point. However, packages, unlike submodules, allow versioning. Though all of our packages are pulled in from dev-master, we could have easily targeted specific vers...
	Throughout this chapter, we took a quick look at Git and Composer and how we can integrate and distribute our modules via GitHub and Packagist as their respectful services. Publishing packages under Packagist has been shown to be a pretty straightforw...
	Writing our own applications from ground up does not necessarily mean we need to use the Git submodules or the Composer packages, as presented in this chapter. The Symfony application, on its own, is structured modularly via bundles. The version contr...
	in via Composer when the project is being set. The examples shown in this chapter merely show what can be accomplished if we are after writing modular components that are to be shared with others. As an example, if we were really working on a robust c...
	find it interesting to require and use it in their project.
	This book started by looking into the current state of the PHP ecosystem. We then touched upon design patterns and principles, as a foundation of professional programming. Then we moved onto writing a brief, more visual, specification for our web shop...
	This Learning Path is a blend of content, all packaged up keeping your journey in mind. It includes content from the following Packt products:
	• PHP 7 Programming Cookbook, Doug Bierer
	• Learning PHP 7 High Performance, Altaf Hussain
	• Modular Programming with PHP 7, Branko Ajzele

	Thank you for buying

